Tandem Cyclizations of 1,6â€Enynes with Arylsulfonyl Photoredox Catalysis

Angewandte Chemie - International Edition 52, 1535-1538 DOI: 10.1002/anie.201208380

Citation Report

#	Article	IF	CITATIONS
1	Sulfonation and Trifluoromethylation of Enol Acetates with Sulfonyl Chlorides Using Visible‣ight Photoredox Catalysis. European Journal of Organic Chemistry, 2013, 2013, 5485-5492.	1.2	124
2	Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of NS Bond Under Visibleâ€Light Irradiation. Chemistry - an Asian Journal, 2013, 8, 1090-1094.	1.7	56
3	Visible‣ightâ€Driven Photoredox Catalysis in the Construction of Carbocyclic and Heterocyclic Ring Systems. European Journal of Organic Chemistry, 2013, 2013, 6755-6770.	1.2	173
4	Oxyarylation and Aminoarylation of Styrenes Using Photoredox Catalysis. Organic Letters, 2013, 15, 4398-4401.	2.4	166
5	Visibleâ€Lightâ€Induced Radical Cyclization of Trifluoroacetimidoyl Chlorides with Alkynes: Catalytic Synthesis of 2â€Trifluoromethyl Quinolines. Chemistry - A European Journal, 2013, 19, 16928-16933.	1.7	54
6	Visibleâ€Light Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Advanced Synthesis and Catalysis, 2013, 355, 1477-1482.	2.1	104
7	New Approach to Oximes through Reduction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis. Organic Letters, 2013, 15, 2660-2663.	2.4	61
8	Synthesis of 6â€Alkylated Phenanthridine Derivatives Using Photoredox Neutral Somophilic Isocyanide Insertion. Angewandte Chemie - International Edition, 2013, 52, 13289-13292.	7.2	265
9	Visible Light-mediated Direct Arylation of Arenes and Heteroarenes Using Diaryliodonium Salts in the Presence and Absence of a Photocatalyst. Chemistry Letters, 2013, 42, 1203-1205.	0.7	154
12	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie, 2014, 126, 5759-5762.	1.6	65
13	When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Letters, 2014, 55, 36-48.	0.7	209
14	Visible-Light Photoredox-Catalyzed Synthesis of Nitrones: Unexpected Rate Acceleration by Water in the Synthesis of Isoxazolidines. Organic Letters, 2014, 16, 2872-2875.	2.4	61
15	Visibleâ€Lightâ€Induced CS Bond Activation: Facile Access to 1,4â€Diketones from βâ€Ketosulfones. Chemist - A European Journal, 2014, 20, 3045-3049.	ry _{1.7}	80
16	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2014, 53, 5653-5656.	7.2	271
17	Visible Lightâ€Induced γâ€Alkoxynitrile Synthesis <i>via</i> Three―Component Alkoxycyanomethylation of Alkenes. Advanced Synthesis and Catalysis, 2014, 356, 2873-2877.	2.1	85
18	Synthesis of 2‣ubstituted Indoles through Visible Lightâ€Induced Photocatalytic Cyclizations of Styryl Azides. Advanced Synthesis and Catalysis, 2014, 356, 2807-2812.	2.1	62
19	Sulfur Incorporation: Copper-Catalyzed Cascade Cyclization of 1,7-Enynes with Metal Sulfides toward Thieno[3,4- <i>c</i>]quinolin-4(<i>5H</i>)-ones. Organic Letters, 2014, 16, 5838-5841.	2.4	44
20	Metal-free cascade radical cyclization of 1,6-enynes with aldehydes. Chemical Communications, 2014, 50, 1564.	2.2	66

#	Article	IF	CITATIONS
21	Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism. Green Chemistry, 2014, 16, 3787-3795.	4.6	47
