New insights into prebiotic chemistry from Stanley Mil

Chemical Society Reviews 42, 2186 DOI: 10.1039/c3cs35433d

Citation Report

#	Article	IF	CITATIONS
1	Role of Ferrocyanides in the Prebiotic Synthesis of α-Amino Acids. Origins of Life and Evolution of Biospheres, 2013, 43, 191-206.	0.8	15
2	Formaldehyde—A Key Monad of the Biomolecular System. Life, 2013, 3, 486-501.	1.1	2
3	Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan. Life, 2013, 3, 538-549.	1.1	6
5	The Stereochemical Basis of the Genetic Code and the (Mostly) Autotrophic Origin of Life. Life, 2014, 4, 1013-1025.	1.1	11
7	Habitable worlds with no signs of life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130082.	1.6	32
8	Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxide - Biology and Chemistry, 2014, 41, 72-78.	1.2	172
9	Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems. New Journal of Chemistry, 2014, 38, 5135-5141.	1.4	31
10	Genetic Code Evolution Started with the Incorporation of Glycine, Followed by Other Small Hydrophilic Amino Acids. Journal of Molecular Evolution, 2014, 78, 307-309.	0.8	25
11	A Plausible Simultaneous Synthesis of Amino Acids and Simple Peptides on the Primordial Earth. Angewandte Chemie - International Edition, 2014, 53, 8132-8136.	7.2	82
12	Chiral encoding may provide a simple solution to the origin of life. Nature Chemistry, 2014, 6, 569-574.	6.6	29
13	Formation of amino acids from NH ₃ /NO ₂ , CO ₂ and H ₂ O: Implications for the prebiotic origin of biomolecules. Rapid Communications in Mass Spectrometry, 2015, 29, 2090-2094.	0.7	3
14	Prebiotic-chemistry inspired polymer coatings for biomedical and material science applications. NPG Asia Materials, 2015, 7, e225-e225.	3.8	41
15	Ab initio simulations and the Miller prebiotic synthesis experiment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E342.	3.3	8
16	Symmetrical and Thermodynamic Properties of Phenotypic Graphs of Amino Acids Encoded by the Primeval RNY Code. Origins of Life and Evolution of Biospheres, 2015, 45, 77-83.	0.8	12
17	<i>Omne Vivum Ex Vivo … Omne</i> ? How to Feed an Inanimate Evolvable Chemical System so as to Let it Selfâ€evolve into Increased Complexity and Lifeâ€like Behaviour. Israel Journal of Chemistry, 2015, 55, 851-864.	1.0	18
18	Spontaneous formation and amplification of an enantioenriched α-amino nitrile: a chiral precursor for Strecker amino acid synthesis. Chemical Communications, 2015, 51, 14377-14380.	2.2	48
19	Amino Acids and Peptides, Essential Ingredients of Life. , 2016, , 25-28.		0
20	Clues to tRNA Evolution from the Distribution of Class II tRNAs and Serine Codons in the Genetic Code. Life, 2016, 6, 10.	1.1	5

