Nanostructured materials for applications in heterogen

Chemical Society Reviews 42, 2746-2762 DOI: 10.1039/c2cs35261c

Citation Report

#	Article	IF	CITATIONS
1	Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chemical Communications, 2013, 49, 9383.	2.2	101
2	Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Advances, 2013, 3, 16410.	1.7	3
3	Highly recoverable organoruthenium-functionalized mesoporous silica boosts aqueous asymmetric transfer hydrogenation reaction. Journal of Catalysis, 2013, 307, 55-61.	3.1	43
4	Ferrocenyl Dendrimers with Ionic Tethers and Dendrons. Organometallics, 2013, 32, 6079-6090.	1.1	12
5	Nanoparticle Shape Selectivity in Catalysis: Butene Isomerization and Hydrogenation on Platinum. Topics in Catalysis, 2013, 56, 1284-1298.	1.3	25
6	Shape ontrolled Nanostructures in Heterogeneous Catalysis. ChemSusChem, 2013, 6, 1797-1820.	3.6	142
7	Mass Transport across the Porous Oxide Shells of Core–Shell and Yolk–Shell Nanostructures in Liquid Phase. Journal of Physical Chemistry C, 2013, 117, 20043-20053.	1.5	42
8	Enhanced hydrogenation of olefins and ketones with a ruthenium complex covalently anchored on graphene oxide. Journal of Materials Chemistry A, 2013, 1, 15039.	5.2	48
9	Size-Dependent Phononic Properties of PdO Nanocrystals Probed by Nanoscale Optical Thermometry. Journal of Physical Chemistry C, 2013, 117, 21558-21568.	1.5	20
10	Dependence of catalytic activity of metal-containing particles on degree of ordering rather than on size and shape. Pd and Ni-catalyzed carbon–heteroatom bond formation. Mendeleev Communications, 2013, 23, 337-339.	0.6	1
11	Wafer-scale directed self-assembly of nanostructures using self-assembled monolayer based controlled-wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1076-1082.	2.3	4
12	Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure. Journal of Materials Chemistry A, 2013, 1, 4647.	5.2	65
13	Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chemical Society Reviews, 2013, 42, 5210.	18.7	202
14	Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chemical Communications, 2013, 49, 5912.	2.2	289
15	Continuous coflow synthesis of hybrid palladium nanocrystals as catalysts for borylation reaction. Nanoscale, 2013, 5, 12425.	2.8	21
16	Simultaneous Nondestructive Analysis of Palladium, Rhodium, Platinum, and Gold Nanoparticles Using Energy Dispersive X-ray Fluorescence. Analytical Chemistry, 2013, 85, 10142-10148.	3.2	27
17	Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: a surface-science perspective. Physical Chemistry Chemical Physics, 2013, 15, 11988.	1.3	73
18	Unique Mesoporous Silicoaluminophosphate Assembled from Faujasite-type SAPO-37 Precursor: A Potential Catalyst for Isomerization. Chemistry Letters, 2013, 42, 1160-1162.	0.7	24

#	Article	IF	CITATIONS
20	Unprecedented catalytic performance in disordered nickel niobate through photo-synergistic promotion. Chemical Communications, 2014, 50, 4200.	2.2	17
22	Direct femtosecond laser ablation of copper with an optical vortex beam. Journal of Applied Physics, 2014, 116, .	1.1	29
23	Pickeringâ€Emulsion Inversion Strategy for Separating and Recycling Nanoparticle Catalysts. ChemPhysChem, 2014, 15, 841-848.	1.0	27
24	Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument. Journal of Chemical Physics, 2014, 140, 174201.	1.2	49
25	Comparison Study on Photodynamic Anticancer Activity of Multifunctional Magnetic Particles by Formation of Cations. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	9
26	The facile preparation of 5,10,15,20-tetrakis(4-carboxyl phenyl) porphyrin-CdS nanocomposites and their photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 188, 106-113.	1.7	11
27	New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chemical Society Reviews, 2014, 43, 7624-7663.	18.7	243
28	(Ti,Sn) solid solutions as functional materials for gas sensing. Sensors and Actuators B: Chemical, 2014, 194, 195-205.	4.0	25
29	CO adsorption on Pt clusters supported on graphite. Journal of Electroanalytical Chemistry, 2014, 716, 23-30.	1.9	18
31	Nanocasting Synthesis of In ₂ O ₃ with Appropriate Mesostructured Ordering and Enhanced Gas-Sensing Property. ACS Applied Materials & Interfaces, 2014, 6, 401-409.	4.0	119
32	Selectivity in the catalytic hydrogenation of cinnamaldehyde promoted by Pt/SiO2 as a function of metal nanoparticle size. Catalysis Science and Technology, 2014, 4, 955-962.	2.1	72
33	Roomâ€Temperature Suzukiâ€Miyaura Reaction Catalyzed by Palladium Nanoparticles in Lactateâ€Anion Ionic Liquid. Chinese Journal of Chemistry, 2014, 32, 1225-1232.	2.6	14
34	A highly Lewis-acidic Pd(<scp>iv</scp>) surface on Pd@SiO ₂ nanocatalysts for hydroalkoxylation reactions. Chemical Communications, 2014, 50, 14938-14941.	2.2	33
35	Neutron Diffraction and X-ray Absorption Fine Structure Evidence for Local Lattice Distortions and Aperiodic Antisite Substitution in Cu ₂ ZnSnS ₄ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 26292-26303.	1.5	24
36	Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem, 2014, 6, 3455-3463.	1.8	86
37	One pot synthesis of nanoscale phase-segregated PdPt nanoarchitectures via unusual Pt-doping induced structural reorganization of a Pd nanosheet into a PdPt nanotent. Nanoscale, 2014, 6, 10551.	2.8	19
38	WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Applied Catalysis A: General, 2014, 488, 200-207.	2.2	36
39	Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer–Tropsch synthesis. Physical Chemistry Chemical Physics, 2014, 16, 5034-5043.	1.3	48

#	Article	IF	CITATIONS
40	A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Advances, 2014, 4, 62362-62366.	1.7	37
41	Stabilizing Gold Nanoparticles by Solid Supports. RSC Catalysis Series, 2014, , 1-26.	0.1	5
42	One-pot synthesis of ultrasmall MoO ₃ nanoparticles supported on SiO ₂ , TiO ₂ , and ZrO ₂ nanospheres: an efficient epoxidation catalyst. Journal of Materials Chemistry A, 2014, 2, 19060-19066.	5.2	53
43	Control of Solid Catalysts Down to the Atomic Scale: Where is the Limit?. Angewandte Chemie - International Edition, 2014, 53, 8599-8604.	7.2	28
44	Preparation of Solid Catalysts. , 2014, , 9-22.		2
45	Alumina-supported Fe catalyst prepared by vapor deposition and its catalytic performance for oxidative dehydrogenation of ethane. Materials Research Bulletin, 2014, 59, 254-260.	2.7	7
46	Visible-light photocatalytic activity of NH 4 NO 3 ion-exchanged nitrogen-doped titanate and TiO 2 nanotubes. Journal of Molecular Catalysis A, 2014, 394, 48-56.	4.8	21
47	Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)O _{<i>x</i>} Catalysts and Its Effects on Propane Dehydrogenation. ACS Catalysis, 2014, 4, 1812-1824.	5.5	100
48	Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Transactions, 2014, 43, 9026-9031.	1.6	157
49	Magnetically recyclable core–shell nanocatalysts for efficient heterogeneous oxidation of alcohols. Journal of Materials Chemistry A, 2014, 2, 7593-7599.	5.2	67
50	Construction of Pd-based nanocatalysts for fuel cells: opportunities and challenges. Catalysis Science and Technology, 2014, 4, 4116-4128.	2.1	106
51	Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50, 3169-3172.	2.2	307
52	Green synthesis of Fe ₃ O ₄ nanoparticles with controlled morphologies using urease and their application in dye adsorption. Dalton Transactions, 2014, 43, 12474-12479.	1.6	34
53	New Pd/SiO ₂ @ZIF-8 Core–Shell Catalyst with Selective, Antipoisoning, and Antileaching Properties for the Hydrogenation of Alkenes. Industrial & Engineering Chemistry Research, 2014, 53, 10906-10913.	1.8	55
54	Recycling Nanoparticle Catalysts without Separation Based on a Pickering Emulsion/Organic Biphasic System. ChemSusChem, 2014, 7, 1888-1900.	3.6	37
55	A branched-dumbbell Pt/NiFe nanostructure and its high catalytic reduction activity for nitro-aromatic compounds. Materials Research Bulletin, 2014, 60, 322-327.	2.7	9
56	Metal organic framework (MOF) micro/nanopillars. CrystEngComm, 2014, 16, 2885-2888.	1.3	14
57	Morphology-dependent nanocatalysts: Rod-shaped oxides. Chemical Society Reviews, 2014, 43, 1543-1574.	18.7	445

#	Article	IF	CITATIONS
58	Synthesis of stable Ni-CeO2 catalysts via ball-milling for ethanol steam reforming. Catalysis Today, 2014, 233, 53-60.	2.2	59
59	Elucidation of the indirect H–H interaction in (2 × 1)-H/Pd(3 1 1) and on Pd(1 1 1). Chemical Physics Letters, 2014, 592, 14-17.	1.2	0
60	Effect of pore diameter and structure of mesoporous sieve supported catalysts on hydrodesulfurization performance. Chemical Engineering Science, 2014, 111, 381-389.	1.9	31
61	La(OH)3 and La2O2CO3 nanorod catalysts for Claisen-Schmidt condensation. Chinese Journal of Catalysis, 2014, 35, 437-443.	6.9	30
62	Superior H ₂ production by hydrophilic ultrafine Ta ₂ O ₅ engineered covalently on graphene. Nanotechnology, 2014, 25, 215401.	1.3	16
63	Facile Fabrication of Ultrafine Palladium Nanoparticles with Size- and Location-Control in Click-Based Porous Organic Polymers. ACS Nano, 2014, 8, 5352-5364.	7.3	147
64	Computational design of nanoclusters by property-based genetic algorithms: Tuning the electronic properties of <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo> (</mml:mo> <mml:msub> <mml:m .<="" 2015,="" 91,="" b,="" physical="" pre="" review=""></mml:m></mml:msub></mml:mrow></pre>	ni>ħЮ <td>ıml:mi><mml:< td=""></mml:<></td>	ıml:mi> <mml:< td=""></mml:<>
66	Preparation of Mn(<scp>lll</scp>)â€Porphyrinâ€Immobilized <scp>Fe₃O₄</scp> @ <scp>SiO₂</scp> Mesoparticles and Their Use in Heterogeneous Catalysis of Styrene Epoxidation. Bulletin of the Korean Chemical Society, 2015, 36, 1936-1939.	1.0	4
67	Highly Active and Stable Palladium Nanoparticles Encapsulated in a Mesoporous Silica Yolk–Shell Nanoreactor for Suzuki–Miyaura Reactions. ChemCatChem, 2015, 7, 2475-2479.	1.8	34
68	Nanocatalysis in Flow. ChemSusChem, 2015, 8, 2586-2605.	3.6	57
69	Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction. Advanced Materials, 2015, 27, 6397-6403.	11.1	125
70	Design and Synthesis of an Au@MILâ€53(NH ₂) Catalyst for a Oneâ€Pot Aerobic Oxidation/Knoevenagel Condensation Reaction. European Journal of Inorganic Chemistry, 2015, 2015, 5099-5105.	1.0	36
71	Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?. ChemSusChem, 2015, 8, 3084-3091.	3.6	22
72	Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics. Catalysts, 2015, 5, 534-560.	1.6	171
73	Metal Organic Framework Micro/Nanopillars of Cu(BTC)·3H2O and Zn(ADC)·DMSO. Nanomaterials, 2015, 5, 565-576.	1.9	12
74	Nanomaterials. Frontiers of Nanoscience, 2015, 8, 183-216.	0.3	1
75	Excellent visible-light-driven photocatalytic performance of Cu ₂ O sensitized NaNbO ₃ heterostructures. New Journal of Chemistry, 2015, 39, 6171-6177.	1.4	36
76	HIGHLY ACTIVE AND REUSABLE RHODIUM CATALYST FOR SELECTIVE HYDROGENATION OF NITRILE–BUTADIENE RUBBER. Rubber Chemistry and Technology, 2015, 88, 547-559.	0.6	2

