Microwave Effects in Organic Synthesis: Myth or Realit

Angewandte Chemie - International Edition 52, 1088-1094 DOI: 10.1002/anie.201204103

Citation Report

#	Article	IF	CITATIONS
1	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 1990, , 277-288.	0.5	4
2	Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose. Journal of the American Chemical Society, 2013, 135, 11728-11731.	6.6	198
3	Design and evaluation of improved magnetic stir bars for single-mode microwave reactors. Organic and Biomolecular Chemistry, 2013, 11, 4949.	1.5	14
4	Microwave-assisted solution phase peptide synthesis in neat water. RSC Advances, 2013, 3, 16810.	1.7	22
5	Developments in Meyers' Lactamization Methodology: En Route to Bi(hetero)aryl Structures with Defined Axial Chirality. Journal of Organic Chemistry, 2013, 78, 8191-8197.	1.7	30
6	Microwave-hydrothermal synthesis of single-crystalline Co3O4 spinel nanocubes. CrystEngComm, 2013, 15, 7443.	1.3	37
7	Microwave effect on catalytic enantioselective Claisen rearrangement. Chemical Communications, 2013, 49, 8371.	2.2	44
8	Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 2013, 50, 77-87.	2.5	148
9	Simulating Microwave Chemistry in a Resistanceâ€Heated Autoclave Made of Semiconducting Silicon Carbide Ceramic. Chemistry - A European Journal, 2013, 19, 15827-15830.	1.7	9
10	Efficient and Rapid Synthesis of Chloridoâ€Bridged Halfâ€Sandwich Complexes of Ruthenium, Rhodium, and Iridium by Microwave Heating. European Journal of Inorganic Chemistry, 2013, 2013, 4558-4562.	1.0	64
12	Single-Step Ugi Multicomponent Reaction for the Synthesis of Phosphopeptidomimetics. Journal of Organic Chemistry, 2013, 78, 10077-10087.	1.7	10
13	Hydrosilylation kinetics of silicon nanocrystals. Chemical Communications, 2013, 49, 11361.	2.2	20
14	Chitosan as biosupport for the MW-assisted synthesis of palladium catalysts and their use in the hydrogenation of ethyl cinnamate. Applied Catalysis A: General, 2013, 468, 95-101.	2.2	35
15	Unraveling the Mysteries of Microwave Chemistry Using Silicon Carbide Reactor Technology. Accounts of Chemical Research, 2013, 46, 1579-1587.	7.6	95
16	How to measure reaction temperature in microwave-heated transformations. Chemical Society Reviews, 2013, 42, 4977.	18.7	167
17	Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Organic Letters, 2013, 15, 2140-2143.	2.4	24
18	Hydrazine-mediated Reduction of Nitro and Azide Functionalities Catalyzed by Highly Active and Reusable Magnetic Iron Oxide Nanocrystals. Journal of Organic Chemistry, 2013, 78, 4530-4542.	1.7	136
19	Catalytic Activation of Carbohydrates as Formaldehyde Equivalents for Stetter Reaction with Enones. Journal of the American Chemical Society, 2013, 135, 8113-8116.	6.6	112

TATION RED

#	Article	IF	CITATIONS
20	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	1.7	39
21	Multicomponent Synthesis of 4-Aminophthalazin-1(2 <i>H</i>)-ones by Palladium-Catalyzed Isocyanide Insertion. Journal of Organic Chemistry, 2013, 78, 6735-6745.	1.7	47
22	Microwave-assisted chemistry of purines and xanthines. AnÂoverview. Tetrahedron, 2013, 69, 8105-8127.	1.0	27
23	Reply to the Correspondence on Microwave Effects in Organic Synthesis. Angewandte Chemie - International Edition, 2013, 52, 7924-7928.	7.2	67
24	Correspondence on Microwave Effects in Organic Synthesis. Angewandte Chemie - International Edition, 2013, 52, 7918-7923.	7.2	86
26	Assessment of Fullerene Derivatives as Rolling Journals in a Finite Carbon Nanotube Bearing. Organic Letters, 2013, 15, 3199-3201.	2.4	66
28	Temperature measurements with two different IR sensors in a continuous-flow microwave heated system. Beilstein Journal of Organic Chemistry, 2013, 9, 2079-2087.	1.3	16
29	Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. Journal of Food Engineering, 2013, 119, 525-532.	2.7	64
31	Design and synthesis of multivalent neoglycoconjugates by click conjugations. Beilstein Journal of Organic Chemistry, 2014, 10, 1325-1332.	1.3	6
32	Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves. Beilstein Journal of Nanotechnology, 2014, 5, 537-545.	1.5	11
33	Continuous Flow and Microwaveâ€Assisted Vorbrüggen Glycosylations: Historical Perspective to Highâ€Throughput Strategies. Asian Journal of Organic Chemistry, 2014, 3, 1134-1149.	1.3	7
34	Synthesis of Polynitrostilbenes from 2,4,6-Trinitro-M-Xylene and 2,4,6-Trinitrotoluene by a Microwave-Assisted Solvent Free Method. Journal of Chemical Research, 2014, 38, 240-244.	0.6	5
35	Self-assembly of nanostructures obtained in a microwave-assisted oxidative polymerization of aniline. EXPRESS Polymer Letters, 2014, 8, 745-755.	1.1	9
36	Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Advances, 2014, 4, 65088-65097.	1.7	15
37	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2014, 26, 573-595.	0.5	1
38	Microwaveâ€assisted aqueous twoâ€phase extraction of phenolics from grape (<i>Vitis vinifera</i>) seed. Journal of Chemical Technology and Biotechnology, 2014, 89, 1576-1581.	1.6	58
39	Efficiency of 2.45 and 5.80 GHz microwave irradiation for a hydrolysis reaction by thermostable β-Glucosidase HT1. Bioscience, Biotechnology and Biochemistry, 2014, 78, 758-760.	0.6	11
41	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62

#	Article	IF	CITATIONS
42	Microwave-assisted and iodine mediated synthesis of 5-n-alkyl-cycloalkane[d]-pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and cyclic ketones. Tetrahedron Letters, 2014, 55, 1998-2002.	0.7	11
43	Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. European Polymer Journal, 2014, 52, 218-226.	2.6	26
44	Peptidosteroid Tweezers Revisited: DNA Binding Through an Optimised Design. European Journal of Organic Chemistry, 2014, 2014, 2883-2891.	1.2	12
45	Solventâ€Free and Catalystsâ€Free Chemistry: A Benign Pathway to Sustainability. ChemSusChem, 2014, 7, 24-44.	3.6	255
46	Twoâ€ S tep Functionalization of Oligosaccharides Using Glycosyl Iodide and Trimethylene Oxide and Its Applications to Multivalent Glycoconjugates. Chemistry - A European Journal, 2014, 20, 6444-6454.	1.7	14
47	Does microwave sterilization of growth media involve any non-thermal effect?. Journal of Microbiological Methods, 2014, 96, 70-72.	0.7	17
48	Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Accounts of Chemical Research, 2014, 47, 1338-1348.	7.6	542
49	Microwave assisted synthesis of 10b-aza-10c-borapyrene. Tetrahedron Letters, 2014, 55, 445-447.	0.7	8
50	Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chemistry, 2014, 16, 2027.	4.6	242
51	Catalyst- and solvent-free, pot, atom and step economic synthesis of tetrahydroquinazolines by an aza-Diels–Alder reaction strategy. Green Chemistry, 2014, 16, 1158-1162.	4.6	36
52	"Quick and click―assembly of functionalised indole rings via metal-promoted cyclative tandem reactions. RSC Advances, 2014, 4, 59297-59301.	1.7	6
53	Microwave irradiation and flow chemistry for a straightforward synthesis of piano-stool iron complexes. Journal of Organometallic Chemistry, 2014, 774, 35-42.	0.8	6
54	Efficient preparation, uses, and recycling of a polymer-bound sulfonylhydrazide scavenger. Tetrahedron, 2014, 70, 9421-9426.	1.0	4
55	Microwave assisted synthesis of cyclic carbonates from olefins with sodium bicarbonates as the C1 source. Chemical Communications, 2014, 50, 3245.	2.2	36
56	An expedient route to heterocycles through α-arylation of ketones and arylamides by microwave induced thermal SRN1 reactions. RSC Advances, 2014, 4, 17490-17497.	1.7	21
57	Metal-free amidation of ether sp3 C–H bonds with sulfonamides using PhI(OAc)2. RSC Advances, 2014, 4, 47951-47957.	1.7	23
58	Ruthenium-catalyzed cross-metathesis with electron-rich phenyl vinyl sulfide enables access to 2,3-dideoxy-d-ribopyranose ring system donors. RSC Advances, 2014, 4, 19794-19799.	1.7	9
59	Expedient BINOL derivative arylations. Tetrahedron Letters, 2014, 55, 6420-6422.	0.7	7