22	Copper-catalyzed cascade cyclization of 1,7-enynes with aromatic sulfonyl chlorides toward selective assembly of benzo[j]phenanthridin-6(5H)-ones. Chemical Communications, 2014, 50, 14412-14414.	2.2	32
23	Visible light-induced intermolecular radical addition: facile access to γ-ketoesters from alkyl-bromocarboxylates and enamines. Chemical Communications, 2014, 50, 13547-13550.	2.2	33
24	Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines. Chemical Communications, 2014, 50, 4643-4645.	2.2	130
25	Copper-Catalyzed Three-Component Cyanotrifluoromethylation/Azidotrifluoromethylation and Carbocyclization of 1,6-Enynes. Organic Letters, 2014, 16, 3896-3899.	2.4	105
26	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chemistry, 2014, 16, 1082-1086.	4.6	175
27	Silver-Promoted Oxidative Cyclization of 1,6-Enynes: Highly Regioselective Synthesis of Phosphorated Fluorene Derivatives. Organic Letters, 2014, 16, 5616-5619.	2.4	75
28	Visible Light Photoredox Catalyzed Cascade Cyclizations of αâ€Bromochalcones or αâ€Bromocinnamates with Heteroarenes. Advanced Synthesis and Catalysis, 2014, 356, 557-562.	2.1	60
29	Photochemical Flow Reactions. Israel Journal of Chemistry, 2014, 54, 361-370.	1.0	48
30	Threeâ€Component Azidation of Styreneâ€Type Double Bonds: Lightâ€6witchable Behavior of a Copper Photoredox Catalyst. Angewandte Chemie - International Edition, 2015, 54, 11481-11484.	7.2	198
31	Nitrative Cyclization of 1â€Ethynylâ€2â€(vinyloxy)benzenes to Access 1â€[2â€(Nitromethyl)benzofuranâ€3â€yl] Ketones Through Dioxygen Activation. Advanced Synthesis and Catalysis, 2015, 357, 3332-3340.	2.1	60
33	Metalâ€Free Radical [2+2+1] Carbocyclization of Benzeneâ€Linked 1, <i>n</i> â€Enynes: Dual C(sp ³)H Functionalization Adjacent to a Heteroatom. Angewandte Chemie - International Edition, 2015, 54, 9577-9580.	7.2	173
34	Visibleâ€Light Photoredox Catalysis: Direct Synthesis of Sulfonated Oxindoles from <i>N</i> â€Arylacrylamides and Arylsulfinic Acids by Means of a Cascade Câ^'S/Câ^'C Formation Process. Chemistry - an Asian Journal, 2015, 10, 1919-1925.	1.7	77
35	Metal-free, visible-light-mediated transformation of aryl diazonium salts and (hetero)arenes: an efficient route to aryl ketones. Green Chemistry, 2015, 17, 3733-3736.	4.6	72
36	Unexpected Dual Role of Titanium Dioxide in the Visible Light Heterogeneous Catalyzed C–H Arylation of Heteroarenes. ACS Catalysis, 2015, 5, 3900-3904.	5.5	110
38	Hypervalentâ€lodineâ€Mediated Cascade Annulation of Diarylalkynes Forming Spiro Heterocycles under Metalâ€Free Conditions. Chemistry - A European Journal, 2015, 21, 5193-5198.	1.7	38
39	Visible light induced radical cyclization of <i>o</i> -iodophenylacrylamides: a concise synthesis of indolin-2-one. Chemical Communications, 2015, 51, 4587-4590.	2.2	34
40	Recent synthetic additions to the visible light photoredox catalysis toolbox. Organic and Biomolecular Chemistry, 2015, 13, 9152-9167.	1.5	187

#	Article	IF	CITATIONS
41	Visible light mediated efficient oxidative benzylic sp ³ C–H to ketone derivatives obtained under mild conditions using O ₂ . Chemical Communications, 2015, 51, 14046-14049.	2.2	103
