Prevention and treatment technologies of railway tunn in China

Journal of Rock Mechanics and Geotechnical Engineering 5, 468-477

DOI: 10.1016/j.jrmge.2013.07.009

Citation Report

#	Article	IF	CITATIONS
1	The Analysis and Control of Inrush and Mud Gushing in the Broken Rock Tunnel Under high Water Pressure. Procedia Engineering, 2016, 165, 259-264.	1.2	14
2	A novel cloud model for risk analysis of water inrush in karst tunnels. Environmental Earth Sciences, 2016, 75, 1.	1.3	49
3	Identifying the geological interface of the stratum of tunnel granite and classifying rock mass according to drilling energy theory. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	12
4	Experimental research on water inrush in tunnel construction. Natural Hazards, 2016, 81, 467-480.	1.6	79
5	Model test to investigate waterproof-resistant slab minimum safety thickness for water inrush geohazards. Tunnelling and Underground Space Technology, 2017, 62, 35-42.	3.0	69
6	Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels. Open Geosciences, 2017, 9, .	0.6	2
7	Use of tree rings as indicator for groundwater level drawdown caused by tunnel excavation in Zhongliang Mountains, Chongqing, Southwest China. Environmental Earth Sciences, 2017, 76, 1.	1.3	15
8	Application of comprehensive prediction method of water inrush hazards induced by unfavourable geological body in high risk karst tunnel: a case study. Geomatics, Natural Hazards and Risk, 2017, 8, 1407-1423.	2.0	37
9	Characterizing fractures to mitigate inrush of water into a shaft using hydrogeological approaches. Tunnelling and Underground Space Technology, 2017, 61, 205-220.	3.0	20
10	Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network. Open Geosciences, 2017, 9, .	0.6	6
11	New Method for Detecting Risk of Tunnel Water-Induced Disasters Using Magnetic Resonance Sounding. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 843-847.	1.4	7
12	Groundwater control and curtain grouting for tunnel construction in completely weathered granite. Bulletin of Engineering Geology and the Environment, 2018, 77, 515-531.	1.6	81
13	Quantification of Margins and Uncertainties for the Risk of Water Inrush in a Karst Tunnel: Representations of Epistemic Uncertainty with Probability. Arabian Journal for Science and Engineering, 2018, 43, 1627-1640.	1.7	13
14	Nonlinear seepage–erosion coupled water inrush model for completely weathered granite. Marine Georesources and Geotechnology, 2018, 36, 484-493.	1.2	24
15	Risk Assessment of Water Inrush in Tunnel through Water-Rich Fault. Geotechnical and Geological Engineering, 2018, 36, 317-326.	0.8	15
16	Characteristics analysis and control measures for the deformation development in a water-rich loess tunnel. IOP Conference Series: Earth and Environmental Science, 2018, 189, 052077.	0.2	0
17	Fracture characterization using hydrogeological approaches and measures taken for groundwater inrush mitigation in shaft excavation. Tunnelling and Underground Space Technology, 2018, 82, 554-567.	3.0	5
18	Effects of Initial Porosity and Water Pressure on Seepage-Erosion Properties of Water Inrush in Completely Weathered Granite. Geofluids, 2018, 2018, 1-11.	0.3	13