#	Article	IF	CITATIONS
60	Microwave-Assisted Synthesis of Functionalized Shvo-Type Complexes. Organometallics, 2014, 33, 2814-2819.	1.1	31
61	Gold/Acidâ€Coâ€catalyzed Direct Microwaveâ€Assisted Synthesis of Fused Azaheterocycles from Propargylic Hydroperoxides. Chemistry - A European Journal, 2014, 20, 3384-3393.	1.7	22
62	Microwave-assisted transition-metal-free intramolecular Ullmann-type O-arylation in water for the synthesis of xanthones and azaxanthones. Tetrahedron Letters, 2014, 55, 4883-4887.	0.7	15
63	Microwave-assisted catalytic reduction of NO into N2 by activated carbon supported Mn2O3 at low temperature under O2 excess. Fuel Processing Technology, 2014, 127, 1-6.	3.7	38
64	Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products, 2014, 61, 31-40.	2.5	197
65	Parameters Affecting the Microwave-Specific Acceleration of a Chemical Reaction. Journal of Organic Chemistry, 2014, 79, 7425-7436.	1.7	61
66	Practical challenges in the energyâ€based control of molecular transformations in chemical reactors. AICHE Journal, 2014, 60, 3392-3405.	1.8	6
67	Microwave Irradiated Immobilized Lipase Catalyzed Synthesis of Alkyl Benzoate Esters by Transesterification: Mechanism and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 8706-8713.	1.8	37
68	Microwave-Specific Acceleration of a Friedel–Crafts Reaction: Evidence for Selective Heating in Homogeneous Solution. Journal of Organic Chemistry, 2014, 79, 7437-7450.	1.7	73
69	A Critical Investigation on the Occurrence of Microwave Effects in Emulsion Polymerizations. Macromolecular Chemistry and Physics, 2014, 215, 2318-2326.	1.1	5
70	Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazineâ€Mediated Nitro Reductions in Continuous Flow. ChemSusChem, 2014, 7, 3122-3131.	3.6	54
71	Subtle Mitsunobu couplings under super-heating: the role of high-throughput continuous flow and microwave strategies. Organic and Biomolecular Chemistry, 2014, 12, 8112-8124.	1.5	8
72	Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Analytica Chimica Acta, 2014, 809, 128-133.	2.6	152
73	A Critical Investigation on the Existence of Selective Microwave Absorption in the Synthesis of CdSe Quantum Dots. Australian Journal of Chemistry, 2014, 67, 1180.	0.5	1
74	Microwave-Promoted Synthesis of Bicyclic Azocine-β-Lactams from Bis(allenes). Journal of Organic Chemistry, 2014, 79, 7075-7083.	1.7	11
75	Large accelerations from small thermal differences: case studies and conventional reproduction of microwave effects on palladium couplings. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 295-304.	0.8	10
77	Quinoline and phenanthroline preparation starting from glycerol via improved microwave-assisted modified Skraup reaction. RSC Advances, 2014, 4, 21456-21464.	1.7	60
78	Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production. Bioresource Technology, 2014, 161, 270-279.	4.8	57

# 79	ARTICLE Ultrasound and microwave assisted synthesis of dihydroxyacetophenone derivatives with or without 1,2-diazine skeleton. Ultrasonics Sonochemistry, 2014, 21, 802-811.	IF 3.8	Citations 27
80	Effect of simultaneous cooling on microwave-assisted wet digestion of biological samples with diluted nitric acid and O2 pressure. Analytica Chimica Acta, 2014, 837, 16-22.	2.6	42
81	Microwaveâ€Assisted, Rhodium(III)â€Catalyzed Nâ€Annulation Reactions of Aryl and α,βâ€Unsaturated Ketones with Alkynes. Chemistry - A European Journal, 2014, 20, 323-333.	1.7	45
83	Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS). ChemistryOpen, 2015, 4, 308-317.	0.9	54
84	2â€(Alkylamino)â€3â€arylâ€6,7â€dihydrobenzofuranâ€4(<i>5H</i>)â€ones: Improved Synthesis and their Photop Properties. ChemistryOpen, 2015, 4, 626-632.	ohysical	24
86	Self-assembled amyloid fibrils with controllable conformational heterogeneity. Scientific Reports, 2015, 5, 16220.	1.6	32
87	Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating. Chemistry - A European Journal, 2015, 21, 14901-14910.	1.7	12
88	Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating. Advanced Materials, 2015, 27, 4113-4141.	11.1	251
89	Fast and Efficient Synthesis of <i>Z</i> â€Enolâ€Î³â€Lactones through a Cycloisomerization Reaction of βâ€Hydroxyâ€Î³â€Alkynoic Acids Catalyzed by Copper(I) under Microwave Heating in Water. Asian Journal of Organic Chemistry, 2015, 4, 545-551.	1.3	12
90	Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited) Tj ETQq1 1 0.7843 21672-21680.	14 rgBT / 1.7	Overlock 10 18
91	A Microwave-Based Chemical Factory in the Lab: From Milligram to Multigram Preparations. Journal of Chemistry, 2015, 2015, 1-8.	0.9	24
92	Microwave promoted C–O coupling for synthesizing O-aryloxytriazole nucleoside analogues. New Journal of Chemistry, 2015, 39, 3889-3893.	1.4	4
93	Nafionâ€Hâ€Catalyzed Highâ€Temperature/Highâ€Pressure Synthesis of a Triarylmethane in Continuousâ€Flow Mode. Chemical Engineering and Technology, 2015, 38, 1743-1748.	0.9	5
94	Trapping of Payne rearrangement intermediates with arylselenide anions. Tetrahedron Letters, 2015, 56, 3082-3085.	0.7	4
95	Fast and safe microwave-assisted glass channel-shaped microstructure fabrication. Lab on A Chip, 2015, 15, 2395-2399.	3.1	12
96	Process Intensified Flow Synthesis of 1 <i>H</i> -4-Substituted Imidazoles: Toward the Continuous Production of Daclatasvir. ACS Sustainable Chemistry and Engineering, 2015, 3, 3445-3453.	3.2	37
97	Specific effects in microwave chemistry explored through reactor vessel design, theory, and spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 27317-27327.	1.3	18
98	Dual-purpose microwaves application: Blood sensing and self-blood treatment. , 2015, , .		3

#	Article	IF	CITATIONS
99	Microwave Irradiation Coupled with Physically Mixed MeO _{<i>x</i>} (Me=Mn, Ni) and Cuâ€ZSMâ€5 Catalysts for the Direct Decomposition of Nitric Oxide under Excess Oxygen. ChemCatChem, 2015, 7, 450-458.	1.8	27
100	Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(±)-ketorolac. Process Biochemistry, 2015, 50, 230-236.	1.8	21
101	Microwave-assisted synthesis – Catalytic applications in aqueous media. Coordination Chemistry Reviews, 2015, 291, 68-94.	9.5	136
102	Microwave-assisted synthesis of new fluorinated coumarin–pyrimidine hybrids as potent anticancer agents, their DNA cleavage and X-ray crystal studies. RSC Advances, 2015, 5, 11261-11271.	1.7	46
103	Development of a highly efficient single-mode microwave applicator with a resonant cavity and its application to continuous flow syntheses. RSC Advances, 2015, 5, 10204-10210.	1.7	39
104	Catalytic reactions enhanced under microwave-induced local thermal non-equilibrium in a core–shell, carbon-filled zeolite@zeolite. Journal of Catalysis, 2015, 323, 1-9.	3.1	34
105	Microwave selective effect: a new approach towards oxygen inhibition removal for highly-effective NO decomposition by microwave catalysis over BaMn _x Mg _{1â^x} O ₃ mixed oxides at low temperature under excess oxygen. Chemical Communications, 2015, 51, 4073-4076.	2.2	34
106	Building blocks for bioinspired electrets: molecular-level approach to materials for energy and electronics. Pure and Applied Chemistry, 2015, 87, 779-792.	0.9	24
107	Microwave-Assisted Extraction of Phenolic Compounds from Dried Waste Grape Skins. International Journal of Food Engineering, 2015, 11, 359-370.	0.7	44
108	Microwave-assisted hydroarylation of styrenes catalysed by transition metal oxide nanoparticles supported on mesoporous aluminosilicates. Journal of Molecular Catalysis A, 2015, 407, 32-37.	4.8	8
109	On the existence of and mechanism for microwave-specific reaction rate enhancement. Chemical Science, 2015, 6, 2144-2152.	3.7	220
110	Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Organic Letters, 2015, 17, 3306-3309.	2.4	62
111	A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction. Chemical Engineering and Processing: Process Intensification, 2015, 93, 87-97.	1.8	27
112	Enantiopure Peptide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 9409-9416.	6.6	166
113	Insight into Microwave-Assisted Lipase Catalyzed Synthesis of Geranyl Cinnamate: Optimization and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2015, 175, 2035-2049.	1.4	33
114	Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process. RSC Advances, 2015, 5, 20945-20950.	1.7	28
115	Mechanism for microwave heating of 1-(4′-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy. Journal of Magnetic Resonance, 2015, 254, 27-34.	1.2	4
116	A Sequential Ugi Multicomponent/Cu-Catalyzed Azide–Alkyne Cycloaddition Approach for the Continuous Flow Generation of Cyclic Peptoids. Journal of Organic Chemistry, 2015, 80, 4590-4602.	1.7	62