#	Article	IF	CITATIONS
21	tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World. Life, 2016, 6, 15.	1.1	26
22	Incubating Life: Prebiotic Sources of Organics for the Origin of Life. Elements, 2016, 12, 401-406.	0.5	31
23	A proposal of the proteome before the last universal common ancestor (LUCA). International Journal of Astrobiology, 2016, 15, 27-31.	0.9	16
24	On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Physical Chemistry Chemical Physics, 2016, 18, 20028-20032.	1.3	30
25	Sunlight as an energetic driver in the synthesis of molecules necessary for life. Physical Chemistry Chemical Physics, 2016, 18, 20067-20084.	1.3	85
26	Quantitation of αâ€hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 2043-2051.	0.7	34
27	From Compositional Chemical Ecologies to Self-replicating Ribosomes and on to Functional Trait Ecological Networks. , 2016, , 327-343.		1
28	Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect, 2016, 1, 4906-4926.	0.7	13
29	Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets around Main Sequence M Stars. Astrobiology, 2016, 16, 744-754.	1.5	8
30	Replication of α-amino acids via Strecker synthesis with amplification and multiplication of chiral intermediate aminonitriles. Chemical Communications, 2016, 52, 10834-10837.	2.2	22
32	Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6421-6433.	1.4	8
33	A Global Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and Formamide. Biochemistry, 2016, 55, 2806-2811.	1.2	65
34	Antibiotics and evolution: food for thought. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 149-153.	1.4	16
35	Comparison of design strategies for α-helix backbone modification in a protein tertiary fold. Chemical Communications, 2016, 52, 3789-3792.	2.2	30
36	Habitability: A Review. Astrobiology, 2016, 16, 89-117.	1.5	246
37	Asymmetric Strecker Reaction Arising from the Molecular Orientation of an Achiral Imine at the Singleâ€Crystal Face: Enantioenriched <scp>l</scp> ―and <scp>d</scp> â€Amino Acids. Angewandte Chemie, 2017, 129, 1075-1078.	1.6	4
38	A new family of extraterrestrial amino acids in the Murchison meteorite. Scientific Reports, 2017, 7, 636.	1.6	117
39	Asymmetric Strecker Reaction Arising from the Molecular Orientation of an Achiral Imine at the Singleâ€Crystal Face: Enantioenriched <scp>l</scp> ―and <scp>d</scp> â€Amino Acids. Angewandte Chemie - International Edition, 2017, 56, 1055-1058.	7.2	33

#	Article	IF	CITATIONS
40	Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7652-E7659.	3.3	51
41	Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere. Origins of Life and Evolution of Biospheres, 2017, 47, 355-369.	0.8	2
42	Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules, 2017, 50, 9286-9294.	2.2	27
43	Radiation chemical aspects of the origins of life. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 1081-1097.	0.7	14
44	On the Uniqueness of the Standard Genetic Code. Life, 2017, 7, 7.	1.1	12
45	Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life, 2017, 7, 19.	1.1	38
46	Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis â€. Life, 2017, 7, 6.	1.1	26
47	At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. International Journal of Developmental Biology, 2017, 61, 471-478.	0.3	17
48	The Propitious Role of Solar Energetic Particles in the Origin of Life. Astrophysical Journal, 2018, 853, 10.	1.6	29
49	Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Scientific Reports, 2018, 8, 1227.	1.6	45
50	Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cellular and Molecular Life Sciences, 2018, 75, 1499-1507.	2.4	74
51	The evolution of the genetic code: Impasses and challenges. BioSystems, 2018, 164, 217-225.	0.9	40
52	Reactivity of a FeS Surface under Room Temperature Exposure to Nitrogen and H ₂ S. Journal of Physical Chemistry B, 2018, 122, 705-712.	1.2	5
53	Origins of building blocks of life: A review. Geoscience Frontiers, 2018, 9, 1117-1153.	4.3	292
54	A ribonucleopeptide world at the origin of life. Journal of Systematics and Evolution, 2018, 56, 1-13.	1.6	23
56	Why twenty amino acid residue types suffice(d) to support all living systems. PLoS ONE, 2018, 13, e0204883.	1.1	6
57	Exposed Areas Above Sea Level on Earth >3.5 Gyr Ago: Implications for Prebiotic and Primitive Biotic Chemistry. Life, 2018, 8, 55.	1.1	25
58	Radiolysis and radioracemization of RNA ribonucleosides: implications for the origins of life. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1649-1661.	0.7	8

