Generic allometric models including height best estima stocks in Indonesia

Forest Ecology and Management 307, 219-225 DOI: 10.1016/j.foreco.2013.07.013

Citation Report

#	Article	IF	CITATIONS
1	Community Monitoring of Carbon Stocks for REDD+: Does Accuracy and Cost Change over Time?. Forests, 2014, 5, 1834-1854.	2.1	48
2	A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 2014, 329, 237-254.	3.2	289
3	Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 2014, 334, 241-253.	3.2	48
4	Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. Forest Ecology and Management, 2014, 318, 103-109.	3.2	102
6	Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere, 2015, 6, 1-15.	2.2	106
7	Community assessment of tropical tree biomass: challenges and opportunities for REDD+. Carbon Balance and Management, 2015, 10, 17.	3.2	8
8	Estimating above Ground Biomass and Carbon Stock in the Lake Hawassa Watershed, Ethiopia by Integrating Remote Sensing and Allometric Equations. Journal of Forest Research: Open Access, 2015, 04, .	0.0	5
9	Development of Allometric Equations for Tree Biomass in Forest Ecosystems in Paraguay. Japan Agricultural Research Quarterly, 2015, 49, 281-291.	0.4	8
10	Deadwood biomass: an underestimated carbon stock in degraded tropical forests?. Environmental Research Letters, 2015, 10, 044019.	5.2	60
11	Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecological Applications, 2015, 25, 1433-1446.	3.8	56
12	A review of forest and tree plantation biomass equations in Indonesia. Annals of Forest Science, 2015, 72, 981-997.	2.0	21
13	Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos. Forest Ecology and Management, 2015, 357, 104-116.	3.2	31
14	ABOVEGROUND BIOMASS AND CARBON STOCK ESTIMATION USING DOUBLE SAMPLING APPROACH AND REMOTELY-SENSED DATA. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	5
15	Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests, 2016, 7, 32.	2.1	16
16	Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia. PLoS ONE, 2016, 11, e0154307.	2.5	6
17	Tree Height Reduction After Selective Logging in a Tropical Forest. Biotropica, 2016, 48, 285-289.	1.6	35
18	Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 2016, 374, 42-50.	3.2	48
19	Mapping the structure of Borneo's tropical forests across a degradation gradient. Remote Sensing of Environment, 2016, 176, 84-97.	11.0	93

#	Article	IF	Citations
20	Error in the estimation of emission factors for forest degradation in central Africa. Journal of Forest Research, 2016, 21, 23-30.	1.4	5
21	Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above- and below-ground carbon estimates. Forest Ecology and Management, 2016, 360, 323-340.	3.2	77
22	Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling. Geocarto International, 2017, 32, 701-716.	3.5	47
23	Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 2017, 136, 233-249.	2.5	65
24	New insights on above ground biomass and forest attributes in tropical montane forests. Forest Ecology and Management, 2017, 399, 235-246.	3.2	30
25	Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea. Global Change Biology, 2017, 23, 4873-4883.	9.5	33
26	Construction of compatible and additive individual-tree biomass models for <i>Pinustabulaeformis</i> in China. Canadian Journal of Forest Research, 2017, 47, 467-475.	1.7	32
27	Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 2017, 389, 27-34.	3.2	37
28	Model selection changes the spatial heterogeneity and total potential carbon in a tropical dry forest. Forest Ecology and Management, 2017, 405, 69-80.	3.2	10
29	Wood biomass availability for smallholder charcoal production in dry forest and savannah ecosystems of south-western Madagascar. Journal of Arid Environments, 2017, 146, 86-94.	2.4	9
30	High Resolution of Three-Dimensional Dataset for Aboveground Biomass Estimation in Tropical Rainforests. , 2017, , 115-130.		0
31	Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1815-1828.	0.8	8
32	Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS ONE, 2017, 12, e0179653.	2.5	37
33	Least squares-based biomass conversion and expansion factors best estimate biomass than ratio-based ones: Statistical evidences based on tropical timber species. MethodsX, 2018, 5, 30-38.	1.6	3
34	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
35	Height – Diameter allometry in South Africa's indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 2018, 410, 1-11.	3.2	55
36	Species-specific allometric models for estimation of the above-ground carbon stock in miombo woodlands of Copperbelt Province of Zambia. Forest Ecology and Management, 2018, 417, 184-196.	3.2	14
37	The imprint of logging on tropical forest carbon stocks: A Bornean case-study. Forest Ecology and Management, 2018, 417, 154-166.	3.2	11

