Sediment accretion and organic carbon burial relative t two mangrove forests in Everglades National Park

Catena

104, 58-66

DOI: 10.1016/j.catena.2012.10.009

Citation Report

#	Article	IF	CITATIONS
1	Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons. Oceanography, 2013, 26, 98-107.	1.0	45
2	Soil Accretion Influenced by Elevation, Tree Density, and Substrate on Reconstructed Tree Islands. Soil Science Society of America Journal, 2014, 78, 2090-2099.	2.2	8
3	Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya. Ecology and Evolution, 2014, 4, 3187-3200.	1.9	14
4	How mangrove forests adjust to rising sea level. New Phytologist, 2014, 202, 19-34.	7.3	489
5	Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 2014, 6, 195-219.	11.6	972
6	Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2032-2048.	3.0	84
7	Assessing source contributions to particulate organic matter in a subtropical estuary: A biomarker approach. Organic Geochemistry, 2014, 75, 129-139.	1.8	48
8	Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia, 2014, 726, 195-211.	2.0	88
9	Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East Queensland, Australia. Estuaries and Coasts, 2014, 37, 763-771.	2.2	108
10	New perspectives on an iconic landscape from comparative international longâ€term ecological research. Ecosphere, 2015, 6, 1-18.	2.2	9
11	The Impact of Climate Change on Mangrove Forests. Current Climate Change Reports, 2015, 1, 30-39.	8.6	307
12	Numerical computation of hurricane effects on historic coastal hydrology in Southern Florida. Ecological Processes, 2015, 4, .	3.9	3
13	Sea level and turbidity controls on mangrove soil surface elevation change. Estuarine, Coastal and Shelf Science, 2015, 153, 1-9.	2.1	72
14	Contribution of mangroves to coastal carbon cycling in low latitude seas. Agricultural and Forest Meteorology, 2015, 213, 266-272.	4.8	113
15	Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm. Environmental Management, 2015, 55, 857-875.	2.7	35
16	Mangrove Systems and Environmentsâ~†., 2016, , .		2
17	Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosystem Health and Sustainability, 2016, 2, .	3.1	355
18	One-century decline of mollusk diversity as consequence of accumulative anthropogenic disturbance in a tropical estuary (Cuban Archipelago). Marine Pollution Bulletin, 2016, 113, 224-231.	5.0	7

#	Article	IF	CITATIONS
19	Sedimentary records of recent sea level rise and acceleration in the Yucatan Peninsula. Science of the Total Environment, 2016, 573, 1063-1069.	8.0	18
20	Accretion rates in coastal wetlands of the southeastern Gulf of California and their relationship with sea-level rise. Holocene, 2016, 26, 1126-1137.	1.7	30
21	Examining 239+240 Pu, 210 Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. Journal of Environmental Radioactivity, 2016, 151, 623-629.	1.7	65
22	Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 2016, 8, 243-266.	11.6	310
23	State Changes in Tropical Intertidal Systems: A Palaeo-Ecological Approach. Journal of Coastal Research, 2017, 331, 208-217.	0.3	2
24	Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuarine, Coastal and Shelf Science, 2017, 192, 108-116.	2.1	54
25	Low Carbon sink capacity of Red Sea mangroves. Scientific Reports, 2017, 7, 9700.	3.3	87
26	Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology, 2017, 390, 170-180.	2.1	46
27	Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida. Marine Geology, 2017, 390, 254-269.	2.1	39
28	A synthesis of thresholds for focal species along the U.S. Atlantic and Gulf Coasts: A review of research and applications. Ocean and Coastal Management, 2017, 148, 75-88.	4.4	14
29	Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades. Environmental Management, 2017, 60, 989-1009.	2.7	15
30	Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environmental Earth Sciences, 2018, 77, 1.	2.7	57
31	The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Global Biogeochemical Cycles, 2018, 32, 817-839.	4.9	91
32	Avoiding timescale bias in assessments of coastal wetland vertical change. Limnology and Oceanography, 2018, 63, S477-S495.	3.1	61
33	Mangrove carbon assessment tool: Model validation and assessment of mangroves in southern USA and Mexico. Estuarine, Coastal and Shelf Science, 2018, 208, 107-117.	2.1	10
34	Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Science of the Total Environment, 2018, 630, 1628-1640.	8.0	46
35	Using a sedimentation scanner to determine mangrove health responses to sedimentation derived from dredging. An example from northwestern Australia. Environmental Technology (United) Tj ETQq0 0 0 rgBT /	/Ovædock	101If 50 97 To
36	Sea level rise sedimentary record and organic carbon fluxes in a low-lying tropical coastal ecosystem. Catena, 2018, 162, 421-430.	5.0	17