#	Article	IF	CITATIONS
117	Catalytic Rearrangement of Aldoximes to Primary Amides in Environmentally Friendly Media under Thermal and Microwave Heating: Another Application of the Bis(allyl)-Ruthenium(IV) Dimer [{RuCl(μ-Cl)(η ³ :I· ³ -C ₁₀ H ₁₆)} ₂]. ACS Sustainable Chemistry and Engineering, 2015, 3, 3004-3011.		19
118	Microwave radiation accelerates trypsin-catalyzed peptide hydrolysis at constant bulk temperature. Tetrahedron Letters, 2015, 56, 5804-5807.	0.7	18
119	Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions. ACS Applied Materials & Interfaces, 2015, 7, 21580-21588.	4.0	12
120	Microwave synthesis of carbon nanofibers – the influence of MW irradiation power, time, and the amount of catalyst. Journal of Materials Chemistry A, 2015, 3, 23778-23787.	5.2	27
121	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.	0.7	50
122	The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 9082-9089.	1.3	9
123	A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions. Chemical Engineering Journal, 2015, 264, 633-644.	6.6	49
124	Theoretical Aspects of Microwave Irradiation Practices. Biofuels and Biorefineries, 2015, , 3-16.	0.5	5
125	Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl)amino-3-nitroquinolines as anticancer agents. Bioorganic Chemistry, 2015, 58, 1-10.	2.0	22
126	Mechanistic insights into the hydroconversion of cinnamaldehyde using mechanochemically-synthesized Pd/Al-SBA-15 catalysts. Green Chemistry, 2015, 17, 565-572.	4.6	20
127	Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus. International Journal of Molecular Sciences, 2016, 17, 210.	1.8	5
128	Microwave-Induced Biomass Fractionation. , 2016, , 103-126.		7
129	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
130	Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides. Molecules, 2016, 21, 1355.	1.7	12
131	Recent Highlights in Green Oxidative Chemical Processes Applied to Steroid Chemistry. , 2016, , .		1
132	Microwave Irradiation Coupled with MeO _{<i>x</i>} /Al ₂ O ₃ (Me=Cu, Mn, Ce) Catalysts for Nitrogen Monoxide Removal from Flue Gas at Low Temperatures. Energy Technology, 2016, 4, 856-863.	1.8	6
133	Kinetic study of the nonthermal effect of the esterification of octenyl succinic anhydride modified starch treated by microwave radiation. Journal of Applied Polymer Science, 2016, 133, .	1.3	12
134	Highly Effective Direct Decomposition of Nitric Oxide by Microwave Catalysis over BaMeO ₃ (Me=Mn, Co, Fe) Mixed Oxides at Low Temperature under Excess Oxygen. ChemCatChem, 2016, 8, 417-425.	1.8	33

#	Article	IF	CITATIONS
135	Fast multigram scale microwave-assisted synthesis of vitamin E and C10-, C15-analogues under vacuum. RSC Advances, 2016, 6, 63515-63518.	1.7	3
136	Milestones in microwave-assisted organophosphorus chemistry. Pure and Applied Chemistry, 2016, 88, 931-939.	0.9	13
137	Cu-Catalyzed Expeditious Synthesis of N-Benzylaminoheter-ocycles Using N-Tosylhydrazones and Aminoheteroarenes. ChemistrySelect, 2016, 1, 6368-6373.	0.7	4
138	Microwaveâ€Assisted Selective Hydrogenation of Furfural to Furfuryl Alcohol Employing a Green and Noble Metalâ€Free Copper Catalyst. ChemSusChem, 2016, 9, 3387-3392.	3.6	40
139	In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes. Physical Chemistry Chemical Physics, 2016, 18, 13173-13179.	1.3	20
140	Microwave activation in tetrazole chemistry. Chemistry of Heterocyclic Compounds, 2016, 52, 887-893.	0.6	6
141	A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation. European Physical Journal B, 2016, 89, 1.	0.6	2
142	Upscaling Microwave-Assisted Polymerizations. Advances in Polymer Science, 2016, , 295-307.	0.4	2
143	Master Equation Analysis of Thermal and Nonthermal Microwave Effects. Journal of Physical Chemistry A, 2016, 120, 7989-7997.	1.1	22
144	Proton and Hydride Transfer in the Skraup Reaction. ChemistrySelect, 2016, 1, 3679-3684.	0.7	4
145	Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe. Tetrahedron, 2016, 72, 5515-5520.	1.0	17
146	Novel Bisphosphonates Derived from 1 <i>H</i> â€Indazole, 1 <i>H</i> â€Pyrazolo[3,4â€ <i>b</i>]Pyridine, and 1 <i>H</i> â€Pyrazolo[3,4â€ <i>b</i>]Quinoline. Heteroatom Chemistry, 2016, 27, 3-11.	0.4	6
147	A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Scientific Reports, 2016, 6, 25149.	1.6	73
148	Microwave Specific Effect on Catalytic <i>atropo</i> Enantioselective Ring-Opening Reaction of Biaryl Lactones. Bulletin of the Chemical Society of Japan, 2016, 89, 833-835.	2.0	15
149	Tunable microwave-assisted aqueous conversion of seaweed-derived agarose for the selective production of 5-hydroxymethyl furfural/levulinic acid. Green Chemistry, 2016, 18, 5971-5977.	4.6	41
150	Microwave Effect on Fischer Esterification. Chemistry Letters, 2016, 45, 505-507.	0.7	7
151	Microwave Specific Effect on Catalytic Enantioselective Conia-Ene Reaction. Chemistry Letters, 2016, 45, 649-651.	0.7	16
152	Methyl 1,2â€Orthoesters in Acidâ€Washed Molecular Sieves Mediated Glycosylations. ChemistrySelect, 2016, 1, 6011-6015.	0.7	9

#	ARTICLE	IF	CITATIONS
153	Design and Performance Validation of a Conductively Heated Sealed-Vessel Reactor for Organic Synthesis. Journal of Organic Chemistry, 2016, 81, 11788-11801.	1.7	39
154	Introduction to Microwave Chemistry. , 2016, , 1-29.		0
155	Introduction to Microwave Chemistry. , 2016, , 17-46.		0
156	Microwave Heated Continuous Flow Palladium(II)-Catalyzed Desulfitative Synthesis of Aryl Ketones. Organic Process Research and Development, 2016, 20, 2005-2011.	1.3	24
157	Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate. RSC Advances, 2016, 6, 58443-58451.	1.7	18
158	Microwave-assisted synthesis of 3-sulfenylindoles by sulfonyl hydrazides using organic ionic base-BrÃ,nsted acid. RSC Advances, 2016, 6, 10873-10879.	1.7	43
159	DMSO/iodine-catalyzed oxidative C–Se/C–S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen- or oxygen-containing arenes. Catalysis Science and Technology, 2016, 6, 3087-3098.	2.1	76
160	Microwave catalytic effect: a new exact reason for microwave-driven heterogeneous gas-phase catalytic reactions. Catalysis Science and Technology, 2016, 6, 698-702.	2.1	51
161	Comparison of Conventional and Microwave Heating for Evaluation of Microwave Effects. Australian Journal of Chemistry, 2016, 69, 865.	0.5	7
162	Measurement of Physicochemical Properties during Microwave-Assisted Acid-Catalyzed Transesterification Reactions. Energy & amp; Fuels, 2016, 30, 3066-3077.	2.5	6
163	Interpretation of the Effects of Microwaves. Springer Briefs in Molecular Science, 2016, , 77-110.	0.1	3
164	Epoxidation of oleic acid under conventional heating and microwave radiation. Chemical Engineering and Processing: Process Intensification, 2016, 102, 70-87.	1.8	45
165	Microwave-assisted copper- and palladium-catalyzed sonogashira-type coupling of aryl bromides and iodides with trimethylsilylacetylene. Tetrahedron Letters, 2016, 57, 1100-1103.	0.7	12
166	Microwave-assisted syntheses of BODIPY–sugar conjugates through click chemistry and conjugate assembly into liposomes. Carbohydrate Research, 2016, 424, 15-20.	1.1	12
167	Impact of microwave irradiation on enzymatic activity at constant bulk temperature is enzyme-dependent. Tetrahedron Letters, 2016, 57, 1589-1591.	0.7	12
168	Selective Olefin Reduction in Thebaine Using Hydrazine Hydrate and O ₂ under Intensified Continuous Flow Conditions. Organic Process Research and Development, 2016, 20, 376-385.	1.3	17
169	Microwave-assisted FLP-catalyzed hydrogenations. Dalton Transactions, 2016, 45, 6124-6128.	1.6	18
170	Scrutinizing microwave effects on glucose uptake in yeast cells. European Biophysics Journal, 2017, 46, 25-31.	1.2	3

