Physiological mechanism of hypertolerance of cadmiun fescue: Chemical forms and tissue distribution

Environmental and Experimental Botany

96, 35-42

DOI: 10.1016/j.envexpbot.2013.09.001

Citation Report

#	Article	IF	CITATIONS
1	Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant and Soil, 2014, 384, 201-212.	3.7	27
3	Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.). Frontiers in Plant Science, 2015, 6, 293.	3.6	32
4	Subcellular distribution and chemical forms of cadmium in a dark septate endophyte (DSE), Exophiala pisciphila. Environmental Science and Pollution Research, 2015, 22, 17897-17905.	5.3	25
5	Investigating the effect of cadmium and aluminium on growth and stressâ€induced responses in the micropropagated medicinal plant <i>Hypoxis hemerocallidea</i> . Plant Biology, 2016, 18, 805-815.	3.8	12
6	Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Ochrona Srodowiska I Zasobow Naturalnych, 2016, 27, 8-14.	0.3	15
7	Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environmental Science and Pollution Research, 2016, 23, 10693-10701.	5.3	52
8	Comparison of Foliar and Root Application of Potassium Dihydrogen Phosphate in Regulating Cadmium Translocation and Accumulation in Tall Fescue (Festuca arundinacea). Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	18
9	Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. Ecotoxicology and Environmental Safety, 2017, 145, 200-206.	6.0	39
10	Toxic effects of cadmium on tall fescue and different responses of the photosynthetic activities in the photosystem electron donor and acceptor sides. Scientific Reports, 2017, 7, 14387.	3.3	36
11	Differential Cadmium Distribution and Translocation in Roots and Shoots Related to Hyper-Tolerance between Tall Fescue and Kentucky Bluegrass. Frontiers in Plant Science, 2017, 8, 113.	3.6	37
12	Growth effects and distribution of selenite in Medicago sativa. Plant and Soil, 2018, 425, 527-538.	3.7	5
13	Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in <i>Siegesbeckia orientalis</i> L. International Journal of Phytoremediation, 2018, 20, 973-980.	3.1	43
14	The Possibility of Use of Oil Seed Plants and Grasses for Phytoremediation. , 2018, , 297-318.		0
15	Cadmium accumulation and subcellular distribution in populations of Hylotelephium spectabile (Boreau) H. Ohba. Environmental Science and Pollution Research, 2018, 25, 30917-30927.	5.3	10
16	Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). Chemosphere, 2018, 212, 124-132.	8.2	28
17	Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. Chemosphere, 2019, 237, 124483.	8.2	35
18	Low dose cadmium (II) induced antifungal activity against blast disease in rice. Physiological and Molecular Plant Pathology, 2019, 108, 101422.	2.5	8
19	Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environmental Pollution, 2019, 252, 1406-1411.	7.5	24