#	ARTICLE	IF	CITATIONS
37	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. Biogeosciences, 2018, 15, 6791-6818.	3.3	121
38	The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecology and Evolution, 2018, 8, 10416-10434.	1.9	45
39	Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary. Organic Geochemistry, 2018, 125, 196-211.	1.8	20
40	Restoring a degraded marsh using thin layer sediment placement: Short term effects on soil physical and biogeochemical properties. Ecological Engineering, 2018, 120, 61-67.	3.6	28
41	Mangrove Forests. SpringerBriefs in Climate Studies, 2018, , 23-36.	0.2	13
42	The effect of heterogeneous soil bulk density on root growth of field-grown mangrove species. Plant and Soil, 2018, 432, 91-105.	3.7	30
43	Methane emissions partially offset "blue carbon―burial in mangroves. Science Advances, 2018, 4, eaao4985.	10.3	141
44	Forest migration and carbon sources to Iranian mangrove soils. Journal of Arid Environments, 2018, 157, 57-65.	2.4	15
45	The sub-fossils of leaf fragments in sediments as an indicator of mangrove development in the Yingluo Bay, Guangxi, Southwest China over the last 130 years. Acta Oceanologica Sinica, 2019, 38, 27-34.	1.0	0
46	Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany, 2020, 125, 213-234.	2.9	67
47	Analysis of intrinsic value and estimating losses of "blue carbon―in coastal wetlands: a case study of Yancheng, China. Ecosystem Health and Sustainability, 2019, 5, 216-225.	3.1	6
48	Utilizing fossilized charcoal to augment the Everglades National Park Fire History Geodatabase. Journal of Environmental Management, 2019, 249, 109360.	7.8	1
49	Dynamics of the Sundarbans Forested Islands in the Context of Erosion-Accretion and Sea Level Rise. Coastal Research Library, 2019, , 491-506.	0.4	1
50	The Sundarbans: A Disaster-Prone Eco-Region. Coastal Research Library, 2019, , .	0.4	9
51	Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 2019, 17, e00575.	2.1	35
52	The Everglades: At the Forefront of Transition. , 2019, , 277-292.		6
53	Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 2019, 218, 310-323.	2.1	111
54	Spatial Variability of Organic Carbon, CaCO3 and Nutrient Burial Rates Spanning a Mangrove Productivity Gradient in the Coastal Everglades. Ecosystems, 2019, 22, 844-858.	3.4	10

