Atmospheric iodine levels influenced by sea surface em

Nature Geoscience 6, 108-111 DOI: 10.1038/ngeo1687

Citation Report

#	Article	IF	CITATIONS
1	A theoretical study on the formation of iodine oxide aggregates and monohydrates. Physical Chemistry Chemical Physics, 2013, 15, 15572.	1.3	38
2	Conversion of Iodide to Hypoiodous Acid and Iodine in Aqueous Microdroplets Exposed to Ozone. Environmental Science & Technology, 2013, 47, 10971-10979.	4.6	54
3	Enhancement of Gaseous Iodine Emission by Aqueous Ferrous Ions during the Heterogeneous Reaction of Gaseous Ozone with Aqueous Iodide. Journal of Physical Chemistry A, 2013, 117, 2980-2986.	1.1	5
4	Sea ice dynamics influence halogen deposition to Svalbard. Cryosphere, 2013, 7, 1645-1658.	1.5	27
5	The contribution of oceanic methyl iodide to stratospheric iodine. Atmospheric Chemistry and Physics, 2013, 13, 11869-11886.	1.9	42
6	lodine monoxide in the Western Pacific marine boundary layer. Atmospheric Chemistry and Physics, 2013, 13, 3363-3378.	1.9	66
7	Halogen species record Antarctic sea ice extent over glacial–interglacial periods. Atmospheric Chemistry and Physics, 2013, 13, 6623-6635.	1.9	47
8	Iodine chemistry in the eastern Pacific marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 887-904.	1.2	46
11	A controlling role for the airâ^'sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3943-3948.	3.3	42
12	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	5.4	105
13	Low Ozone Episodes at Amphitrite Point Marine Boundary Layer Observatory, British Columbia, Canada. Atmosphere - Ocean, 2014, 52, 271-280.	0.6	12
14	The development and deployment of a ground-based, laser-induced fluorescence instrument for thein situdetection of iodine monoxide radicals. Review of Scientific Instruments, 2014, 85, 044101.	0.6	0
15	Synthesis, Structure and Thermal Decomposition of a New Iodine Inclusion Compound in the 2,2-Dimethylpropane-1,3-diamine/HI/I ₂ System. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 753-760.	0.3	11
16	Combining pyrohydrolysis and ICP-MS for bromine and iodine determination in airborne particulate matter. Microchemical Journal, 2014, 116, 225-229.	2.3	22
17	Ocean-Atmosphere Interactions of Gases and Particles. Springer Earth System Sciences, 2014, , .	0.1	22
18	The distribution of iodide at the sea surface. Environmental Sciences: Processes and Impacts, 2014, 16, 1841-1859.	1.7	98
19	Theoretical investigations of the IO,q+ (q = 2, 3, 4) multi-charged ions: Metastability, characterization and spectroscopy. Journal of Chemical Physics, 2014, 141, 014302.	1.2	9
20	HOI versus HOIO Selectivity of a Molten-type AgI Electrode. Journal of Physical Chemistry A, 2014, 118, 4670-4679.	1.1	8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
21	Extreme surface propensity of halide ions in water. Nature Communications, 2014, 5, 4	1083.	5.8	97
22	Seasonal variability of methyl iodide in the Kiel Fjord. Journal of Geophysical Research: (119, 1609-1620.	Dceans, 2014,	1.0	9
23	Emission of iodine-containing volatiles by selected microalgae species. Atmospheric Ch Physics, 2014, 14, 13327-13335.	iemistry and	1.9	8
24	Observations of I ₂ at a remote marine site. Chemistry and Physics, 2014, 14, 2669-2678.	Atmospheric	1.9	32
25	lodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry ar 14, 13119-13143.	nd Physics, 2014,	1.9	148
26	A laboratory characterisation of inorganic iodine emissions from the sea surface: deper oceanic variables and parameterisation for global modelling. Atmospheric Chemistry ar 2014, 14, 5841-5852.		1.9	111
27	Injection of iodine to the stratosphere. Geophysical Research Letters, 2015, 42, 6852-6	5859.	1.5	52
28	On the concentration and size distribution of sub-micron aerosol in the Galápagos Isla Atmospheric Environment, 2015, 123, 39-48.	inds.	1.9	4
29	Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone Northern Hemisphere. Environmental Science & Technology, 2015, 49, 9203-921	over the 1.	4.6	69
30	Tropospheric ozone and its precursors from the urban to the global scale from air quali short-lived climate forcer. Atmospheric Chemistry and Physics, 2015, 15, 8889-8973.	ty to	1.9	942
31	A negative feedback between anthropogenic ozone pollution and enhanced ocean emi Atmospheric Chemistry and Physics, 2015, 15, 2215-2224.	ssions of iodine.	1.9	63
32	Iodine oxide in the global marine boundary layer. Atmospheric Chemistry and Physics, 2	2015, 15, 583-593.	1.9	84
33	Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions i Alaska. Atmospheric Chemistry and Physics, 2015, 15, 9651-9679.	in Barrow,	1.9	29
34	A mechanism for biologically induced iodine emissions from sea ice. Atmospheric Chen Physics, 2015, 15, 9731-9746.	nistry and	1.9	39
35	lodine observed in new particle formation events in the Arctic atmosphere during ACC/ Atmospheric Chemistry and Physics, 2015, 15, 5599-5609.	ACIA.	1.9	102
36	Vertical distribution of BrO in the boundary layer at the Dead Sea. Environmental Chen 438.	nistry, 2015, 12,	0.7	16
37	Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. Chemical Reviews, 20	15, 115, 4035-4062.	23.0	344
38	Chemistry and Release of Gases from the Surface Ocean. Chemical Reviews, 2015, 115	, 4015-4034.	23.0	92