#	Article	IF	CITATIONS
77	Tailorable Synthesis of Porous Organic Polymers Decorating Ultrafine Palladium Nanoparticles for Hydrogenation of Olefins. ACS Catalysis, 2015, 5, 948-955.	5.5	99
78	Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach. Journal of the American Chemical Society, 2015, 137, 106-109.	6.6	213
79	Solvent selective phenyl selenylation and phenyl tellurylation of aryl boronic acids catalyzed by Cu(II) grafted functionalized polystyrene. Tetrahedron Letters, 2015, 56, 779-783.	0.7	26
80	ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4H-pyrano[2,3-c]pyrazoles. Journal of the Iranian Chemical Society, 2015, 12, 1107-1113.	1.2	13
81	Indium oxide cubes prepared by hydrothermal synthesis as catalysts for CO oxidation. Materials Chemistry and Physics, 2015, 153, 243-247.	2.0	8
82	Dendrimerâ€Encapsulated Palladium Nanoparticles for Continuousâ€Flow Suzuki–Miyaura Cross oupling Reactions. ChemCatChem, 2015, 7, 936-942.	1.8	30
83	Facet-controlled {100}Rh–Pt and {100}Pt–Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes. Nanoscale, 2015, 7, 3941-3946.	2.8	18
84	<i>In Situ</i> Characterization of Highly Dispersed, Ceria-Supported Fe Sites for NO Reduction by CO. Journal of Physical Chemistry C, 2015, 119, 4224-4234.	1.5	27
85	A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2015, 3, 3450-3455.	5.2	145
86	Morphology effects on exchange anisotropy in Co–CoO nanocomposite films. Thin Solid Films, 2015, 576, 11-18.	0.8	10
87	Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol. Chinese Journal of Catalysis, 2015, 36, 261-267.	6.9	24
88	Release of copper complexes from a nanostructured sol–gel titania for cancer treatment. Journal of Materials Science, 2015, 50, 2410-2421.	1.7	8
89	Low bioaccumulative materials for parahygrophobic nanosheets with sticking behaviour. Journal of Colloid and Interface Science, 2015, 447, 167-172.	5.0	19
90	Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chemistry, 2015, 17, 4107-4132.	4.6	324
91	Mild and selective catalytic oxidation of organic substrates by a carbon nanotube-rhodium nanohybrid. Catalysis Science and Technology, 2015, 5, 4542-4546.	2.1	29
92	Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures. ACS Catalysis, 2015, 5, 4959-4977.	5.5	150
93	Magnetic and Dendritic Catalysts. Accounts of Chemical Research, 2015, 48, 1871-1880.	7.6	109
94	Gold and Silver Clusters on TiO ₂ and ZrO ₂ (101) Surfaces: Role of Dispersion Forces. Journal of Physical Chemistry C, 2015, 119, 15381-15389.	1.5	70

#	Article	IF	CITATIONS
95	Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. Journal of Catalysis, 2015, 326, 116-126.	3.1	51
96	Dendrimer-encapsulated Pd nanoparticles as catalysts for C–C cross-couplings in flow microreactors. Organic and Biomolecular Chemistry, 2015, 13, 4953-4959.	1.5	21
97	Integrated nanocatalysts: a unique class of heterogeneous catalysts. Journal of Materials Chemistry A, 2015, 3, 8241-8245.	5.2	50
98	Dual Optimization Approach to Bimetallic Nanoparticle Catalysis: Impact of M ₁ /M ₂ Ratio and Supporting Polymer Structure on Reactivity. ACS Catalysis, 2015, 5, 3457-3462.	5.5	46
99	Two-step self-assembly of hierarchically-ordered nanostructures. Journal of Materials Chemistry A, 2015, 3, 11688-11699.	5.2	51
100	Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chemical Society Reviews, 2015, 44, 5291-5319.	18.7	306
101	Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surface Science Reports, 2015, 70, 135-187.	3.8	305
102	Polyoxometalate-based metal–organic coordination networks for heterogeneous catalytic desulfurization. CrystEngComm, 2015, 17, 7938-7947.	1.3	40
103	Catalysis Applications of Size-Selected Cluster Deposition. ACS Catalysis, 2015, 5, 7152-7176.	5.5	240
104	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
104 105	Application of Nanoparticles in Manufacturing. , 2015, , 1-53. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326.	2.8	4 28
		2.8	
105	Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical		28
105 106	 Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation. 	18.7	28 906
105 106 107	 Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation. ACS Catalysis, 2015, 5, 5714-5718. Colloidal Copper Sulphide Based Nanocrystals as Building Blocks for Self-assembled Nanostructures. 	18.7 5.5	28 906 125
105 106 107 108	Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326. Coreâć "shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation. ACS Catalysis, 2015, 5, 5714-5718. Colloidal Copper Sulphide Based Nanocrystals as Building Blocks for Self-assembled Nanostructures. Springer Series in Materials Science, 2015, 177-193. Pore size effects on convective flow and diffusion through nanoporous silica gels. Colloids and	18.7 5.5 0.4	28 906 125 0
105 106 107 108	Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation. ACS Catalysis, 2015, 5, 5714-5718. Colloidal Copper Sulphide Based Nanocrystals as Building Blocks for Self-assembled Nanostructures. Springer Series in Materials Science, 2015, 177-193. Pore size effects on convective flow and diffusion through nanoporous silica gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 288-296. Highly Resolved Nanostructured PEDOT on Large Areas by Nanosphere Lithography and	18.7 5.5 0.4 2.3	28 906 125 0 12

#	Article	IF	CITATIONS
113	Tuning the catalytic behavior of metal nanoparticles: The issue of the crystal phase. Chinese Journal of Catalysis, 2015, 36, 1409-1418.	6.9	14
114	Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO ₂ for hydrogenation of nitrile butadiene rubber. RSC Advances, 2015, 5, 3417-3424.	1.7	37
115	Unravelling the Dependence of Hydrogen Oxidation Kinetics on the Size of Pt Nanoparticles by in Operando Nanoplasmonic Temperature Sensing. Nano Letters, 2015, 15, 574-580.	4.5	15
116	Palladium–pyridyl catalytic films: A highly active and recyclable catalyst for hydrogenation of styrene under mild conditions. Journal of Colloid and Interface Science, 2015, 441, 85-89.	5.0	12
117	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	2.2	131
118	Stabilization of Cu ₂ O nanoparticles on a 2D metal–organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Transactions, 2015, 44, 83-86.	1.6	36
119	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. ACS Catalysis, 2015, 5, 27-33.	5.5	36
120	Flow Synthesis of Plasmonic Gold Nanoshells via a Microreactor. Particle and Particle Systems Characterization, 2015, 32, 234-242.	1.2	23
121	The dendritic effect illustrated with phosphorus dendrimers. Chemical Society Reviews, 2015, 44, 3890-3899.	18.7	118
122	Ultrasonic-assisted green synthesis of palladium nanoparticles and their nanocatalytic application in multicomponent reaction. New Journal of Chemistry, 2015, 39, 972-977.	1.4	42
123	Preparation of free-standing mesoporous metal catalysts and their applications in heterogeneous enantioselective hydrogenations. Catalysis Science and Technology, 2015, 5, 638-649.	2.1	8
124	Correlated bifunctionality in heterogeneous catalysts: selective tethering of cinchonidine next to supported Pt nanoparticles. Catalysis Science and Technology, 2015, 5, 680-689.	2.1	20
125	Application of Ionic Liquids in Pot-in-Pot Reactions. Molecules, 2016, 21, 272.	1.7	4
126	Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis. Chemistry - an Asian Journal, 2016, 11, 1470-1488.	1.7	47
127	Facile Synthesis and Tunable Porosities of Imidazoliumâ€Based Ionic Polymers that Contain Inâ€Situ Formed Palladium Nanoparticles. ChemCatChem, 2016, 8, 2234-2240.	1.8	19
128	Liquidâ€Phase Epitaxially Grown Metal–Organic Framework Thin Films for Efficient Tandem Catalysis Through Siteâ€Isolation of Catalytic Centers. ChemPlusChem, 2016, 81, 708-713.	1.3	21
129	Pd@Pt Core–Shell Nanoparticles with Branched Dandelionâ€ i ke Morphology as Highly Efficient Catalysts for Olefin Reduction. Chemistry - A European Journal, 2016, 22, 1577-1581.	1.7	24
130	Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles. Chemistry - A European Journal, 2016, 22, 6981-6986.	1.7	4

#	Article	IF	CITATIONS
131	Effect of Confinement on the Properties of Sequestered Mixed Polar Solvents: Enzymatic Catalysis in Nonaqueous 1,4â€Bisâ€2â€ethylhexylsulfosuccinate Reverse Micelles. ChemPhysChem, 2016, 17, 1678-1685.	1.0	13
132	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie, 2016, 128, 7197-7201.	1.6	22
133	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2016, 55, 7081-7085.	7.2	88
134	Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews, 2016, 116, 10414-10472.	23.0	1,339
135	Synthesis of αâ€MoC _{1â^'<i>x</i>} Nanoparticles with a Surfaceâ€Modified SBAâ€15 Hard Template: Determination of Structure–Function Relationships in Acetic Acid Deoxygenation. Angewandte Chemie, 2016, 128, 9172-9175.	1.6	2
136	Synthesis of αâ€MoC _{1â^'<i>x</i>} Nanoparticles with a Surfaceâ€Modified SBAâ€15 Hard Template: Determination of Structure–Function Relationships in Acetic Acid Deoxygenation. Angewandte Chemie - International Edition, 2016, 55, 9026-9029.	7.2	44
137	Silica-Coated Magnetic Nano-Particles: Application in Catalysis. ACS Symposium Series, 2016, , 1-38.	0.5	12
138	In situ laser-induced synthesis of copper microstructures with high catalytic properties and sensory characteristics. , 2016, , .		1
139	Hierarchically carbonaceous catalyst with BrÃ,nsted–Lewis acid sites prepared through Pickering HIPEs templating for biomass energy conversation. Chemical Engineering Journal, 2016, 294, 222-235.	6.6	68
140	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
141	Ni–Al2O3 as reusable heterogeneous catalyst for expedient one-pot synthesis of naphthopyrans. Research on Chemical Intermediates, 2016, 42, 6863-6871.	1.3	13
142	Fe ₃ O ₄ (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chemistry, 2016, 18, 3184-3209.	4.6	342
143	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH ₂ -UiO-66) nanocrystals for selective tandem catalytic reactions. Chemical Communications, 2016, 52, 6557-6560.	2.2	59
144	Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes. Journal of Alloys and Compounds, 2016, 681, 316-323.	2.8	37
145	In situ FTIR spectroscopy of highly dispersed FeOx catalysts for NO reduction: Role of Na promoter. Catalysis Today, 2016, 267, 56-64.	2.2	10
146	Spontaneous Electroless Deposition of Ultrafine Pd Nanoparticles on Poly(phenylene butadiynylene)s for the Hydroxycarbonylation of Aryl Iodides. ChemistrySelect, 2016, 1, 1832-1836.	0.7	3
147	Facile preparation of pH-responsive AIE-active POSS dendrimers for the detection of trivalent metal cations and acid gases. Polymer Chemistry, 2016, 7, 6432-6436.	1.9	28
148	A Hexagonal Covalent Porphyrin Framework as an Efficient Support for Gold Nanoparticles toward Catalytic Reduction of 4â€Nitrophenol. Chemistry - A European Journal, 2016, 22, 17029-17036.	1.7	32