#	ARTICLE	IF	Citations
55	The Long-Term Effects of Hurricanes Wilma and Irma on Soil Elevation Change in Everglades Mangrove Forests. Ecosystems, 2020, 23, 917-931.	3.4	26
56	Mangrove trees survive partial sediment burial by developing new roots and adapting their root, branch and stem anatomy. Trees - Structure and Function, 2020, 34, 37-49.	1.9	10
57	Comparing the Biogeochemistry of Storm Surge Sediments and Pre-storm Soils in Coastal Wetlands: Hurricane Irma and the Florida Everglades. Estuaries and Coasts, 2020, 43, 1090-1103.	2.2	15
58	Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 2020, 187, 104414.	5.0	127
59	Intertwined effects of climate and land use change on environmental dynamics and carbon accumulation in a mangroveâ€fringed coastal lagoon in Java, Indonesia. Global Change Biology, 2020, 26, 1414-1431.	9.5	22
60	Carbon and nutrient accumulation in tropical mangrove creeks, Amazon region. Marine Geology, 2020, 429, 106317.	2.1	25
61	A Geochemical Record of Lateâ€Holocene Hurricane Events From the Florida Everglades. Water Resources Research, 2020, 56, e2019WR026857.	4.2	16
62	Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Science of the Total Environment, 2020, 748, 141343.	8.0	33
63	Microplastics as novel sedimentary particles in coastal wetlands: A review. Marine Pollution Bulletin, 2020, 161, 111739.	5.0	31
64	A Research Framework to Integrate Cross-Ecosystem Responses to Tropical Cyclones. BioScience, 2020, 70, 477-489.	4.9	33
65	Coastal accretion and sea-level rise in the Cuban Archipelago obtained from sedimentary records. Holocene, 2020, 30, 1233-1242.	1.7	3
66	Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005349.	3.0	32
67	Long-Term Ecological Research and Evolving Frameworks of Disturbance Ecology. BioScience, 2020, 70, 141-156.	4.9	37
68	Carbon source characterisation and historical carbon burial in three mangrove ecosystems on the South West coast of India. Catena, 2021, 197, 104980.	5.0	19
69	Spatiotemporal pattern of degradation in arid mangrove forests of the Northern Persian Gulf. Oceanologia, 2021, 63, 99-114.	2.2	25
70	Mangrove Systems and Environmentsâ~†., 2021,,.		1
71	State of biogeochemical blue carbon in South Asian mangroves. , 2021, , 335-367.		3
72	Blue Carbon Soil Stock Development and Estimates Within Northern Florida Wetlands. Frontiers in Earth Science, 2021, 9, .	1.8	12

#	Article	IF	Citations
73	Integrating a Three-Level GIS Framework and a Graph Model to Track, Represent, and Analyze the Dynamic Activities of Tidal Flats. ISPRS International Journal of Geo-Information, 2021, 10, 61.	2.9	8
74	Changes in Sediment Organic Carbon Accumulation under Conditions of Historical Sea-Level Rise, Southeast Saline Everglades, Florida, USA. Wetlands, 2021, 41, 1.	1.5	5
75	Mapping mangrove forests in the Red River Delta, Vietnam. Forest Ecology and Management, 2021, 483, 118910.	3.2	16
76	Potential Production of Carbon Gases and Their Responses to Paleoclimate Conditions: An Example From Xiaolongtan Basin, Southeast Tibetan Plateau. Frontiers in Earth Science, 2021, 9, .	1.8	0
77	Alkalinity Production Coupled to Pyrite Formation Represents an Unaccounted Blue Carbon Sink. Global Biogeochemical Cycles, 2021, 35, e2020GB006785.	4.9	16
78	Comment on "Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands―by J. Breithaupt etÂal Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006057.	3.0	1
79	Coastal Ecosystem Vulnerability and Sea Level Rise (SLR) in South Florida: A Mangrove Transition Projection. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
80	Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment. Scientific Reports, 2021, 11, 12325.	3.3	19
81	Plant–soil feedbacks in mangrove ecosystems: establishing links between empirical and modelling studies. Trees - Structure and Function, 2021, 35, 1423-1438.	1.9	7
82	Nature-Based Engineering: A Review on Reducing Coastal Flood Risk With Mangroves. Frontiers in Marine Science, 2021, 8, .	2.5	44
83	Spatiotemporal variations in the organic carbon accumulation rate in mangrove sediments from the Yingluo Bay, China, since 1900. Acta Oceanologica Sinica, 2021, 40, 65-77.	1.0	6
84	Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida. Plants, 2021, 10, 1749.	3.5	5
85	Buried hurricane legacies: increased nutrient limitation and decreased root biomass in coastal wetlands. Ecosphere, 2021, 12, e03674.	2.2	6
86	Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent. Scientific Reports, 2021, 11, 17355.	3.3	11
87	Effects of diverse mangrove management practices on forest structure, carbon dynamics and sedimentation in North Sumatra, Indonesia. Estuarine, Coastal and Shelf Science, 2021, 259, 107467.	2.1	11
88	Above- and Below-Ground Carbon Storage of Hydrologically Altered Mangrove Wetlands in Puerto Rico after a Hurricane. Plants, 2021, 10, 1965.	3.5	0
89	Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests., 2021,, 275-294.		13
90	Evaluating a Steady-State Model of Soil Accretion in Everglades Mangroves (Florida, USA). Estuaries and Coasts, 2021, 44, 1469-1476.	2.2	2

