Small Misfolded Tau Species Are Internalized via Bulk E Retrogradely Transported in Neurons

Journal of Biological Chemistry 288, 1856-1870 DOI: 10.1074/jbc.m112.394528

Citation Report

#	Article	IF	CITATIONS
1	Prion-Like Propagation of Protein Aggregation and Related Therapeutic Strategies. Neurotherapeutics, 2013, 10, 371-382.	2.1	33
2	Untangling the role of tau in Alzheimer's disease: A unifying hypothesis. Translational Neuroscience, 2013, 4, 115-133.	0.7	9
3	Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. Journal of Cell Science, 2013, 126, 3678-85.	1.2	157
4	Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 2013, 501, 45-51.	13.7	1,331
5	Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nature Reviews Neurology, 2013, 9, 708-714.	4.9	432
6	The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochemical Journal, 2013, 452, 1-17.	1.7	126
7	Endogenous Tau Aggregates in Oligodendrocytes of rTg4510 Mice Induced by Human P301L Tau. Journal of Alzheimer's Disease, 2013, 38, 589-600.	1.2	11
8	TOC1: Characterization of a Selective Oligomeric Tau Antibody. Journal of Alzheimer's Disease, 2013, 37, 593-602.	1.2	50
9	Neurodegenerative lesions: Seeding and spreading. Revue Neurologique, 2013, 169, 825-833.	0.6	24
11	Tau pathology and neurodegeneration. Lancet Neurology, The, 2013, 12, 609-622.	4.9	893
12	"Prion‣ike―Templated Misfolding in Tauopathies. Brain Pathology, 2013, 23, 342-349.	2.1	114
13	Calcium Entry and Â-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 10154-10164.	1.7	174
14	Mechanistic Studies Unravel the Complexity Inherent in Tau Aggregation Leading to Alzheimer's Disease and the Tauopathies. Biochemistry, 2013, 52, 4107-4126.	1.2	51
15	Trimeric Tau Is Toxic to Human Neuronal Cells at Low Nanomolar Concentrations. International Journal of Cell Biology, 2013, 2013, 1-9.	1.0	70
16	Rapid Accumulation of Endogenous Tau Oligomers in a Rat Model of Traumatic Brain Injury. Journal of Biological Chemistry, 2013, 288, 17042-17050.	1.6	115
17	Prions <i>Ex Vivo</i> : What Cell Culture Models Tell Us about Infectious Proteins. International Journal of Cell Biology, 2013, 2013, 1-14.	1.0	16
18	The Involvement of Cholinergic Neurons in the Spreading of Tau Pathology. Frontiers in Neurology, 2013, 4, 74.	1.1	20
19	Tangles, Toxicity, and Tau Secretion in AD – New Approaches to a Vexing Problem. Frontiers in Neurology, 2013, 4, 160.	1.1	49

#	Article	IF	CITATIONS
20	Spreading of tau pathology in <scp>A</scp> lzheimer's disease by cellâ€ŧo ell transmission. European Journal of Neuroscience, 2013, 37, 1939-1948.	1.2	106
21	Life cycle of cytosolic prions. Prion, 2013, 7, 369-377.	0.9	11
22	Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimer's Research and Therapy, 2013, 5, 49.	3.0	84
23	Formation and Propagation of Tau Oligomeric Seeds. Frontiers in Neurology, 2013, 4, 93.	1.1	95
24	The Importance of Tau Phosphorylation for Neurodegenerative Diseases. Frontiers in Neurology, 2013, 4, 83.	1.1	312
25	Evidence for Prion-Like Mechanisms in Several Neurodegenerative Diseases: Potential Implications for Immunotherapy. Clinical and Developmental Immunology, 2013, 2013, 1-20.	3.3	30
26	Rescue of tau-induced synaptic transmission pathology by paclitaxel. Frontiers in Cellular Neuroscience, 2014, 8, 34.	1.8	18
27	The role of extracellular Tau in the spreading of neurofibrillary pathology. Frontiers in Cellular Neuroscience, 2014, 8, 113.	1.8	130
28	Prions and Prion-Like Pathogens in Neurodegenerative Disorders. Pathogens, 2014, 3, 149-163.	1.2	14
29	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 146.	2.4	79
30	Extracellular Monomeric Tau Protein Is Sufficient to Initiate the Spread of Tau Protein Pathology. Journal of Biological Chemistry, 2014, 289, 956-967.	1.6	153
31	Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity. Journal of Biological Chemistry, 2014, 289, 20318-20332.	1.6	77
32	Axonal tract tracing for delineating interacting brain regions: implications for Alzheimer's disease-associated memory. Future Neurology, 2014, 9, 89-98.	0.9	3
33	Specific Targeting of Tau Oligomers in Htau Mice Prevents Cognitive Impairment and Tau Toxicity Following Injection with Brain-Derived Tau Oligomeric Seeds. Journal of Alzheimer's Disease, 2014, 40, S97-S111.	1.2	145
34	Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer's Disease and Other Neurodegenerative Diseases?. American Journal of the Medical Sciences, 2014, 347, 312-320.	0.4	9
35	<i>mNos2</i> Deletion and Human <i>NOS2</i> Replacement in Alzheimer Disease Models. Journal of Neuropathology and Experimental Neurology, 2014, 73, 752-769.	0.9	30
36	Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathologica Communications, 2014, 2, 14.	2.4	203
37	A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica, 2014, 127, 667-683.	3.9	390