#	Article	IF	CITATIONS
149	Using operando Microspectroscopy to Uncover the Correlations Between the Electronic Properties of Dendrimer-Encapsulated Metallic Nanoparticles and their Catalytic Reactivity in π-Bond Activation Reactions. Topics in Catalysis, 2016, 59, 1700-1711.	1.3	3
150	A Room-Temperature, Solution Phase Method for the Synthesis of Mesoporous Metal Chalcogenide Nanocrystal-Based Thin Films with Precisely Controlled Grain Sizes. Chemistry of Materials, 2016, 28, 6105-6117.	3.2	15
151	A click strategy for the immobilization of palladium nanoparticles onto silica: efficient and recyclable catalysts for carbon–carbon bond formation under mild reaction conditions. RSC Advances, 2016, 6, 78080-78089.	1.7	17
152	Observing Electrochemical Dealloying by Single-Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8728-8734.	3.2	18
153	Nicotine functionalizedâ€silica palladium (II) complex: a highly efficient, environmentally benign and recyclable nanocatalyst for Câ€C bond forming reactions under mild conditions. Applied Organometallic Chemistry, 2016, 30, 777-782.	1.7	6
154	Orientated-assembly of rod-like silica particles based on sandwich structure from the superhydrophobic template and the superhydrophilic substrates. Chinese Chemical Letters, 2016, 27, 1797-1800.	4.8	4
155	Improved Electrochromic Performance of Poly(3,4â€ethylenedioxythiophene) by Incorporating a Threeâ€Dimensionally Ordered Macroporous Structure. Chemistry - an Asian Journal, 2016, 11, 2882-2888.	1.7	24
156	Threeâ€Dimensional Nanoporous Conducting Polymer Poly(3,4â€ethylenedioxythiophene) (PEDOT) Decorated with Copper Nanoparticles: Electrochemical Preparation and Enhanced Nonenzymatic Glucose Sensing. ChemElectroChem, 2016, 3, 1799-1804.	1.7	20
157	Graphene-Based Metal-Free Catalysts for Catalytic Reactions in the Liquid Phase. ACS Catalysis, 2016, 6, 6948-6958.	5.5	104
158	Synthesis, characterization and catalytic potential of MgNiO2 nanoparticles obtained from a novel [MgNi(opba)] ·9nH2O chain. Ceramics International, 2016, 42, 13635-13641.	2.3	9
159	Morphology effect of one-dimensional iron oxide nanocatalysts on Fischer–Tropsch synthesis. Catalysis Science and Technology, 2016, 6, 7505-7511.	2.1	17
160	Metal-catalyzed cross-coupling reactions with supported nanoparticles: Recent developments and future directions. Catalysis Reviews - Science and Engineering, 2016, 58, 439-496.	5.7	19
161	Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis, 2016, 6, 5887-5903.	5.5	1,077
162	Heteroepitaxial Growth of Wellâ€Dispersed Co 3 O 4 Nanocatalysts on Porous ZnO Nanoplates via Successive Hydrothermal Deposition. ChemNanoMat, 2016, 2, 946-951.	1.5	10
163	Use of Catalysis for API Manufacturing. , 2016, , 509-595.		1
164	Facile Preparation of Uniform Nanocomposite Spheres with Loading Silver Nanoparticles on Polystyrene-methyl Acrylic Acid Spheres for Catalytic Reduction of 4-Nitrophenol. Journal of Physical Chemistry C, 2016, 120, 25935-25944.	1.5	128
165	Green synthesis of 1,4-benzodiazepines over La ₂ O ₃ and La(OH) ₃ catalysts: possibility of Langmuir–Hinshelwood adsorption. RSC Advances, 2016, 6, 103455-103462.	1.7	25
166	Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides. Scientific Reports, 2016, 6, 26196.	1.6	11

#	Article	IF	CITATIONS
167	Plasmonic Nanorattles as Nextâ€Generation Catalysts for Surface Plasmon Resonanceâ€Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie - International Edition, 2016, 55, 7111-7115.	7.2	101
168	Quantifying the Electrocatalytic Turnover of Vitaminâ€B ₁₂ â€Mediated Dehalogenation on Single Soft Nanoparticles. Angewandte Chemie, 2016, 128, 2591-2595.	1.6	13
169	Quantifying the Electrocatalytic Turnover of Vitaminâ€B ₁₂ â€Mediated Dehalogenation on Single Soft Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 2545-2549.	7.2	39
170	Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation–Condensation Reactions. Inorganic Chemistry, 2016, 55, 6685-6691.	1.9	103
171	Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion. Nanoscale Research Letters, 2016, 11, 289.	3.1	11
172	Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. ACS Applied Materials & Interfaces, 2016, 8, 15307-15319.	4.0	109
173	The effect of a silica support: a density functional theory study of the C-H bond activation of ethane on a nickel oxide cluster. Journal of Physical Organic Chemistry, 2016, 29, 134-144.	0.9	7
174	Reuseable Monolithic Nanoporous Graphite-Supported Nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from Pyrolysis and Galvanic Transmetalation of Ferrocene-Based Polyamide Aerogels. Chemistry of Materials, 2016, 28, 4867-4877.	3.2	33
175	Plasmonic Nanorattles as Nextâ€Generation Catalysts for Surface Plasmon Resonanceâ€Mediated Oxidations Promoted by Activated Oxygen. Angewandte Chemie, 2016, 128, 7227-7231.	1.6	16
176	Immobilized copper(II) on nitrogenâ€rich polymerâ€entrapped Fe ₃ O ₄ nanoparticles: a highly loaded and magnetically recoverable catalyst for aqueous click chemistry. Applied Organometallic Chemistry, 2016, 30, 73-80.	1.7	28
177	Antioxidant and Anti-tyrosinase Activities of Palladium Nanoparticles Synthesized Using Saururus chinensis. Journal of Cluster Science, 2016, 27, 733-744.	1.7	9
178	Downsizing the K-CHA zeolite by a postmilling-recrystallization method for enhanced base-catalytic performance. New Journal of Chemistry, 2016, 40, 492-496.	1.4	13
179	Metal complex assembly controlled by surface ligand distribution on mesoporous silica: Quantification using refractive index matching and impact on catalysis. Journal of Catalysis, 2016, 335, 197-203.	3.1	9
180	Revealing and tuning the core, structure, properties and function of polymer micelles with lanthanide-coordination complexes. Soft Matter, 2016, 12, 99-105.	1.2	23
181	Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648, 150-155.	0.8	17
182	Ethylene glycol-assisted coating of titania on nanoparticles. Dalton Transactions, 2016, 45, 10076-10084.	1.6	13
183	Modelling an electrochemically roughened porous platinum electrode for water oxidation. Chemical Communications, 2016, 52, 4068-4071.	2.2	9
184	Co–Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation. Langmuir, 2016, 32, 2267-2276.	1.6	37

#	Article	IF	CITATIONS
185	Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Applied Catalysis B: Environmental, 2016, 188, 324-341.	10.8	249
186	Recent progress in hollow silica: Template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227, 121-136.	2.2	127
187	Activated nanostructured bimetallic catalysts for C–C coupling reactions: recent progress. Catalysis Science and Technology, 2016, 6, 3341-3361.	2.1	74
188	Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New Journal of Chemistry, 2016, 40, 3933-3949.	1.4	222
189	The promoting influence of nickel species in the controllable synthesis and catalytic properties of nickel–ceria catalysts. Catalysis Science and Technology, 2016, 6, 2427-2434.	2.1	28
190	Hollow AgPt/SiO ₂ nanomaterials with controlled surface morphologies: is the number of Pt surface atoms imperative to optimize catalytic performances?. Catalysis Science and Technology, 2016, 6, 2162-2170.	2.1	24
191	Ru nanoparticles decorated TiO 2 nanobelts: A heterostructure towards enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol. Ceramics International, 2016, 42, 1611-1617.	2.3	29
192	Dicationic 1,3-Bis(1-methyl-1H-imidazol-3-ium) Propane Copper(I) Dibromate : Novel Heterogeneous Catalyst for 1,3-Dipolar Cycloaddition. Catalysis Letters, 2017, 147, 301-309.	1.4	14
193	Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals. Solid State Sciences, 2017, 64, 91-98.	1.5	14
194	Graphene Grafted <i>N</i> â€Methylâ€4â€pyridinamine (Gâ€NMPA): An Efficient Heterogeneous Organocatalyst for Acetylation of Alcohols. ChemistrySelect, 2017, 2, 474-479.	0.7	16
195	Palladium nanoparticles supported on a carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for the Suzuki–Miyaura cross coupling reaction. Polymer Chemistry, 2017, 8, 1488-1494.	1.9	27
196	Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers, 2017, 1, 1709-1745.	3.2	252
197	From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. Journal of Materials Chemistry A, 2017, 5, 4835-4841.	5.2	80
198	Optimization of Au0–Cu+ synergy in Au/MgCuCr2O4 catalysts for aerobic oxidation of ethanol to acetaldehyde. Journal of Catalysis, 2017, 347, 45-56.	3.1	27
199	Novel triazole-modified chitosan@nickel nanoparticles: efficient and recoverable catalysts for Suzuki reaction. New Journal of Chemistry, 2017, 41, 2386-2391.	1.4	26
200	Construction of Hierarchical Copperâ€Based Metal–Organic Framework Nanoarrays as Functional Structured Catalysts. ChemCatChem, 2017, 9, 1771-1775.	1.8	18
201	Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and <i>In Situ</i> X-Ray Ptychography. Microscopy and Microanalysis, 2017, 23, 501-512.	0.2	19
202	Aqueous 1,3-dipolar cycloadditions promoted by copper nanoparticles in polydiacetylene micelles. Green Chemistry, 2017, 19, 3112-3115.	4.6	37