#		IF	CITATIONS
#	Combined System of Magnetic Resonance Sounding and Time-Domain Electromagnetic Method for	11	CHAHONS
19	Water-Induced Disaster Detection in Tunnels. Sensors, 2018, 18, 3508.	2.1	5
20	Experimental Study on the Mud-Water Inrush Characteristics through Rock Fractures. Advances in Civil Engineering, 2018, 2018, 1-7.	0.4	3
21	The rheological test and application research of glass fiber cement slurry based on plugging mechanism of dynamic water grouting. Construction and Building Materials, 2018, 189, 119-130.	3.2	39
22	Sand-layer collapse treatment: An engineering example from Qingdao Metro subway tunnel. Journal of Cleaner Production, 2018, 197, 19-24.	4.6	30
23	Using the Schwarz Alternating Method to Identify Critical Water-Resistant Thickness between Tunnel and Concealed Cavity. Advances in Civil Engineering, 2018, 2018, 1-14.	0.4	4
24	Assessment of a Concealed Karst Cave's Influence on Karst Tunnel Stability: A Case Study of the Huaguoshan Tunnel, China. Sustainability, 2018, 10, 2132.	1.6	15
25	Numerical analysis of gas-liquid two-phase flow after water inrush from the working face during tunnel excavation in a karst region. Bulletin of Engineering Geology and the Environment, 2019, 78, 2973-3010.	1.6	22
26	Effect of an incremental change in external water pressure on tunnel lining: a case study from the Tongxi karst tunnel. Natural Hazards, 2019, 98, 343-377.	1.6	18
27	Investigation and practical application of a new cementitious anti-washout grouting material. Construction and Building Materials, 2019, 224, 66-77.	3.2	50
28	Optimizing the Grouting Design for Groundwater Inrush Control in Completely Weathered Granite Tunnel: An Experimental and Field Investigation. Sustainability, 2019, 11, 3636.	1.6	8
29	Challenges and Development Prospects of Ultra-Long and Ultra-Deep Mountain Tunnels. Engineering, 2019, 5, 384-392.	3.2	57
30	Cohesion variation during instability evolution of disaster medium in mud inrush of mountain tunnel. Journal of Mountain Science, 2019, 16, 2519-2531.	0.8	4
31	Countermeasures of water and mud inrush disaster in completely weathered granite tunnels: a case study. Environmental Earth Sciences, 2019, 78, 1.	1.3	31
32	Developing a Polypropylene Fabric, Silica Fume, and Redispersible Emulsion Powder Cementitious Composite for Dynamic Water Environment. Polymers, 2019, 11, 47.	2.0	12
33	Experimental investigation of fracture propagation and inrush characteristics in tunnel construction. Natural Hazards, 2019, 97, 193-210.	1.6	26
34	Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement. Construction and Building Materials, 2019, 214, 516-526.	3.2	75
35	Magnetic resonance approach to identify the types of inrush hazards in constructing tunnel: I. Characterizing and modelling. Journal of Applied Geophysics, 2019, 167, 160-171.	0.9	5
36	Experimental and numerical study of the water inrush mechanisms of underground tunnels due to the proximity of a water-filled karst cavern. Bulletin of Engineering Geology and the Environment, 2019, 78, 6207-6219.	1.6	40

#	Article	IF	CITATIONS
37	Geotechnical Monitoring and Analyses on the Stability of Highway Tunnel Constructed in Carbonaceous Slate Stratum. Geotechnical and Geological Engineering, 2019, 37, 4613-4625.	0.8	3
38	Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 2019, 571, 485-493.	2.3	48
39	The Evolution and Prevention of Water Inrush Due to Fault Activation at Working Face No. II 632 in the Hengyuan Coal Mine. Mine Water and the Environment, 2019, 38, 93-103.	0.9	24
40	Simulation test on mixed water and sand inrush disaster induced by mining under the thin bedrock. Journal of Loss Prevention in the Process Industries, 2019, 57, 1-6.	1.7	29
41	Experimental investigation on chemical grouting of inclined fracture to control sand and water flow. Tunnelling and Underground Space Technology, 2019, 83, 82-90.	3.0	57
42	Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study. Bulletin of Engineering Geology and the Environment, 2019, 78, 357-373.	1.6	33
43	Impacts of confining pressure and safety thickness on water and mud inrush in weathered granite. Marine Georesources and Geotechnology, 2020, 38, 144-153.	1.2	10
44	A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave. Bulletin of Engineering Geology and the Environment, 2020, 79, 1097-1111.	1.6	32
45	A Calculation Method for Safety Distance Between the Confined Karst Cave and the Shield Tunnel Based on Upper Bound Theorem. Geotechnical and Geological Engineering, 2020, 38, 6587-6599.	0.8	8
46	The variable-mass seepage law of broken porous rock: an experimental study. Geomatics, Natural Hazards and Risk, 2020, 11, 1991-2005.	2.0	10
47	Grouting Treatment of Water and Mud Inrush in Fully Weathered Granite Tunnel: A Case Study. Geofluids, 2020, 2020, 1-18.	0.3	4
48	Development of compound EPB shield model test system for studying the water inrushes in karst regions. Tunnelling and Underground Space Technology, 2020, 101, 103404.	3.0	52
49	Influence of Different Freezing Modes on the Base Slab Displacement of an Upper Structure. Applied Sciences (Switzerland), 2020, 10, 27.	1.3	2
50	Grouting sealing mechanism of water gushing in karst pipelines and engineering application. Construction and Building Materials, 2020, 254, 119250.	3.2	22
51	Study on the Influence of Coal Face Advancing Distance on Fault-Activated Water Inrush. Geotechnical and Geological Engineering, 2020, 38, 3559-3575.	0.8	9
52	Experimental study of the precursor information of the water inrush in shield tunnels due to the proximity of a water-filled cave. International Journal of Rock Mechanics and Minings Sciences, 2020, 130, 104320.	2.6	81
53	Conception and Evaluation of a Novel Type of Support in Loess Tunnels. Journal of Performance of Constructed Facilities, 2021, 35, .	1.0	18
54	The classifications of water and mud/rock inrush hazard: a review and update. Bulletin of Engineering Geology and the Environment. 2021. 80. 1907-1925.	1.6	29