#	Article	IF	CITATIONS
59	Mechanism and Kinetics of the Gas-Phase Stereoinversion in Proteinogenic l-Threonine and Its Astrophysical Relevance. Journal of Physical Chemistry A, 2018, 122, 7572-7586.	1.1	8
60	The Strecker reaction coupled to Viedma ripening: a simple route to highly hindered enantiomerically pure amino acids. Chemical Communications, 2018, 54, 10832-10834.	2.2	32
61	Peptide Amyloids in the Origin of Life. Journal of Molecular Biology, 2018, 430, 3735-3750.	2.0	75
62	Structural evolution of Glycyl-tRNA synthetases alpha subunit and its implication in the initial organization of the decoding system. Progress in Biophysics and Molecular Biology, 2019, 142, 43-50.	1.4	8
63	Insights Into the Origin of Life: Did It Begin from HCN and H ₂ O?. ACS Central Science, 2019, 5, 1532-1540.	5.3	61
64	Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. Astrobiology, 2019, 19, 1263-1278.	1.5	26
65	Hemiaminal route for the formation of interstellar glycine: a computational study. Journal of Molecular Modeling, 2019, 25, 335.	0.8	1
66	Chemistry of Homocysteine Thiolactone in A Prebiotic Perspective. Life, 2019, 9, 40.	1.1	9
67	Understanding the Genetic Code. Journal of Bacteriology, 2019, 201, .	1.0	15
68	Nonequilibrium abundances for the building blocks of life. Physical Review E, 2019, 99, 052101.	0.8	4
69	Compositional characterization of complex protopeptide libraries via triboelectric nanogenerator Orbitrap mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1293-1300.	0.7	8
70	The primary photo-dissociation dynamics of carboxylate anions in aqueous solution: decarboxylation. Physical Chemistry Chemical Physics, 2019, 21, 7358-7366.	1.3	11
71	The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code. Life, 2019, 9, 25.	1.1	46
72	A Consistent Reduced Network for HCN Chemistry in Early Earth and Titan Atmospheres: Quantum Calculations of Reaction Rate Coefficients. Journal of Physical Chemistry A, 2019, 123, 1861-1873.	1.1	15
73	Regioselective α-Peptide Bond Formation Through the Oxidation of Amino Thioacids. Biochemistry, 2019, 58, 1672-1678.	1.2	13
74	Integrated evolution of ribosomal RNAs, introns, and intron nurseries. Genetica, 2019, 147, 103-119.	0.5	18
75	Organization and Compartmentalization by Lipid Membranes Promote Reactions Related to the Origin of Cellular Life. Astrobiology, 2019, 19, 547-552.	1.5	4
76	Photochemistry and Photoreactions of Organic Molecules in Space. Advances in Astrobiology and Biogeophysics, 2019, , 205-222.	0.6	2

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
77	Subsurface exolife. International Journal of Astrobiology, 2019, 18, 112-141.	0.9	33
78	Mechanism and kinetics of astrophysically relevant gas-phase stereoinversion in glutamic acid: A computational study. Molecular Astrophysics, 2020, 18, 100061.	1.7	7
80	Low-cost visible-light photosynthesis of water and adsorbed carbon dioxide into long-chain hydrocarbons. Chemical Physics Letters, 2020, 739, 136985.	1.2	8
81	Preparation and characterization of the enol of acetamide: 1-aminoethenol, a high-energy prebiotic molecule. Chemical Science, 2020, 11, 12358-12363.	3.7	13
82	A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. Journal of Chromatography A, 2020, 1630, 461509.	1.8	3
83	Solvation and Stabilization of Single-Strand RNA at the Air/Ice Interface Support a Primordial RNA World on Ice. Journal of Physical Chemistry C, 2020, 124, 18587-18594.	1.5	1
84	Enantiospecific Solid Solution Formation Triggers the Propagation of Homochirality. Angewandte Chemie - International Edition, 2020, 59, 20885-20889.	7.2	11
85	Enantiospecific Solid Solution Formation Triggers the Propagation of Homochirality. Angewandte Chemie, 2020, 132, 21071-21075.	1.6	5
86	Proteomic exploration of cystathionine Î ² -synthase deficiency: implications for the clinic. Expert Review of Proteomics, 2020, 17, 751-765.	1.3	9
87	Influence of Biometric and Seasonal Parameters on the Metal Content of Scomber colias in Northwestern African Waters. Biological Trace Element Research, 2021, 199, 3886-3897.	1.9	7
88	The detection of solid phosphorus and fluorine in the dust from the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1870-1	873. ^{1.6}	5
89	Natural radioactivity and formation of oxygen in Earth's atmosphere: Decay of radioactive 40K and radiolysis of ocean water. Precambrian Research, 2020, 346, 105786.	1.2	7
90	A Peptide–Nucleic Acid Replicator Origin for Life. Trends in Ecology and Evolution, 2020, 35, 397-406.	4.2	16
91	Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular Proteins. Cell Reports, 2020, 31, 107512.	2.9	34
92	Theoretical Investigations on the Possibility of Prebiotic HCN Formation via O-Addition Reactions. Journal of Physical Chemistry A, 2020, 124, 4782-4792.	1.1	8
93	Rotational and vibrational analysis of astrophysically relevant isomeric species of proteinogenic glutamic acid: A quantum-mechanical computational study. Journal of Molecular Spectroscopy, 2020, 369, 111271.	0.4	1
94	Cysteine Chemistry in Connection with Abiogenesis. European Journal of Organic Chemistry, 2020, 2020, 3019-3023.	1.2	13
95	Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life, 2020, 10, 6.	1.1	31