#	Article	IF	CITATIONS
203	Mesoporous organo-inorganic hybrid materials as hydrogenation catalysts. Pure and Applied Chemistry, 2017, 89, 1157-1166.	0.9	9
204	Directed Câ°'H Activation and Tandem Crossâ€Coupling Reactions Using Palladium Nanocatalysts with Controlled Oxidation. Angewandte Chemie, 2017, 129, 7056-7060.	1.6	5
205	Directed Câ^'H Activation and Tandem Crossâ€Coupling Reactions Using Palladium Nanocatalysts with Controlled Oxidation. Angewandte Chemie - International Edition, 2017, 56, 6952-6956.	7.2	35
206	Bimetallic Au/Ag Core–Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering. Langmuir, 2017, 33, 5378-5384.	1.6	86
207	Rh(0)/Rh(<scp>iii</scp>) core–shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis. Chemical Communications, 2017, 53, 384-387.	2.2	9
208	Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 2017, 53, 7135-7148.	2.2	222
209	Densification of Silica Spheres: A New Pathway to Nanoâ€Đimensioned Zeoliteâ€Based Catalysts. Chemistry - A European Journal, 2017, 23, 10983-10986.	1.7	6
210	Green Synthesis of Veratraldehyde Using Potassium Promoted Lanthanum–Magnesium Mixed Oxide Catalyst. Organic Process Research and Development, 2017, 21, 1012-1020.	1.3	13
211	Tailoring the multi-functionalities of one-dimensional ceria nanostructures via oxygen vacancy modulation. Journal of Colloid and Interface Science, 2017, 504, 305-314.	5.0	25
212	Enhanced ozonation degradation of atrazine in the presence of nano-ZnO: Performance, kinetics and effects. Journal of Environmental Sciences, 2017, 61, 3-13.	3.2	29
213	Solvent-polarity-induced hematite (Î \pm -Fe2O3) nanostructures for lithium-ion battery and photoelectrochemical applications. Electrochimica Acta, 2017, 245, 643-653.	2.6	19
214	Controlled Synthesis of Nanomaterials at the Undergraduate Laboratory: Cu(OH) ₂ and CuO Nanowires. Journal of Chemical Education, 2017, 94, 743-750.	1.1	19
215	Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, 8542-8570.	1.7	90
216	More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor. Physical Chemistry Chemical Physics, 2017, 19, 12628-12632.	1.3	44
217	Strategies for using nanoprobes to perceive and treat cancer activity: a review. Journal of Biological Engineering, 2017, 11, 13.	2.0	11
218	Design Principles for the Formation of Ordered Patterns in Binary Mixtures of Colloidal Particles on Spherical Droplets. Colloids and Interface Science Communications, 2017, 17, 10-13.	2.0	2
219	Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties. Materials Today Communications, 2017, 11, 103-111.	0.9	36
220	Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces. Surface Science Reports, 2017, 72, 59-104.	3.8	23

	Cr	tation Report	
#	Article	IF	CITATIONS
221	Keimvermitteltes Wachstum kolloidaler Metallnanokristalle. Angewandte Chemie, 2017, 129, 60-98.	1.6	64
222	Seedâ€Mediated Growth of Colloidal Metal Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 60-95.	7.2	581
223	One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale, 2017, 9, 1033-1039.	2.8	163
224	Polyethyleneimine functionalized platinum superstructures: enhancing hydrogen evolution performance by morphological and interfacial control. Chemical Science, 2017, 8, 8411-8418.	3.7	116
225	Selective Surface Engineering of Heterogeneous Nanostructures: In Situ Unraveling of the Catalytic Mechanism on Pt–Au Catalyst. ACS Catalysis, 2017, 7, 7923-7929.	5.5	37
226	Synthesis of heterogeneous Ag-Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Advanced Powder Technology, 2017, 28, 3085-3094.	2.0	21
227	Chirality in adsorption on solid surfaces. Chemical Society Reviews, 2017, 46, 7374-7398.	18.7	122
228	New Features and Uncovered Benefits of Polycrystalline Magnetite as Reusable Catalyst in Reductive Chemical Conversion. Journal of Physical Chemistry C, 2017, 121, 25195-25205.	1.5	15
229	Porous TiO ₂ /Pt/TiO ₂ Sandwich Catalyst for Highly Selective Semihydrogenation of Alkyne to Olefin. ACS Catalysis, 2017, 7, 6567-6572.	5.5	83
230	Facile Access to Amides from Oxygenated or Unsaturated Organic Compounds by Metal Oxide Nanocatalysts Derived from Single-Source Molecular Precursors. Inorganic Chemistry, 2017, 56, 10596-10608.	1.9	22
231	Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Hypercrosslinked Porous Polymer Nanotubes as Selective Hydrogenation Catalyst for α,β-Unsaturated Aldehydes. ChemistrySelect, 202 7535-7543.	17, 2, 0.7	23
232	Toward rational nanoparticle synthesis: predicting surface intermixing in bimetallic alloy nanocatalysts. Nanoscale, 2017, 9, 15005-15017.	2.8	24
233	Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports. Journal of Physical Chemistry C, 2017, 121, 22234-22247.	1.5	12
234	Abundant Size-Controlled Cu-Ni(Fe) Alloy Nanoparticles Decorated Reduced Graphene with Enhanced Electrocatalytic Activities for Chloramphenicol. Journal of the Electrochemical Society, 2017, 164, H779-H787.	1.3	10
235	Dentritic CuPtPd Catalyst for Enhanced Electrochemical Oxidation of Methanol. ACS Applied Materials & amp; Interfaces, 2017, 9, 25995-26000.	4.0	43
236	Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts. Catalysis Science and Technology, 2017, 7, 5376-5385.	2.1	30
237	Polystyrene supported palladium nanoparticles catalyzed cinnamic acid synthesis using maleic anhydride as a substitute for acrylic acid. Catalysis Science and Technology, 2017, 7, 3692-3697.	2.1	12
238	Selective Ion Exchange and Photocatalysis by Zeoliteâ€Like Semiconducting Chalcogenide. Chemistry European Journal, 2017, 23, 11913-11919.	/ - A 1.7	25

ARTICLE IF CITATIONS Transition Metal-Based Thiometallates as Surface Ligands for Functionalization of All-Inorganic 239 3.2 13 Nanocrystals. Chemistry of Materials, 2017, 29, 10510-10517. Cyclodextrinâ€Based Polymerâ€Assisted Ru Nanoparticles for the Aqueous Hydrogenation of 240 Biomassâ€Derived Platform Molecules. ChemistrySelect, 2017, 2, 10537-10545. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon 241 5.8 126 dioxide conversion into methane. Nature Communications, 2017, 8, 1156. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities. Physical 242 Chemistry Chemical Physics, 2017, 19, 31300-31305. A novel route for green conversion of cellulose to HMF by cascading enzymatic and chemical 243 1.8 44 reactions. AICHE Journal, 2017, 63, 4920-4932. Ni nanoparticles intercalated LTA-type nanozeolite (KZ) supported on reduced graphene oxide for 4-nitrophenol reduction. International Journal of Hydrogen Energy, 2017, 42, 23664-23669. 3.8 Coreâ€"shell-structured Fe3O4/Pd@ZIF-8 catalyst with magnetic recyclability and size selectivity for the 245 1.7 25 hydrogenation of alkenes. Journal of Materials Science, 2017, 52, 12121-12130. The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catalysis, 2017, 7, 4947-4967. 5.5 246 145 Synthesis and evaluation of acid-base bi-functionalized SBA-15 catalyst for biomass energy 247 6.6 56 conversation. Chemical Engineering Journal, 2017, 313, 1593-1606. Reactivity of TiO₂ Nanotubeâ€Supported Platinum Particles in the CO Oxidation Reaction. 248 1.8 ChemCatChem, 2017, 9, 564-572. Group VIII Base Metal Nanocatalysts with Encapsulated Structures as an Area of Green Chemistry. 249 0.4 6 Petroleum Chemistry, 2017, 57, 1259-1276. Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional 15.8 24 molecules. Progress in Energy and Combustion Science, 2018, 67, 1-30. Assembly and activation of supported cobalt nanocrystal catalysts for the Fischerâ€"Tropsch synthesis. 251 2.2 21 Chemical Communications, 2018, 54, 2530-2533. Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for 2.2 carbonylation reaction of aryl halides. Chemical Communications, 2018, 54, 2796-2799. Poly(<i>meta</i>-phenylene oxides) for the design of a tunable, efficient, and reusable catalytic 253 2.2 9 platform. Chemical Communications, 2018, 54, 2878-2881. A solvent-switched <i>in situ</i> confinement approach for immobilizing highly-active ultrafine 254 palladium nanoparticles: boosting catalytic hydrogen evolution. Journal of Materials Chemistry A, 58 2018, 6, 5544-5549. Simple surface-assisted formation of palladium nanoparticles on polystyrene microspheres and their 255 3.012 application in catalysis. Inorganic Chemistry Frontiers, 2018, 5, 1133-1138.

CITATION REPORT

256The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.7.641256Accounts of Chemical Research, 2018, 51, 800-809.7.641

		CITATION RE	PORT	
#	Article		IF	CITATIONS
257	Noble Metal Nanocluster Formation in Epitaxial Perovskite Thin Films. ACS Omega, 201	8, 3, 2169-2173.	1.6	15
258	Synthesis of Solid Catalysts with Spatially Resolved Acidic and Basic Molecular Functior Catalysis, 2018, 8, 2870-2879.	alities. ACS	5.5	37
259	2D Porous TiO ₂ Singleâ€Crystalline Nanostructure Demonstrating High Photoâ€Electrochemical Water Splitting Performance. Advanced Materials, 2018, 30, e	1705666.	11.1	176
260	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalys Society Reviews, 2018, 47, 4112-4155.	sts. Chemical	18.7	117
261	Synthesis tricyanovinyl derivatives via one-pot tandem reactions with heterogeneous ca Au@Cu(II)-MOF. Catalysis Communications, 2018, 111, 84-89.	italyst	1.6	8
262	A pH-responsive TiO2-based Pickering emulsion system for in situ catalyst recycling. Ch Letters, 2018, 29, 778-782.	inese Chemical	4.8	28
263	Ru Nanoparticles-Loaded Covalent Organic Framework for Solvent-Free One-Pot Tander Air. Inorganic Chemistry, 2018, 57, 2678-2685.	n Reactions in	1.9	77
264	Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room ter click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New Journal of Cl 42, 3078-3086.	mperature nemistry, 2018,	1.4	57
265	Green Synthesis of Pd Nanoparticles Mediated by Thymbra Spicata Leaves Extract and Its Application as a Recyclable Nanocatalyst for Reduction of 4-Nitrophenol and Suzuki Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1001-1010.		1.9	9
266	Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycli through control of the outermost ligand. Applied Surface Science, 2018, 436, 791-802.	ng stability	3.1	3
267	Structureâ€ S ensitive Scaling Relations: Adsorption Energies from Surface Site Stability. 2018, 10, 1643-1650.	ChemCatChem,	1.8	57
268	Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry react on Chemical Intermediates, 2018, 44, 1617-1626.	tion. Research	1.3	42
269	Plasmonic core–shell ionic microgels for photo-tuning catalytic applications. New Jou Chemistry, 2018, 42, 2149-2157.	rnal of	1.4	6
270	The interplay between ceria particle size, reducibility, and ethanol oxidation activity of ceria-supported gold catalysts. Reaction Chemistry and Engineering, 2018, 3, 75-85.		1.9	15
271	A Seedâ€Mediated Approach for the Preparation of Modified Heterogeneous Catalysts. 2018, 10, 1614-1619.	ChemCatChem,	1.8	6
272	Dynamic behavior of metal nanoparticles for catalysis. Nano Today, 2018, 20, 101-120.		6.2	93
273	Silylation reactions on nanoporous gold via homolytic Si–H activation of silanes. Cher 2018, 9, 4808-4813.	nical Science,	3.7	19
274	Scalable One-Pot Synthesis of Yolk–Shell Carbon Nanospheres with Yolk-Supported P for Size-Selective Catalysis. Chemistry of Materials, 2018, 30, 2483-2487.	d Nanoparticles	3.2	48