#	Article	IF	CITATIONS
171	Aqueous microwave-assisted DMAP catalyzed synthesis of β-phosphonomalonates and 2-amino-4H-chromen-4-ylphosphonates via a domino Knoevenagel-phospha-Michael reaction. Comptes Rendus Chimie, 2017, 20, 140-145.	0.2	23
172	In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chemical Engineering Journal, 2017, 316, 50-60.	6.6	50
173	Gold(<scp>i</scp>)-catalyzed addition of carboxylic acids to internal alkynes in aqueous medium. Organic and Biomolecular Chemistry, 2017, 15, 1670-1679.	1.5	23
174	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	0.7	27
175	Factorial design evaluation of the Suzuki cross-coupling reaction using a magnetically recoverable palladium catalyst. Tetrahedron Letters, 2017, 58, 903-908.	0.7	11
176	Microwave Enhancement on Ring-closing Metathesis of Macrocyclic Bisazole. Chemistry Letters, 2017, 46, 274-276.	0.7	11
177	Investigation of Selective Microwave Heating Phenomena in the Reactions of 2-Substituted Pyridines. Australian Journal of Chemistry, 2017, 70, 776.	0.5	3
178	Design, synthesis and in vitro cytotoxicity studies of novel β -carbolinium bromides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1379-1384.	1.0	12
179	Electromagnetic Heating for Industrial Kilning of Malt: a Feasibility Study. Food and Bioprocess Technology, 2017, 10, 687-698.	2.6	6
180	Microwave Irradiation-Selective Catalytic Reduction of NO to N ₂ by Activated Carbon at Low Temperature. Energy & Fuels, 2017, 31, 7344-7351.	2.5	14
181	Metal-free regioselective formation of C–N and C–O bonds with the utilization of diaryliodonium salts in water: facile synthesis of N-arylquinolones and aryloxyquinolines. Organic and Biomolecular Chemistry, 2017, 15, 4956-4961.	1.5	23
182	Synthesis method and substrate influence on TiO 2 films doped with low vanadium content. Materials Science in Semiconductor Processing, 2017, 68, 118-127.	1.9	4
183	Advantages of the Microwave Tool in Organophosphorus Syntheses. Synthesis, 2017, 49, 3069-3083.	1.2	28
184	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
185	Improving the crystallinity and magnetocaloric effect of the perovskite La _{0.65} Sr _{0.35} MnO ₃ using microwave irradiation. CrystEngComm, 2017, 19, 3776-3791.	1.3	7
186	Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor. Journal of the American Chemical Society, 2017, 139, 5431-5436.	6.6	36
187	Nanosalina: A Tale of Saline-Loving Algae from the Lake's Agony to Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 11528-11536.	4.0	8
188	Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations. Analytica Chimica Acta, 2017, 954, 129-139.	2.6	20

#	Article	IF	CITATIONS
189	Direct Production of Vanillin from Wood Particles by Copper Oxide–Peroxide Reaction Promoted by Electric and Magnetic Fields of Microwaves. ACS Sustainable Chemistry and Engineering, 2017, 5, 11551-11557.	3.2	29
190	Microwave-Assisted Efficient Suzuki-Miyaura Cross-Coupling Reactions in Water Catalyzed by Nano-Pd/gC ₃ N ₄ Composite. ChemistrySelect, 2017, 2, 8745-8750.	0.7	14
191	Microwaveâ€assisted solventâ€free synthesis of novel benzoxazines: A faster and environmentally friendly route to the development of bioâ€based thermosetting resins. Journal of Polymer Science Part A, 2017, 55, 3534-3544.	2.5	37
192	Synthesis of penta- and tetra-cyclic cage-like compounds and dispiro heterocycles through microwave-assisted solvent-free multi-component domino reactions. New Journal of Chemistry, 2017, 41, 11009-11015.	1.4	8
193	Feasibility of posthydrolysis processing of hydrothermal extracts from Sargassum muticum. Algal Research, 2017, 27, 73-81.	2.4	20
194	Highly effective microwave catalytic direct decomposition of H 2 S into H 2 and S over MeS-based (Me) Tj ETQq1	1 0.7843 4.4	14.rgBT /Ove
195	Microwave Irradiation of PC3 Cells at Constant Culture Temperature Alters the Incorporation of BODIPY into Cells and Reduction of MTT. ChemistrySelect, 2017, 2, 7983-7986.	0.7	4
196	An Efficient Oneâ€Pot Synthesis of New Coumarin Derivatives as Potent Anticancer Agents under Microwave Irradiation. Journal of Heterocyclic Chemistry, 2017, 54, 3519-3526.	1.4	17
197	Chalcone: A Valuable Scaffold Upgrading by Green Methods. ACS Sustainable Chemistry and Engineering, 2017, 5, 7467-7480.	3.2	31
198	Specific microwave effect on Sn- and Ti-MFI zeolite synthesis. RSC Advances, 2017, 7, 35252-35256.	1.7	2
199	Low-temperature NO decomposition through microwave catalysis on BaMnO3-based catalysts under excess oxygen: Effect of A-site substitution by Ca, K and La. Fuel Processing Technology, 2017, 167, 205-214.	3.7	22
200	Highly effective direct decomposition of H2S into H2 and S by microwave catalysis over CoS-MoS2/γ-Al2O3 microwave catalysts. Chemical Engineering Journal, 2017, 326, 1020-1029.	6.6	46
201	Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions. Journal of Physical Chemistry A, 2017, 121, 5735-5747.	1.1	3
202	Thermal behaviour of the TiO2-based gels obtained by microwave-assisted sol–gel method. Journal of Thermal Analysis and Calorimetry, 2017, 130, 639-651.	2.0	9
203	Understanding MAOS through computational chemistry. Chemical Society Reviews, 2017, 46, 431-451.	18.7	23
204	Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane. Designed Monomers and Polymers, 2017, 20, 547-563.	0.7	9
205		1.7	1
206	Impact of microwave processing on nutritional, sensory, and other quality attributes. , 2017, , 65-99.		10

		CITATION REPORT	
#	Article	IF	CITATIONS
207	A Review of Microwave-Assisted Reactions for Biodiesel Production. Bioengineering, 2017, 4, 57.	1.6	104
208	Eco-Friendly Physical Activation Methods for Suzuki–Miyaura Reactions. Catalysts, 2017, 7, 98.	1.6	29
209	Synthesis of New <i> (E)</i> -2-(1 <i>H</i> -Indole-3-ylcarbonyl)-3-heteroaryl-acrylonitriles via Microwave-Assisted Knoevenagel Condensation. Journal of Chemistry, 2017, 2017, 1-8.	0.9	3
210	Long-Term Structural Modification of Water under Microwave Irradiation: Low-Frequency Raman Spectroscopic Measurements. Advances in Optical Technologies, 2017, 2017, 1-5.	0.8	7
211	Relevance of thermal analysis for sol–gel-derived nanomaterials. Journal of Sol-Gel Science and Technology, 2018, 86, 7-23.	1.1	13
212	Tuning Catalytic Selectivity in Cascade Reactions by Light Irradiation. Catalysis Letters, 2018, 148, 1124-1129.	1.4	3
213	Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect. Applied Physics Letters, 2018, 112, .	1.5	27
214	Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 2018, 234, 1-15.	2.7	78
215	Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics, 2018, 37, 1400-1409.	1.1	46
216	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 2 1929-1961.	20, 4.6	499
217	Efficient Access to Imidazo[1,2- <i>a</i>]pyridines/pyrazines/pyrimidines via Catalyst-Free Annulatic Reaction under Microwave Irradiation in Green Solvent. ACS Combinatorial Science, 2018, 20, 164	on 3.8 -171. 3.8	51
219	Process Intensification of Continuous Flow Synthesis of Tryptophol. Industrial & Engineering Chemistry Research, 2018, 57, 2787-2796.	1.8	15
220	ZnWO ₄ nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Physical Chemistry Chemical Physics, 2018, 20, 1923-1937.	1.3	103
221	Process intensification. Reviews in Chemical Engineering, 2018, 34, 135-200.	2.3	156
222	Photoirradiation and Microwave Irradiation NMR Spectroscopy. , 2018, , 135-170.		5
223	Factors influencing CH4CO2 reforming reaction over Fe catalyst supported on foam ceramics unde microwave irradiation. International Journal of Hydrogen Energy, 2018, 43, 9495-9502.	er 3.8	35
224	Microwave-Assisted Green Solid-Phase Peptide Synthesis Using γ-Valerolactone (GVL) as Solvent. A Sustainable Chemistry and Engineering, 2018, 6, 8034-8039.	ACS 3.2	65
225	Application of Microwaves in Sustainable Organic Synthesis. , 2018, , 647-671.		3