0.			D	
	TAT	ON	Repo	דעו
\sim				

#	Article	IF	CITATIONS
38	Passive Immunization with Tau Oligomer Monoclonal Antibody Reverses Tauopathy Phenotypes without Affecting Hyperphosphorylated Neurofibrillary Tangles. Journal of Neuroscience, 2014, 34, 4260-4272.	1.7	241
39	Intracellular and Extracellular Roles for Tau in Neurodegenerative Disease. Journal of Alzheimer's Disease, 2014, 40, S37-S45.	1.2	45
40	Systems Approach to Neurodegenerative Disease Biomarker Discovery. Annual Review of Pharmacology and Toxicology, 2014, 54, 457-481.	4.2	45
41	Alzheimer disease therapeutics: Focus on the disease and not just plaques and tangles. Biochemical Pharmacology, 2014, 88, 631-639.	2.0	95
42	Emerging Therapeutics for Alzheimer's Disease. Annual Review of Pharmacology and Toxicology, 2014, 54, 381-405.	4.2	76
43	Synthesis of the Pitstop family of clathrin inhibitors. Nature Protocols, 2014, 9, 1592-1606.	5.5	32
44	Advances in Therapeutics for Neurodegenerative Tauopathies: Moving toward the Specific Targeting of the Most Toxic Tau Species. ACS Chemical Neuroscience, 2014, 5, 752-769.	1.7	63
45	Amplification of Tau Fibrils from Minute Quantities of Seeds. Biochemistry, 2014, 53, 5804-5809.	1.2	71
46	Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature Medicine, 2014, 20, 130-138.	15.2	547
47	The Role of Tau Oligomers in the Onset of Alzheimer's Disease Neuropathology. ACS Chemical Neuroscience, 2014, 5, 1178-1191.	1.7	85
48	Acetylation: a new key to unlock tau's role in neurodegeneration. Alzheimer's Research and Therapy, 2014, 6, 29.	3.0	101
49	Proteins Recruited to Exosomes by Tau Overexpression Implicate Novel Cellular Mechanisms Linking Tau Secretion with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 40, S47-S70.	1.2	57
50	Molecular Mechanisms of Protein Misfolding. , 2014, , 1-14.		2
51	Proteopathic tau seeding predicts tauopathy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4376-85.	3.3	474
52	Sources of Extracellular Tau and its Signaling. Journal of Alzheimer's Disease, 2014, 40, S7-S15.	1.2	27
53	Review: Prionâ€like mechanisms of transactive response DNA binding protein of 43 kDa (<scp>TDP</scp> â€43) in amyotrophic lateral sclerosis (<scp>ALS</scp>). Neuropathology and Applied Neurobiology, 2015, 41, 578-597.	1.8	76
54	Starvation and inhibition of lysosomal function increased tau secretion by primary cortical neurons. Scientific Reports, 2014, 4, 5715.	1.6	77
55	Identification of disulfide cross-linked tau dimer responsible for tau propagation. Scientific Reports, 2015, 5, 15231.	1.6	51

#	Article	IF	Citations
56	Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2015, 9, 464.	1.8	127
57	Passive Immunization in JNPL3 Transgenic Mice Using an Array of Phospho-Tau Specific Antibodies. PLoS ONE, 2015, 10, e0135774.	1.1	39
58	The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases. Frontiers in Physiology, 2015, 6, 277.	1.3	45
59	Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathologica, 2015, 129, 895-907.	3.9	65
60	Targeting Assembly and Disassembly of Protein Aggregates. , 2015, , 173-228.		1
61	Isolation and characterization of antibody fragments selective for toxic oligomeric tau. Neurobiology of Aging, 2015, 36, 1342-1355.	1.5	25
62	Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Reports, 2015, 11, 1176-1183.	2.9	206
63	Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nature Reviews Neuroscience, 2015, 16, 126-132.	4.9	197
64	Conformation Determines the Seeding Potencies of Native and Recombinant Tau Aggregates. Journal of Biological Chemistry, 2015, 290, 1049-1065.	1.6	225
65	Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews Neuroscience, 2015, 16, 109-120.	4.9	611
66	The FK506-binding protein FKBP52 <i>in vitro</i> induces aggregation of truncated Tau forms with prion-like behavior. FASEB Journal, 2015, 29, 3171-3181.	0.2	33
67	Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation. Journal of Biological Chemistry, 2015, 290, 14893-14903.	1.6	182
68	Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters, 2015, 589, 2640-2648.	1.3	150
69	Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1561-1573.	1.8	12
70	<scp>TDP</scp> â€43 in amyotrophic lateral sclerosis – is it a prion disease?. European Journal of Neurology, 2015, 22, 753-761.	1.7	38
71	Animal models for prion-like diseases. Virus Research, 2015, 207, 5-24.	1.1	10
72	Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer's disease. Acta Neuropathologica Communications, 2015, 3, 14.	2.4	176
73	Tauopathy Mouse Models. , 2015, , 849-855.		0

#	ARTICLE	IF	CITATIONS
74	Assembly and Disassembly of Protein Aggregates. , 2015, , 229-276.		0
75	Neuronal Aggregates: Formation, Clearance, and Spreading. Developmental Cell, 2015, 32, 491-501.	3.1	185
76	Neurodegenerative Diseases: Expanding the Prion Concept. Annual Review of Neuroscience, 2015, 38, 87-103.	5.0	278
77	Tau Assembly: The Dominant Role of PHF6 (VQIVYK) in Microtubule Binding Region Repeat R3. Journal of Physical Chemistry B, 2015, 119, 4582-4593.	1.2	134
78	Internalized Tau Oligomers Cause Neurodegeneration by Inducing Accumulation of Pathogenic Tau in Human Neurons Derived from Induced Pluripotent Stem Cells. Journal of Neuroscience, 2015, 35, 14234-14250.	1.7	186
79	Genetics of Frontotemporal Dementia. , 2015, , 75-105.		0
80	Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nature Communications, 2015, 6, 8490.	5.8	283
81	The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. Brain, 2015, 138, 2814-2833.	3.7	380
82	Configuration-specific immunotherapy targeting cis pThr231-Pro232 tau for Alzheimer disease. Journal of the Neurological Sciences, 2015, 348, 253-255.	0.3	11
83	An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration. Chemico-Biological Interactions, 2015, 226, 30-39.	1.7	19
84	Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiology of Disease, 2015, 73, 83-95.	2.1	168
85	Do Astrocytes Collaborate with Neurons in Spreading the "Infectious―Aβ and Tau Drivers of Alzheimer's Disease?. Neuroscientist, 2015, 21, 9-29.	2.6	59
86	Ameliorative Effects of Antioxidants on the Hippocampal Accumulation of Pathologic Tau in a Rat Model of Blast-Induced Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-15.	1.9	30
87	Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation. Biomolecules, 2016, 6, 36.	1.8	10
88	Uses and abuses of macropinocytosis. Journal of Cell Science, 2016, 129, 2697-705.	1.2	160
89	Peptides NAP and SAL attenuate human tau granular-shaped oligomers in vitro and in SH-SY5Y cells. Neuropeptides, 2016, 59, 21-31.	0.9	4
90	The Effect of Fragmented Pathogenic α-Synuclein Seeds on Prion-like Propagation. Journal of Biological Chemistry, 2016, 291, 18675-18688.	1.6	88
91	Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Scientific Reports, 2016, 6, 30498.	1.6	62