#	Article	IF	CITATIONS
20	Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of four <i>Hylotelephium spectabile</i> populations exhibit differences in phytoextraction potential. International Journal of Phytoremediation, 2019, 21, 209-216.	3.1	20
21	Cadmium tolerance, distribution, and accumulation in <i>Taraxacum ohwianum</i> Kitam. as a potential Cd-hyperaccumulator. International Journal of Phytoremediation, 2019, 21, 541-549.	3.1	15
22	Physiological responses and accumulation characteristics of turfgrasses exposed to potentially toxic elements. Journal of Environmental Management, 2019, 246, 796-807.	7.8	14
23	A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. Science of the Total Environment, 2019, 650, 3041-3047.	8.0	28
24	Difference of Cadmium Bioaccumulation and Transportation in Two Ryegrass Varieties and the Correlation between Plant Cadmium Concentration and Soil Cadmium Chemical Forms. Wireless Personal Communications, 2020, 110, 291-307.	2.7	12
25	Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. Environmental Science and Pollution Research, 2020, 27, 9490-9502.	5.3	27
26	Identification and Expression Analysis of the <i>SWEET</i> Gene Family from <i>Poa pratensis</i> Under Abiotic Stresses. DNA and Cell Biology, 2020, 39, 1606-1620.	1.9	16
27	Co-remediation of Pb Contaminated Soils by Heat Modified Sawdust and Festuca arundinacea. Scientific Reports, 2020, 10, 4663.	3.3	8
28	Phytoremediation potential of Youngia japonica (L.) DC: a newly discovered cadmium hyperaccumulator. Environmental Science and Pollution Research, 2021, 28, 6044-6057.	5.3	16
29	Influence of elevated atmospheric CO2 levels on phytoremediation effect of Festuca arundinacea intercropped with Echinochloa caudata. Chemosphere, 2021, 270, 128654.	8.2	5
30	Overexpression of FaHSP17.8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII. Journal of Hazardous Materials, 2021, 417, 125932.	12.4	13
31	Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea) Tj ETQq1 1 0	.784314 rgBT 2.5	/Qyerlock]
32	Salix matsudana Koidz Tolerance Mechanisms to Cadmium: Uptake and Accumulation, Subcellular Distribution, and Chemical Forms. Polish Journal of Environmental Studies, 2016, 25, 1739-1747.	1.2	13
33	Induced tolerance against stem-rot disease of low-land indica rice (Oryza sativa var. Manika) caused by Sclerotium oryzae Catt. in sub-lethal dose of cadmium. Journal of Plant Pathology, 2022, 104, 149-165.	1.2	1
34	Comparison and Characterization of Oxidation Resistance and Carbohydrate Content in Cd-Tolerant and -Sensitive Kentucky Bluegrass under Cd Stress. Agronomy, 2021, 11, 2358.	3.0	10
35	Cadmium binding during leaf senescence in Festuca arundinacea: Promotion phytoextraction efficiency by harvesting dead leaves. Chemosphere, 2022, 289, 133253.	8.2	4
36	Elevated atmospheric CO ₂ enhances the phytoremediation efficiency of tall fescue <i>(Festuca arundinacea)</i> in Cd-polluted soil. International Journal of Phytoremediation, 2022, 24, 1273-1283.	3.1	1
37	Kochia scoparia L., a newfound candidate halophyte, for phytoremediation of cadmium-contaminated	5.3	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. Journal of Hazardous Materials, 2022, 430, 128457.	12.4	17
39	Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land, 2022, 11, 343.	2.9	6
40	Vertical fate of Cd in soil under phytoremediation by Indian mustard and tall fescue. International Journal of Phytoremediation, 2022, , 1-8.	3.1	0
41	Selenite uptake by <scp><i>Medicago sativa</i></scp> L. roots. Grassland Science, 2022, 68, 328-335.	1.1	2
42	Phytoextraction by harvesting dead leaves: cadmium accumulation associated with the leaf senescence in Festuca arundinacea Schreb. Environmental Science and Pollution Research, 2022, 29, 79214-79223.	5.3	2
43	Influence of magnetized water irrigation on characteristics of antioxidant enzyme, ferritin, and Cd excretion in Festuca arundinacea during phytoextraction. Journal of Hazardous Materials, 2022, 438, 129527.	12.4	1
44	Integrated physiologic and proteomic analysis of Stropharia rugosoannulata mycelia in response to Cd stress. Journal of Hazardous Materials, 2023, 441, 129877.	12.4	10
45	Response and Function of Solanum lycopersicum L. SISGR2 Gene under Cadmium Stress. Horticulturae, 2022, 8, 1002.	2.8	0
46	The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium. Sustainability, 2022, 14, 14242.	3.2	3
47	Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. Journal of Plant Physiology, 2023, 282, 153919.	3.5	1
48	The Phytoremediation Potential of Local Wild Grass Versus Cultivated Grass Species for Zinc-Contaminated Soil. Agronomy, 2023, 13, 160.	3.0	0
49	Ca alleviated Cd-induced toxicity in Salix matsudana by affecting Cd absorption, translocation, subcellular distribution, and chemical forms. Journal of Plant Physiology, 2023, 281, 153926.	3.5	6
50	Effect of chromium stress on metal accumulation and cell wall fractions in Cosmos bipinnatus. Chemosphere, 2023, 315, 137677.	8.2	5
51	Dark septate endophyte Exophiala pisciphila promotes maize growth and alleviates cadmium toxicity. Frontiers in Microbiology, 0, 14, .	3.5	3
52	Is there future of sequential chemical extraction for speciation analysis of metal(loid)s in plants?. Environmental Pollutants and Bioavailability, 2023, 35, .	3.0	0
53	Effects of magnetic field on cd subcellular distribution and chemical speciation in Noccaea caerulescens. Ecotoxicology and Environmental Safety, 2024, 269, 115835.	6.0	0
54	Cunninghamia lanceolata (Lambert) Hooker: A Promising Candidate for Phytoremediation of Cd-Contaminated Soils. Forests, 2024, 15, 115.	2.1	0
55	Physiological and biochemical characteristics of high and low Cd accumulating Brassica napus genotypes. Environmental Science and Pollution Research, 2024, 31, 11873-11885.	5.3	Ο

		CITATION REPORT		
#	Article	IF	CITATIONS	
56	Effects of foliar application of Zn combined with organic matters on Cd accumulation and its chemical forms in rice. Environmental Science and Pollution Research, 2024, 31, 25182-25191.	5.3	0	