#	Article	IF	CITATIONS
226	Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study. Surface Science, 2018, 667, 66-78.	0.8	3
227	Changing Perspectives on the Strategic Use of Microwave Heating in Organic Synthesis. Chemical Record, 2018, 18, 381-389.	2.9	30
228	Tuning the activity of Cu-containing rare earth oxide catalysts for CO oxidation reaction: Cooling while heating paradigm in microwave-assisted synthesis. Materials Research Bulletin, 2018, 108, 142-150.	2.7	25
229	An Efficient, Green, and Solventâ€free Multiâ€component Synthesis of Benzimidazolo/Benzothiazolo Quinazolinone Derivatives Using Sc (OTf) ₃ Catalyst Under Controlled Microwave Irradiation. Journal of Heterocyclic Chemistry, 2018, 55, 2578-2584.	1.4	24
230	Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. Scientific Reports, 2018, 8, 7719.	1.6	69
231	Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk. Journal of Chromatography A, 2018, 1562, 19-26.	1.8	24
232	Photoinduced Synthesis of Dibenzofurans: Intramolecular and Intermolecular Comparative Methodologies. Journal of Organic Chemistry, 2018, 83, 7867-7877.	1.7	28
233	Reactivity of P–H Group of H-Phosphonic Acid and Its Derivatives. , 2018, , 291-409.		1
234	Microwave-specific Effect on Enantioselective Reactions. Journal of the Japan Petroleum Institute, 2018, 61, 121-128.	0.4	6
235	Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 861-873.	2.5	15
236	Thermal Analysis on Gels, Glasses, and Powders. , 2018, , 1833-1867.		4
237	Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renewable and Sustainable Energy Reviews, 2018, 92, 642-657.	8.2	129
238	Investigation of Nonlinear Output-Input Microwave Power of DMSO-Ethanol Mixture by Molecular Dynamics Simulation. Scientific Reports, 2018, 8, 7186.	1.6	7
239	Straightforward microwave-assisted synthesis of organochalcogen amines by reductive amination. Journal of Organometallic Chemistry, 2018, 874, 32-39.	0.8	7
240	CuO Nanoparticles as An Efficient Heterogeneous Catalyst for the 1,3â€Đipolar Cycloaddition of Dicarbonyl Compounds to Azides. ChemistrySelect, 2018, 3, 6195-6202.	0.7	16
241	Microwave synthesis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. Chemical Data Collections, 2018, 15-16, 207-222.	1.1	10
242	My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren't Microwaves. Chemical Record, 2019, 19, 15-39.	2.9	55
243	A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. Chemical Record, 2019, 19, 85-97.	2.9	118

#	Article	IF	CITATIONS
244	Local Overheating Explains the Rate Enhancement of Xylose Dehydration under Microwave Heating. ACS Sustainable Chemistry and Engineering, 2019, 7, 14273-14279.	3.2	16
245	A Mild, Fast, and Scalable Synthesis of Substituted α-Acyloxy Ketones via Multicomponent Reaction Using a Continuous Flow Approach. Frontiers in Chemistry, 2019, 7, 531.	1.8	6
246	Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 2019, 9, 10809.	1.6	43
247	Development of MgCo ₂ O ₄ –BaCO ₃ composites as microwave catalysts for the highly effective direct decomposition of NO under excess O ₂ at a low temperature. Catalysis Science and Technology, 2019, 9, 4276-4285.	2.1	15
248	Investigation of nonlinear dielectric response of DMSO-methanol mixture by molecular dynamics simulation. Journal of Molecular Liquids, 2019, 294, 111678.	2.3	3
249	Identification of novel imidazoles as IDO1 inhibitors through microwaveâ€assisted oneâ€pot multicomponent reactions. Archiv Der Pharmazie, 2019, 352, e1900165.	2.1	6
250	On Efficient Synthesis, Xâ€Ray Analysis and DPPH Radical Scavenging Activity of Pyrazoloneâ€Based trans â€Chalcones. ChemistrySelect, 2019, 4, 11098-11102.	0.7	5
251	Fundamentals and applications of microwave heating to chemicals separation processes. Renewable and Sustainable Energy Reviews, 2019, 114, 109316.	8.2	115
252	Exposure to microwave irradiation at constant culture temperature slows the growth of <i>Escherichia coli</i> DE3 cells, leading to modified proteomic profiles. RSC Advances, 2019, 9, 11810-11817.	1.7	4
253	Influence of microwave irradiation on DNA hybridization and polymerase reactions. Tetrahedron Letters, 2019, 60, 151060.	0.7	4
254	Highly effective microwave catalytic direct decomposition of H2S over carbon encapsulated Mo2C–Co2C/SiC composite. International Journal of Hydrogen Energy, 2019, 44, 25680-25694.	3.8	16
255	Interfacial ponderomotive force in solids leads to field induced dissolution of materials and formation of non-equilibrium nanocomposites. Acta Materialia, 2019, 179, 85-92.	3.8	6
256	Microwave assisted synthesis of coumarin-purine derivatives: An approach to inÂvitro anti-oxidant, DNA cleavage, crystal structure, DFT studies and Hirshfeld surface analysis. Heliyon, 2019, 5, e01131.	1.4	15
257	Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant. Separation and Purification Technology, 2019, 213, 426-436.	3.9	36
258	Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 2019, 7, 7175-7195.	2.7	270
259	Microwave Heating Outperforms Conventional Heating for a Thermal Reaction that Produces a Thermally Labile Product: Observations Consistent with Selective Microwave Heating. Chemistry - an Asian Journal, 2019, 14, 2594-2597.	1.7	9
260	A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renewable Energy, 2019, 143, 1366-1387.	4.3	82
261	Insights into the Synthesis of Ethyl Levulinate under Microwave and Nonmicrowave Heating Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 16055-16064.	1.8	25

ARTICLE IF CITATIONS # Remote Control of Electron Transfer Reaction by Microwave Irradiation: Kinetic Demonstration of Reduction of Bipyridine Derivatives on Surface of Nickel Particle. Journal of Physical Chemistry 262 2.1 12 Letters, 2019, 10, 3390-3394. Activation of the electronic excitation state of reactions in the complex region using microwave 1.2 irradiation. Chemical Physics Letters, 2019, 726, 46-52. Microwave irradiation directly excites semiconductor catalyst to produce electric current or 264 1.6 14 electron-holes pairs. Scientific Reports, 2019, 9, 5470. Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors. Science Advances, 2019, 5, eaau9000. Ammonium-tagged ruthenium-based catalysts for olefin metathesis in aqueous media under 266 1.310 ultrasound and microwave irradiation. Beilstein Journal of Organic Chemistry, 2019, 15, 160-166. A chloroplast structured photocatalyst enabled by microwave synthesis. Nature Communications, 2019, 10, 1570. 5.8 Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloisomerizations of Propargylic Ureas 268 3.2 22 Using Ag and Au/Al SBA-15 Systems. ACS Sustainable Chemistry and Engineering, 2019, 7, 5568-5575. Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbonâ€Based Catalysts for Synthesis of 1,3,5â€Triarylbenzenes: RGOâ€SO₃H vs. MWCNTsâ€SO₃H. ChemistrySelect, 2019, 4, 1909-1921. Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing 270 4.0 29 Preceramic Polymer Composites. ACS Applied Materials & amp; Interfaces, 2019, 11, 46132-46139. Ultrasound and microwave irradiation: contributions of alternative physicochemical activation 271 4.6 58 methods to Green Chemistry. Green Chemistry, 2019, 21, 6043-6050. Acid-catalyzed rearrangements in arenes: interconversions in the quaterphenyl series. Beilstein 272 7 1.3 Journal of Organic Chemistry, 2019, 15, 2655-2663. Microwave reactivity and energy efficiency in the undergraduate organic laboratory., 2019, , 85-115. Encouragements for the Use of Microwaves in Industrial Chemistry. Chemical Record, 2019, 19, 51-64. 274 2.9 30 Structural, photophysical and electrochemical properties of a novel cardanol-based salophen ligand 1.8 and its Mn(II) complex. Journal of Molecular Structure, 2019, 1181, 279-286. Enhanced activity of microwave-activated CoOx/MOR catalyst for the epoxidation of î±-pinene with air. 276 1.0 15 Molecular Catalysis, 2019, 463, 8-15. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic 186 Valorization of Biobased Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 3-21. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of 278 2.9 40 Tunable Singleâ€Mode Heating Toward Largeâ€Scale Applications. Chemical Record, 2019, 19, 188-203. Scaleup of a Single-Mode Microwave Reactor. Industrial & amp; Engineering Chemistry Research, 2020, 279 1.8 59, 2516-2523.