#	Article	IF	CITATIONS
55	Spatiotemporal Evolution Characteristics of Fluid Flow through Large-Scale 3D Rock Mass Containing Filling Joints: An Experimental and Numerical Study. Geofluids, 2021, 2021, 1-23.	0.3	3
56	Freezing occlusion for inrush damage of a water conveyance tunnel under the Yangtze River: a case study in China. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, 54, .	0.8	Ο
57	A new analytical method for determination of discharge duration in tunnels subjected to groundwater inrush. Bulletin of Engineering Geology and the Environment, 2021, 80, 3293-3313.	1.6	14
58	Feasibility and economic evaluation of grouting materials containing binary and ternary industrial waste. Construction and Building Materials, 2021, 274, 122021.	3.2	12
59	Study on the Grouting Properties of Multi-Mineral Cement Paste. IOP Conference Series: Earth and Environmental Science, 2021, 719, 022067.	0.2	1
60	Research on the Formulation and Properties of a High-Performance Geopolymer Grouting Material Based on Slag and Fly Ash. KSCE Journal of Civil Engineering, 2021, 25, 3437-3447.	0.9	9
61	Water-sand mixture inrush through weakly cemented overburden at a shallow depth in the Yili coal mining area. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
62	Research on Grouting Materials for Underground Construction Projects. Materials Science Forum, 0, 1036, 319-326.	0.3	2
63	Expansion of Water Inrush Channel by Water Erosion and Seepage Force. International Journal of Geomechanics, 2021, 21, .	1.3	7
64	Damage of high-water quick-setting material exposed to chlorine salt solutions under dry-wet cycles. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	1
65	Experimental Investigation of Water-Rich Fully Weathered Granite on Water Bursting and Mud Bursting. Frontiers in Earth Science, 2021, 9, .	0.8	0
66	Analysis of Water and Mud Inrush in Tunnel Fault Fracture Zone—A Case Study of Yonglian Tunnel. Sustainability, 2021, 13, 9585.	1.6	12
67	Characteristics, challenges and countermeasures of giant karst cave: A case study of Yujingshan tunnel in high-speed railway. Tunnelling and Underground Space Technology, 2021, 114, 103988.	3.0	30
68	Distribution for hydraulic head on tunnel structures in water-rich mountainous region considering influences of fault geology using virtual image technique. Environmental Earth Sciences, 2021, 80, 1.	1.3	2
69	Water and mud inrush hazard in underground engineering: Genesis, evolution and prevention. Tunnelling and Underground Space Technology, 2021, 114, 103987.	3.0	52
70	Performance assessment of a newly developed and highly stable grouting material for a completely weathered granite dam foundation. Construction and Building Materials, 2021, 299, 123956.	3.2	14
71	Numerical characterization of groundwater flow and fracture-induced water inrush in tunnels. Tunnelling and Underground Space Technology, 2021, 116, 104119.	3.0	34
72	Investigation of a large ground collapse, water inrush and mud outburst, and countermeasures during subway excavation in Qingdao: A case study. Tunnelling and Underground Space Technology, 2021, 117, 104127.	3.0	16