#	Article	IF	CITATIONS
92	Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2016, 55, 1083-1099.	1.2	138
93	α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Scientific Reports, 2016, 6, 19180.	1.6	35
94	FRMD4A-cytohesin signaling modulates cellular release of Tau. Journal of Cell Science, 2016, 129, 2003-15.	1.2	27
95	The Dynamics and Turnover of Tau Aggregates in Cultured Cells. Journal of Biological Chemistry, 2016, 291, 13175-13193.	1.6	59
96	Fracture and Growth Are Competing Forces Determining the Fate of Conformers in Tau Fibril Populations. Journal of Biological Chemistry, 2016, 291, 12271-12281.	1.6	30
97	Molecular mechanism of prionâ€like tauâ€induced neurodegeneration. Alzheimer's and Dementia, 2016, 12, 1090-1097.	0.4	53
98	Formation, release, and internalization of stable tau oligomers in cells. Journal of Neurochemistry, 2016, 139, 1163-1174.	2.1	49
99	Potential mechanisms and implications for the formation of tau oligomeric strains. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 482-496.	2.3	64
100	Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion, 2016, 10, 344-351.	0.9	151
101	High–Molecular-Weight Paired Helical Filaments from Alzheimer Brain Induces Seeding of Wild-Type Mouse Tau into an Argyrophilic 4R Tau Pathology inÂVivo. American Journal of Pathology, 2016, 186, 2709-2722.	1.9	51
102	Prionâ€like propagation as a pathogenic principle in frontotemporal dementia. Journal of Neurochemistry, 2016, 138, 163-183.	2.1	54
103	Interactions between heme and tau-derived R1 peptides: binding and oxidative reactivity. Dalton Transactions, 2016, 45, 14343-14351.	1.6	9
104	Potential Pathways of Abnormal Tau and α-Synuclein Dissemination in Sporadic Alzheimer's and Parkinson's Diseases. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023630.	2.3	101
105	Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. Journal of Experimental Medicine, 2016, 213, 2635-2654.	4.2	310
106	Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory. Scientific Reports, 2016, 6, 19393.	1.6	212
107	Loss of Bin1 Promotes the Propagation of Tau Pathology. Cell Reports, 2016, 17, 931-940.	2.9	206
108	Passive Immunotherapy for Tau Pathology. , 2016, , 371-384.		2
109	Neuronal activity enhances tau propagation and tau pathology in vivo. Nature Neuroscience, 2016, 19, 1085-1092.	7.1	569

#	Article	IF	CITATIONS
110	Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers. Journal of Neuropathology and Experimental Neurology, 2016, 75, 636-655.	0.9	104
111	Tau Immunotherapy. Methods in Pharmacology and Toxicology, 2016, , 109-120.	0.1	1
112	Detecting tau in serum of transgenic animal models after tau immunotherapy treatment. Neurobiology of Aging, 2016, 37, 58-65.	1.5	16
113	Structural differences between amyloid beta oligomers. Biochemical and Biophysical Research Communications, 2016, 477, 700-705.	1.0	65
114	Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau. Journal of Neuroscience, 2016, 36, 762-772.	1.7	129
115	Tau Oligomers Derived from Traumatic Brain Injury Cause Cognitive Impairment and Accelerate Onset of Pathology in Htau Mice. Journal of Neurotrauma, 2016, 33, 2034-2043.	1.7	75
116	Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathologica, 2016, 131, 27-48.	3.9	147
117	Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. , 2016, 12, 1098-1107.		29
118	Tau pathology-mediated presynaptic dysfunction. Neuroscience, 2016, 325, 30-38.	1.1	54
119	Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron, 2016, 89, 433-448.	3.8	74
120	Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathologica, 2016, 131, 539-548.	3.9	127
121	Protein aggregates stimulate macropinocytosis facilitating their propagation. Prion, 2016, 10, 119-126.	0.9	20
122	Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature Medicine, 2016, 22, 46-53.	15.2	352
123	Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR). Methods in Molecular Biology, 2016, 1345, 185-199.	0.4	6
124	The Role of Retromer in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 4201-4209.	1.9	13
125	The release and trans-synaptic transmission of Tau via exosomes. Molecular Neurodegeneration, 2017, 12, 5.	4.4	475
126	Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in Drosophila. Neuroscience, 2017, 348, 191-200.	1.1	19
127	PET Imaging Agents for Alzheimer's Disease. Topics in Medicinal Chemistry, 2017, , 181-197.	0.4	0