#	Article	IF	CITATIONS
280	Ferrocenes in medicinal chemistry; a personal perspective. Journal of Organometallic Chemistry, 2020, 905, 121017.	0.8	47
281	Combined XRD and DFT studies towards understanding the impact of intramolecular H-bonding on the reductive cyclization process in pyrazole derivatives. Journal of Molecular Structure, 2020, 1200, 127087.	1.8	20
282	Kinetic analysis of microwave-enhanced cellulose dissolution in ionic solvents. Physical Chemistry Chemical Physics, 2020, 22, 1003-1010.	1.3	21
283	Production of Bio Hydrofined Diesel, Jet Fuel, and Carbon Monoxide from Fatty Acids Using a Silicon Nanowire Array-Supported Rhodium Nanoparticle Catalyst under Microwave Conditions. ACS Catalysis, 2020, 10, 2148-2156.	5.5	18
284	Highly effective direct decomposition of H2S by microwave catalysis on core-shell Mo2N-MoC@SiO2 microwave catalyst. Applied Catalysis B: Environmental, 2020, 268, 118454.	10.8	27
285	Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiology, 2020, 87, 103382.	2.1	29
286	Semi-Synthetic Approach Leading to 8-Prenylnaringenin and 6-Prenylnaringenin: Optimization of the Microwave-Assisted Demethylation of Xanthohumol Using Design of Experiments. Molecules, 2020, 25, 4007.	1.7	8
287	High-biobased-content UV-curable oligomers derived from tung oil and citric acid: Microwave-assisted synthesis and properties. European Polymer Journal, 2020, 140, 109997.	2.6	18
288	Evidences of starch–microwave interactions under hydrolytic and pyrolytic conditions. Green Chemistry, 2020, 22, 7109-7118.	4.6	14
289	NaCl-promoted phase transition and glycosidic bond cleavage under microwave heating for energy-efficient biorefinery of rice starch. Green Chemistry, 2020, 22, 7355-7365.	4.6	18
290	Thermal and Nonthermal Microwave Effects of Ethanol and Hexane-Mixed Solution as Revealed by In Situ Microwave Irradiation Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2020, 124, 9615-9624.	1.2	14
291	Cornforth and Corey-Suggs reagents as efficient catalysts for sulfonation of aromatic and heteroaromatic compounds using NaHSO ₃ under solvent free and microwave conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 1001-1006.	0.8	2
292	Development of core–shell structured Mo2C@BN as novel microwave catalysts for highly effective direct decomposition of H2S into H2 and S at low temperature. Catalysis Science and Technology, 2020, 10, 6769-6779.	2.1	7
293	Study on a Three-Step Rapid Assembly of Zolpidem and Its Fluorinated Analogues Employing Microwave-Assisted Chemistry. Molecules, 2020, 25, 3161.	1.7	3
294	Dynamic Kinetic Asymmetric Amination of Alcohols Assisted by Microwave: Stereoconvergent Access to Tetralin- and Indane-Derived Chiral Amines. ACS Catalysis, 2020, 10, 9464-9475.	5.5	24
295	Development of composite microwave catalysts (ABSx/CNTs, AÂ=ÂCo, BÂ=ÂNi, Mo) for the highly effective direct decomposition of H2S into H2 and S. Fuel, 2020, 281, 118729.	3.4	11
296	Enhancement of Diffusion, Densification and Solid-State Reactions in Dielectric Materials Due to Interfacial Interaction of Microwave Radiation: Theory and Experiment. ACS Applied Materials & Interfaces, 2020, 12, 50941-50952.	4.0	10
297	Techno-economic feasibility analysis of microwave-assisted biorefinery of multiple products from	1.8	16

#	Article	IF	CITATIONS
298	Microwaveâ€Assisted Synthesis of Heterocycles from Aryldiazoacetates**. European Journal of Organic Chemistry, 2020, 2020, 7069-7078.	1.2	5
299	Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery. Science Advances, 2020, 6, .	4.7	12
300	Corey-Suggs and Cornforth reagents and sodium nitrite triggered nitration of aromatic and heteroaromatic compounds – A synthetic and kinetic study in aqueous acetonitrile media under acid-free conditions. Chemical Data Collections, 2020, 29, 100522.	1.1	0
301	Applications of microwave energy in gas production and tar removal during biomass gasification. Sustainable Energy and Fuels, 2020, 4, 5927-5946.	2.5	23
302	Operation and Optimization of Microwave-Heated Continuous-Flow Microfluidics. Industrial & Engineering Chemistry Research, 2020, 59, 10418-10427.	1.8	22
303	Hole Accumulation at the Grain Boundary Enhances Water Oxidation at α-Fe ₂ O ₃ Electrodes under a Microwave Electric Field. Journal of Physical Chemistry C, 2020, 124, 7749-7759.	1.5	10
304	Cooperative Application of Conventional and Microwave Heating. Asian Journal of Organic Chemistry, 2020, 9, 961-966.	1.3	7
305	Microwave-Driven Hexagonal-to-Monoclinic Transition in BiPO ₄ : An In-Depth Experimental Investigation and First-Principles Study. Inorganic Chemistry, 2020, 59, 7453-7468.	1.9	24
306	Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. Journal of Flow Chemistry, 2020, 10, 369-376.	1.2	9
307	Microwave-assisted catalytic methane reforming: A review. Applied Catalysis A: General, 2020, 599, 117620.	2.2	51
308	Surface-dependent properties of α-Ag2WO4: a joint experimental and theoretical investigation. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	19
309	Metal Catalysis with Microwaves in Organic Synthesis: a Personal Account. European Journal of Organic Chemistry, 2020, 2020, 4435-4446.	1.2	9
310	Thermosetting properties of microwave-promoted heating of phenol-formaldehyde resin. SN Applied Sciences, 2020, 2, 1.	1.5	2
311	Supramolecular β-Sheet Forming Peptide Conjugated with Near-Infrared Chromophore for Selective Targeting, Imaging, and Dysfunction of Mitochondria. Bioconjugate Chemistry, 2020, 31, 1301-1306.	1.8	16
312	Microwave-Induced Bismuth Nitrate-Catalyzed Michael Reaction of 3-Amino β-Lactams with Enones. Asian Journal of Chemistry, 2020, 32, 233-236.	0.1	4
313	Microwave-Assisted Syntheses of Vegetable Oil-Based Monomer: A Cleaner, Faster, and More Energy Efficient Route. Journal of Polymers and the Environment, 2020, 28, 1265-1278.	2.4	14
314	Promoting heterogeneous catalysis beyond catalyst design. Chemical Science, 2020, 11, 1456-1468.	3.7	66
315	Ecoâ€friendly synthesis of novel pyrimidine derivatives as potential anticancer agents. Journal of Heterocyclic Chemistry, 2020, 57, 1154-1164.	1.4	18

#	Article	IF	CITATIONS
316	Microwave effect on kinetics of paper cups pyrolysis. Canadian Journal of Chemical Engineering, 2020, 98, 1757-1766.	0.9	10
317	Microwave-assisted alkali hydrolysis for cellulose isolation from wheat straw: Influence of reaction conditions and non-thermal effects of microwave. Carbohydrate Polymers, 2021, 253, 117170.	5.1	39
318	Influence of weak microwaves on spatial collision and energy distribution of water molecules. Chemical Physics, 2021, 540, 110977.	0.9	12
319	Catalytic, ultrasonic, and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and intramolecular N-arylation reactions. , 2021, , 231-264.		1
320	Microwave-induced selective decomposition of cellulose: Computational and experimental mechanistic study. Journal of Physics and Chemistry of Solids, 2021, 150, 109858.	1.9	9
321	Numerical modelling and investigation of microwave heating and boiling phenomena in binary liquid mixtures using OpenFOAM. International Journal of Thermal Sciences, 2021, 159, 106538.	2.6	6
322	Activation of chemical reactions on solid catalysts under microwave irradiation. , 2021, , 27-69.		1
323	Microwave-assisted multicomponent reactions as a green synthetic approach to heterocycles: special reference to Hantzsch, Biginelli, and Groebke–Blackburn–Bienayme reactions. , 2021, , 143-166.		1
324	Microwave-specific Enhancement of Nazarov Cyclization. Chemistry Letters, 2021, 50, 144-146.	0.7	0
325	Effects of new NHC derivatives as ligands in the Suzuki–Miyaura reaction. Synthetic Communications, 0, , 1-13.	1.1	0
326	Efficient and selective microwave Oppenauer oxidation of sterol derivatives. Tetrahedron, 2021, 82, 131954.	1.0	0
327	Microwaves as "Co-Catalysts―or as Substitute for Catalysts in Organophosphorus Chemistry. Molecules, 2021, 26, 1196.	1.7	4
328	Microwave Hotspots: Thermal Nonequilibrium Dynamics from the Perspective of Quantum States. Journal of Physical Chemistry A, 2021, 125, 2690-2696.	1.1	9
329	Electrochromic evaluation of airbrushed water-dispersible W ₁₈ O ₄₉ nanorods obtained by microwave-assisted synthesis. Nanotechnology, 2021, 32, 215709.	1.3	4
330	СпецÐ﹐фічна ÐΏ–ѕмікрохвЂль на воÐнЂй розчЂн Ñ€ŀ	⋽¾∄⊅°Ð¹	⁄4Ň−ну(
331	Search for the Microwave Nonthermal Effect in Microwave Chemistry: Synthesis of the Heptyl Butanoate Ester with Microwave Selective Heating of a Sulfonated Activated Carbon Catalyst. Catalysts, 2021, 11, 466.	1.6	4