#	Article	IF	CITATIONS
39	lodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry, 2015, 63, 282-302.	1.4	240
40	Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. Nature Geoscience, 2015, 8, 186-190.	5.4	146
41	Competition between Organics and Bromide at the Aqueous Solution–Air Interface as Seen from Ozone Uptake Kinetics and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 4600-4608.	1.1	24
42	Microfluidic derivatisation technique for determination of gaseous molecular iodine with GC–MS. Talanta, 2015, 137, 214-219.	2.9	4
43	Active and widespread halogen chemistry in the tropical and subtropical free troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9281-9286.	3.3	91
44	Aircraft measurements of BrO, IO, glyoxal, NO ₂ , H ₂ O, O ₂ –O ₂ and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar	1.2	107
46	BIOGEOCHEMICAL CYCLES lodine. , 2015, , 205-219.		3
49	A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,271.	1.2	86
50	Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms. Geophysical Research Letters, 2016, 43, 6596-6603.	1.5	21
51	Global modeling of tropospheric iodine aerosol. Geophysical Research Letters, 2016, 43, 10012-10019.	1.5	17
52	On the variability of ozone in the equatorial eastern Pacific boundary layer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,086.	1.2	2
53	Technical note: Examining ozone deposition over seawater. Atmospheric Environment, 2016, 141, 255-262.	1.9	25
54	Halogen Radical Chemistry at Aqueous Interfaces. Journal of Physical Chemistry A, 2016, 120, 6242-6248.	1.1	8
55	Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12239-12271.	1.9	231
56	lodine's impact on tropospheric oxidants: aÂglobal model study in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 1161-1186.	1.9	116
57	Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source. Atmospheric Chemistry and Physics, 2016, 16, 12219-12237.	1.9	22
58	Nighttime atmospheric chemistry of iodine. Atmospheric Chemistry and Physics, 2016, 16, 15593-15604.	1.9	31
59	Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic. Scientific Reports, 2016, 6, 26007.	1.6	6