#	Article	IF	Citations
128	Energy and the Alzheimer brain. Neuroscience and Biobehavioral Reviews, 2017, 75, 297-313.	2.9	32
129	Clinical correlates to assist with chronic traumatic encephalopathy diagnosis. Journal of Trauma and Acute Care Surgery, 2017, 82, 1039-1048.	1.1	11
130	The multitude of therapeutic targets in neurodegenerative proteinopathies. , 2017, , 1-20.		1
131	Preclinical models of Alzheimer's disease for identification and preclinical validation of therapeutic targets: from fine-tuning strategies for validated targets to new venues for therapy. , 2017, , 115-156.		2
132	Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction. Journal of Alzheimer's Disease, 2017, 58, 803-820.	1.2	51
133	Selective imaging of internalized proteopathic α-synuclein seeds in primary neurons reveals mechanistic insight into transmission of synucleinopathies. Journal of Biological Chemistry, 2017, 292, 13482-13497.	1.6	131
134	Spreading of Pathology in Alzheimer's Disease. Neurotoxicity Research, 2017, 32, 707-722.	1.3	13
135	Reduced gliotransmitter release from astrocytes mediates tauâ€induced synaptic dysfunction in cultured hippocampal neurons. Clia, 2017, 65, 1302-1316.	2.5	82
136	Roles of tau protein in health and disease. Acta Neuropathologica, 2017, 133, 665-704.	3.9	639
137	Chronic Traumatic Encephalopathy: The cellular sequela to repetitive brain injury. Journal of Clinical Neuroscience, 2017, 41, 24-29.	0.8	18
139	Novel Cell Model for Tauopathy Induced by a Cell-Permeable Tau-Related Peptide. ACS Chemical Neuroscience, 2017, 8, 2734-2745.	1.7	11
140	Amyloidogenesis of Tau protein. Protein Science, 2017, 26, 2126-2150.	3.1	102
141	Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Progress in Neurobiology, 2017, 158, 15-44.	2.8	48
142	The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. Journal of Cell Biology, 2017, 216, 2633-2644.	2.3	105
143	Prion strains depend on different endocytic routes for productive infection. Scientific Reports, 2017, 7, 6923.	1.6	29
144	Abolishing Tau cleavage by caspases at Aspartate421 causes memory/synaptic plasticity deficits and pre-pathological Tau alterations. Translational Psychiatry, 2017, 7, e1198-e1198.	2.4	19
145	Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes. Nature Communications, 2017, 8, 1678.	5.8	117
146	Glial contributions to neurodegeneration in tauopathies. Molecular Neurodegeneration, 2017, 12, 50.	4.4	283

TION R

		CITATION R	EPORT	
#	Article		IF	CITATIONS
147	Oligomer Formation and Crossâ \in Seeding: The New Frontier. Israel Journal of Chemistry,	2017, 57, 665-673.	1.0	8
149	Like prions: the propagation of aggregated tau and $\hat{I}\pm\mbox{-}synuclein$ in neurodegeneration. E 266-278.	Brain, 2017, 140,	3.7	248
150	<scp>VCP</scp> /p97 cooperates with <scp>YOD</scp> 1, <scp>UBXD</scp> 1 and <s drive clearance of ruptured lysosomes by autophagy. EMBO Journal, 2017, 36, 135-150.</s 	scp>PLAA to	3.5	259
151	Cellular Models for the Study of Prions. Cold Spring Harbor Perspectives in Medicine, 20)17, 7, a024026.	2.9	18
152	Tauopathies: Mechanisms and Therapeutic Strategies. Journal of Alzheimer's Disease, 20	017, 61, 487-508.	1.2	19
153	Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Journal of Molecular Sciences, 2017, 18, 227.	International	1.8	24
154	Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Frontiers in Aging Neuroscience, 2017, 9, 83.	g	1.7	209
155	Amyloid β-Exposed Human Astrocytes Overproduce Phospho-Tau and Overrelease It wit Effects Suppressed by Calcilytic NPS 2143—Further Implications for Alzheimer's Thera Neuroscience, 2017, 11, 217.	thin Exosomes, py. Frontiers in	1.4	88
156	The Evidence for the Spread and Seeding Capacities of the Mutant Huntingtin Protein ir Systems and Their Therapeutic Implications. Frontiers in Neuroscience, 2017, 11, 647.	ו in Vitro	1.4	33
157	The Potential of Small Molecules in Preventing Tau Oligomer Formation and Toxicity. , 2	.017,,97-121.		3
158	Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus. Neural 2017, 1-9.	Plasticity, 2017,	1.0	39
159	Tau secretion is correlated to an increase of Golgi dynamics. PLoS ONE, 2017, 12, e017	8288.	1.1	40
160	Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatmen Disease. Chinese Medical Journal, 2017, 130, 2978-2990.	t of Alzheimer's	0.9	49
161	LTP and memory impairment caused by extracellular ${\rm A}\hat{\rm I}^2$ and Tau oligomers is APP-deper .	ndent. ELife, 2017, 6,	2.8	121
162	Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Journal Transmission, 2018, 125, 591-613.	l of Neural	1.4	16
163	Galectin-8–mediated selective autophagy protects against seeded tau aggregation. Jo Biological Chemistry, 2018, 293, 2438-2451.	ournal of	1.6	84
164	Distinct differences in prion-like seeding and aggregation between Tau protein variants mechanistic insights into tauopathies. Journal of Biological Chemistry, 2018, 293, 2408	provide -2421.	1.6	103
165	The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer Progress in Neurobiology, 2018, 168, 104-127.	's disease.	2.8	74