332	Pulsed 3.5ÂGHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Scientific Reports, 2021, 11, 8475.	1.6	20
333	Synthesis of Potent Anticancer Substituted 5-Benzimidazol-2-amino Thiazoles Controlled by Bifunctional Hydrogen Bonding under Microwave Irradiations. Journal of Organic Chemistry, 2021, 86, 6056-6065.	1.7	13

#	Article	IF	CITATIONS
334	Rapid Synthesis of Asymmetric Methyl-Alkyl Carbonates Catalyzed by α-KMgPO4 in a Sealed-Vessel Reactor Monowave 50. Catalysts, 2021, 11, 499.	1.6	0
335	The effect of radio-waves irradiation on copper-ore leaching. Hydrometallurgy, 2021, 201, 105584.	1.8	5
336	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	2.0	24
337	Microwave-Assisted Automated Glycan Assembly. Journal of the American Chemical Society, 2021, 143, 8893-8901.	6.6	22
338	Predicting microwave-induced relative volatility changes in binary mixtures using a novel dimensionless number. Chemical Engineering Science, 2021, 237, 116576.	1.9	13
339	A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges. Construction and Building Materials, 2021, 294, 123491.	3.2	40
340	Microwave Heating of Liquid Crystals and Ethanol-Hexane Mixed Solution and Its Features (Review). , 0, , .		0
341	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
342	Kinetics of microwave liquid-phase desorption with chemical dissociation: SO2 desorption of basic aluminum sulfate desulfurization rich liquid. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 154-154.	2.7	2
343	Research progress on the formation mechanism of azeotrope and its separation process in microwave field. Journal of Chemical Technology and Biotechnology, 2022, 97, 1045-1063.	1.6	3
344	Microwave-induced spray evaporation process for separation intensification of azeotropic system. Separation and Purification Technology, 2021, 279, 119702.	3.9	6
345	Microwave-assisted synthesis of MOFs: Rational design via numerical simulation. Chemical Engineering Journal, 2022, 428, 131006.	6.6	41
346	Design of a capacity-enhanced single-mode reactor for microwave chemistry researches. Chemical Engineering Journal, 2022, 427, 131898.	6.6	5
347	Modeling and interpreting microwave effects. , 2021, , 61-104.		Ο
348	Process intensification using immobilized enzymes for the development of white biotechnology. Catalysis Science and Technology, 2021, 11, 1994-2020.	2.1	15
349	Application of nontraditional activation methods in green and sustainable chemistry: Microwaves, ultrasounds, electro-, photo-, and mechanochemistry, and high hydrostatic pressure. , 2021, , 1-26.		2
350	Sonochemical synthesis of inorganic nanomaterials. , 2021, , 263-279.		1
351	Waste Biomass Pretreatment Methods. Green Energy and Technology, 2020, , 19-48.	0.4	4

#	ARTICLE	IF	CITATIONS
352	Thermal Analysis on Gels, Glasses, and Powders. , 2016, , 1-35.		1
353	Microwave Flow Chemistry. , 2020, , 91-117.		3
354	Microwave technology for food applications. , 2019, , 455-498.		5
355	Mechanochemical synthesis of supported cobalt oxide nanoparticles on mesoporous materials as versatile bifunctional catalysts. Microporous and Mesoporous Materials, 2018, 272, 129-136.	2.2	39
356	Microwave Reactor Concepts: From Resonant Cavities to Traveling Fields. RSC Green Chemistry, 2016, , 93-125.	0.0	1
357	Advances in Microwave on Chemical Reactions. Hans Journal of Chemical Engineering and Technology, 2014, 04, 45-62.	0.0	1
358	Microwave-Assisted Synthesis of Bile Acids Derivatives: An Overview. Current Organic Chemistry, 2019, 23, 256-275.	0.9	2
359	Oxidation of Aldehydes and Alcohols to Carboxylic Acids Using NaClO Under Microwave Irradiation or Classical Heating Without a Catalyst. Letters in Organic Chemistry, 2018, 15, 534-539.	0.2	4
360	Microwave Assisted Synthesis of Chalcogenides. Current Microwave Chemistry, 2016, 4, 25-35.	0.2	4
361	Microwave Thermal Effect on Diels-Alder Reaction of Furan and Maleimide. Current Microwave Chemistry, 2020, 7, 67-73.	0.2	2
362	Pharmaceutical Green Chemistry Applied to the Chemical Synthesis of Steroid Compounds. Current Green Chemistry, 2015, 2, 97-134.	0.7	2
363	Influence of microwave irradiation on hypochlorite decolorisation of synthetic dyes. Materials Protection, 2016, 57, 63-70.	0.1	4
364	The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B). Bulletin of Chemical Reaction Engineering and Catalysis, 2017, 12, 343.	0.5	5
365	Electrophilic and Oxidative Fluorination of Heterocyclic Compounds: Contribution to Green Chemistry. Russian Journal of Organic Chemistry, 2021, 57, 1369-1397.	0.3	8
366	Microwave Heating Promotes the S-Alkylation of Aziridine Catalyzed by Molecular Sieves: A Post-Synthetic Approach to Lanthionine-Containing Peptides. Molecules, 2021, 26, 6135.	1.7	1
367	Microwave-assisted photooxidation of sulfoxides. Scientific Reports, 2021, 11, 20505.	1.6	4
368	Chiral imines on the wave: reactivity of tert-butyl acrylate and stereoselectivity determination using NMR in liquid crystals . , 0, , .		0
369	The Microwave-assisted Lipase-catalyzed Synthesis of Sucrose Laurate. , 0, , .		0

#	Article	IF	CITATIONS
370	"Hot Nano Spots―as an Interpretation of So-Called Non-Thermal Biological Mobile Phone Effects. Journal of Electromagnetic Analysis and Applications, 2016, 08, 62-69.	0.1	2
371	Process Intensification of Enzymatic Biotransformation Processes. RSC Green Chemistry, 2018, , 268-288.	0.0	0
372	Reaktoren für spezielle technisch-chemische Prozesse: Mikrowellenreaktoren. Springer Reference Naturwissenschaften, 2019, , 1-41.	0.2	0
373	Thermal Effect in the Microwave-assisted Aminolysis of Benzoates and Amines. Current Microwave Chemistry, 2020, 7, 74-82.	0.2	1
374	A review of microwave-assisted process intensified multiphase reactors. Chemical Engineering Journal, 2022, 430, 133183.	6.6	46
375	Highly efficient H2 and S production from H2S decomposition via microwave catalysis over a family of TiO2 modified MoxC microwave catalysts. Fuel Processing Technology, 2022, 226, 107069.	3.7	11
376	Reaktoren für spezielle technisch-chemische Prozesse: Mikrowellenreaktoren. Springer Reference Naturwissenschaften, 2020, , 1113-1153.	0.2	0
377	Preparation of Tenuifolin from <i>Polygala senega</i> L. Root Using a Hydrolytic Continuous Flow System under High-Temperature, High-Pressure Conditions. Journal of Organic Chemistry, 2021, 86, 16268-16277.	1.7	1
378	New preparation protocols for coumarin-thiosemicarbazone hybrids: Solid state characterization, and in silico/NMR studies of the Z/E isomerization equilibria in solution. Journal of Molecular Structure, 2022, 1251, 131980.	1.8	5
379	Transient analysis of power loss density with time-harmonic electromagnetic waves in Debye media. Royal Society Open Science, 2021, 8, 210023.	1.1	3
380	Denaturation of the SARS-CoV-2 spike protein under non-thermal microwave radiation. Scientific Reports, 2021, 11, 23373.	1.6	7
381	Microwave assisted synthesis of functionalized 2H-chromene-2-thiones and 1,2-dithiole-3-thiones from β-oxodithioesters: characterization, in vitro cytotoxicity and in silico docking studies. Journal of Molecular Structure, 2021, 1251, 132071.	1.8	5
382	Development of a novel MW-VLE model for calculation of vapor–liquid equilibrium under microwave irradiation. Chemical Engineering Science, 2022, 249, 117354.	1.9	5
383	Recent Advances in the Synthesis of Imidazo[1,2â€≺i>a]pyridines: A Brief Review. ChemistrySelect, 2022, 7, .	0.7	17
384	Microwave Boosting of Interfacial Tunneling Electron Transfer in a Quantum Dot-Sensitized Photoelectrode. Bulletin of the Chemical Society of Japan, 2022, 95, 288-295.	2.0	1
385	Microwave-induced controlled-isomerization during glucose conversion into lactic acid over a Sn-beta catalyst. Sustainable Energy and Fuels, 2022, 6, 1264-1268.	2.5	6
386	A Valuable Method for the Synthesis of 2â€Benzylchromones: A Comparative Evaluation of Both Conventional and Microwaveâ€Assisted Synthesis. ChemistrySelect, 2022, 7, .	0.7	0
387	Process Intensification in Chemical Reaction Engineering. Processes, 2022, 10, 99.	1.3	18