CITATION REPORT

#	Article	IF	CITATIONS
38	Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia. Environmental Research Letters, 2018, 13, 024022.	5.2	26
39	Mapping tree aboveground biomass and carbon in Omo Forest Reserve Nigeria using Landsat 8 OLI data. Southern Forests, 2018, 80, 341-350.	0.7	6
40	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	3.3	47
41	An Assessment of Temporal Decorrelation Compensation Methods for Forest Canopy Height Estimation Using Airborne L-Band Same-Day Repeat-Pass Polarimetric SAR Interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 95-111.	4.9	39
42	A regional allometry for the Congo basin forests based on the largest ever destructive sampling. Forest Ecology and Management, 2018, 430, 228-240.	3.2	44
43	Site-effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies) Tj ETQq1 1	0,784314	1 rgBT /Over
44	Forest Height Estimation Using Multibaseline PolInSAR and Sparse Lidar Data Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3415-3433.	4.9	26
45	Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. Journal of Forestry Research, 2019, 30, 1619-1632.	3.6	13
46	Landscapeâ€level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type. Ecological Applications, 2019, 29, e01987.	3.8	6
47	Aboveground biomass quantification and tree-level prediction models for the Brazilian subtropical Atlantic Forest. Southern Forests, 2019, 81, 261-271.	0.7	10
48	A practical measure for determining if diameter (D) and height (H) should be combined into D2H in allometric biomass models. Forestry, 2019, 92, 627-634.	2.3	6
49	Modeling the height-diameter relationship of planted Pinus kesiya in Zambia. Forest Ecology and Management, 2019, 447, 1-11.	3.2	20
50	Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. Forest Ecology and Management, 2019, 437, 156-174.	3.2	15
51	The Variation Driven by Differences between Species and between Sites in Allometric Biomass Models. Forests, 2019, 10, 976.	2.1	11
52	Allometric Models for Predicting Aboveground Biomass of Trees in the Dry Afromontane Forests of Northern Ethiopia. Forests, 2019, 10, 1114.	2.1	26
53	Potential of Carbon Stocks and Its Economic Values in Tropical Karst Landscape (Case Study in) Tj ETQq1 1 0.784	4314.rgBT 0.4	/Qverlock 1
54	Assessing the Uncertainty of Tree Height and Aboveground Biomass From Terrestrial Laser Scanner and Hypsometer Using Airborne LiDAR Data in Tropical Rainforests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4149-4159.	4.9	17
55	Social valuation of regulating and cultural ecosystem services of Arroceros Forest Park: A man-made forest in the city of Manila, Philippines. Journal of Urban Management, 2019, 8, 159-177.	4.5	21