#	Article	IF	CITATIONS
73	Crystallization law of karst water in tunnel drainage system based on DBL theory. Open Physics, 2021, 19, 241-255.	0.8	5
74	Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study. Rock Mechanics and Rock Engineering, 2017, 50, 2443-2464.	2.6	17
75	Reconstruction and Measurement of Irregular Karst Caves Using BLST along the Shield Metro Line. Applied Sciences (Switzerland), 2020, 10, 392.	1.3	4
76	Integrated geophysical detection of water inrush from foundation pit near the river: a case study of Nanjing subway station. Environmental Earth Sciences, 2021, 80, 1.	1.3	5
77	Experimental research on the effect of particle migration of a filling medium in a fault during water and mud inrush. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
79	Prediction of water–mud inrush hazard from weathered granite tunnel by an improved seepage erosion model. Bulletin of Engineering Geology and the Environment, 2021, 80, 9249-9266.	1.6	11
80	Scientific problems and research proposals for Sichuan–Tibet railway tunnel construction. Underground Space (China), 2022, 7, 419-439.	3.4	48
81	Tunneling-induced groundwater depletion limits long-term growth dynamics of forest trees. Science of the Total Environment, 2022, 811, 152375.	3.9	21
82	Research and application of a comprehensive forecasting system for tunnels in water-bearing fault fracture zones: a case study. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	5
84	Stochastic modeling of groundwater drawdown response induced by tunnel drainage. Engineering Geology, 2022, 297, 106529.	2.9	10
85	Permeability-Porosity Relation During Erosion-Induced Water Inrush Experimental and Theoretical Investigations. SSRN Electronic Journal, 0, , .	0.4	0
86	Experimental Investigation on the Transport Behavior of a Sand/Mud/Water Mixture Through a Mining-Induced Caving Zone. Mine Water and the Environment, 2022, 41, 629-639.	0.9	3
87	Influence of Water-Resisting Layer Thickness on Fracture Evolution in Karst Tunnel and Control Measures. Geofluids, 2022, 2022, 1-9.	0.3	0
88	Prediction for Water Inrush Disaster Source and CFD-Based Design of Evacuation Routes in Karst Tunnel. International Journal of Geomechanics, 2022, 22, .	1.3	13
89	Geological investigation and treatment measures against water inrush hazard in karst tunnels: A case study in Guiyang, southwest China. Tunnelling and Underground Space Technology, 2022, 124, 104491.	3.0	31
90	Permeability characteristic and microstructure analysis of bentonite cement composite sand. , 2021, , .		0
91	Optimization Design and Characteristic of Retarding and Low-early-strength Grouting Material for Capsule Grouting Technology: Laboratory and Field Evaluation. Journal of Materials Research and Technology, 2022, , .	2.6	2
92	Research and Application of Modified Cement Grouting Materials for Gushing Water Disaster in Karst Conduit. Geotechnical and Geological Engineering, 2022, 40, 5855-5868.	0.8	3

#	Article	IF	CITATIONS
93	An Analytical Model for Water Inflow into a Karst Tunnel in Vuggy and Fractured Porous Rock Aquifers. International Journal of Geomechanics, 2022, 22, .	1.3	5
94	A Method for Obtaining the Tunnel Faces Water Gushing Parameters Based on Image Quality Assessment Technology. SSRN Electronic Journal, 0, , .	0.4	0
96	The Seepage-Destruction Mechanism of Water Inrush Channel of Sandstone Fault Filling Using the EDEM-Fluent Method. Advances in Civil Engineering, 2022, 2022, 1-11.	0.4	2
98	Key factors influencing analytical solutions for predicting groundwater inflows in rock tunnels. Water Science and Technology: Water Supply, 2022, 22, 7982-8013.	1.0	3
99	Model test and numerical simulation on the invert heave behaviour of high-speed railway tunnels with rainstorm. Transportation Geotechnics, 2022, 37, 100891.	2.0	7
100	Groundwater Source Identification and Flow Model of the Dareh-Zar Copper Mine in Central Iran by Chemo-isotopic Techniques. Mine Water and the Environment, 2022, 41, 921-937.	0.9	2
101	Geo-mechanical model test on the water inrush induced by zonal disintegration of deep tunnel under hydro-mechanical coupling. International Journal of Rock Mechanics and Minings Sciences, 2022, 160, 105278.	2.6	9
102	Analysis method of the water inrush and collapse in jointed rock mass tunnels: A case study. Engineering Analysis With Boundary Elements, 2023, 146, 838-850.	2.0	16
104	A framework for assessing tunnel drainage-induced impact on terrestrial vegetation. Tunnelling and Underground Space Technology, 2023, 132, 104917.	3.0	2
105	Prediction of tunnel water inflow based on stochastic deterministic three-dimensional fracture network. Tunnelling and Underground Space Technology, 2023, 135, 104997.	3.0	3
107	Evaluation of Water Inrush Hazard in Karst Tunnel Based on Improved Non-Linear Attribute Variable Weight Recognition Model. Applied Sciences (Switzerland), 2023, 13, 5026.	1.3	0