		_
CITATI	ON	Report
CHAH		REPORT

#	Article	IF	CITATIONS
388	Accelerated thermal reaction kinetics by indirect microwave heating of a microwave-transparent substrate. Physical Chemistry Chemical Physics, 2022, 24, 2794-2799.	1.3	3
389	Highly effective microwave catalytic oxidative dehydrogenation of propane by CO2 over V-La-doped dendritic mesoporous silica-based microwave catalysts. Chemical Engineering Journal, 2022, 435, 135081.	6.6	12
390	Chemical Recycling of PET Bottles Using Microwave Hydrolysis. Journal of Fiber Science and Technology, 2022, 78, 106-110.	0.0	0
391	Microwave Heating-Induced Temperature Gradients in Liquid–Liquid Biphasic Systems. Industrial & Engineering Chemistry Research, 2022, 61, 3011-3022.	1.8	9
392	Solventâ€Free Microwaveâ€Assisted Multicomponent Synthesis of 4 <i>H</i> â€Chromenes Using Fe ₃ O ₄ â€Based Hydrotalcites as Bifunctional Catalysts. ChemistrySelect, 2022, 7, .	0.7	6
393	Recent advances on copper-catalyzed carbon chalcogenides cross-coupling reactions. Current Organic Synthesis, 2022, 19, .	0.7	1
394	Life cycle assessment of waste printed wiring board–derived Ag photocatalyst for sustainable fermentable sugar production. Environmental Science and Pollution Research, 2022, , 1.	2.7	1
395	Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. IScience, 2022, 25, 104131.	1.9	1
396	Watching Microwaveâ€Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixedâ€Metal Organic Complexes. Angewandte Chemie, 2022, 134, .	1.6	3
397	Watching Microwaveâ€Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixedâ€Metal Organic Complexes. Angewandte Chemie - International Edition, 2022, 61,	7.2	17
398	Spontaneous Biphasic System with Lithium Chloride Hydrate for Efficient Esterification of Levulinic Acid. ChemistrySelect, 2022, 7, .	0.7	1
400	Investigation of Spatial Orientation and Kinetic Energy of Reactive Site Collision between Benzyl Chloride and Piperidine: Novel Insight into the Microwave Nonthermal Effect. Journal of Physical Chemistry A, 2022, 126, 2690-2705.	1.1	5
401	æ™èƒ½é«~通é‡ç›é€‰æŠ€æœ⁻åŠé€ŸåŒ»è•ā°å^†å啿^• Scientia Sinica Chimica, 2022, , .	0.2	1
402	Rutile TiO2 nanorods grown on carbon nanotubes as high-performance lithium-ion batteries anode via one-dimensional electron pathways. Journal of Sol-Gel Science and Technology, 2022, 103, 437-446.	1.1	3
403	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETQ	q0 <u>.0</u> 0 rgB	T /Overlock
404	Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This "Green― Method?. Molecules, 2022, 27, 4249.	1.7	12
405	Microwaves reduce water refractive index. Scientific Reports, 2022, 12, .	1.6	2
406	Microwave Irradiation: the Influence on the Production of Xanthylium Cation Pigments in Model	26	9

#	Article	IF	CITATIONS
407	Tunable Microwave Flow System for Scalable Synthesis of Alkyl Imidazolium-type Ionic Liquids. Organic Process Research and Development, 2022, 26, 2498-2509.	1.3	4
408	Electromagnetic Relations between Materials and Fields for Microwave Chemistry. , 0, , .		0
409	Intense microwave heating at strongly polarized solid acid/water interface for energy-efficient platform chemical production. Chemical Engineering Science, 2022, 262, 118035.	1.9	3
410	Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical Science, 2022, 13, 10644-10685.	3.7	11
411	Green synthetic methods in drug discovery and development. , 2022, , 201-279.		0
412	Phenyl substituted 3-chloro 2-azetidinones: Design, green synthesis, antimicrobial activity, and molecular docking studies. Journal of Molecular Structure, 2023, 1272, 134185.	1.8	3
414	Behind the veil: a multidisciplinary discussion on protein–microwave interactions. Current Opinion in Food Science, 2022, 48, 100936.	4.1	4
415	Model-Based Design and Operation of Coaxial Probe-Type Microwave Reactor Toward Large-Scale Production of Nanoparticles. Chemical Engineering Science, 2022, , 118162.	1.9	2
416	Unconventional and Sustainable Synthesis of Polymethine Dyes: Critical Overview and Perspectives within the Framework of the Twelve Principles of Green Chemistry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
417	Gas-solid contactors and catalytic reactors with direct microwave heating: Current status and perspectives. Catalysis Today, 2023, 423, 113927.	2.2	7
418	An in situ study of the thermal decomposition of 2,2′-azobis(2-methylpropionitrile) radical chemistry using a dual-mode EPR resonator. Research on Chemical Intermediates, 0, , .	1.3	0
419	Process Intensification of Dendritic Fibrous Nanospheres of Silica (KCC-1) via continuous flow: A Scalable, and Sustainable Route to a Conventional Batch Synthesis. Reaction Chemistry and Engineering, 0, , .	1.9	0
420	Experimental Investigation of Microwave-Specific Effect on Nazarov Cyclization. Bulletin of the Chemical Society of Japan, 2022, 95, 1730-1740.	2.0	1
421	Microwaveâ€Assisted Tandem Copperâ€Catalyzed Threeâ€Component Reaction for Synthesis of 2â€Iminopyrans. ChemistrySelect, 2022, 7, .	0.7	2
422	Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method. Gels, 2022, 8, 811.	2.1	1
423	Study of 400ÂMHz microwave conduction loss effect for a hydrolysis reaction by thermostable β-Glucosidase HT1. Bioscience, Biotechnology and Biochemistry, 2023, 87, 158-162.	0.6	1
424	Microwave assisted regioselective halogenation of benzo[<i>b</i>][1,4]oxazin-2-ones <i>via</i> sp ² C–H functionalization. RSC Advances, 2023, 13, 2365-2371.	1.7	1
425	Suppression of boiling and evaluation of surfactant adsorption capacity through dimensionless number of microwave local heating. Transactions of the JSME (in Japanese), 2023, , .	0.1	0

#	Article	IF	CITATIONS
426	Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating. Journal of Applied Polymer Science, 0, , .	1.3	0
427	Microwave enhanced catalytic hydration of acrolein to 3-hydroxypropionaldehyde using simultaneous cooling: Experimental and theoretical studies. Chemical Engineering Science, 2023, 269, 118493.	1.9	0
428	Intensification of solventless production of hydrophobically-modified ethoxylated urethanes (HEURs) by microwave heating. Chemical Engineering and Processing: Process Intensification, 2023, 186, 109315.	1.8	0
429	The Effects of Current Density, Cell Potential, Time, Salinity, Electrode Diameter, and Material on Microwave-Assisted Saline Water Electrolysis: An Experimental Study. Water Conservation Science and Engineering, 2023, 8, .	0.9	0
431	Quantification of the Microwave Effect in the Synthesis of 5-Hydroxymethylfurfural over Sulfonated MIL-101(Cr). Catalysts, 2023, 13, 622.	1.6	1
432	āfžā,Ħ,¯āf波特異効果ã•ã;ā,‹ã®ã•ï¹⁄4Ÿ æœ‰æ©Ÿå•æ^ůå;œã«ãŠã'ã,‹å®Ÿé‴'çš,,ææè`¹⁄4. Yuki Gosei Kagakı	ı Kyookaishi	i /Jo urnal of S
433	Process Intensification in Catalysis. , 2017, , 749-792.		0
434	Processing of Chemicals at Scale. , 2021, , 330-414.		0
445	Microwave-assisted Reactions with Solid Acid and Base Catalysts. , 2023, , 92-115.		0
446	Microwave Catalysis in Energy and Environmental Applications. , 2023, , 292-306.		0
454	Antenna Catheter Modeling for Acute Ischemic Stroke Therapy. Structural Integrity, 2024, , 412-435.	0.8	0
455	Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Advances, 2024, 14, 5547-5565.	1.7	0