	CITATION R	CITATION REPORT	
# 96	ARTICLE Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	IF 23.0	Citations 189
97	Reconstruction and Characterization of Thermally Stable and Catalytically Active Proteins Comprising an Alphabet of ~ 13 Amino Acids. Journal of Molecular Evolution, 2020, 88, 372-381.	0.8	19
98	The co-evolution of life and organics on earth: Expansions of energy harnessing. Critical Reviews in Environmental Science and Technology, 2021, 51, 603-625.	6.6	2
99	Coenzymes and Their Role in the Evolution of Life. Angewandte Chemie - International Edition, 2021, 60, 6242-6269.	7.2	51
100	Coenzyme und ihre Rolle in der Evolution des Lebens. Angewandte Chemie, 2021, 133, 6308-6337.	1.6	2
101	The coenzyme/protein pair and the molecular evolution of life. Natural Product Reports, 2021, 38, 993-1010.	5.2	8
102	Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry, 2021, 13, 199.	1.1	3
103	Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions. Plant in Challenging Environments, 2021, , 1-12.	0.4	0
104	Films and Materials Derived from Aminomalononitrile. Processes, 2021, 9, 82.	1.3	16
105	Protoâ€proteins in Protocells. ChemSystemsChem, 2021, 3, e2100002.	1.1	6
106	1,1,2â€Ethenetriol: The Enol of Glycolic Acid, a Highâ€Energy Prebiotic Molecule. Angewandte Chemie - International Edition, 2021, 60, 15313-15316.	7.2	9
107	Plasma Modeling and Prebiotic Chemistry: A Review of the State-of-the-Art and Perspectives. Molecules, 2021, 26, 3663.	1.7	4
108	1,1,2â€Ethenetriol: The Enol of Glycolic Acid, a Highâ€Energy Prebiotic Molecule. Angewandte Chemie, 2021, 133, 15441-15444.	1.6	0
109	Counteracting Enantiospecific Behavior of Tailorâ€Made Additives During Chiral Symmetry Breaking: Growth Inhibition versus Solidâ€6olution Formation. Israel Journal of Chemistry, 2021, 61, 645.	1.0	0
110	The Combinatorial Fusion Cascade to Generate the Standard Genetic Code. Life, 2021, 11, 975.	1.1	2
111	Archaean seafloors shallowed with age due to radiogenic heating in the mantle. Nature Geoscience, 2021, 14, 51-56.	5.4	23
112	Ion Outflow and Escape in the Terrestrial Magnetosphere: Cluster Advances. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029753.	0.8	9
113	Transition from Inert to Living Structures. , 2015, , 1-9.		0