#	Article	IF	CITATIONS
166	Extracellular Monomeric and Aggregated Tau Efficiently Enter Human Neurons through Overlapping but Distinct Pathways. Cell Reports, 2018, 22, 3612-3624.	2.9	147
167	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	3.1	27
168	Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nature Reviews Neurology, 2018, 14, 22-39.	4.9	303
169	Functional interplay between plasma membrane Ca2+-ATPase, amyloid β-peptide and tau. Neuroscience Letters, 2018, 663, 55-59.	1.0	20
170	Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1341-1349.	7.1	289
171	Passive Immunotherapy in Alzheimer's Disease. , 0, , .		2
172	Tau: A Common Denominator and Therapeutic Target for Neurodegenerative Disorders. Journal of Experimental Neuroscience, 2018, 12, 117906951877238.	2.3	9
173	Unconventional Secretion Mediates the Trans-cellular Spreading of Tau. Cell Reports, 2018, 23, 2039-2055.	2.9	194
174	Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. Biomolecular Concepts, 2018, 9, 1-11.	1.0	14
175	Ways to stop the spread of Alzheimer's disease. Nature, 2018, 559, S16-S17.	13.7	5
176	The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Frontiers in Cellular Neuroscience, 2018, 12, 172.	1.8	92
177	Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 545-568.	4.0	99
178	Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain. Frontiers in Neuroscience, 2018, 12, 267.	1.4	198
179	Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer's Disease: A Hypothesis. Journal of Molecular Neuroscience, 2018, 65, 480-490.	1.1	52
180	A common antigenic motif recognized by naturally occurring human VH5–51/VL4–1 anti-tau antibodies with distinct functionalities. Acta Neuropathologica Communications, 2018, 6, 43.	2.4	15
181	Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. International Journal of Molecular Sciences, 2018, 19, 645.	1.8	36
182	Transcellular Spreading of Tau in Tauopathies. ChemBioChem, 2018, 19, 2424-2432.	1.3	22
183	Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and crossâ€seeding behavior. Protein Science, 2018, 27, 1901-1909.	3.1	88

#	Article	IF	CITATIONS
184	Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. Journal of Alzheimer's Disease, 2018, 64, S611-S631.	1.2	102
185	Prion-like mechanisms in Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 303-319.	1.0	42
186	First-in-Rat Study of Human Alzheimer's Disease Tau Propagation. Molecular Neurobiology, 2019, 56, 621-631.	1.9	21
187	Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Molecular Psychiatry, 2019, 24, 857-868.	4.1	59
188	Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors. Neuroscience Research, 2019, 141, 36-42.	1.0	50
189	Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathologica Communications, 2019, 7, 129.	2.4	32
190	Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from The rTg4510 Mouse Model. Theranostics, 2019, 9, 5396-5411.	4.6	63
191	Tau Secretion: Good and Bad for Neurons. Frontiers in Neuroscience, 2019, 13, 649.	1.4	39
192	Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Al² and Tau Species. Frontiers in Neuroscience, 2019, 13, 659.	1.4	198
193	Distinct Conformations, Aggregation and Cellular Internalization of Different Tau Strains. Frontiers in Cellular Neuroscience, 2019, 13, 296.	1.8	36
194	Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Molecular Neurodegeneration, 2019, 14, 26.	4.4	59
195	Autophagy-Mediated Secretory Pathway is Responsible for Both Normal and Pathological Tau in Neurons. Journal of Alzheimer's Disease, 2019, 70, 667-680.	1.2	36
196	Intersection of pathological tau and microglia at the synapse. Acta Neuropathologica Communications, 2019, 7, 109.	2.4	119
197	Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in Alzheimer's disease and other human tauopathies. International Journal of Biological Macromolecules, 2019, 141, 278-289.	3.6	16
198	Tau Misfolding Efficiently Propagates between Individual Intact Hippocampal Neurons. Journal of Neuroscience, 2019, 39, 9623-9632.	1.7	34
199	Quantification of Tau Protein Lysine Methylation in Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 71, 979-991.	1.2	39
200	Normal and Pathological Tau Uptake Mediated by M1/M3 Muscarinic Receptors Promotes Opposite Neuronal Changes. Frontiers in Cellular Neuroscience, 2019, 13, 403.	1.8	43
201	Asparagine endopeptidase cleaves tau at N167 after uptake into microglia. Neurobiology of Disease, 2019, 130, 104518.	2.1	17

#	Article	IF	CITATIONS
202	Extracellular αâ€synuclein enters dopaminergic cells by modulating flotillinâ€1–assisted dopamine transporter endocytosis. FASEB Journal, 2019, 33, 10240-10256.	0.2	16
203	Four-repeat tauopathies. Progress in Neurobiology, 2019, 180, 101644.	2.8	141
204	Cerebrospinal fluid from Alzheimer's disease patients promotes tau aggregation in transgenic mice. Acta Neuropathologica Communications, 2019, 7, 72.	2.4	16
205	Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	1.4	79
206	The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nature Communications, 2019, 10, 1766.	5.8	68
207	An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochemical Journal, 2019, 476, 1401-1417.	1.7	29
208	Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 922-932.	1.1	8
209	The complexity of tau in Alzheimer's disease. Neuroscience Letters, 2019, 705, 183-194.	1.0	200
210	Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses, 2019, 11, 261.	1.5	41
211	Dural lymphatics regulate clearance of extracellular tau from the CNS. Molecular Neurodegeneration, 2019, 14, 11.	4.4	134
212	Propagation of Protein Aggregation in Neurodegenerative Diseases. Annual Review of Biochemistry, 2019, 88, 785-810.	5.0	213
213	Multi-compartment Microfluidic Device Geometry and Covalently Bound Poly-D-Lysine Influence Neuronal Maturation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 84.	2.0	17
214	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22.	2.4	211
215	The role of annealing and fragmentation in human tau aggregation dynamics. Journal of Biological Chemistry, 2019, 294, 4728-4737.	1.6	14
216	The gut-brain axis in the pathogenesis of Parkinson's disease. Brain Science Advances, 2019, 5, 73-81.	0.3	10
217	Tau Propagation as a Diagnostic and Therapeutic Target for Dementia: Potentials and Unanswered Questions. Frontiers in Neuroscience, 2019, 13, 1274.	1.4	32
218	Seeding Activity-Based Detection Uncovers the Different Release Mechanisms of Seed-Competent Tau Versus Inert Tau via Lysosomal Exocytosis. Frontiers in Neuroscience, 2019, 13, 1258.	1.4	14
219	Mechanisms of Cell-to-Cell Transmission of Pathological Tau. JAMA Neurology, 2019, 76, 101.	4.5	162