#	Article	IF	CITATIONS
60	A theoretical study on the reaction of ozone with aqueous iodide. Physical Chemistry Chemical Physics, 2016, 18, 7651-7660.	1.3	10
61	A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer. Journal of Atmospheric Chemistry, 2017, 74, 145-156.	1.4	4
62	The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. Bulletin of the American Meteorological Society, 2017, 98, 106-128.	1.7	50
63	The Impact of Iodide-Mediated Ozone Deposition and Halogen Chemistry on Surface Ozone Concentrations Across the Continental United States. Environmental Science & Technology, 2017, 51, 1458-1466.	4.6	20
64	Effects of halogens on European air-quality. Faraday Discussions, 2017, 200, 75-100.	1.6	43
65	Man's footprint on the Arctic environment as revealed by analysis of ice and snow. Earth-Science Reviews, 2017, 168, 218-231.	4.0	39
66	Biogenic Emissions and Nocturnal Ozone Depletion Events at the Amphitrite Point Observatory on Vancouver Island. Atmosphere - Ocean, 2017, 55, 121-132.	0.6	6
67	Active molecular iodine photochemistry in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10053-10058.	3.3	63
68	The Iodide and Iodate Distribution in the Seto Inland Sea, Japan. Aquatic Geochemistry, 2017, 23, 315-330.	1.5	2
69	Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment. Environmental Science & amp; Technology, 2017, 51, 14030-14037.	4.6	5
70	An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model. Atmospheric Chemistry and Physics, 2017, 17, 3749-3767.	1.9	46
71	Halogen chemistry reduces tropospheric O ₃ radiative forcing. Atmospheric Chemistry and Physics, 2017, 17, 1557-1569.	1.9	43
72	Space-based observation of volcanic iodine monoxide. Atmospheric Chemistry and Physics, 2017, 17, 4857-4870.	1.9	21
73	Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. Advances in Applied Microbiology, 2017, 101, 83-136.	1.3	36
76	Spin–Orbit Effects in the Spectroscopy of the X ² Πand a ⁴ Σ [–] Electronic States of Carbon Iodide, CI. Journal of Physical Chemistry A, 2018, 122, 2353-2360.	1.1	4
77	Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nature Communications, 2018, 9, 1452.	5.8	86
78	lodine soil dynamics and methods of measurement: a review. Environmental Sciences: Processes and Impacts, 2018, 20, 288-310.	1.7	18
79	Impacts of anthropogenic source from the nuclear fuel reprocessing plants on global atmospheric iodine-129 cycle: A model analysis. Atmospheric Environment, 2018, 184, 278-291.	1.9	17

#	Article	IF	CITATIONS
80	Impacts of bromine and iodine chemistry on tropospheric OH and HO ₂ : comparing observations with box and global model perspectives. Atmospheric Chemistry and Physics, 2018, 18, 3541-3561.	1.9	24
81	A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis. Atmospheric Chemistry and Physics, 2018, 18, 4329-4348.	1.9	31
82	Reactions of iodate with iodine in concentrated sulfuric acid. Formation of I(+3) and I(+1) compounds. Chemical Physics Letters, 2018, 691, 44-50.	1.2	6
83	A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Science, 2018, 14, 1385-1403.	1.3	10
84	Atmospheric chemistry of iodine anions: elementary reactions of I ^{â^'} , IO ^{â^'} , and IO ₂ ^{â^'} with ozone studied in the gas-phase at 300 K using an ion trap. Physical Chemistry Chemical Physics, 2018, 20, 28606-28615.	1.3	24
85	A revisit of the interaction of gaseous ozone with aqueous iodide. Estimating the contributions of the surface and bulk reactions. Physical Chemistry Chemical Physics, 2018, 20, 27571-27584.	1.3	16
86	Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12136-12141.	3.3	53
87	Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments. Journal of the American Chemical Society, 2018, 140, 14704-14716.	6.6	24
88	An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. Environments - MDPI, 2018, 5, 104.	1.5	34
90	Polar Nighttime Chemistry Produces Intense Reactive Bromine Events. Geophysical Research Letters, 2018, 45, 9987-9994.	1.5	10
91	lodine Catalyzed Ozone Destruction at the Texas Coast and Gulf of Mexico. Geophysical Research Letters, 2018, 45, 7800-7807.	1.5	2
92	Abiotic and biotic sources influencing spring new particle formation in North East Greenland. Atmospheric Environment, 2018, 190, 126-134.	1.9	30
93	Atmospheric Iodine (¹²⁷ I and ¹²⁹ I) Record in Spruce Tree Rings in the Northeast Qinghai-Tibet Plateau. Environmental Science & Technology, 2019, 53, 8706-8714.	4.6	24
94	Emission of volatile halogenated organic compounds over various Dead Sea landscapes. Atmospheric Chemistry and Physics, 2019, 19, 7667-7690.	1.9	5
95	Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmospheric Environment, 2019, 213, 395-404.	1.9	29
96	Halogen activation and radical cycling initiated by imidazole-2-carboxaldehyde photochemistry. Atmospheric Chemistry and Physics, 2019, 19, 10817-10828.	1.9	12
97	Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM hem Global Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2259-2289.	1.3	31
98	A kinetic model for ozone uptake by solutions and aqueous particles containing I ^{â^'} and Br ^{â^'} , including seawater and sea-salt aerosol. Physical Chemistry Chemical Physics, 2019, 21, 19835-19856.	1.3	18