#	Article	IF	CITATIONS
275	Aluminium Oxide Supported on SBA-15 Molecular Sieves as Potential Lewis Acid Catalysts for Epoxide Ring Opening Using Aniline. Catalysis Letters, 2018, 148, 1407-1415.	1.4	10
276	Sulfonated Reduced Graphene Oxide (RGO-SO ₃ H): As an Efficient Nanocatalyst for One-Pot Synthesis of 2-Amino-3-cyano-7-hydroxy- <i>4H</i> -chromenes Derivatives in Water. Polycyclic Aromatic Compounds, 2018, 38, 51-65.	1.4	19
277	Synthesis and catalytic performance of Cs/P modified ZSM-5 zeolite in aldol condensation of methyl acetate with different sources of formaldehyde. Microporous and Mesoporous Materials, 2018, 256, 58-66.	2.2	42
278	Interaction of Pd single atoms with different CeO 2 crystal planes: A first-principles study. Applied Surface Science, 2018, 433, 1036-1048.	3.1	17
279	Synthesis of Well-Defined, Surfactant-Free Co3O4 Nanoparticles: The Impact of Size and Manganese Promotion on Co3O4 Reduction and Water Oxidation Activity. Catalysis Letters, 2018, 148, 235-245.	1.4	5
280	Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu 4 clusters: A DFT study. Surface Science, 2018, 668, 125-133.	0.8	9
281	Nickel embedded on triazole-modified magnetic nanoparticles: A novel and sustainable heterogeneous catalyst for Hiyama reaction in fluoride-free condition. Catalysis Communications, 2018, 103, 92-95.	1.6	23
282	Biomimetic synthesis of gum acacia mediated Pd-ZnO and Pd-TiO2–ÂPromising nanocatalysts for selective hydrogenation of nitroarenes. Materials Chemistry and Physics, 2018, 204, 27-36.	2.0	25
283	Mesoporous metal - silica materials: Synthesis, catalytic and thermal properties. Microporous and Mesoporous Materials, 2018, 257, 175-184.	2.2	18
284	Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sensors and Actuators B: Chemical, 2018, 255, 2568-2574.	4.0	54
285	One-pot synthesis of bimetallic PdCu nanoframes as an efficient catalyst for the methanol oxidation reaction. New Journal of Chemistry, 2018, 42, 798-801.	1.4	26
286	Development and Elucidation of Superior Turnover Rates and Selectivity of Supported Molecular Catalysts. ChemCatChem, 2018, 10, 1666-1685.	1.8	3
287	Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters. Topics in Catalysis, 2018, 61, 62-70.	1.3	20
288	In Situ Scanning Transmission Electron Microscopy of Ni Nanoparticle Redispersion via the Reduction of Hollow NiO. Chemistry of Materials, 2018, 30, 197-203.	3.2	27
289	One-Pot Synthesis of MeAl ₂ O ₄ (Me = Ni, Co, or Cu) Supported on Î ³ -Al ₂ O ₃ with Ultralarge Mesopores: Enhancing Interfacial Defects in Î ³ -Al ₂ O ₃ To Facilitate the Formation of Spinel Structures at Lower Temperatures. Chemistry of Materials, 2018, 30, 436-446.	3.2	58
290	Polymer-Supported Cu–Nanoparticle as an Efficient and Recyclable Catalyst for Oxidative Homocoupling of Terminal Alkynes. Catalysis Letters, 2018, 148, 205-213.	1.4	16
291	Cold-Titania Catalysts for Low-Temperature Oxidation and Water Splitting. Topics in Catalysis, 2018, 61, 336-347.	1.3	13
292	Review Article: Catalysts design and synthesis via selective atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	91

#	Article	IF	CITATIONS
293	Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Research, 2018, 11, 804-819.	5.8	26
294	Nanographene Sheet Immobilized Transition Metal Complexes for C-C Coupling Reactions. International Journal of Engineering and Technology(UAE), 2018, 7, 431.	0.2	0
295	Shape selection through epitaxy of supported platinum nanocrystals. Nanoscale, 2018, 10, 22730-22736.	2.8	6
296	Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in Fischer–Tropsch Catalysts. ACS Catalysis, 2018, 8, 10581-10589.	5.5	43
297	Facile synthesis of palladium nanoparticles on hierarchical hollow silica spheres and its catalytic properties in Suzuki-reaction. Royal Society Open Science, 2018, 5, 180545.	1.1	11
298	Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts. Nano Letters, 2018, 18, 7289-7297.	4.5	92
299	Exploring TiO ₂ NPs as efficient catalyst for 1,6 Michael addition of 3-methyl-5-pyrazolone on 3-methyl-4-nitro-5-alkenyl isoxazoles and rapid synthesis of 3,3â€bis(indolyl)oxindoles in water. Synthetic Communications, 2018, 48, 2695-2707.	1.1	18
300	Metal-Assisted Assembly of Protein Containers Loaded with Inorganic Nanoparticles. Inorganic Chemistry, 2018, 57, 13431-13436.	1.9	13
301	Characterization of V-doped SnO ₂ nanoparticles at ambient and high pressures. Materials Research Express, 2018, 5, 125005.	0.8	5
302	Aqueous Synthesis of Copper(II)-Imidazolate Nanoparticles. Inorganic Chemistry, 2018, 57, 12056-12065.	1.9	6
302 303	Aqueous Synthesis of Copper(II)-Imidazolate Nanoparticles. Inorganic Chemistry, 2018, 57, 12056-12065. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature Communications, 2018, 9, 3794.	1.9 5.8	6 133
	Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature		
303	Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature Communications, 2018, 9, 3794. Magneto-acoustic Interfacial Reaction-Based Nanoparticle Synthesis: A Direct Path to Manufacturing Metal Matrix Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and	5.8	133
303 304	 Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature Communications, 2018, 9, 3794. Magneto-acoustic Interfacial Reaction-Based Nanoparticle Synthesis: A Direct Path to Manufacturing Metal Matrix Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2219-2224. Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solarâ€Driven 	5.8	133 0
303 304 305	Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature Communications, 2018, 9, 3794. Magneto-acoustic Interfacial Reaction-Based Nanoparticle Synthesis: A Direct Path to Manufacturing Metal Matrix Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2219-2224. Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solarâ€Driven Chemical Reactions. Advanced Materials, 2018, 30, e1803641. Sub-monolayer control of the growth of oxide films on mesoporous materials. Journal of Materials	5.8 1.0 11.1	133 0 105
303 304 305 306	Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nature Communications, 2018, 9, 3794. Magneto-acoustic Interfacial Reaction-Based Nanoparticle Synthesis: A Direct Path to Manufacturing Metal Matrix Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2219-2224. Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solarâ€Driven Chemical Reactions. Advanced Materials, 2018, 30, e1803641. Sub-monolayer control of the growth of oxide films on mesoporous materials. Journal of Materials Chemistry A, 2018, 6, 17548-17558.	5.8 1.0 11.1 5.2	133 0 105 18
303 304 305 306 307	Control of coordinatively unsaturated Zr sites in ZrO2 for efficient Câ€"H bond activation. Nature Communications, 2018, 9, 3794. Magneto-acoustic Interfacial Reaction-Based Nanoparticle Synthesis: A Direct Path to Manufacturing Metal Matrix Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2219-2224. Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solarâ€Driven Chemical Reactions. Advanced Materials, 2018, 30, e1803641. Sub-monolayer control of the growth of oxide films on mesoporous materials. Journal of Materials Chemistry A, 2018, 6, 17548-17558. Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation. Applied Catalysis B: Environmental, 2018, 237, 74-84. Synthesis of Chiral Dendrimer-Encapsulated Nanoparticle (DEN) Catalysts. Topics in Catalysis, 2018, 61,	 5.8 1.0 11.1 5.2 10.8 	133 0 105 18 88

#	Article	IF	CITATIONS
311	Small Copper Clusters Supported on SrTiO ₃ : An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2018, 2018, 3829-3834.	1.0	6
312	An Efficient ZnOâ€Nanoparticleâ€Catalyzed Regio―and Chemoselective Synthesis of Novel Functionalized 4 H â€Chromenes in Aqueous Medium. ChemistrySelect, 2018, 3, 7485-7489.	0.7	9
313	SiO ₂ -Modified Pt/Al ₂ O ₃ for Oxidative Dehydrogenation of Ethane: A Preparation Method for Improved Catalytic Stability, Ethylene Selectivity, and Coking Resistance. Industrial & Engineering Chemistry Research, 2018, 57, 10137-10147.	1.8	8
314	Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chemistry, 2018, 20, 3809-3817.	4.6	143
315	Investigating the Trimethylaluminium/Water ALD Process on Mesoporous Silica by In Situ Gravimetric Monitoring. Nanomaterials, 2018, 8, 365.	1.9	17
316	Nitrogen-doped graphene-like carbon nanosheets from commercial glue: morphology, phase evolution and Li-ion battery performance. Dalton Transactions, 2018, 47, 12218-12227.	1.6	20
317	Sub-Monolayer Control of Mixed-Oxide Support Composition in Catalysts via Atomic Layer Deposition: Selective Hydrogenation of Cinnamaldehyde Promoted by (SiO ₂ -ALD)-Pt/Al ₂ O ₃ . ACS Catalysis, 2018, 8, 8513-8524.	5.5	62
318	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	6.6	94
319	In Situ XAS Study on Growth of PVPâ€ S tabilized Cu Nanoparticles. ChemistrySelect, 2018, 3, 7370-7377.	0.7	7
320	Identification of Active Sites in Oxidation Reaction from Real-Time Probing of Adsorbate Motion over Pd Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 5202-5206.	2.1	5
321	Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018, 9, 3367.	5.8	159
322	Aerobic oxidative amidation of alkynes using titanium oxide encapsulated cuprous iodide nanoparticles (Cul@TiO ₂). New Journal of Chemistry, 2018, 42, 12062-12071.	1.4	14
323	Addressing the Effects of Sizeâ€dependent Absorption, Scattering, and Nearâ€field Enhancements in Plasmonic Catalysis. ChemCatChem, 2018, 10, 3447-3452.	1.8	22
324	Reduced Graphene Oxide Supported Copper Oxide Nanocomposites from a Renewable Copper Mineral Precursor: A Green Approach for Decarboxylative C(sp ³)–H Activation of Proline Amino Acid To Afford Value-Added Synthons. ACS Sustainable Chemistry and Engineering, 2018, 6, 10039-10051.	3.2	26
325	Zinc oxide nanoparticles as efficient catalyst for the synthesis of novel di-spiroindolizidine bisoxindoles in aqueous medium. Environmental Chemistry Letters, 2019, 17, 455-464.	8.3	22
326	Efficiently Engineering Cu-Based Oxide by Surface Embedding of Ce for Selective Catalytic Reduction of NO with NH ₃ . Nano, 2019, 14, 1950079.	0.5	3
327	Construction of zinc-magnesium-iron multinary spinel core-shell microspheres with enhanced photocatalytic properties of 1, 2-dichlorobenzene toxic species. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111903.	2.0	4
328	Functional Porous Organic Polymers Comprising a Triaminotriphenylazobenzene Subunit as a Platform for Copper-Catalyzed Aerobic C–H Oxidation. Chemistry of Materials, 2019, 31, 5421-5430.	3.2	37