42	Hypervalent Iodine-Mediated Intramolecular <i>trans</i> -Aminocarboxylation and Oxoaminocarboxylation of Alkynes: Divergent Cascade Annulations of Isocoumarins under Metal-Free Conditions. Organic Letters, 2015, 17, 5252-5255.	2.4	33
43	Catalytic arylsulfonyl radical-triggered 1,5-enyne-bicyclizations and hydrosulfonylation of α,β-conjugates. Chemical Science, 2015, 6, 6654-6658.	3.7	145
44	Tris(trimethylsilyl)silane and visible-light irradiation: a new metal- and additive-free photochemical process for the synthesis of indoles and oxindoles. Chemical Communications, 2015, 51, 15110-15113.	2.2	63
45	Iron-Catalyzed Divergent Tandem Radical Annulation of Aldehydes with Olefins toward Indolines and Dihydropyrans. Journal of Organic Chemistry, 2015, 80, 12562-12571.	1.7	37
46	Cu(II)-catalyzed tandem synthesis of 2-imino[1,3]benzothiazines from 2-aminoaryl acrylates via thioamidation and concomitant chemoselective thia-Michael addition. Tetrahedron Letters, 2015, 56, 677-681.	0.7	22
47	Visible light induced cyclopropanation of dibromomalonates with alkenes via double-SET by photoredox catalysis. Chemical Communications, 2015, 51, 54-57.	2.2	60
48	Cu(OAc) ₂ -Mediated Cascade Annulation of Diarylalkyne Sulfonamides through Dual C–N Bond Formation: Synthesis of 5,10-Dihydroindolo[3,2- <i>b</i>]indoles. Organic Letters, 2016, 18, 3322-3325.	2.4	49
49	Visible Lightâ€Initiated C(<i>sp</i> ³)Br/C(<i>sp</i> ³)H Functionalization of α arbonyl Alkyl Bromides through Hydride Radical Shift. Advanced Synthesis and Catalysis, 2016, 358, 1219-1228.	2.1	60
50	Synthesis of Hydrazide-Containing Chroman-2-ones and Dihydroquinolin-2-ones via Photocatalytic Radical Cascade Reaction of Aroylhydrozones. Organic Letters, 2016, 18, 6304-6307.	2.4	23
51	Copper-Catalyzed C–H Oxidative Radical Functionalization and Annulation of Aniline-Linked 1,7-Enynes: Evidence for a 1,5-Hydride Shift Mechanism. Organic Letters, 2016, 18, 6460-6463.	2.4	72
52	A new era for homolytic aromatic substitution: replacing Bu ₃ SnH with efficient light-induced chain reactions. Organic and Biomolecular Chemistry, 2016, 14, 3849-3862.	1.5	49
53	Visible-light photocatalyzed synthesis of 2-aryl N -methylpyrroles, furans and thiophenes utilizing arylsulfonyl chlorides as a coupling partner. Tetrahedron, 2016, 72, 2521-2526.	1.0	36
54	Decarboxylative/decarbonylative C3-acylation of indoles via photocatalysis: a simple and efficient route to 3-acylindoles. Green Chemistry, 2016, 18, 4916-4923.	4.6	76
55	Cs ₂ CO ₃ as a source of carbonyl and ethereal oxygen in a Cu-catalysed cascade synthesis of benzofuran [3,2-c] quinolin-6[5-H]ones. Organic and Biomolecular Chemistry, 2016, 14, 5940-5944.	1.5	12
56	Iron-Catalyzed Radical [2 + 2 + 2] Annulation of Benzene-Linked 1,7-Enynes with Aldehydes: Fused Pyran Compounds. Organic Letters, 2016, 18, 2264-2267.	2.4	66
57	Visible-light-promoted syntheses of β-keto sulfones from alkynes and sulfonylhydrazides. Organic and Biomolecular Chemistry, 2016, 14, 4205-4209.	1.5	65