#	Article	IF	CITATIONS
99	Biogeochemical Coupling between Ocean and Atmosphere—A Tribute to the Lifetime Contribution of Robert A. Duce. Journals of the Atmospheric Sciences, 2019, 76, 3289-3298.	0.6	3
100	Oxygen broadening and shift coefficients in the ν6 band of methyl iodide (12CH3I) at room temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106679.	1.1	9
102	Observations of iodine oxide in the Indian Ocean marine boundary layer: A transect from the tropics to the high latitudes. Atmospheric Environment: X, 2019, 1, 100016.	0.8	10
103	Marine versus Continental Sources of Iodine and Selenium in Rainfall at Two European High-Altitude Locations. Environmental Science & Technology, 2019, 53, 1905-1917.	4.6	20
104	pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces. Atmospheric Chemistry and Physics, 2019, 19, 4917-4931.	1.9	28
105	Effect of sea salt aerosol on tropospheric bromine chemistry. Atmospheric Chemistry and Physics, 2019, 19, 6497-6507.	1.9	36
106	The reaction of hydrated iodide I(H ₂ 0) ^{â^'} with ozone: a new route to IO ₂ ^{â^'} products. Physical Chemistry Chemical Physics, 2019, 21, 17546-17554.	1.3	19
107	Importance of reactive halogens in the tropical marine atmosphere: aÂregional modelling study using WRF-Chem. Atmospheric Chemistry and Physics, 2019, 19, 3161-3189.	1.9	36
108	Influence of collection substrate and extraction method on the speciation of soluble iodine in atmospheric aerosols. Atmospheric Environment: X, 2019, 1, 100009.	0.8	8
109	lodide Accelerates the Processing of Biogenic Monoterpene Emissions on Marine Aerosols. ACS Omega, 2019, 4, 7574-7580.	1.6	4
110	Experimental Determination of the Photooxidation of Aqueous I– as a Source of Atmospheric I2. ACS Earth and Space Chemistry, 2019, 3, 669-679.	1.2	9
111	Understanding Iodine Chemistry Over the Northern and Equatorial Indian Ocean. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8104-8118.	1.2	11
112	Nitrite-Induced Activation of lodate into Molecular Iodine in Frozen Solution. Environmental Science & Technology, 2019, 53, 4892-4900.	4.6	31
113	The opposing effect of butanol and butyric acid on the abundance of bromide and iodide at the aqueous solution–air interface. Physical Chemistry Chemical Physics, 2019, 21, 8418-8427.	1.3	10
114	Holocene atmospheric iodine evolution over the North Atlantic. Climate of the Past, 2019, 15, 2019-2030.	1.3	5
115	Enhanced Chlorine and Bromine Atom Activation by Hydrolysis of Halogen Nitrates from Marine Aerosols at Polluted Coastal Areas. Environmental Science & Technology, 2019, 53, 771-778.	4.6	15
116	Experimental observations of marine iodide oxidation using a novel sparge-interface MC-ICP-MS technique. Chemical Geology, 2020, 532, 119360.	1.4	28
117	The MILAN Campaign: Studying Diel Light Effects on the Air–Sea Interface. Bulletin of the American Meteorological Society, 2020, 101, E146-E166.	1.7	14