#	Article	IF	CITATIONS
329	Nanofibers and amorphous Ni/Al ₂ O ₃ catalysts — effect of steric hindrance on hydrogenation performance. Catalysis Science and Technology, 2019, 9, 4510-4514.	2.1	16
330	A broadband sum-frequency generation vibrational spectrometer to probe adsorbed molecules on nanoparticles. Surface Science, 2019, 689, 121459.	0.8	12
331	Reusable shuttles for exchangeable functional cargos: Reversibly assembled, magnetically powered organocatalysts for asymmetric aldol reactions. Tetrahedron, 2019, 75, 130592.	1.0	3
332	Biosynthesis of novel Ag@Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity. Materials Research Express, 2019, 6, 116561.	0.8	17
333	Magnetic Chitosan-Supported Silver Nanoparticles: A Heterogeneous Catalyst for the Reduction of 4-Nitrophenol. Catalysts, 2019, 9, 839.	1.6	35
335	Synthesis and Characterization of Cucurbit[6]uril Supported Copper Oxide Nanoparticles, CuO@CB[6]: Application as Nanocatalyst for the Synthesis of 2 H â€indazoles. ChemistrySelect, 2019, 4, 10408-10416.	0.7	10
336	Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chemical Science, 2019, 10, 8724-8734.	3.7	145
337	Highly Sensitive and Selective CO/NO/H ₂ /NO ₂ Cas Sensors Using Noble Metal (Pt, Pd) Decorated MO _x (M = Sn, W) Combined With SiO ₂ Membrane. IEEE Sensors Journal, 2019, 19, 10674-10679.	2.4	4
338	Titrating Pt Surface with CO Molecules. Journal of Physical Chemistry Letters, 2019, 10, 6306-6315.	2.1	3
339	Three dimensional composites of graphene as supports in Pd-catalyzed synthetic applications. Reaction Chemistry and Engineering, 2019, 4, 90-99.	1.9	8
340	Growing Nanoscale Model Surfaces to Enable Correlation of Catalytic Behavior Across Dissimilar Reaction Environments. Chemistry of Materials, 2019, 31, 1121-1141.	3.2	17
341	Nitrogenâ€Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application. Macromolecular Rapid Communications, 2019, 40, 1900100.	2.0	5
342	Fe ₃ O ₄ @SiO ₂ /EP.EN.EG.Cu as a Highly Efficient and Recoverable Catalytic System for Synthesis of 1,4â€Disubstituted 1,2,3â€Triazole Derivatives via the Click Reaction. ChemistrySelect, 2019, 4, 7211-7218.	0.7	26
343	Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorganic Chemistry, 2019, 58, 9253-9259.	1.9	29
344	Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chemical Reviews, 2019, 119, 6670-6768.	23.0	50
345	Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH) ₂ nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode. Nanoscale, 2019, 11, 12655-12671.	2.8	63
346	Atomic Layer Deposition (ALD) as a Way to Prepare New Mixed-Oxide Catalyst Supports: The Case of Alumina Addition to Silica-Supported Platinum for the Selective Hydrogenation of Cinnamaldehyde. Topics in Catalysis, 2019, 62, 838-848.	1.3	20
347	Redispersion of Mo-Based Catalysts and the Rational Design of Super Small-Sized Metallic Mo Species. ACS Catalysis, 2019, 9, 5302-5307.	5.5	50

#	Article	IF	CITATIONS
348	Preparation of Pt, Pd and Cu nano single and bimetallic systems-supported NaY zeolite and test their activity in p-nitrophenol reduction and as anticancer agents. Journal of Environmental Chemical Engineering, 2019, 7, 103117.	3.3	13
349	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 6099-6103.	7.2	267
350	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie, 2019, 131, 6160-6164.	1.6	14
351	Synthesis and Catalytic Properties of Modified Electrodes by Pulsed Electrodeposition of Pt/PANI Nanocomposite. Materials, 2019, 12, 723.	1.3	17
352	Mesoporous Hollow Cu–Ni Alloy Nanocage from Core–Shell Cu@Ni Nanocube for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 5084-5095.	5.5	116
353	Pd/MOFâ€199: As an efficient heterogeneous catalyst for the Suzukie Miyaura crossâ€coupling reaction. Journal of the Chinese Chemical Society, 2019, 66, 1290-1295.	0.8	21
354	Improving Oxygen Reduction Reaction and Selective Hydrodechlorination Performance Based on CoNi on Graphene Using Ionic Liquids as a Binder. Journal of the Electrochemical Society, 2019, 166, H157-H166.	1.3	3
356	Confined pyrolysis of metal–organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes. Journal of Materials Chemistry A, 2019, 7, 12547-12555.	5.2	130
357	Facile Synthesis of Sea-Urchin-Like Pt and Pt/Au Nanodendrites and Their Enhanced Electrocatalytic Properties. Inorganic Chemistry, 2019, 58, 5375-5379.	1.9	12
358	Metal(II) Formates (M = Fe, Co, Ni, and Cu) Stabilized by Tetramethylethylenediamine (tmeda): Conveni Molecular Precursors for the Synthesis of Supported Nanoparticles. Helvetica Chimica Acta, 2019, 102, e1800227.	ent 1.0	3
359	Highly Dispersed Co Nanoparticles Prepared by an Improved Method for Plasma-Driven NH3 Decomposition to Produce H2. Catalysts, 2019, 9, 107.	1.6	18
360	Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole. Applied Catalysis B: Environmental, 2019, 251, 261-272.	10.8	66
361	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie - International Edition, 2019, 58, 13220-13230.	7.2	31
362	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie, 2019, 131, 13354-13364.	1.6	6
363	Novel Silica Filled Deep Eutectic Solvent Based Nanofluids for Energy Transportation. ACS Sustainable Chemistry and Engineering, 2019, 7, 20159-20169.	3.2	29
364	Use of Au@Void@TiO2 yolk-shell nanostructures to probe the influence of oxide crystallinity on catalytic activity for low-temperature oxidations. Journal of Chemical Physics, 2019, 151, 234706.	1.2	6
365	Biomolecule-Mediated Generation of Ru Nanocatalyst for Sustainable Reduction of Nitrobenzene. ACS Omega, 2019, 4, 21267-21278.	1.6	6
366	Dramatic Synergy in CoPt Nanocatalysts Stabilized by "Click―Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane. ACS Catalysis, 2019, 9, 1110-1119.	5.5	157

#	Article	IF	CITATIONS
367	Catalytic activity of porphyrin-catalyts immobilized on kaolinite. Applied Clay Science, 2019, 168, 469-477.	2.6	14
368	A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock. Journal of Catalysis, 2019, 369, 440-449.	3.1	26
369	Synthesis and characterization of novel polyethylene oxide–dinuclear Cu(II) complex electrospun nanofibers. Materials Letters, 2019, 238, 58-61.	1.3	6
370	Experimental and theoretical investigations on the adherent behaviors of high viscosity liquid: The effect of surface topography. Fluid Phase Equilibria, 2019, 486, 11-20.	1.4	2
371	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	11.1	168
372	Highâ€Pressure Evaporationâ€Based Nanoporous Black Sn for Enhanced Performance of Lithiumâ€ion Battery Anodes. Particle and Particle Systems Characterization, 2019, 36, 1800331.	1.2	4
373	Alkyne-Functionalized Ruthenium Nanoparticles: Impact of Metal–Ligand Interfacial Bonding Interactions on the Selective Hydrogenation of Styrene. ACS Catalysis, 2019, 9, 98-104.	5.5	22
374	Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Research on Chemical Intermediates, 2019, 45, 599-611.	1.3	75
375	Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite: Synergistic effect, principle and way of degradation. Environmental Pollution, 2019, 244, 93-101.	3.7	67
376	Selective hydrogenation of alkenes using ZIF-67 shell membrane deposited on platinum/alumina core catalyst. Microporous and Mesoporous Materials, 2019, 276, 98-106.	2.2	5
377	Nanomaterial for CO2 Sequestration. , 2020, , 598-605.		0
378	Coating mesoporous ZSM-5 by thin microporous Silicalite-1 shell: Formation of core/shell structure, improved hydrothermal stability and outstanding catalytic performance. Catalysis Today, 2020, 339, 312-320.	2.2	21
379	Selective hydrogenation of cinnamaldehyde by unsupported and few layer graphene supported platinum concave nanocubes exposing {110} facets stabilized by a long-chain amine. Catalysis Today, 2020, 357, 166-175.	2.2	10
380	From Bulk to Atoms: The Influence of Particle and Cluster Size on the Hydrogen Evolution Reaction. Zeitschrift Fur Physikalische Chemie, 2020, 234, 847-865.	1.4	12
381	A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials. Journal of the Iranian Chemical Society, 2020, 17, 229-245.	1.2	2
382	Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Applied Catalysis B: Environmental, 2020, 260, 118142.	10.8	242
383	Application of tin oxide-based materials in catalysis. , 2020, , 519-553.		4
384	Tailorable synthesis of heterogeneous enzyme–copper nanobiohybrids and their application in the selective oxidation of benzene to phenol. Catalysis Science and Technology, 2020, 10, 196-206.	2.1	25

#	Article	IF	CITATIONS
385	A layer-by-layer strategy for the scalable preparation of uniform interfacial electrocatalysts with high structural tunability: a case study of a CoNP/N,P-graphene catalyst complex. Nanoscale, 2020, 12, 145-154.	2.8	1
386	Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application. Journal of Materials Chemistry A, 2020, 8, 2207-2221.	5.2	63
387	Size-Controlled Pd Nanoparticles Loaded on Co ₃ O ₄ Nanoparticles by Calcination for Enhanced CO Oxidation. ACS Applied Nano Materials, 2020, 3, 486-495.	2.4	26
388	Hollow/porous-walled SnO2 via nanoscale Kirkendall diffusion with irregular particles. Acta Materialia, 2020, 186, 20-28.	3.8	9
389	Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes, 2020, 8, 1172.	1.3	6
390	Facile Synthesis of Novel Pyranoâ€Pyridoâ€Carbazole Scaffolds Using Magnetic Fe ₃ O ₄ Nanoparticles as a Heterogeneous Green and Reusable Catalyst. ChemistrySelect, 2020, 5, 11621-11629.	0.7	5
392	Hydrogenation on Palladium Nanoparticles Supported by Graphene Nanoplatelets. Journal of Physical Chemistry C, 2020, 124, 23674-23682.	1.5	15
393	Visualization of Shallowâ€Groove Expansion of Au(111) Facet under Methane Pyrolysis. Advanced Materials Interfaces, 2020, 7, 2001245.	1.9	1
394	Green synthesis, characterization, catalytic and antibacterial studies of copper iodide nanoparticles synthesized using Brassica oleracea var. capitata f. rubra extract. Chemical Data Collections, 2020, 29, 100538.	1.1	9
395	Multicomponent synthesis of dispiroheterocycles using a magnetically separable and reusable heterogeneous catalyst. RSC Advances, 2020, 10, 36713-36722.	1.7	5
396	A Smart Route for Encapsulating Pd Nanoparticles into a ZIF-8 Hollow Microsphere and Their Superior Catalytic Properties. Langmuir, 2020, 36, 2037-2043.	1.6	30
397	Structural Regulation and Support Coupling Effect of Singleâ€Atom Catalysts for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 2001482.	10.2	172
398	Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews, 2020, 49, 6443-6514.	18.7	407
399	Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. Journal of Dispersion Science and Technology, 2021, 42, 1950-1962.	1.3	21
400	A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis. Materials Today, 2020, 40, 72-81.	8.3	20
401	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
402	Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst. Catalysts, 2020, 10, 1076.	1.6	6
403	Thermoregulated Ionic Liquid-Stabilizing Ru/CoO Nanocomposites for Catalytic Hydrogenation. Langmuir, 2020, 36, 11589-11599.	1.6	12