#	Article	IF	CITATIONS
220	A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nature Neuroscience, 2019, 22, 47-56.	7.1	154
221	Synaptic dysfunction in Alzheimer's disease: Mechanisms and therapeutic strategies. , 2019, 195, 186-198.		141
222	Amyloid-beta induced retrograde axonal degeneration in a mouse tauopathy model. NeuroImage, 2019, 189, 180-191.	2.1	23
223	Pathological Changes of Tau Related to Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 931-944.	1.7	54
224	Minimalistic in vitro systems for investigating tau pathology. Journal of Neuroscience Methods, 2019, 319, 69-76.	1.3	3
225	Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathologica, 2020, 139, 27-43.	3.9	29
226	Propagation of Tau Pathology: Integrating Insights From Postmortem and InÂVivo Studies. Biological Psychiatry, 2020, 87, 808-818.	0.7	50
227	3―O â€5ulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, 1834-1843.	1.6	2
228	Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life Sciences, 2020, 77, 1721-1744.	2.4	174
229	3â€ <i>O</i> â€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, 1818-1827.	7.2	71
230	From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathologica, 2020, 139, 3-25.	3.9	134
231	Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathologica, 2020, 139, 735-771.	3.9	35
232	Picalm reduction exacerbates tau pathology in a murine tauopathy model. Acta Neuropathologica, 2020, 139, 773-789.	3.9	27
233	Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. Journal of Neurochemistry, 2020, 154, 316-329.	2.1	35
234	Advances and considerations in AD tau-targeted immunotherapy. Neurobiology of Disease, 2020, 134, 104707.	2.1	70
235	Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like― Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570692.	2.0	5
236	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
237	The Cell Biology of Tau Secretion. Frontiers in Molecular Neuroscience, 2020, 13, 569818.	1.4	28

#	Article	IF	CITATIONS
238	New Strategy for Reducing Tau Aggregation Cytologically by A Hairpinlike Molecular Inhibitor, Tannic Acid Encapsulated in Liposome. ACS Chemical Neuroscience, 2020, 11, 3623-3634.	1.7	14
239	Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 40.	4.4	438
240	Paired Helical Filament-Forming Region of Tau (297–391) Influences Endogenous Tau Protein and Accumulates in Acidic Compartments in Human Neuronal Cells. Journal of Molecular Biology, 2020, 432, 4891-4907.	2.0	15
241	Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Molecular Neurobiology, 2020, 57, 4170-4186.	1.9	6
242	Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sciences, 2020, 10, 858.	1.1	17
243	Targeting Tau to Treat Clinical Features of Huntington's Disease. Frontiers in Neurology, 2020, 11, 580732.	1.1	13
244	Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Molecular Medicine, 2020, 12, e12025.	3.3	41
245	Comparison of size distribution and (Pro249-Ser258) epitope exposure in in vitro and in vivo derived Tau fibrils. BMC Molecular and Cell Biology, 2020, 21, 81.	1.0	3
246	Dynamics of Internalization and Intracellular Interaction of Tau Antibodies and Human Pathological Tau Protein in a Human Neuron-Like Model. Frontiers in Neurology, 2020, 11, 602292.	1.1	10
247	Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Frontiers in Neurology, 2020, 11, 590754.	1.1	32
248	Periâ€arterial pathways for clearance of α‣ynuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12070.	1.2	17
249	Role of tau protein in Alzheimer's disease: The prime pathological player. International Journal of Biological Macromolecules, 2020, 163, 1599-1617.	3.6	100
250	Quantitative propagation of assembled human Tau from Alzheimer's disease brain in microfluidic neuronal cultures. Journal of Biological Chemistry, 2020, 295, 13079-13093.	1.6	22
251	Repetitive Head Trauma Induces Chronic Traumatic Encephalopathy by Multiple Mechanisms. Seminars in Neurology, 2020, 40, 430-438.	0.5	10
252	Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules, 2020, 10, 1487.	1.8	5
253	Degradation and Transmission of Tau by Autophagic-Endolysosomal Networks and Potential Therapeutic Targets for Tauopathy. Frontiers in Molecular Neuroscience, 2020, 13, 586731.	1.4	56
254	Intramuscular injection of vectorized-scFvMC1 reduces pathological tau in two different tau transgenic models. Acta Neuropathologica Communications, 2020, 8, 126.	2.4	5
255	Principal components of tau positron emission tomography and longitudinal tau accumulation in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 114.	3.0	8

#	Article	IF	CITATIONS
256	Tau proteinopathies and the prion concept. Progress in Molecular Biology and Translational Science, 2020, 175, 239-259.	0.9	20
257	Microfluidics-Based Systems in Diagnosis of Alzheimer's Disease and Biomimetic Modeling. Micromachines, 2020, 11, 787.	1.4	18
258	Aggrecan modulates the expression and phosphorylation of tau in a novel bigenic TauP301L ― <i>Acan</i> mouse model. European Journal of Neuroscience, 2021, 53, 3889-3904.	1.2	5
259	Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 265.	1.7	78
260	The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. Journal of Neurochemistry, 2020, 155, 577-591.	2.1	32
261	The involvement of stress granules in aging and agingâ€associated diseases. Aging Cell, 2020, 19, e13136.	3.0	68
262	Protein transmission in neurodegenerative disease. Nature Reviews Neurology, 2020, 16, 199-212.	4.9	330
263	Role of dietary fatty acids in microglial polarization in Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 93.	3.1	57
264	Capacity for Seeding and Spreading of Argyrophilic Grain Disease in a Wild-Type Murine Model; Comparisons With Primary Age-Related Tauopathy. Frontiers in Molecular Neuroscience, 2020, 13, 101.	1.4	8
265	Intracerebral seeding of amyloid-β and tau pathology in mice: Factors underlying prion-like spreading and comparisons with α-synuclein. Neuroscience and Biobehavioral Reviews, 2020, 112, 1-27.	2.9	31
266	Prion-like properties of Tau assemblies. Current Opinion in Neurobiology, 2020, 61, 49-57.	2.0	20
267	Pharmacological inhibition and knockdown of Oâ€GlcNAcase reduces cellular internalization of αâ€synuclein preformed fibrils. FEBS Journal, 2021, 288, 452-470.	2.2	28
268	Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. Journal of Neurochemistry, 2021, 156, 563-588.	2.1	14
269	αâ€synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. Journal of Neurochemistry, 2021, 157, 727-751.	2.1	13
270	Alzheimer's Disease: Tau Pathology and Dysfunction of Endocytosis. Frontiers in Molecular Neuroscience, 2020, 13, 583755.	1.4	19
271	Indication of retrograde tau spreading along Braak stages and functional connectivity pathways. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2272-2282.	3.3	12
272	PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. Journal of Biological Chemistry, 2021, 296, 100636.	1.6	21
273	Filamentous recombinant human Tau activates primary astrocytes via an integrin receptor complex. Nature Communications, 2021, 12, 95.	5.8	46