#	Article	IF	CITATIONS
118	Influence of the Sea Surface Microlayer on Oceanic Iodine Emissions. Environmental Science & Technology, 2020, 54, 13228-13237.	4.6	11
119	A Global Model for Iodine Speciation in the Upper Ocean. Global Biogeochemical Cycles, 2020, 34, e2019GB006467.	1.9	16
120	Global budget of atmospheric 129I during 2007–2010 estimated by a chemical transport model: GEARN–FDM. Atmospheric Environment: X, 2020, 8, 100098.	0.8	2
122	Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications, 2020, 11, 4924.	5.8	96
123	Surface Inorganic Iodine Speciation in the Indian and Southern Oceans From 12°N to 70°S. Frontiers in Marine Science, 2020, 7, .	1.2	8
124	A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides. Nature Communications, 2020, 11, 4521.	5.8	39
125	Reactive Uptake of Ozone to Simulated Seawater: Evidence for Iodide Depletion. Journal of Physical Chemistry A, 2020, 124, 9844-9853.	1.1	6
126	Reactive VOC Production from Photochemical and Heterogeneous Reactions Occurring at the Air–Ocean Interface. Accounts of Chemical Research, 2020, 53, 1014-1023.	7.6	28
127	The impacts of ocean acidification on marine trace gases and the implications forÂatmospheric chemistry andÂclimate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190769.	1.0	31
129	Senescence as the main driver of iodide release from a diverse range of marine phytoplankton. Biogeosciences, 2020, 17, 2453-2471.	1.3	11
130	Influences of oceanic ozone deposition on tropospheric photochemistry. Atmospheric Chemistry and Physics, 2020, 20, 4227-4239.	1.9	28
131	Temporal variation in ¹²⁹ l and ¹²⁷ l in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events. Atmospheric Chemistry and Physics, 2020, 20, 2623-2635.	1.9	11
132	lodide conversion to iodate in aqueous and solid aerosols exposed to ozone. Physical Chemistry Chemical Physics, 2020, 22, 5625-5637.	1.3	12
134	Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.	3.3	61
135	Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change, 2020, 10, 147-154.	8.1	37
136	Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing. Geophysical Research Letters, 2020, 47, e2019GL085838.	1.5	24
137	Revising the Ozone Depletion Potentials Metric for Short‣ived Chemicals Such as CF ₃ I and CH ₃ I. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032414.	1.2	14
138	Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032058.	1.2	30

#	Article	IF	CITATIONS
139	Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems. Water Research, 2020, 179, 115852.	5.3	23
140	Chemical Sensitivity Analysis and Uncertainty Analysis of Ozone Production in the Comprehensive Air Quality Model with Extensions Applied to Eastern Texas. Environmental Science & Technology, 2020, 54, 5391-5399.	4.6	9
141	Microsolvation of heavy halides. International Journal of Quantum Chemistry, 2021, 121, e26571.	1.0	13
142	Sources, Pathways, and Health Effects of Iodine in the Environment. , 2021, , 565-613.		2
143	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
144	Interaction process between gaseous CH ₃ 1 and NaCl particles: implication for iodine dispersion in the atmosphere. Environmental Sciences: Processes and Impacts, 2021, 23, 1771-1781.	1.7	0
145	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
146	Chemical Interactions Between Shipâ€Originated Air Pollutants and Oceanâ€Emitted Halogens. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034175.	1.2	6
147	Marine iodine emissions in a changing world. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200824.	1.0	41
148	Description of the NASA GEOS Composition Forecast Modeling System GEOS F v1.0. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002413.	1.3	52
149	Spatial and Temporal Variability of Iodine in Aerosol. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034410.	1.2	9
150	Modelling the impacts of iodine chemistry on the northern Indian Ocean marine boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 8437-8454.	1.9	7
151	Insight into the Ionizing Surface Potential Method and Aqueous Sodium Halide Surfaces. Langmuir, 2021, 37, 7863-7874.	1.6	5
152	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	1.2	13
154	Instability of β–phase silver iodide nanoparticles in an aqueous medium by ozone. Journal of Environmental Chemical Engineering, 2021, 9, 105591.	3.3	5
156	Observations of iodine monoxide over three summers at the Indian Antarctic bases of Bharati and Maitri. Atmospheric Chemistry and Physics, 2021, 21, 11829-11842.	1.9	3
158	Oxidation of iodide to iodate by cultures of marine ammonia-oxidising bacteria. Marine Chemistry, 2021, 234, 104000.	0.9	10
159	Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. Atmospheric Chemistry and Physics, 2021, 21, 13483-13536.	1.9	59