58	Redox-triggered hydroarylation of o-(hydroxyalkyl)arylalkynes with arylsulfonyl chlorides using visible light catalysis. Science China Chemistry, 2016, 59, 184-189.	4.2	6

#	Article	IF	CITATIONS
59	Dehydrogenative [2 + 2 + 1] Heteroannulation Using a Methyl Group as a One-Carbon Unit: Access to Pyrazolo[3,4-c]quinolines. Organic Letters, 2016, 18, 2012-2015.	2.4	19
60	Stereoselective Radical Cyclization Cascades Triggered by Addition of Diverse Radicals to Alkynes To Construct 6(5)–6–5 Fused Rings. Organic Letters, 2016, 18, 5284-5287.	2.4	55
61	Visible Light Mediated Photoredox Catalytic Arylation Reactions. Accounts of Chemical Research, 2016, 49, 1566-1577.	7.6	618
62	Radical Cascade Cyclization: Reaction of 1,6â€Enynes with Aryl Radicals by Electron Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4961-4964.	1.2	28
63	Iron-catalyzed decarbonylation initiated [2 + 2 + m] annulation of benzene-linked 1,n-enynes with aliphatic aldehydes. Organic Chemistry Frontiers, 2016, 3, 1509-1513.	2.3	48
64	Intermolecular oxidative decarbonylative [2 + 2 + 2] carbocyclization of N-(2-ethynylaryl)acrylamides with tertiary and secondary alkyl aldehydes involving C(sp ³)–H functionalization. Chemical Science, 2016, 7, 7050-7054.	3.7	70
65	Visible light-induced carbonylation of indoles with arylsulfonyl chlorides and CO. Tetrahedron, 2016, 72, 8442-8448.	1.0	32
66	Catalytic Diverse Radical-Mediated 1,2-Cyanofunctionalization of Unactivated Alkenes via Synergistic Remote Cyano Migration and Protected Strategies. Organic Letters, 2016, 18, 6026-6029.	2.4	72
67	Radicalâ€Mediated 1,2â€Formyl/Carbonyl Functionalization of Alkenes and Application to the Construction of Mediumâ€Sized Rings. Angewandte Chemie - International Edition, 2016, 55, 15100-15104.	7.2	163
68	Radicalâ€Mediated 1,2â€Formyl/Carbonyl Functionalization of Alkenes and Application to the Construction of Mediumâ€Sized Rings. Angewandte Chemie, 2016, 128, 15324-15328.	1.6	48
69	Metal-free oxidative hydrophosphinylation of 1,7-enynes. Organic Chemistry Frontiers, 2016, 3, 385-393.	2.3	55
70	Visible-Light-Mediated 1,7-Enyne Bicyclizations for Synthesis of Cyclopenta[<i>c</i>]quinolines and Benzo[<i>j</i>]phenanthridines. Organic Letters, 2016, 18, 600-603.	2.4	77
71	Copper-catalyzed oxidative [2+2+1] annulation of 1,n-enynes with α-carbonyl alkyl bromides through C–Br/C–H functionalization. Chemical Communications, 2016, 52, 3328-3331.	2.2	80
72	Acylation of indoles via photoredox catalysis: a route to 3-acylindoles. Green Chemistry, 2016, 18, 1201-1205.	4.6	88
73	The cycloaddition reaction using visible light photoredox catalysis. Science China Chemistry, 2016, 59, 161-170.	4.2	50
74	Visible-Light-Induced Direct Thiolation at α-C(sp ³)–H of Ethers with Disulfides Using Acridine Red as Photocatalyst. Organic Letters, 2016, 18, 1546-1549.	2.4	86
75	Acid-Catalyzed Multicomponent Tandem Cyclizations: Access to Polyfunctional Dihydroindolizino[8,7- <i>b</i>]indoles. Organic Letters, 2016, 18, 1342-1345.	2.4	41
76	Metal-Free Radical Haloazidation of Benzene-Tethered 1,7-Enynes Leading to Polyfunctionalized 3,4-Dihydroquinolin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2016, 81, 1099-1105.	1.7	71