#	Article	IF	CITATIONS
91	Assessment of typhoon impacts and post-typhoon recovery in Philippine mangroves: lessons and challenges for adaptive management. , 2021, , 539-562.		4
92	Examining the response of an eastern Australian mangrove forest to changes in hydro-period over the last century. Estuarine, Coastal and Shelf Science, 2020, 241, 106813.	2.1	10
93	Biological Flora of the Tropical and Subtropical Intertidal Zone: Literature Review for Rhizophora mangle L Journal of Coastal Research, 2020, 36, 857.	0.3	16
94	MANGROVE FORESTS: PROTECTION AGAINST AND RESILIENCE TO COASTAL DISTURBANCES. Journal of Tropical Forest Science, 2018, 30, 446-460.	0.2	25
95	Effects of Infaunal Foraminifera on Surface and Subsurface Assemblages in the Southwestern Everglades, USA: Baseline Study for Paleoenvironmental Analyses., 2019,, 3-14.		0
96	LAJU AKUMULASI SEDIMEN MANGROVE DI TANJUNG BATU, KEPULAUAN DERAWAN KALIMANTAN TIMUR. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 2020, 12, 327-340.	0.4	2
97	Mangrove ecosystems under threat in Indonesia. , 2022, , 251-284.		2
98	Increase of organic carbon burial response to mangrove expansion in the Nanliu River estuary, South China Sea. Progress in Earth and Planetary Science, 2020, 7, .	3.0	6
100	Accelerating Sea Level Rise and the Fate of South Florida Coastal Wetlands. SSRN Electronic Journal, 0, , .	0.4	1
101	Responses of Coastal Ecosystems to Climate Change: Insights from Long-Term Ecological Research. BioScience, 2022, 72, 871-888.	4.9	16
102	Carbon and hydrogen isotopes of taraxerol in mangrove leaves and sediment cores: Implications for paleo-reconstructions. Geochimica Et Cosmochimica Acta, 2022, 324, 262-279.	3.9	6
103	Characteristics and environmental significance of organic carbon in sediments from Taihu Lake, China. Ecological Indicators, 2022, 138, 108796.	6.3	6
106	Mangroves and climate change: a global issue. , 2022, , 403-474.		0
107	Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability, 2022, 14, 6301.	3.2	0
108	Accelerating sea-level rise and the fate of mangrove plant communities in South Florida, U.S.A Geomorphology, 2022, 412, 108329.	2.6	15
109	Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sensing, 2022, 14, 2940.	4.0	5
110	The paleo-ecological application of mollusks in the calculation of saltwater encroachment and resultant changes in depositional patterns driven by the Anthropocene Marine Transgression. Frontiers in Ecology and Evolution, 0, 10 , .	2.2	0
111	Refining the Global Estimate of Mangrove Carbon Burial Rates Using Sedimentary and Geomorphic Settings. Geophysical Research Letters, 2022, 49, .	4.0	19