#	Article	IF	CITATIONS
160	Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 2021, 21, 13973-13996.	1.9	57
161	Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geoscientific Model Development, 2021, 14, 5487-5506.	1.3	23
162	Measurement report: Indirect evidence for the controlling influence of acidity on the speciation of iodine in Atlantic aerosols. Atmospheric Chemistry and Physics, 2021, 21, 13067-13076.	1.9	5
164	Sea-ice reconstructions from bromine and iodine in ice cores. Quaternary Science Reviews, 2021, 269, 107133.	1.4	10
165	Halocarbon emissions by selected tropical seaweeds exposed to different temperatures. Phytochemistry, 2021, 190, 112869.	1.4	8
166	Concentration factors and biological half-lives for the dynamic modelling of radionuclide transfers to marine biota in the English Channel. Science of the Total Environment, 2021, 791, 148193.	3.9	4
167	Tropospheric Ozone Budget: Formation, Depletion and Climate Change. , 2018, , 31-64.		5
168	Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.	0.1	2
169	Low energy electron interactions with Iodine molecule (I2). Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 107035.	1.1	8
170	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	1.1	52
171	Determination of the absorption cross sections of higher-order iodine oxides at 355Âand 532 nm. Atmospheric Chemistry and Physics, 2020, 20, 10865-10887.	1.9	14
172	Estimation of reactive inorganic iodine fluxes in the Indian and Southern Ocean marine boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 12093-12114.	1.9	14
181	A machine-learning-based global sea-surface iodide distribution. Earth System Science Data, 2019, 11, 1239-1262.	3.7	31
182	CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-MUSCAT(5.04e). Geoscientific Model Development, 2020, 13, 2587-2609.	1.3	6
184	Impact of Tetrabutylammonium on the Oxidation of Bromide by Ozone. ACS Earth and Space Chemistry, 2021, 5, 3008-3021.	1.2	11
185	The Role of Natural Halogens in Global Tropospheric Ozone Chemistry and Budget Under Different 21st Century Climate Scenarios. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034859.	1.2	10
189	TIBAGS: Tropospheric Iodine Monoxide and Its Coupling to Biospheric and Atmospheric Variables—a Global Satellite Study. Springer Earth System Sciences, 2016, , 15-34.	0.1	0
191	lodine chemistry in the chemistry–climate model SOCOL-AERv2-I. Geoscientific Model Development, 2021, 14, 6623-6645.	1.3	12

#	Article	IF	CITATIONS
192	Uncertainty analysis of modeled ozone changes due to anthropogenic emission reductions in Eastern Texas. Atmospheric Environment, 2022, 268, 118798.	1.9	0
193	Global Bromine- and Iodine-Mediated Tropospheric Ozone Loss Estimated Using the CHASER Chemical Transport Model. Scientific Online Letters on the Atmosphere, 2020, 16, 220-227.	0.6	6
194	An overview on metal Oxide-based materials for iodine capture and storage. Chemical Engineering Journal, 2022, 431, 133816.	6.6	48
195	Climate changes modulated the history of Arctic iodine during the Last Glacial Cycle. Nature Communications, 2022, 13, 88.	5.8	3
196	On the Speciation of lodine in Marine Aerosol. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
197	The influence of iodine on the Antarctic stratospheric ozone hole. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
198	Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2237-2254.	1.9	6
199	Gas-phase catalytic hydration of I2O5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications. Journal of Environmental Sciences, 2022, 114, 412-421.	3.2	3
200	Halogens in Seaweeds: Biological and Environmental Significance. Phycology, 2022, 2, 132-171.	1.7	12
201	Full latitudinal marine atmospheric measurements of iodine monoxide. Atmospheric Chemistry and Physics, 2022, 22, 4005-4018.	1.9	3
202	Role of Iodine Recycling on Seaâ€ S alt Aerosols in the Global Marine Boundary Layer. Geophysical Research Letters, 2022, 49, .	1.5	3
203	Mixing state and distribution of iodine-containing particles in Arctic Ocean during summertime. Science of the Total Environment, 2022, , 155030.	3.9	0
204	Soluble Iodine Speciation in Marine Aerosols Across the Indian and Pacific Ocean Basins. Frontiers in Marine Science, 2021, 8, .	1.2	2
205	Ozone depletion due to dust release of iodine in the free troposphere. Science Advances, 2021, 7, eabj6544.	4.7	5
206	Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution. Communications Chemistry, 2022, 5, .	2.0	15
207	1291 in rainwater across Argentina. Journal of Environmental Radioactivity, 2022, 248, 106871.	0.9	2
209	Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nature Communications, 2022, 13, 2768.	5.8	20
210	Atmospheric gas-phase composition over the Indian Ocean. Atmospheric Chemistry and Physics, 2022, 22, 6625-6676.	1.9	3

