Realization of three-dimensional guiding of photons in

Nature Photonics 7, 133-137 DOI: 10.1038/nphoton.2012.341

Citation Report

	FDODT	
Article	IF	CITATIONS
Recent progress in photonic crystals and their applications. , 2013, , .		1
Turning data on a dime. Nature Photonics, 2013, 7, 89-91.	15.6	5
Nanocavities at the surface of three-dimensional photonic crystals. Optics Express, 2013, 21, 10590.	1.7	7
Influence of structural fluctuations on Q factor of nanocavities at the surface of three-dimensional photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1660.	0.9	3
Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes. Optics Express, 2013, 21, 12443.	1.7	3
Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Optics Express, 2013, 21, 19972.	1.7	110
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15886-15891.	3.3	174
Rapid and Lowâ€Cost Prototyping of 3D Nanostructures with Multi‣ayer Hydrogen Silsesquioxane Scaffolds. Small, 2013, 9, 4237-4242.	5.2	9
Surface nanocavities in 3D photonic crystals. , 2013, , .		1
Transcending limitations. Nature Photonics, 2013, 7, 81-81.	15.6	0
Three-dimensional photonic crystals created by single-step multi-directional plasma etching. Optics Express, 2014, 22, 17099.	1.7	16
Three-Dimensional Photon Control in Membrane-Stack Photonic Crystals. Chinese Physics Letters, 2014, 31, 024201.	1.3	0
Design of a three-dimensional photonic crystal nanocavity based on a \$langle 110angle \$-layered diamond structure. Japanese Journal of Applied Physics, 2014, 53, 04EG08.	0.8	8

14	Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared. Advanced Optical Materials, 2014, 2, 115-119.	3.6	59
15	Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect. Journal of Optics (United Kingdom), 2014, 16, 085002.	1.0	10
16	Dielectric slot embedded metal cavity waveguides. Optics Communications, 2014, 324, 134-140.	1.0	2
17	Integrated flexible chalcogenide glass photonic devices. Nature Photonics, 2014, 8, 643-649.	15.6	291

18	A facile way to introduce planar defects into colloidal photonic crystals for pronounced passbands. Journal of Materials Chemistry C, 2014, 2, 8829-8836.	2.7	17	
----	--	-----	----	--

#

CITATION REPORT

#	Article	IF	CITATIONS
19	ONE-DIMENSIONAL PHOTONIC BAND GAPS IN OPTICAL LATTICES. Annual Review of Cold Atoms and Molecules, 2014, , 193-249.	2.8	0
20	Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials. Journal of Visualized Experiments, 2014, , 51614.	0.2	0
21	Demonstration of a three-dimensional photonic crystal nanocavity in a âŸ 110⟩-layered diamond structure. Applied Physics Letters, 2015, 107, .	1.5	9
22	Method for making a single-step etch mask for 3D monolithic nanostructures. Nanotechnology, 2015, 26, 505302.	1.3	20
23	Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces. Optics Express, 2015, 23, 26617.	1.7	39
24	Polarization sensitive beam bending using a spatially variant photonic crystal. Proceedings of SPIE, 2015, , .	0.8	Ο
25	Three-dimensional photonic crystals fabricated by simultaneous multidirectional etching. Physical Review B, 2015, 91, .	1.1	12
26	Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures. Journal of Electronic Materials, 2015, 44, 1426-1431.	1.0	15
27	Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials. Scientific Reports, 2015, 5, 8313.	1.6	24
28	Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. ACS Applied Materials & Interfaces, 2015, 7, 22644-22651.	4.0	35
29	Role of Surface Mode on Light Out-Coupling Characteristics of waveguide in Three Dimensional Photonic Crystals. Journal of Lightwave Technology, 2015, 33, 4531-4535.	2.7	5
30	Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials. Advanced Optical Materials, 2015, 3, 12-32.	3.6	213
31	Experimental realization of an open cavity. Scientific Reports, 2014, 4, 5965.	1.6	5
32	Study of Two-Dimensional Photonic Crystal Arrays for Beam Splitters. Medziagotyra, 2016, 22, .	0.1	1
33	Fabrication of 3D Photonic Crystals toward Arbitrary Manipulation of Photons in Three Dimensions. Photonics, 2016, 3, 36.	0.9	10
34	Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures. Photonics, 2016, 3, 34.	0.9	6
35	Multifunctional Hydrogels with Temperature, Ion, and Magnetocaloric Stimuliâ€Responsive Performances. Macromolecular Rapid Communications, 2016, 37, 759-768.	2.0	36
36	Modelling defect cavities formed in inverse three-dimensional rod-connected diamond photonic crystals. Europhysics Letters, 2016, 116, 64007.	0.7	7