CITATION REPORT

#	Article	IF	CITATIONS
56	Trends in global research in forest carbon sequestration: A bibliometric analysis. Journal of Cleaner Production, 2020, 252, 119908.	9.3	126
57	Carbon Stock and Mitigation Potentials of Zeghie Natural Forest for Climate Change Disaster Reduction, Blue Nile Basin, Ethiopia. Earth Systems and Environment, 2020, 4, 27-41.	6.2	7
58	The tree height estimated by non-power models on volumetric models provides reliable predictions of wood volume: The Amazon species height modelling issue. Trees, Forests and People, 2020, 2, 100028.	1.9	3
59	Improving the knowledge base for tropical dry forest management in southern Africa: Regional volume models for Pterocarpus angolensis. Forest Ecology and Management, 2020, 477, 118485.	3.2	0
60	How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes?. Ecosphere, 2020, 11, e03284.	2.2	5
61	Spatial pattern of carbon mangrove stock based on habitat characteristics in Bali Province. IOP Conference Series: Earth and Environmental Science, 2020, 481, 012067.	0.3	0
62	Improving the forecasts of commercial timber volume in transition forest in the northern Brazilian Amazon. Southern Forests, 2020, 82, 148-158.	0.7	3
63	Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations. Carbon Balance and Management, 2020, 15, 8.	3.2	54
64	Deterministic growth factors: Temperature and precipitation effect above ground biomass of Larix spp. in Eurasia. Acta Ecologica Sinica, 2021, 41, 377-383.	1.9	1
65	Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest Inventory Data. Forests, 2020, 11, 163.	2.1	34
66	Species-specific or generic allometric equations: which option is better when estimating the biomass of Mexican tropical humid forests?. Carbon Management, 2020, 11, 241-249.	2.4	7
67	Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations. Biological Conservation, 2020, 248, 108631.	4.1	13
68	Allometric Biomass Model for <i>Aquilaria Malaccensis</i> Lam. in Bangladesh: A Nondestructive Approach. Journal of Sustainable Forestry, 2021, 40, 594-606.	1.4	3
69	Height–diameter relationship of trees in Omo strict nature forest reserve, Nigeria. Trees, Forests and People, 2021, 3, 100051.	1.9	14
70	Dynamic allometric scaling of tree biomass and size. Nature Plants, 2021, 7, 42-49.	9.3	27
71	Biomass Estimation Models for Six Shrub Species in Hunshandake Sandy Land in Inner Mongolia, Northern China. Forests, 2021, 12, 167.	2.1	5
72	Stem and Total Above-Ground Biomass Models for the Tree Species of Freshwater Wetlands Forest, Coastal Areas and Dry Areas of Bangladesh: Using a Non-Destructive Approach. Open Journal of Forestry, 2021, 11, 73-82.	0.3	1
73	Exploring urban tree diversity and carbon stocks in Zaria Metropolis, North Western Nigeria. Applied Geography, 2021, 127, 102385.	3.7	6

#	Article	IF	CITATIONS
74	Prediction of Biomass in Dry Tropical Forests: An Approach on the Importance of Total Height in the Development of Local and Pan-tropical Models. Journal of Sustainable Forestry, 2022, 41, 983-998.	1.4	3
75	Generic Additive Allometric Models and Biomass Allocation for Two Natural Oak Species in Northeastern China. Forests, 2021, 12, 715.	2.1	6
77	Compatible Models of Carbon Content of Individual Trees on a Cunninghamia lanceolata Plantation in Fujian Province, China. PLoS ONE, 2016, 11, e0151527.	2.5	2
78	Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands. PLoS ONE, 2016, 11, e0158198.	2.5	16
79	Development and Evaluation of Species-Specific Biomass Models for Most Common Timber and Fuelwood Species of Bangladesh. Open Journal of Forestry, 2020, 10, 172-185.	0.3	3
80	Estimation of Stand-level Above Ground Biomass in Intact Tropical Rain Forests of Brunei using Airborne LiDAR data. Korean Journal of Remote Sensing, 2015, 31, 127-136.	0.4	1
81	The Effects of Combining the Variables in Allometric Biomass Models on Biomass Estimates over Large Forest Areas: A European Beech Case Study. Forests, 2021, 12, 1428.	2.1	0
82	Biomass estimation in mangrove forests: a comparison of allometric models incorporating species and structural information. Environmental Research Letters, 2021, 16, 124002.	5.2	17
83	Efecto del riego y la fertilización en el crecimiento de Eucalyptus x urograndis como cultivo energético en Huelva. Cuadernos De La Sociedad Española De Ciencias Forestales, 2016, , .	0.1	1
84	Additive Allometric Models of Single-Tree Biomass of <i>Betula</i> Sp. as a Basis of Regional Taxation Standards for Eurasia. Civil and Environmental Engineering, 2018, 14, 105-115.	1.2	1
85	Modeling the additive allometric of stand biomass of Larix sp. for Eurasia. Ecological Questions, 2019, 30, 1.	0.3	0
86	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	5.2	11
87	Accommodating heteroscedasticity in allometric biomass models. Forest Ecology and Management, 2022, 505, 119865.	3.2	5
88	A bibliometric review on carbon accounting in social science during 1997–2020. Environmental Science and Pollution Research, 2022, 29, 9393-9407.	5.3	9
89	Assessing the Spectral Information of Sentinel-1 and Sentinel-2 Satellites for Above-Ground Biomass Retrieval of a Tropical Forest. ISPRS International Journal of Geo-Information, 2022, 11, 199.	2.9	2
90	Height-diameter allometry for tropical forest in northern Amazonia. PLoS ONE, 2021, 16, e0255197.	2.5	1
91	Additive Root Biomass Equations for Betula platyphylla Suk. Plantations in Northeast China. Forests, 2022, 13, 661.	2.1	2
92	Estimation of Aboveground Carbon Density of Forests Using Deep Learning and Multisource Remote Sensing, 2022, 14, 3022.	4.0	16