		CITATION REPORT		
#	Article		IF	CITATIONS
212	The Chemistry of Mercury in the Stratosphere. Geophysical Research Letters, 2022, 49	,.	1.5	4
213	lodine emission from the reactive uptake of ozone to simulated seawater. Environment Processes and Impacts, 2023, 25, 254-263.	tal Sciences:	1.7	2
214	The impacts of marine-emitted halogens on OH radicals in East Asia during summer. At Chemistry and Physics, 2022, 22, 7331-7351.	mospheric	1.9	3
215	Ultra-Sensitive Determination of Particulate, Gaseous Inorganic and Organic Iodine-129 in Ambient Air. Analytical Chemistry, 2022, 94, 9835-9843.	and lodine-127	3.2	4
216	The roles of <scp>DmsEFAB</scp> and <scp>MtrCAB</scp> in extracellular reduction <i>Shewanella oneidensis</i> Â <scp>MR</scp> â€1 with lactate as the sole electron do Microbiology, 2022, 24, 5039-5050.	of iodate by nor. Environmental	1.8	7
217	Substantial contribution of iodine to Arctic ozone destruction. Nature Geoscience, 202	22, 15, 770-773.	5.4	16
218	Molecular Characterization of the Product Compounds Formed Upon Heterogeneous (Ozone With Riverine Surface Microlayer. Journal of Geophysical Research D: Atmosphe		1.2	2
219	Unexpectedly significant stabilizing mechanism of iodous acid on iodic acid nucleation different atmospheric conditions. Science of the Total Environment, 2023, 859, 15983	under 2.	3.9	10
220	lodine uptake in brown seaweed exposed to radioactive liquid discharges from the repr of ORANO La Hague. Journal of Environmental Radioactivity, 2023, 256, 107045.	ocessing plant	0.9	2
221	The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Na 2023, 15, 129-135.	ature Chemistry,	6.6	10
222	Environmental iodine speciation quantification in seawater and snow using ion exchan chromatography and UV spectrophotometric detection. Analytica Chimica Acta, 2023,		2.6	4
223	Potential deterioration of ozone pollution in coastal areas caused by marine-emitted has study in the Guangdong-Hong Kong-Macao Greater Bay Area. Science of the Total Envi 860, 160456.		3.9	2
224	lodine cycling in the subarctic Pacific Ocean: Insights from 129I. Geochimica Et Cosmo 2023, 344, 12-23.	chimica Acta,	1.6	2
225	The Competition between Hydrogen, Halogen, and Covalent Bonding in Atmospherical Ammonium Iodate Clusters. Journal of the American Chemical Society, 2023, 145, 116	ly Relevant 5-1175.	6.6	1
226	200-year ice core bromine reconstruction at Dome C (Antarctica): observational and m results. Cryosphere, 2023, 17, 391-405.	odelling	1.5	2
227	A review of iodine in plants with biofortification: Uptake, accumulation, transportation and toxicity. Science of the Total Environment, 2023, 878, 163203.	, function,	3.9	4
228	Review on the physical chemistry of iodine transformations in the oceans. Frontiers in I Science, 0, 10, .	Varine	1.2	8
229	Potential Stratospheric Ozone Depletion Due To Iodine Injection From Small Satellites. Research Letters, 2023, 50, .	Geophysical	1.5	3

#	ARTICLE	IF	CITATIONS
232	Production of Volatile Organic Compounds by Ozone Oxidation Chemistry at the South China Sea Surface Microlayer. ACS Earth and Space Chemistry, 0, , .	1.2	0