#	Article	IF	CITATIONS
37	Tunable nanoblock lasers and stretching sensors. Nanoscale, 2016, 8, 16769-16775.	2.8	11
38	Fabrication and characterization of Ge_20As_20Se_15Te_45 chalcogenide glass for photonic crystal by nanoimprint lithography. Optical Materials Express, 2016, 6, 1853.	1.6	8
39	Control of radiation angle by introducing symmetric end structure to oblique waveguide in three-dimensional photonic crystal. Optics Express, 2016, 24, 13518.	1.7	6
40	Three-dimensional photonic Dirac points stabilized by point group symmetry. Physical Review B, 2016, 93, .	1.1	58
41	AND and OR logic gates based on a phononic crystal ring resonator cavity. Modern Physics Letters B, 2016, 30, 1650388.	1.0	8
42	Cubical photonic structures by means of ion beam assisted robotic assembly. , 2016, , .		5
43	Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography. Scientific Reports, 2016, 6, 19542.	1.6	10
44	Tuning the Refractive Index in Gyroid Photonic Crystals via Leadâ€Chalcogenide Nanocrystal Coating. Advanced Optical Materials, 2016, 4, 226-230.	3.6	8
45	Three-Dimensional Manipulations of Surface Plasmon Polariton Wave Propagation. Plasmonics, 2016, 11, 1385-1391.	1.8	6
46	Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer. Physical Chemistry Chemical Physics, 2016, 18, 5306-5315.	1.3	12
47	Self-assembled three-dimensional inverted photonic crystals on a photonic chip. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700039.	0.8	2
48	Light propagation in ultra-thin gap in 3D photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2017, 24, 58-62.	1.0	2
49	Three-dimensional woodpile photonic crystals for visible light applications. Journal of Physics Communications, 2017, 1, 015004.	0.5	4
50	Photonic hyperuniform networks obtained by silicon double inversion of polymer templates. Optica, 2017, 4, 361.	4.8	20
51	Compressible 1D photonic crystal nanolasers with wide wavelength tuning. Optics Letters, 2017, 42, 2267.	1.7	13
52	Photonic circuitry. , 0, , 342-362.		0
53	Fully three-dimensional analysis of a photonic crystal assisted silicon on insulator waveguide bend. International Journal of Modern Physics B, 2018, 32, 1850344.	1.0	1
54	Morphology and Structural Parameters of Three-Dimensional Structures Created Using STED Nanolithography. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 1012-1017.	0.1	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Cavity Design in Woodpile Based 3D Photonic Crystals. Applied Sciences (Switzerland), 2018, 8, 1087.	1.3	6
56	Observation of linear plasmonic breathers and adiabatic elimination in a plasmonic multi-level coupled system. Optics Express, 2018, 26, 1433.	1.7	2
57	Investigation of Low-Index Waveguiding in Inverse Rod-Connected Diamond Photonic Crystals. , 2019, ,		0
58	Foam as a self-assembling amorphous photonic band gap material. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9202-9207.	3.3	31
59	Silicon-Compatible Fabrication of Inverse Woodpile Photonic Crystals with a Complete Band Gap. ACS Photonics, 2019, 6, 368-373.	3.2	5
60	Large Area Threeâ€Dimensional Photonic Crystal Membranes: Singleâ€Run Fabrication and Applications with Embedded Planar Defects. Advanced Optical Materials, 2019, 7, 1801176.	3.6	17
61	Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness. Physical Review B, 2020, 101, .	1.1	10
62	Systematic design study of waveguides and waveguide bends in diamond-structured photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 907.	0.9	1
63	Spatially Shaping Waves to Penetrate Deep inside a Forbidden Gap. Physical Review Letters, 2021, 126, 177402.	2.9	14
64	Scattering From Controlled Defects in Woodpile Photonic Crystals. Advanced Optical Materials, 2021, 9, 2001699.	3.6	11
65	Complete bandgap in three-dimensional chiral gyroid photonic crystals for topological photonics. , 2016, , .		4
66	Design of thin-film photonic crystals with complete photonic bandgap. Optics Express, 2018, 26, 29521.	1.7	2
67	Experimental probe of a complete 3D photonic band gap. Optics Express, 2020, 28, 2683.	1.7	9
68	Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography. Optics Express, 2020, 28, 4347.	1.7	18
69	Three-dimensional photonic crystal simultaneously integrating a nanocavity laser and waveguides. Optica, 2019, 6, 296.	4.8	20
70	Near-field out-of-plane coupling between terahertz photonic crystal waveguides. Optica, 2019, 6, 1002.	4.8	17
71	Freeform wave-guiding at infrared regime in two dimensional disordered photonic bandgap materials. , 2013, , .		1
72	Fabrication and optimization for waveguides in sub-micron scale hyperuniform disordered photonic bandgap materials. , 2014, , .		0

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
73	Measurement of optical loss in nanophotonic waveguides using integrated cavities. Optics Letters, 2016, 41, 5486.	1.7	1
74	Guiding of laser light from a nanocavity in a three-dimensional photonic crystal. , 2017, , .		0
75	Fabrication of magneto-optical waveguides inside transparent silica xerogels containing ferrimagnetic Fe ₃ O ₄ nanoparticles. Optics Express, 2018, 26, 31898.	1.7	5
76	Nonclassical properties and Anderson localization of quantum states in coupled waveguides. Physical Review A, 2022, 105, .	1.0	2
77	Super strong wide TM Mie bandgaps tolerating disorders. Scientific Reports, 2022, 12, 7884.	1.6	3
78	Three-dimensional acoustic circuits with coupled resonators in phononic crystals. Journal of Sound and Vibration, 2022, 536, 117115.	2.1	4
79	Enhancement of magnetization in silica composite of ZnFe2O4 nanoparticles induced by femtosecond-laser irradiation. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0