#	Article	IF	CITATIONS
405	CuO@NiO Nanocomposite Catalyzed Synthesis of Biologically Active Indenoisoquinoline Derivatives. ACS Sustainable Chemistry and Engineering, 2020, 8, 13701-13712.	3.2	14
406	Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support <i>via</i> Carbon Nitride/SnO ₂ Heterojunction Trapping. ACS Nano, 2020, 14, 11394-11405.	7.3	98
407	Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors. Catalysis Reviews - Science and Engineering, 2021, 63, 512-595.	5.7	91
408	Disk-Shaped Cobalt Nanocrystals as Fischer–Tropsch Synthesis Catalysts Under Industrially Relevant Conditions. Topics in Catalysis, 2020, 63, 1398-1411.	1.3	3
409	Adsorption of Chiral Modifiers from Solution onto Supported Platinum Catalysts: The Effect of the Solvent, Other Coadsorbates, and the Support. Journal of Physical Chemistry C, 2020, 124, 7903-7913.	1.5	11
410	Ab initio investigation of the formation mechanism of nano-interfaces between 3d-late transition-metals and ZrO2 nanoclusters. Physical Chemistry Chemical Physics, 2020, 22, 8067-8076.	1.3	2
411	Nanoparticle atalysed 1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2020, 2020, 6173-6191.	1.2	7
412	Doped TiO ₂ : the effect of doping elements on photocatalytic activity. Materials Advances, 2020, 1, 1193-1201.	2.6	151
413	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	1.9	21
414	Targeted morphology of copper oxide based electrospun nanofibers. Chemical Engineering Science, 2020, 219, 115547.	1.9	4
415	NiAg _{0.4} 3D porous nanoclusters with epitaxial interfaces exhibiting Pt like activity towards hydrogen evolution in alkaline medium. Nanoscale, 2020, 12, 8432-8442.	2.8	14
416	Hollow Au@TiO ₂ porous electrospun nanofibers for catalytic applications. RSC Advances, 2020, 10, 6592-6602.	1.7	12
417	Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 2070-2103.	2.4	196
418	Bimetallic BaMoO ₄ nanoparticles for the C–S cross-coupling of thiols with haloarenes. New Journal of Chemistry, 2020, 44, 2500-2504.	1.4	14
419	Efficient Sonogashira and A 3 coupling reactions catalyzed by biosynthesized magnetic Fe 3 O 4 @Ni nanoparticles from Euphorbia maculata extract. Applied Organometallic Chemistry, 2020, 34, e5473.	1.7	27
420	Cobalt nanocrystals on carbon nanotubes in the Fischer-Tropsch synthesis: Impact of support oxidation. Applied Catalysis A: General, 2020, 593, 117441.	2.2	31
421	Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy. Progress in Materials Science, 2020, 112, 100667.	16.0	21
422	Green synthesis of CuO nanoparticles using <i>Lantana camara</i> flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Advances, 2020, 10, 14374-14385.	1.7	106

#	Article	IF	CITATIONS
423	Encapsulated Metal Nanoparticles for Catalysis. Chemical Reviews, 2021, 121, 834-881.	23.0	426
424	β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	5.8	15
425	Catalytic performance of a metal-free graphene oxide-Al2O3 composite assembled by 3D printing. Journal of the European Ceramic Society, 2021, 41, 1399-1406.	2.8	12
426	Biosynthesis of Cu/Fe3O4 nanoparticles using Alhagi camelorum aqueous extract and their catalytic activity in the synthesis of 2-imino-3-aryl-2,3-dihydrobenzo[d]oxazol-5-ol derivatives. Journal of Molecular Structure, 2021, 1228, 129731.	1.8	13
427	Towards Catalytically Active Porous Graphene Membranes with Pulsed Laser Deposited Ceria Nanoparticles. Chemistry - A European Journal, 2021, 27, 4150-4158.	1.7	4
428	Inspiration of Yolk-Shell Nanostructures Toward Completely Adjustable Heterogeneous Catalysts. Nanostructure Science and Technology, 2021, , 413-424.	0.1	Ο
429	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16
430	Directed design of hydrogenation Ziegler systems. New Journal of Chemistry, 2021, 45, 4525-4533.	1.4	6
431	Nanomaterials obtained from renewable resources and their application as catalysts in biodiesel synthesis. , 2021, , 481-509.		3
432	Biogenic synthesis of Pd-nanoparticles using Areca Nut Husk Extract: a greener approach to access α-keto imides and stilbenes. New Journal of Chemistry, 2021, 45, 16213-16222.	1.4	20
433	Recent Advances in Constructing Interfacial Active Catalysts Based on Layered Double Hydroxides and Their Catalytic Mechanisms. Transactions of Tianjin University, 2021, 27, 24-41.	3.3	14
434	RuxPdy Alloy Nanoparticles Uniformly Anchored on Reduced Graphene Oxide Nanosheets (RuxPdy@rGO): A Recyclable Catalyst. ACS Omega, 2021, 6, 1415-1425.	1.6	13
435	Nanoparticle-Catalyzed Green Chemistry Synthesis of Polybenzoxazole. Journal of the American Chemical Society, 2021, 143, 2115-2122.	6.6	20
436	Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. BioMed Research International, 2021, 2021, 1-13.	0.9	20
437	PO ₃ H ₂ -Functionalized Fe ₃ O ₄ @SiO ₂ Core–Shell as an Efficient and Magnetic Nanocatalyst for the Preparation of Dihydropyrimidinones <i>via</i> Biginelli Condensation. Polycyclic Aromatic Compounds, 2022, 42, 4374-4385.	1.4	4
438	Monodisperse CuPd alloy nanoparticles as efficient and reusable catalyst for the C (sp 2)–H bond activation. Applied Organometallic Chemistry, 2021, 35, e6236.	1.7	1
439	Effective and Stable Zeolite Imidazole Framework-Supported Copper Nanoparticles (Cu/ZIF-8) for Glycerol to Lactic Acid. Catalysis Letters, 2022, 152, 172-186.	1.4	15
440	Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. Journal of the American Chemical Society, 2021, 143, 4483-4499.	6.6	106

~			~		
(іт	ΔΤΙ	ON	Re	DO	D T
\sim	Λ				

#	Article	IF	CITATIONS
441	Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers, 2021, 13, 977.	2.0	12
442	Singleâ€Unitâ€Cell Catalysis of CO ₂ Electroreduction over Subâ€1 nm Cu ₉ S ₅ Nanowires. Advanced Energy Materials, 2021, 11, 2100272.	10.2	29
443	The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors, 2021, 21, 2554.	2.1	67
445	Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews, 2021, 121, 7568-7637.	23.0	100
447	Combustion synthesis CuO nanoparticles: Application to photocatalytic activity. Materials Today: Proceedings, 2022, 49, 860-864.	0.9	6
448	Construction of Functional Superhydrophobic Biochars as Hydrogen Transfer Catalysts for Dehydrogenation of <i>N</i> -Heterocycles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9062-9077.	3.2	7
450	Hydrothermal synthesis of mesoporous cobalt ferrite by ionic liquid-assisted process; catalytic performance, morphology, and magnetic studies. Journal of the Australian Ceramic Society, 2021, 57, 1321-1330.	1.1	5
451	Seed-Mediated Growth of Pt on High-Index Faceted Au Nanocrystals: The Ag Lining and Implications for Electrocatalysis. ACS Applied Nano Materials, 2021, 4, 9155-9166.	2.4	3
452	Morphology Engineering of γ-Alumina Microgranules as Support of Cobalt Catalysts Used for Fischer–Tropsch Synthesis: An Effective Strategy for Improving Catalytic Performance. Journal of Physical Chemistry C, 2021, 125, 17718-17733.	1.5	7
453	Green Synthesis of Cu Nanoparticles in Modulating the Reactivity of Amine-Functionalized Composite Materials towards Cross-Coupling Reactions. Nanomaterials, 2021, 11, 2260.	1.9	1
454	Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 2021, 32, 2905-2915.	2.0	14
455	Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00645.	2.1	4
456	Standalone micro-reformer for on-demand hydrogen production from dimethyl ether. Journal of Power Sources, 2021, 506, 230241.	4.0	2
457	CoFe2O4/Cu(OH)2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. Results in Chemistry, 2021, 3, 100202.	0.9	10
458	Immobilization of size variable Au nanoparticles on surfactant-modified silica and their catalytic application toward 4-nitrophenol reduction: A comparative account of catalysis. Surfaces and Interfaces, 2021, 26, 101423.	1.5	3
459	γ-Radiation synthesis of ultrasmall noble metal (Pd, Au, Pt) nanoparticles embedded on boron nitride nanosheets for high-performance catalysis. Ceramics International, 2021, 47, 26963-26970.	2.3	7
460	Recent advances of nanofluids in micro/nano scale energy transportation. Renewable and Sustainable Energy Reviews, 2021, 149, 111346.	8.2	29
461	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 2021, 445, 213982.	9.5	56

#	Article	IF	CITATIONS
462	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 2021, 448, 214179.	9.5	29
463	Role of composition and size-dependent damping due to electron-surface scattering on plasmonic properties of gold-silver alloy nanoparticles: A theoretical study. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276, 107940.	1.1	5
464	Next-generation nanomaterials for environmental industries: Prospects and challenges. , 2022, , 399-415.		1
465	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (MÂ=ÂCo, Ni) nanoflowers. Journal of Colloid and Interface Science, 2022, 607, 1411-1423.	5.0	26
466	Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. Nanoscale, 2021, 13, 6162-6173.	2.8	3
467	Morphology-dependent nanocatalysis: tricobalt tetraoxide. Research on Chemical Intermediates, 2021, 47, 195-209.	1.3	4
468	Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials. Nature Communications, 2021, 12, 137.	5.8	21
469	A Blinking Mesoporous TiO _{2â^'<i>x</i>} Composed of Nanosized Anatase with Unusually Longâ€Lived Trapped Charge Carriers. Angewandte Chemie - International Edition, 2020, 59, 15000-15007.	7.2	31
470	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
471	A novel biodegradable magnetic bionanocomposite based on tannic acid as a biological molecule for selective oxidation of alcohols. Solid State Sciences, 2020, 105, 106284.	1.5	12
472	Tuning the structure of bifunctional Pt/SmMn ₂ O ₅ interfaces for promoted low-temperature CO oxidation activity. Nanoscale, 2019, 11, 8150-8159.	2.8	13
473	Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites, 2021, 7, 1-34.	2.2	35
474	Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water. Nano Express, 2020, 1, 030012.	1.2	21
475	Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling. Journal of Applied Crystallography, 2020, 53, 148-158.	1.9	18
476	Pillararene-Peptide Nanogels and Their Biomimetic Mineralization Hybrids for Heterogeneous Catalysis. ACS Applied Nano Materials, 2021, 4, 11126-11133.	2.4	5
477	Interdisciplinary Course Development in Nanostructured Materials Science and Engineering. Advances in Chemical and Materials Engineering Book Series, 2015, , 212-229.	0.2	0
480	Interdisciplinary Course Development in Nanostructured Materials Science and Engineering. , 2017, , 1075-1093.		0
481	A microemulsion route to fabrication of mono and bimetallic Cu/Zn/ \hat{I}^3 -Al2O3 nanocatalysts for hydrogenation reaction. Scientia Iranica, 2018, .	0.3	4