#	ARTICLE	IF	CITATIONS
274	Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Frontiers in Neurology, 2020, 11, 573324.	1.1	24
275	Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nature Reviews Chemistry, 2021, 5, 277-294.	13.8	56
276	Advances in microfluidic <i>in vitro</i> systems for neurological disease modeling. Journal of Neuroscience Research, 2021, 99, 1276-1307.	1.3	56
277	Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines, 2021, 9, 190.	1.4	26
278	Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. ELife, 2021, 10, .	2.8	22
280	The propagation mechanisms of extracellular tau in Alzheimer's disease. Journal of Neurology, 2022, 269, 1164-1181.	1.8	10
281	Tau internalization: A complex step in tau propagation. Ageing Research Reviews, 2021, 67, 101272.	5.0	18
282	Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis. Brain Connectivity, 2021, 11, 799-814.	0.8	9
283	Emerging Brainâ€Pathophysiologyâ€Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brainsâ€onâ€aâ€Chip. Advanced Healthcare Materials, 2021, 10, e2002119.	3.9	27
284	Role of the endolysosomal pathway and exosome release in tau propagation. Neurochemistry International, 2021, 145, 104988.	1.9	9
285	Development of P301S tau seeded organotypic hippocampal slice cultures to study potential therapeutics. Scientific Reports, 2021, 11, 10309.	1.6	2
287	Tau Seeding Mouse Models with Patient Brain-Derived Aggregates. International Journal of Molecular Sciences, 2021, 22, 6132.	1.8	14
288	Sorcin Activates the Brain PMCA and Blocks the Inhibitory Effects of Molecular Markers of Alzheimer's Disease on the Pump Activity. International Journal of Molecular Sciences, 2021, 22, 6055.	1.8	9
290	Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiology of Disease, 2021, 154, 105360.	2.1	101
291	The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain, Behavior, & Immunity - Health, 2021, 14, 100242.	1.3	14
292	Possible Mechanisms of Tau Spread and Toxicity in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 707268.	1.8	41
294	Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. GeroScience, 2022, 44, 173-194.	2.1	6
295	Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life, 2021, 11, 938.	1.1	13

#	Article	IF	CITATIONS
296	Synaptic tau: A pathological or physiological phenomenon?. Acta Neuropathologica Communications, 2021, 9, 149.	2.4	30
297	Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Reports, 2021, 36, 109720.	2.9	42
298	Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Experimental Neurology, 2021, 343, 113756.	2.0	18
299	Neurotoxicity of oligomers of phosphorylated Tau protein carrying tauopathy-associated mutation is inhibited by prion protein. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166209.	1.8	8
300	Tau Oligomers Neurotoxicity. Life, 2021, 11, 28.	1.1	42
301	Tau Secretion. Advances in Experimental Medicine and Biology, 2019, 1184, 123-134.	0.8	13
302	Tau Prion-Like Propagation: State of theÂArt and Current Challenges. Advances in Experimental Medicine and Biology, 2019, 1184, 305-325.	0.8	47
303	Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. Advances in Experimental Medicine and Biology, 2019, 1184, 341-357.	0.8	13
304	Distinct Neurotoxic Effects of Extracellular Tau Species in Primary Neuronal-Glial Cultures. Molecular Neurobiology, 2021, 58, 658-667.	1.9	16
305	Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death and Disease, 2020, 11, 314.	2.7	56
311	Tau is not necessary for amyloid-β–induced synaptic and memory impairments. Journal of Clinical Investigation, 2020, 130, 4831-4844.	3.9	34
312	Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models. PLoS ONE, 2015, 10, e0125614.	1.1	124
313	Detection of mis-folded protein aggregates from a clinical perspective. Journal of Clinical and Translational Research, 2016, 2, .	0.3	2
314	Prion-like Mechanisms in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 755-764.	0.7	27
315	Dangerous Liaisons: Tau Interaction with Muscarinic Receptors. Current Alzheimer Research, 2020, 17, 224-237.	0.7	12
316	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	2.8	24
317	Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. Biology, 2021, 10, 1047.	1.3	14
318	Dynamic-Inspired Perspective on the Molecular Inhibitor of Tau Aggregation by Glucose Gallates Based on Human Neurons. ACS Chemical Neuroscience, 2021, 12, 4162-4174.	1.7	6