#	Article	IF	CITATIONS
77	Synthesis of indol-3-yl aryl ketones through visible-light-mediated carbonylation. Chinese Chemical Letters, 2016, 27, 256-260.	4.8	40
78	Synthesis of cyclohexylidenehydrazine-fused polycyclics via a photocatalytic radical cascade reaction of 2-ethynylaldehyde hydrazones. Chemical Communications, 2017, 53, 2036-2039.	2.2	26
79	Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with o-azidoarylalkynes: a regiospecific route to unsymmetrical 2,3-disubstituted indoles. Chemical Communications, 2017, 53, 4203-4206.	2.2	39
80	Merging Photoredox Catalysis with Iron(III) Catalysis: C5â€H Bromination and Iodination of 8â€Aminoquinoline Amides in Water. Advanced Synthesis and Catalysis, 2017, 359, 1976-1980.	2.1	68
81	Sulfide and Sulfonyl Chloride as Sulfonylating Precursors for the Synthesis of Sulfone ontaining Isoquinolinonediones. Advanced Synthesis and Catalysis, 2017, 359, 859-865.	2.1	41
82	Copper-promoted [2+2+2] annulation of 1,n-enynes through decomposition of azobis(alkyl nitrile)s. Chemical Communications, 2017, 53, 1265-1268.	2.2	56
83	Visible-light- induced aerobic dioxygenation of styrenes under metal- and additive-free ambient conditions. Tetrahedron Letters, 2017, 58, 721-725.	0.7	27
84	Oxidative Divergent Bicyclizations of 1,nâ€Enynes through αâ€C(<i>sp</i> ³)–H Functionalization of Alkyl Nitriles. Advanced Synthesis and Catalysis, 2017, 359, 120-129.	2.1	39
85	Radical cascade reactions triggered by single electron transfer. Nature Reviews Chemistry, 2017, 1, .	13.8	211
86	Visible-Light Photoredox Catalyzed Oxidative/Reductive Cyclization Reaction of <i>N</i> -Cyanamide Alkenes for the Synthesis of Sulfonated Quinazolinones. Organic Letters, 2017, 19, 4798-4801.	2.4	75
87	Diastereoselective building up polycyclic tetrahydrofurans via tandem annulation of 1,n-enynes with aliphatic acids. Organic Chemistry Frontiers, 2017, 4, 2147-2152.	2.3	19
88	Visible Light Photoredox Activation of Sulfonyl Chlorides: Applications in Organic Synthesis. ChemistrySelect, 2017, 2, 6458-6479.	0.7	67
89	Palladium-catalyzed dearomatizative [2 + 2 + 1] carboannulation of 1,7-enynes with aryl diazonium salts and H ₂ 0: facile synthesis of spirocyclohexadienone-fused cyclopenta[c]quinolin-4(5H)-ones. Chemical Communications, 2017, 53, 8600-8603.	2.2	31
90	Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chemical Society Reviews, 2017, 46, 4329-4346.	18.7	336
93	Visible-Light-Induced Radical Cascade Cyclization: Synthesis of the ABCD Ring Cores of Camptothecins. Journal of Organic Chemistry, 2018, 83, 2840-2846.	1.7	19
94	Visible-Light-Promoted Tandem Annulation of <i>N</i> -(<i>o</i> -Ethynylaryl)acrylamides with CH ₂ Cl ₂ . Organic Letters, 2018, 20, 212-215.	2.4	65
95	Copper atalyzed Oxidative Reaction of βâ€Keto Sulfones with Alcohols via Câ^'S Bond Cleavage: Reaction Development and Mechanism Study. Chemistry - an Asian Journal, 2018, 13, 404-408.	1.7	14
96	Temperature Controlled Selective C–S or C–C Bond Formation: Photocatalytic Sulfonylation versus Arylation of Unactivated Heterocycles Utilizing Aryl Sulfonyl Chlorides. Organic Letters, 2018, 20, 648-651.	2.4	76