P

TATION

щ		IF	CITATIONS
#	ARTICLE Fabrication of Metallic Nano Pillar Arrays on Substrate by Sputter Coating and Direct Imprinting	IF	CITATIONS
482	Processes. Applied Science and Engineering Progress, 2019, , .	0.5	1
483	Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials. Eurasian Chemico-Technological Journal, 2019, 21, 303.	0.3	5
484	A Blinking Mesoporous TiO _{2â^'<i>x</i>} Composed of Nanosized Anatase with Unusually Long‣ived Trapped Charge Carriers. Angewandte Chemie, 2020, 132, 15110-15117.	1.6	4
485	Dual-Metal <i>N</i> -Heterocyclic Carbene Complex (M = Au and Pd)-Functionalized UiO-67 MOF for Alkyne Hydration–Suzuki Coupling Tandem Reaction. Journal of Organic Chemistry, 2021, 86, 1818-1826.	1.7	15
487	Self-assembly of reverse micelle nanoreactors by zwitterionic polyoxometalate-based surfactants for high selective production of β‑hydroxyl peroxides. Chinese Chemical Letters, 2022, 33, 3968-3972.	4.8	13
488	Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. Journal of Saudi Chemical Society, 2021, 25, 101394.	2.4	16
489	Green synthesis of C5–C6-unsubstituted 1,4-DHP scaffolds using an efficient Ni–chitosan nanocatalyst under ultrasonic conditions. Beilstein Journal of Organic Chemistry, 2022, 18, 133-142.	1.3	3
490	The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6, 89-111.	13.8	218
491	Poly(<i>N</i> â€vinylâ€2â€pyrrolidone)â€supported ferric chloride: An effective reusable heterogeneous catalyst for oneâ€pot synthesis of 3,4â€dihydropyrimidinâ€2(<scp>1<i>H</i></scp>)â€ones/thiones via threeâ€component Biginelli reaction. Journal of Heterocyclic Chemistry, 2022, 59, 997-1006.	1.4	1
492	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Scientific Reports, 2022, 12, 2.	1.6	10
493	Metal-organic frameworks for the electrocatalytic ORR and HER. , 2022, , 211-237.		4
494	A Highly Active N-Doped Carbon Supported CoFe Alloy Catalyst for Hydroformylation of C ₈ Olefins. Journal of Physical Chemistry C, 2022, 126, 273-281.	1.5	11
495	Titanium tetrachloride immobilized on cross-linked poly(<i>N</i> -vinyl-2-pyrrolidone) as a recyclable heterogeneous catalyst for one-pot three component synthesis of 3, 4-dihydropyrimidin-2(1 <i>H</i>)-ones/thiones. Synthetic Communications, 2022, 52, 678-693.	1.1	2
496	Highâ€Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry - A European Journal, 2022, , .	1.7	2
497	A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe ₂ O ₃ nanocrystals. Nanotechnology, 2022, 33, 405502.	1.3	7
498	Ruthenium Icosahedra and Ultrathin Platelets: The Role of Surface Chemistry on the Nanoparticle Structure. Chemistry of Materials, 2022, 34, 2931-2944.	3.2	5
499	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
500	Magnetic Boron Nitride Nanosheets Decorated with Cobalt Nanoparticles as Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones/thiones. ACS Applied Nano Materials, 2022, 5, 4875-4886.	2.4	8

#	Article	IF	Citations
501	Spherical covalent organic framework supported Cu/Ag bimetallic nanoparticles with highly catalytic activity for reduction of 4-nitrophenol. Journal of Solid State Chemistry, 2022, 311, 123116.	1.4	15
502	Sonoelectrosynthesis of monodisperse metal nanoparticles. Nanoscale, 2022, , .	2.8	1
503	Recent developments of supported Palladium nanocatalyst and magnetically separable supported Palladium nanocatalysts for Heck cross-coupling reactions. Journal of Nanoparticle Research, 2022, 24, .	0.8	6
504	Current dilemma in photocatalytic CO2 reduction: real solar fuel production or false positive outcomings?. , 2022, 1, 1.		12
505	Synthesis and Reactivity of Copper and Copper Containing Magnetically Separable Catalysts. ChemistrySelect, 2022, 7, .	0.7	7
506	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	63
507	Synthesis of perovskite polyhedron nanocrystals with equivalent facets and the controlled growth of Pt nanoparticles with differing surface concentration of oxidized Pt4+/Pt2+ species. Catalysis Today, 2022, , .	2.2	1
508	Applications of nanostructured materials in heterogeneous catalysis: A review. AIP Conference Proceedings, 2022, , .	0.3	0
509	Introduction to surface-modified nanomaterials. , 2022, , xvii-xxix.		0
510	Synergistic Catalysis by Copper Oxide/Graphene Oxide Nanocomposites: A Facile Approach to Prepare Quinazolines and Quinazoline Containing Triazole/Tetrazole Moieties under Mild Reaction Conditions. ChemistrySelect, 2022, 7, .	0.7	0
511	Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials [*] . Journal of Physics Condensed Matter, 2022, 34, 344007.	0.7	2
512	Silica samurai: Aristocrat of energy and environmental catalysis. Chem Catalysis, 2022, 2, 1893-1918.	2.9	6
513	Highly Selective Semihydrogenation via a Wettability-Regulated Mass Transfer Process. ACS Catalysis, 2022, 12, 8494-8502.	5.5	4
514	Catalytic hydration of terminal alkynes and nitriles without reducing reagents, acidic promoters, and organic solvent over Fe3O4@Starch–Au. Journal of the Iranian Chemical Society, 2022, 19, 4523-4534.	1.2	3
515	A novel Fe ₃ O ₄ @TCH@Ni(II) nanoparticle: An efficient magnetically retrievable nanocatalyst for C–C and C–heteroatom bond formation reaction. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
516	Synthesis, Characterization and Antimicrobial Activity of Poloxamerâ€Assisted Copper Nanoparticles: Investigating the Effects of Different Concentrations of Poloxamer 407. ChemistrySelect, 2022, 7, .	0.7	1
517	Targeted regulation of the selectivity of cascade synthesis towards imines/secondary amines by carbon-coated Co-based catalysts. Green Chemistry, 2022, 24, 6945-6954.	4.6	7
518	Cyclodextrins as a Templating Agent in Solvent-Free Kneading-Based Syntheses of Nanosized SnO ₂ and ZnO. ACS Sustainable Chemistry and Engineering, 2022, 10, 12139-12147.	3.2	0

		CITATION REPORT		
#	Article		IF	CITATIONS
519	The Role of Nanocrystal Facets in Sustainable Organic Synthesis. ChemNanoMat, 2022	2, 8, .	1.5	1
520	Recent progress in copper nanocatalysis for sustainable transformations. Current Opir and Sustainable Chemistry, 2022, 38, 100698.	nion in Green	3.2	2
521	Recent advances in nanoparticles towards sustainability and their application in organ transformations in aqueous media. Nanoscale, 2022, 14, 16761-16786.	ic	2.8	11
522	Thermally Activated Microstructural Evolution of PtIrCu Alloyed Nanorings: Insights fro Molecular Dynamics Simulations. ACS Omega, 2022, 7, 37436-37441.	9m	1.6	0
523	Catalytic aqueous CO2 reduction to formaldehyde at Ru surface on hydroxyl-groups-ri mild conditions. Applied Catalysis B: Environmental, 2023, 322, 122124.	ch LDH under	10.8	6
524	Influence of drying technique on Pt/In2O3 aerogels for methanol steam reforming. Jou Science and Technology, 2023, 107, 218-226.	rnal of Sol-Gel	1.1	4
525	Enhanced catalytic oxidation of toluene over heterostructured CeO2-CuO-Mn3O4 hol nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2	ow 2023, 658, 130671.	2.3	5
526	Green synthesis and characterization of copper nanoparticles using Phragmanthera au extract and their biological/environmental applications. Sustainable Materials and Tech 2023, 35, e00540.	stroarabica 110logies,	1.7	14
527	Chemistry of Medicinally Important Dihydropyrimidinone-based Heterocycle Scaffolds. Organic Chemistry, 2024, 21, 172-215.	Mini-Reviews in	0.6	1
528	Preparation and characterization of the <i>h</i> BN/Fe ₃ O ₄ /APTES-AMF/Cu ^{II} nanoco efficient catalyst for the one-pot three-component synthesis of 2-amino-4-aryl(or) Tj ET		Dver bas k 10	Tf ⊕ 0 377 ⊺(
529	13, 3462-3495. Local chemical environment effect in single-atom catalysis. Chem Catalysis, 2023, 3, 1	00492.	2.9	8
530	High-Throughput Experimental Technology: Rapid Identification of the Precious Metal In ₂ O ₃ for NO ₂ Low-Temperature Sensing. IEEE 2023, 23, 8101-8108.		2.4	0
531	Molecularly defined approach for preparation of ultrasmall Pt-Sn species for efficient dehydrogenation of propane to propene. Journal of Catalysis, 2023, 418, 290-299.		3.1	6
532	Influence of Synthesis Methodology on the Properties and Catalytic Performance of Ti Tin-Niobium Oxides in Fructose Conversion. Catalysts, 2023, 13, 285.	n, Niobium, and	1.6	0
533	Plasmon-mediated chemical reactions. Nature Reviews Methods Primers, 2023, 3, .		11.8	18
534	Facile Synthesis of Magnetic Bentonite–Chitosan–Pd Nanocomposite: As a Recovfor Reduction of Nitroarenes and Suzuki–Miyaura Reaction. Journal of Inorganic and Polymers and Materials, 2023, 33, 1052-1065.		1.9	2
535	Yb(OTf) ₃ Anchored on Crosslinked Chitosan Microsphere: A Green Heter for the Synthesis of Bispiroâ€Fused Heterocycles. European Journal of Organic Chemis		1.2	2
536	Catalytic Performance of Graphene-Based Nanocomposites. Advanced Structured Mat 119-143.	erials, 2023, ,	0.3	0

#	Article	IF	CITATIONS
543	Progress in photocatalytic CO ₂ reduction based on single-atom catalysts. RSC Advances, 2023, 13, 20889-20908.	1.7	3
551	Bimetallic Nanocatalysts Used in Bioelectrochemical Detection and Diagnosis. , 2023, , 881-897.		0
556	Role of green nanomaterial catalyst for development of biologically active indole analogs. AIP Conference Proceedings, 2023, , .	0.3	0