# 319	ARTICLE Influence of traumatic brain injury on extracellular tau elimination at the blood–brain barrier. Fluids and Barriers of the CNS, 2021, 18, 48.	IF 2.4	Citations 8
320	Tau Pathology in Neurodegenerative Diseases. Neuromethods, 2022, , 71-97.	0.2	1
321	Report from the Tau Front: Cantoblanco 2013. , 2014, 04, .		0
322	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in AlzheimerÂչs disease. Acta Neuropathologica Communications, 2014, 2, 146.	2.4	60
323	Uncovering the Path to Neurodegeneration from Playingfield to Battlefield. , 0, , .		0
324	Prions et transconformation protéique: une perspective historique. Bulletin De L'Academie Nationale De Medecine, 2015, 199, 787-796.	0.0	0
326	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0
328	Proteopathic Tau Primes and Activates Interleukin-1ß(Il-1ß) via MyD88- and NLRP3-ASC-Inflammasome Dependent Pathways. SSRN Electronic Journal, 0, , .	0.4	2
331	Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Molecular Psychiatry, 2022, 27, 269-280.	4.1	6
332	Editorial: Tau Protein: Mechanisms From Health to Degeneration. Frontiers in Molecular Neuroscience, 2021, 14, 743986.	1.4	0
334	The role of wild-type tau in Alzheimer's disease and related tauopathies. Journal of Life Sciences (Westlake Village, Calif), 2020, 2, 1-17.	1.8	3
335	Co-culture of Murine Neurons Using a Microfluidic Device for The Study of Tau Misfolding Propagation. Bio-protocol, 2020, 10, e3718.	0.2	1
336	P62 accumulates through neuroanatomical circuits in response to tauopathy propagation. Acta Neuropathologica Communications, 2021, 9, 177.	2.4	8
337	Detection of misfolded protein aggregates from a clinical perspective. Journal of Clinical and Translational Research, 2016, 2, 11-26.	0.3	3
338	The formation of small aggregates contributes to the neurotoxic effects of tau45-230. Neurochemistry International, 2022, 152, 105252.	1.9	4
339	Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Frontiers in Neuroscience, 2021, 15, 781722.	1.4	1
340	Proliferation of Tau 304–380 Fragment Aggregates through Autocatalytic Secondary Nucleation. ACS Chemical Neuroscience, 2021, 12, 4406-4415.	1.7	19
341	Alpha adaptins show isoformâ€specific association with neurofibrillary tangles in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	6

#	Article	IF	CITATIONS
342	Nasal Rifampicin Halts the Progression of Tauopathy by Inhibiting Tau Oligomer Propagation in Alzheimer Brain Extract-Injected Mice. Biomedicines, 2022, 10, 297.	1.4	7
343	Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. Journal of Molecular Neuroscience, 2022, 72, 772-791.	1.1	12
345	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	1.9	6
346	p38 activation occurs mainly in microglia in the P301S Tauopathy mouse model. Scientific Reports, 2022, 12, 2130.	1.6	5
347	Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer's disease. EBioMedicine, 2022, 76, 103836.	2.7	65
348	Propagation of tau and $\hat{l}\pm$ -synuclein in the brain: therapeutic potential of the glymphatic system. Translational Neurodegeneration, 2022, 11, 19.	3.6	15
350	Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochemistry International, 2022, 155, 105307.	1.9	5
351	Impaired Retromer Function in Niemann-Pick Type C Disease Is Dependent on Intracellular Cholesterol Accumulation. International Journal of Molecular Sciences, 2021, 22, 13256.	1.8	9
352	Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Progress in Neurobiology, 2022, 214, 102270.	2.8	77
372	Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Reports, 2022, 39, 110776.	2.9	19
374	Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nature Communications, 2022, 13, 2692.	5.8	21
376	Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
377	Axonal transport impairment and its relationship with diffusion tensor imaging metrics of a murine model of p301L tau induced tauopathy. Neuroscience, 2022, , .	1.1	2
378	The Fate of Tau Aggregates Between Clearance and Transmission. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
379	Tau liquid–liquid phase separation: At the crossroads of tau physiology and tauopathy. Journal of Cellular Physiology, 0, , .	2.0	4
380	The prion-like transmission of tau oligomers via exosomes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	9
381	The gut-brain axis in the pathogenesis of Parkinson's disease. Brain Science Advances, 2019, 5, 73-81.	0.3	1
382	Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Translational Research, 2023, 254, 13-23.	2.2	1

#	Article	IF	CITATIONS
383	Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells, 2022, 11, 2997.	1.8	6
384	Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays?. International Journal of Molecular Sciences, 2022, 23, 11527.	1.8	4
385	Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Molecular Neurobiology, 2022, 59, 7513-7540.	1.9	5
386	Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nature Communications, 2022, 13, .	5.8	14
387	Proline-Rich Region II (PRR2) Plays an Important Role in Tau–Glycan Interaction: An NMR Study. Biomolecules, 2022, 12, 1573.	1.8	1
388	Pathogenic Role of RAGE in Tau Transmission and Memory Deficits. Biological Psychiatry, 2023, 93, 829-841.	0.7	4
389	PICALM and Alzheimerâ $€$ ™s Disease: An Update and Perspectives. Cells, 2022, 11, 3994.	1.8	19
390	Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 15940.	1.8	4
391	The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. Advanced Science, 2023, 10, .	5.6	9
392	Human mini-brains for reconstituting central nervous system disorders. Lab on A Chip, 2023, 23, 964-981.	3.1	3
394	How Organ-on-a-Chip Technology Can Assist in Studying the Role of the Glymphatic System in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 2171.	1.8	5
395	Botulinum neurotoxin A modulates the axonal release of pathological tau in hippocampal neurons. Toxicon, 2023, 228, 107110.	0.8	2
396	The unique neuropathological vulnerability of the human brain to aging. Ageing Research Reviews, 2023, 87, 101916.	5.0	4
397	Toxic Tau Aggregation in AD. , 2023, , 1-30.		1
400	Mechanism of action deconvolution of the small-molecule pathological tau aggregation inhibitor Anle138b. Alzheimer's Research and Therapy, 2023, 15, .	3.0	0
403	Neuroanatomical Tract Tracers: Not Just for Neural Tracing Anymore. ACS Applied Bio Materials, 2023, 6, 1380-1397.	2.3	1
404	The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells, 2023, 12, 1204.	1.8	1
417	Novel Therapeutic Targets for Treating Alzheimer's Disease. , 2023, , 19-39.		Ο

#	Article	IF	CITATIONS
421	Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases. Neuroscience Bulletin, 2024, 40, 241-254.	1.5	0
434	α-Linolenic Acid Induces Microglial Activation and Extracellular Tau Internalization. Methods in Molecular Biology, 2024, , 471-481.	0.4	0