#	Article	IF	CITATIONS
97	Palladiumâ€Catalyzed Crossâ€Coupling/Annulation Cascade for Synthesis of 9â€Hydroxy and 9â€Aminofluorenes Advanced Synthesis and Catalysis, 2018, 360, 235-241.	2.1	9
98	Visible-light-induced sulfonylation/cyclization of vinyl azides: one-pot construction of 6-(sulfonylmethyl)phenanthridines. Organic Chemistry Frontiers, 2018, 5, 232-236.	2.3	47
99	Formal Total Synthesis of Hybocarpone Enabled by Visible-Light-Promoted Benzannulation. Journal of Organic Chemistry, 2018, 83, 15524-15532.	1.7	7
100	Synthetic Access to Cyclopenta[a]inden-2(1H)-ones from Morita–Baylis–Hillman Products of 2-Alkynyl Benzaldehydes. ACS Omega, 2018, 3, 15734-15742.	1.6	3
101	Visible-Light-Mediated Photoredox-Catalyzed Regio- and Stereoselective Chlorosulfonylation of Alkynes. Organic Letters, 2018, 20, 7509-7513.	2.4	47
102	One-pot synthesis of polyfunctionalized quinolines <i>via</i> a copper-catalyzed tandem cyclization. Organic and Biomolecular Chemistry, 2018, 16, 7657-7662.	1.5	9
103	Visibleâ€Lightâ€Mediated Chlorosulfonylative Cyclizations of 1,6â€Enynes. Advanced Synthesis and Catalysis, 2018, 360, 4325-4329.	2.1	37
104	Atom Transfer Radical Addition to Alkynes and Enynes: A Versatile Gold/Photoredox Approach to Thio-Functionalized Vinylsulfones. ACS Catalysis, 2018, 8, 8237-8243.	5.5	106
105	Photoredox Catalysis for Building C–C Bonds from C(sp ²)–H Bonds. Chemical Reviews, 2018, 118, 7532-7585.	23.0	591
106	Visible-light photocatalytic bicyclization of β-alkynyl propenones for accessing diastereoenriched <i>syn</i> -fluoren-9-ones. Chemical Communications, 2018, 54, 11542-11545.	2.2	61
107	Visibleâ€Lightâ€Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1â€ <i>c</i>]coumarins. Asian Journal of Organic Chemistry, 2019, 8, 1448-1457.	1.3	6
108	TBN-mediated regio- and stereoselective sulfonylation & oximation (oximosulfonylation) of alkynes with sulfonyl hydrazines in EtOH/H ₂ O. Green Chemistry, 2019, 21, 205-212.	4.6	31
109	Recent advances in radical-mediated [2+2+m] annulation of 1,n-enynes. Science China Chemistry, 2019, 62, 1463-1475.	4.2	52
110	Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation. Chemical Communications, 2019, 55, 12332-12335.	2.2	7
111	Visible light promoted difunctionalization reactions of alkynes. Chinese Journal of Catalysis, 2019, 40, 1003-1019.	6.9	65
112	Sulfur Incorporation Using Disulfanes as the Sulfur Atom Source Enabled Metalâ€Free Heteroannulation of 1,7â€Enynes. Advanced Synthesis and Catalysis, 2019, 361, 3974-3979.	2.1	11
113	Metal-free oxidative [2+2+1] heteroannulation of 1,7-enynes with thiocyanates toward thieno[3,4- <i>c</i>]quinolin-4(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 6727-6730.	2.2	23
114	Thioesters as Bifunctional Reagents for 2â€Naphthylamine Sulfuracylation. Advanced Synthesis and Catalysis, 2019, 361, 3331-3336.	2.1	16

#	Article	IF	CITATIONS
115	Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. Tetrahedron Letters, 2019, 60, 916-919.	0.7	28
116	Synthesis of Cyclic Compounds via Photoinduced Radical Cyclization Cascade of C=C bonds. Chemical Record, 2019, 19, 424-439.	2.9	26