# 115	ARTICLE Transition from Inert to Living Systems. , 2016, , 337-348.	IF	Citations 0
118	Uptake and hydration of sulfur dioxide on dry and wet hydroxylated silica surfaces: a computational study. Physical Chemistry Chemical Physics, 2021, 24, 172-179.	1.3	4
119	Zwitter Ionization of Glycine at Outer Space Conditions due to Microhydration by Six Water Molecules. Physical Review Letters, 2022, 128, 033001.	2.9	7
120	Important role of seawater radiolysis of the World Ocean in the chemical evolution of the early Earth. Radiation Physics and Chemistry, 2022, 193, 109959.	1.4	2
121	Clays and the Origin of Life: The Experiments. Life, 2022, 12, 259.	1.1	25
122	Possible chemical and physical scenarios towards biological homochirality. Chemical Society Reviews, 2022, 51, 3436-3476.	18.7	54
123	<i>Methanosaeta</i> and " <i>Candidatus</i> Velamenicoccus archaeovorus― Applied and Environmental Microbiology, 2022, 88, e0240721.	1.4	7
124	Non-Equilibrium Thermodynamic Foundations of the Origin of Life. Foundations, 2022, 2, 308-337.	0.4	6
125	Computational Study for Amino Acid Production from Carboxylic Acid via ¹⁴ C <i>β</i> -decay. Journal of the Physical Society of Japan, 2022, 91, .	0.7	0
126	The Coevolution of Biomolecules and Prebiotic Information Systems in the Origin of Life: A Visualization Model for Assembling the First Gene. Life, 2022, 12, 834.	1.1	8
127	On the Evolutionary History of the Twenty Encoded Amino Acids. Chemistry - A European Journal, 2022, 28, .	1.7	11
128	Toward RNA Life on Early Earth: From Atmospheric HCN to Biomolecule Production in Warm Little Ponds. Astrophysical Journal, 2022, 932, 9.	1.6	15
129	Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life, 2022, 12, 1268.	1.1	4
130	Promising Application of D-Amino Acids toward Clinical Therapy. International Journal of Molecular Sciences, 2022, 23, 10794.	1.8	14
131	An Experimental and Theoretical Investigation of HCN Production in the Hadean Earth Atmosphere. ACS Earth and Space Chemistry, 2022, 6, 2385-2399.	1.2	2
132	Novel Apparatuses for Incorporating Natural Selection Processes into Origins-of-Life Experiments to Produce Adaptively Evolving Chemical Ecosystems. Life, 2022, 12, 1508.	1.1	3
133	Formation and evolution of C–C, C–O, Cî€O and C–N bonds in chemical reactions of prebiotic interest. RSC Advances, 2022, 12, 28804-28817.	1.7	1
134	Natural Radioactivity and Chemical Evolution on the Early Earth: Prebiotic Chemistry and Oxygenation. Molecules, 2022, 27, 8584.	1.7	4

#	Article	IF	CITATIONS
135	Beginnings of life on Earth. , 2023, , 115-166.		0
136	"Sea Water―Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life, 2023, 13, 265.	1.1	0
137	Salty ocean and submarine hydrothermal vents on Saturn's Moon Enceladus—Tall plume of gas, jets of water vapor & organic-enriched ice particles spewing from its south pole. , 2023, , 583-616.		0
138	Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Glycinal, Acetamide, and Their Enol Tautomers. Angewandte Chemie, 2023, 135, .	1.6	1
139	Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Glycinal, Acetamide, and Their Enol Tautomers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
140	Mirror-image Biological Molecules. Kongjian Kexue Xuebao, 2021, 41, 141.	0.2	0
141	Volcanic Island lightning prebiotic chemistry and the origin of life in the early Hadean eon. Nature Communications, 2023, 14, .	5.8	2
146	The Enol of Propionic acid. Chemical Communications, 0, , .	2.2	0
151	The First Gene Before DNA: The Digital Revolution. , 2023, , 125-138.		0