#	Article	IF	CITATIONS
112	Comparing Vertical Change in Riverine, Bayside, and Barrier Island Wetland Soils in Response to Acute and Chronic Disturbance in Apalachicola Bay, FL. Estuaries and Coasts, 0, , .	2.2	2
113	Soil Elevation Change in Mangrove Forests and Marshes of the Greater Everglades: A Regional Synthesis of Surface Elevation Table-Marker Horizon (SET-MH) Data. Estuaries and Coasts, 0, , .	2.2	9
114	Flooding of a carbonate platform: The Sian Ka'an Wetlands, Yucatán, Mexicoâ€"A model for the formation and evolution of palustrine carbonate factories around the modern Caribbean Sea and in the depositional record. Depositional Record, 2023, 9, 99-151.	1.7	6
115	Precision of mangrove sediment blue carbon estimates and the role of coring and data analysis methods. Ecology and Evolution, 2022, 12, .	1.9	1
116	Sea-level changes and paleoenvironmental responses in a coastal Florida salt marsh over the last three centuries. Journal of Paleolimnology, 2023, 69, 327-343.	1.6	1
117	Investigation of estuarine mangrove ecosystem changes using unmanned aerial vehicle images: Case study in Xuan Thuy National Park (Vietnam). Regional Studies in Marine Science, 2023, 62, 102910.	0.7	0
118	Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy. Sustainability, 2023, 15, 2682.	3.2	17
119	What Are the Most Effective Proxies in Identifying Stormâ€Surge Deposits in Paleotempestology? A Quantitative Evaluation From the Sandâ€Limited, Peatâ€Dominated Environment of the Florida Coastal Everglades. Geochemistry, Geophysics, Geosystems, 2023, 24, .	2.5	1
120	Suspended sediments mediate microplastic sedimentation in unidirectional flows. Science of the Total Environment, 2023, 890, 164363.	8.0	7
121	A Spatial Model Comparing Above- and Belowground Blue Carbon Stocks in Southwest Florida Mangroves and Salt Marshes. Estuaries and Coasts, 2023, 46, 1536-1556.	2.2	0
122	Key factors influencing pollution of heavy metals and phenolic compounds in mangrove sediments, South China. Marine Pollution Bulletin, 2023, 194, 115283.	5.0	1
123	Temporal variations of mangrove-derived organic carbon storage in two tropical estuaries in Hainan, China since 1960ÂCE. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 627, 111726.	2.3	1
124	Extreme rainstorms change organic matter compositions and regulate greenhouse gas production in mangrove sediments. Agriculture, Ecosystems and Environment, 2023, 357, 108694.	5.3	1
125	Estimating blue carbon storage in the mangrove forest of Gaz-Harra wetland, Strait of Hormoz. Regional Studies in Marine Science, 2023, 66, 103142.	0.7	0
126	Saving the overlooked mangrove horseshoe crabs-A perspective from enhancing mangrove ecosystem conservation. Marine Environmental Research, 2024, 193, 106282.	2.5	0
127	Relative Effectiveness of a Radionuclide (210Pb), Surface Elevation Table (SET), and LiDAR At Monitoring Mangrove Forest Surface Elevation Change. Estuaries and Coasts, 0, , .	2.2	0
128	Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China. Marine Pollution Bulletin, 2024, 199, 115934.	5.0	0
129	The Coastal Carbon Library and Atlas: Open source soil data and tools supporting blue carbon research and policy. Global Change Biology, 2024, 30, .	9.5	0

CITATION REPORT

#	Article	IF	CITATIONS
130	Litterfall Production and Decomposition in Tropical and Subtropical Mangroves: Research Trends and Interacting Effects of Biophysical, Chemical, and Anthropogenic Factors. Wetlands, 2024, 44, .	1.5	0
131	Transformative Impacts of Sea-Level Rise, Storm Surge, and Wetland Migration on Intertidal Native Shell-Bearing Sites in Florida's Largest Open-Water Estuary, Tampa Bay, Florida, USA. Estuaries and Coasts, 2024, 47, 637-655.	2.2	0
132	Radionuclides in Estuarine and Coastal Systems. , 2024, , 466-507.		0
133	Geomorphological changes and sediment carbon accumulation at the bare mudflat-saltmarsh interface: The role of typhoons. Geomorphology, 2024, 454, 109151.	2.6	0