117	Heterocyclic iodoniums as versatile synthons to approach diversified polycyclic heteroarenes. RSC Advances, 2019, 9, 33170-33179.	1.7	17
118	Visible light-driven organic photochemical synthesis in China. Science China Chemistry, 2019, 62, 24-57.	4.2	374
119	Photoinduced cyclization of alkynoates to coumarins with N-lodosuccinimide as a free-radical initiator under ambient andÂmetal-free conditions. Tetrahedron, 2019, 75, 1044-1051.	1.0	22
120	Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Letters, 2020, 61, 151506.	0.7	148
121	Radical Tandem Bicyclization Triggered by the α-Position of α,β-Unsaturated Ketones Bearing Nonterminal 1,6-Enynes: Synthesis of the 5 <i>H</i> -Benzo[<i>a</i>]fluoren-5-one Skeleton. Organic Letters, 2020, 22, 8359-8364.	2.4	11
122	Photocatalytic Decarboxylative [2 + 2 + <i>m</i>] Cyclization of 1,7-Enynes Mediated by Tricyclohexylphosphine and Potassium Iodide. Organic Letters, 2020, 22, 8819-8823.	2.4	48
123	Aldehydes: magnificent acyl equivalents for direct acylation. Organic and Biomolecular Chemistry, 2020, 18, 7987-8033.	1.5	30
124	Ironâ€Catalyzed [2+2+2] Annulation of Aliphatic Bridged 1, <i>n</i> â€Enynes with Aldehydes for the Synthesis of Fused Pyrans. European Journal of Organic Chemistry, 2020, 2020, 4425-4428.	1.2	5
125	Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chemistry, 2020, 22, 1388-1392.	4.6	109
126	Visible-Light-Driven Reductive Carboarylation of Styrenes with CO ₂ and Aryl Halides. Journal of the American Chemical Society, 2020, 142, 8122-8129.	6.6	171
127	Visible light induced tandem reactions: An efficient one pot strategy for constructing quinazolinones using in-situ formed aldehydes under photocatalyst-free and room-temperature conditions. Chinese Chemical Letters, 2021, 32, 1427-1431.	4.8	23
128	Contemporary methods for generation of aryl radicals. Chemical Society Reviews, 2021, 50, 2244-2259.	18.7	96
129	Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. Russian Chemical Reviews, 2021, 90, 116-170.	2.5	11
130	Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated Î ³ -butyrolactams. Chinese Chemical Letters, 2021, 32, 136-139.	4.8	37
131	Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chemical Communications, 2021, 57, 8288-8291.	2.2	20
132	Metal-Free Domino Oligocyclization Reactions of Enynals and Enynones with Molecular Oxygen. Organic Letters, 2021, 23, 1291-1295.	2.4	7

ARTICLE IF CITATIONS # Arylation of <i>ortho</i>Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: 133 1.7 20 An Access to Isoflavones. Journal of Organic Chemistry, 2021, 86, 4896-4916. Visible <scp>Lightâ€Mediated</scp> Construction of Sulfonated Dibenzazepines. Chinese Journal of 134 2.6 19 Chemistry, 2021, 39, 2220-2226. Three-Component Radical Iodonitrosylative Cyclization of 1,6-Enynes under Metal-Free Conditions. 135 2.4 22 Organic Letters, 2021, 23, 5044-5048. Highly Regioselective Tandem Reaction of Ene-Yne-Oxazolones Induced by <i>H</i>-Phosphonates: Construction of Phosphinylindane Derivatives. Journal of Organic Chemistry, 2021, 86, 9360-9383. Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired 137 2.8 25 electrolysis. Cell Reports Physical Science, 2021, 2, 100476. Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016. 23.0 388 Nickel-catalyzed cyclization of 1,7-enynes for the selective synthesis of 139 dihydrocyclobuta[c]quinolin-3-ones and benzo[b]azocin-2-ones. Chemical Communications, 2021, 57, 2.2 6 11657-11660. Visibleâ€lightâ€mediated Synthesis of 3â€Sulfonylquinolines: Mechanistic Insights into the Photoredox 1.3 Catalysis. Ásian Journal of Órganic Chemistry, 2022, 11, . Divergent C(sp²)â€"H arylation of heterocycles <i>via</i> organic photoredox catalysis. 141 29 4.6 Green Chemistry, 2022, 24, 3017-3022. Providing direction for mechanistic inferences in radical cascade cyclization using a Transformer 142 2.3 model. Organic Chemistry Frontiers, 2022, 9, 2498-2508. Photoredox Catalyzed Radical Cascade Aroylation (Sulfonylation)/Cyclization Enables Access to 143 7 1.7 Fused Indolo-pyridones. Journal of Organic Chemistry, 2021, 86, 18042-18055. Visible Lightâ€Mediated Manipulation of 1,<i>n</i>â€Enynes in Organic Synthesis. ChemCatChem, 2022, 14, . 1.8 <scp>Metalâ€Free</scp> Arylsulfonyl Radical Triggered Cascade Cyclization of <scp>Phenylâ€Linked</scp> 1,<scp>6â€Enynes</scp>: Synthesis of 2,<scp>3â€Dihydroâ€1<i>H</i></scp>â€indenes and 145 2.6 8 10<i>a</i>,<scp>11â€Dihydroâ€10<i>H</i></scp>â€benzo[<i>b</i>]fluorines. Chinese Journal of Chemistry, 2022, 40, 2756-2762 Metalâ€Organic Frameworks with Organic Photosensitizers in Organic Synthesis. European Journal of 146 1.0 Inorganic Chemistry, 2022, 2022, . Visible-Light-Enabled Ph₃P/LiI-Promoted Tandem Radical Trifluoromethylation/Cyclization/Iodination of 1,6-Enynes with Togni's Reagent. Journal of Organic 147 1.7 8 Chemistry, 2022, 87, 12877-12889. Nickel-catalyzed cascade hydrosilylation/cyclization of 1,7-enynes leading to silyl-containing 148 quinolinones. Organic and Biomolecular Chemistry, 2022, 20, 8838-8842. Radical annulation using a radical reagent as a two-carbon unit. Organic and Biomolecular 149 1.54 Chemistry, 2022, 20, 9272-9281. Mnâ€Mediated Radical Cascade Cyclization of 1,6â€Enynes with Arylboronic Acids to Access 2.1 Dihydrobenzo[<i>b</i>)fluorenones. Advanced Synthesis and Catalysis, 2022, 364, 4409-4414.

#	Article	IF	CITATIONS
151	Electrosynthesis of bridged or fused sulfonamides through complex radical cascade reactions: divergence in medium-sized ring formation. Chemical Science, 2023, 14, 3541-3547.	3.7	6
152	Visible-Light-Induced 1,7-Enyne Dicyclization: Synthesis of Ester-Substituted Benzo[<i>j</i>]phenanthridines. Organic Letters, 2023, 25, 1978-1983.	2.4	11
153	Recent advances in sulfur/sulfonyl radical triggered cascade cyclization reactions of 1,n-enynes. Tetrahedron, 2023, 138, 133409.	1.0	2
154	Radical Cascade Cyclization of Alkeneâ€Tethered Compounds: Versatile Approach towards Ringâ€Fused Polycyclic Structures. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
160	Radical cascade cyclization of 1, <i>n</i> -enynes under photo/electrochemical conditions. Organic Chemistry Frontiers, 2023, 10, 5735-5745.	2.3	4