Impact of multi-resolution analysis of artificial intellige ahead river flow forecasting

Journal of Hydrology 507, 75-85

DOI: 10.1016/j.jhydrol.2013.10.017

Citation Report

#	Article	IF	CITATIONS
1	Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology, 2014, 514, 358-377.	2.3	558
2	A comparative study of fuzzy logic systems approach for river discharge prediction. Journal of Hydrology, 2014, 514, 85-101.	2.3	29
3	Assessment of Artificial Neural Networks and IHACRES models for simulating streamflow in Marillana catchment in the Pilbara, Western Australia. Australian Journal of Water Resources, 2015, 19, 116-126.	1.6	7
4	Daily river level forecast based on the development of an artificial neural network case study in La Virginia - Risaralda. Revista Facultad De IngenierÃa, 2015, , .	0.5	2
5	Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. Journal of Hydrology, 2015, 529, 1633-1643.	2.3	74
6	Improving Annâ€Based Shortâ€Term and Longâ€Term Seasonal River Flow Forecasting with Signal Processing Techniques. River Research and Applications, 2016, 32, 245-256.	0.7	16
7	Discharge forecasting using an Online Sequential Extreme Learning Machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement: Journal of the International Measurement Confederation, 2016, 92, 433-445.	2.5	69
8	Multiple step ahead river flow modelling for south east tasmanian aquaculture. Earth Science Informatics, 2016, 9, 271-279.	1.6	1
9	Impact of complexity on daily and multi-step forecasting of streamflow with chaotic, stochastic, and black-box models. Stochastic Environmental Research and Risk Assessment, 2017, 31, 661-682.	1.9	26
10	Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics. Stochastic Environmental Research and Risk Assessment, 2017, 31, 993-1010.	1.9	17
11	Analysis of dam-induced cyclic patterns on river flow dynamics. Hydrological Sciences Journal, 2017, 62, 626-641.	1.2	19
12	Time series forecasting of river flow using an integrated approach of wavelet multi-resolution analysis and evolutionary data-driven models. A case study: Sebaou River (Algeria). Physical Geography, 0, , 1-17.	0.6	10
13	The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River. Environmental Earth Sciences, 2018, 77, 1.	1.3	45
14	Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination. Journal of Hydrology, 2018, 561, 674-687.	2.3	65
15	Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 2018, 63, 1091-1111.	1.2	63
16	Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 411-437.	1.5	255
17	Intermittent stream flow forecasting and modelling with hybrid wavelet neuro-fuzzy model. Hydrology Research, 2018, 49, 27-40.	1.1	21
18	Long-Term Groundwater-Level Forecasting in Shallow and Deep Wells Using Wavelet Neural Networks Trained by an Improved Harmony Search Algorithm. Journal of Hydrologic Engineering - ASCE, 2018, 23,	0.8	26

#	Article	IF	Citations
19	A Soft Computing Fusion for River Flow Time Series Forecasting. , 2018, , .		0
20	Flood Prediction Using Machine Learning Models: Literature Review. Water (Switzerland), 2018, 10, 1536.	1.2	692
21	Modeling Simulation of River Discharge of Loktak Lake Catchment in Northeast India. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	7
22	Water quality variations in different climates of Iran: toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2253-2273.	1.9	49
23	Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 2018, 564, 266-282.	2.3	177
24	Streamflow Forecasting Using Four Wavelet Transformation Combinations Approaches with Data-Driven Models: A Comparative Study. Water Resources Management, 2018, 32, 4661-4679.	1.9	41
25	Forecasting municipal solid waste generation using artificial intelligence models $\hat{a} \in \hat{a}$ case study in India. SN Applied Sciences, 2019, 1, 1.	1.5	58
26	Hydrological modelling of karst catchment using lumped conceptual and data mining models. Journal of Hydrology, 2019, 576, 98-110.	2.3	43
27	Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region. IEEE Access, 2019, 7, 74471-74481.	2.6	76
28	Long-term forecasting system using wavelet – nonlinear autoregressive neural network conjunction model. Journal of Modelling in Management, 2019, 14, 948-971.	1.1	1
29	Evaluation of streamflow changes due to climate variation and human activities using the Budyko approach. Environmental Earth Sciences, 2019, 78, 1.	1.3	17
30	The utilization of a GR4J model and wavelet-based artificial neural network for rainfall–runoff modelling. Water Science and Technology: Water Supply, 2019, 19, 1295-1304.	1.0	12
31	River discharge simulation using variable parameter McCarthy–Muskingum and wavelet-support vector machine methods. Neural Computing and Applications, 2020, 32, 2457-2470.	3.2	5
32	Novel hybrid approaches based on evolutionary strategy for streamflow forecasting in the Chellif River, Algeria. Acta Geophysica, 2020, 68, 167-180.	1.0	12
33	Long lead-time daily and monthly streamflow forecasting using machine learning methods. Journal of Hydrology, 2020, 590, 125376.	2.3	137
34	Correlated Time-Series in Multi-Day-Ahead Streamflow Forecasting Using Convolutional Networks. IEEE Access, 2020, 8, 215748-215757.	2.6	9
35	Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees. Hydrology and Earth System Sciences, 2020, 24, 2343-2363.	1.9	30
36	Comparison of local and global approximators in multivariate chaotic forecasting of daily streamflow. Hydrological Sciences Journal, 2020, 65, 1129-1144.	1.2	8