CITATION REPORT

#	Article	IF	CITATIONS
93	Evaluating Trade-Offs between Using Regional and Site-Specific Allometric Models to Predict Growing Stock Volume of Subtropical Atlantic Forests. Forest Science, 0, , .	1.0	0
94	Allometric equations for biomass and carbon stock estimation of small diameter woody species from tropical dry deciduous forests: Support to REDD+. Trees, Forests and People, 2022, 9, 100289.	1.9	12
95	Climate mediates the effects of forest gaps on tree crown allometry. Forest Ecology and Management, 2022, 525, 120563.	3.2	2
96	Improved allometric models to estimate the aboveground biomass of younger secondary tropical forests. Global Ecology and Conservation, 2023, 41, e02359.	2.1	2
97	Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth Sciences Research Journal, 2022, 26, 1-12.	0.6	0
98	Carbon stocks of tree plantations in a Western Ghats landscape, India: influencing factors and management implications. Environmental Monitoring and Assessment, 2023, 195, .	2.7	5
99	Allocation Patterns and Temporal Dynamics of Chinese Fir Biomass in Hunan Province, China. Forests, 2023, 14, 286.	2.1	5
100	Co-benefits of biomass and biodiversity in a protected mountain forest of West Java, Indonesia. IForest, 2023, 16, 62-69.	1.4	0
101	Allometric Models and Biomass Conversion and Expansion Factors to Predict Total Tree-level Aboveground Biomass for Three Conifers Species in Iran. Forest Science, 0, , .	1.0	0
102	Effects of Climate on Stand-Level Biomass for Larch Plantations in Heilongjiang Province, Northeast China. Forests, 2023, 14, 820.	2.1	0
103	Machine Learning: Volume and Biomass Estimates of Commercial Trees in the Amazon Forest. Sustainability, 2023, 15, 9452.	3.2	3
105	Developing biomass allometric equations for small trees in mixed-species forests of tropical rainforest ecozone. Trees, Forests and People, 2023, 13, 100425.	1.9	1
106	Formulating biomass allometric model for <i>Paraserianthes falcataria</i> (L) Nielsen (Sengon) in smallholder plantations, Central Kalimantan, Indonesia. Forest Science and Technology, 0, , 1-17.	0.8	0
107	Tree height-diameter, aboveground and belowground biomass allometries for two West African mangrove species. Biomass and Bioenergy, 2023, 176, 106917.	5.7	1
108	Potensi Serapan Karbon Inorganik pada Kawasan Karst Tropis di Karst Biduk-Biduk, Kalimantan Timur. Jurnal Wilayah Dan Lingkungan, 2022, 10, 267-281.	0.2	1
109	Plant functional traits and tree size inequality improved individual tree height prediction of mid-montane humid evergreen broad-leaved forests in southwest China. Forest Ecology and Management, 2024, 551, 121526.	3.2	0
110	Biomass estimation models for Acacia saligna trees in restored landscapes. Environmental Research Communications, 0, , .	2.3	0