#	Article	IF	CITATIONS
37	Streamflow forecasting., 2021, , 1-50.		13
38	Toward Urban Water Security: Broadening the Use of Machine Learning Methods for Mitigating Urban Water Hazards. Frontiers in Water, 2021, 2, .	1.0	10
39	Neural Network Approaches to Modeling of Natural. Emergencies. Prediction of Lena River Spring High Waters. IOP Conference Series: Earth and Environmental Science, 2021, 666, 032084.	0.2	0
40	Forecasting rainfall using transfer entropy coupled directed–weighted complex networks. Atmospheric Research, 2021, 255, 105531.	1.8	13
41	Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resources Research, 2021, 57, e2020WR028392.	1.7	59
42	A hybrid bayesian vine model for water level prediction. Environmental Modelling and Software, 2021, 142, 105075.	1.9	21
43	Probabilistic urban water demand forecasting using wavelet-based machine learning models. Journal of Hydrology, 2021, 600, 126358.	2.3	28
44	A machine learning approach for spatiotemporal imputation of MODIS chlorophyll-a. International Journal of Remote Sensing, 2021, 42, 7381-7404.	1.3	5
45	Artificial Intelligence Models for Forecasting of Municipal Solid Waste Generation., 2021,, 289-304.		1
46	Copula-based multivariate flood probability construction: a review. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	18
47	A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network. PLoS ONE, 2018, 13, e0192366.	1.1	23
48	Data-Driven Forecasting and Modeling of Runoff Flow to Reduce Flood Risk Using a Novel Hybrid Wavelet-Neural Network Based on Feature Extraction. Sustainability, 2021, 13, 11537.	1.6	7
49	DALGACIK-ADAPTIF AĞ TEMELLI BULANIK ÇIKARIM SISTEMLERI ILE DALAMAN ÇAYI AKIMLARININ MODELLENMI ÜZERİNE BİR ÇALIŞMA. Mþhendislik Bilimleri Ve Tasarım Dergisi, 0, , 56-63.	ESİ 0.1	1
51	Predictive multi-watershed flood monitoring using deep learning on integrated physical and social sensors data. Environment and Planning B: Urban Analytics and City Science, 2022, 49, 1838-1856.	1.0	5
52	A Stepwise Clustered Hydrological Model for Addressing the Temporal Autocorrelation of Daily Streamflows in Irrigated Watersheds. Water Resources Research, 2022, 58, .	1.7	9
53	Identification of groundwater level and forecasting using GIS-based machine-learning techniques, Sangamner, Maharashtra, India. International Journal of Energy and Water Resources, 0, , 1.	1.3	O
54	Multi-time-step ahead daily global solar radiation forecasting: performance evaluation of wavelet-based artificial neural network model. Meteorology and Atmospheric Physics, 2022, 134, .	0.9	6
55	Simulated annealing coupled with a $Na\tilde{A}$ -ve Bayes model and base flow separation for streamflow simulation in a snow dominated basin. Stochastic Environmental Research and Risk Assessment, 2023, 37, 89-112.	1.9	4

#	Article	IF	CITATIONS
56	Development of particle swarm clustered optimization method for applications in applied sciences. Progress in Earth and Planetary Science, 2023, 10 , .	1.1	5
57	River discharge prediction using wavelet-based artificial neural network and long short-term memory models: a case study of Teesta River Basin, India. Stochastic Environmental Research and Risk Assessment, 2023, 37, 3163-3184.	1.9	2