Abundant SAR11 viruses in the ocean

Nature 494, 357-360 DOI: 10.1038/nature11921

Citation Report

#	Article	IF	CITATIONS
1	SAR11 viruses and defensive host strains. Nature, 2013, 499, E3-E4.	27.8	39
2	Giovannoni et al. reply. Nature, 2013, 499, E4-E5.	27.8	31
3	The global virome: not as big as we thought?. Current Opinion in Virology, 2013, 3, 566-571.	5.4	64
4	Patterns of ecological specialization among microbial populations in the <scp>R</scp> ed <scp>S</scp> ea and diverse oligotrophic marine environments. Ecology and Evolution, 2013, 3, 1780-1797.	1.9	45
5	Killers of the winners. Nature, 2013, 494, 320-321.	27.8	3
6	Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biology, 2013, 14, R130.	9.6	74
7	Preparation of Metagenomic Libraries from Naturally Occurring Marine Viruses. Methods in Enzymology, 2013, 531, 143-165.	1.0	33
8	Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquatic Microbial Ecology, 2013, 71, 1-13.	1.8	90
9	Cheats never prosper. Nature, 2013, 494, 321-322.	27.8	3
10	Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus, 2013, 3, 20130033.	3.0	73
11	Lineage specific gene family enrichment at the microscale in marine systems. Current Opinion in Microbiology, 2013, 16, 605-617.	5.1	16
12	Insight into the unknown marine virus majority. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12166-12167.	7.1	12
13	Twelve previously unknown phage genera are ubiquitous in global oceans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12798-12803.	7.1	182
14	Expanding the Marine Virosphere Using Metagenomics. PLoS Genetics, 2013, 9, e1003987.	3.5	259
15	Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12343-12348.	7.1	122
16	Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biology, 2013, 14, R123.	9.6	208
17	Regulation of bacterial metabolic activity by dissolved organic carbon and viruses. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1573-1583.	3.0	23
18	Prevalence of psbA-containing cyanobacterial podoviruses in the ocean. Scientific Reports, 2013, 3, 3207.	3.3	12

ATION RED

#	Article	IF	CITATIONS
19	Plankton Viruses. , 2013, , 615-623.		0
20	The Pacific Ocean Virome (POV): A Marine Viral Metagenomic Dataset and Associated Protein Clusters for Quantitative Viral Ecology. PLoS ONE, 2013, 8, e57355.	2.5	336
21	Optimal Defense Strategies in an Idealized Microbial Food Web under Trade-Off between Competition and Defense. PLoS ONE, 2014, 9, e101415.	2.5	29
22	Evidence for metaviromic islands in marine phages. Frontiers in Microbiology, 2014, 5, 27.	3.5	39
23	The distribution and impact of viral lineages in domains of life. Frontiers in Microbiology, 2014, 5, 194.	3.5	42
24	Diversity and abundance of "Pelagibacterales―(SAR11) in the Baltic Sea salinity gradient. Systematic and Applied Microbiology, 2014, 37, 601-604.	2.8	58
25	Tales from a thousand and one phages. Bacteriophage, 2014, 4, e28265.	1.9	17
26	A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7813-7818.	7.1	130
27	Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environmental Microbiology Reports, 2014, 6, 583-594.	2.4	26
28	Dispersal network structure and infection mechanism shape diversity in a coevolutionary bacteria-phage system. ISME Journal, 2014, 8, 504-514.	9.8	9
29	Temperature dependent bacteriophages of a tropical bacterial pathogen. Frontiers in Microbiology, 2014, 5, 599.	3.5	63
30	Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. Frontiers in Microbiology, 2014, 5, 506.	3.5	48
31	Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Frontiers in Microbiology, 2014, 5, 493.	3.5	32
32	Emerging methods to study bacteriophage infection at the single-cell level. Frontiers in Microbiology, 2014, 5, 724.	3.5	40
33	Differing assemblage composition and dynamics in <scp>T</scp> 4â€like myophages of two neighbouring subâ€alpine lakes. Freshwater Biology, 2014, 59, 1577-1595.	2.4	14
34	Contrasting genomic patterns and infection strategies of two coâ€existing <scp><i>B</i></scp> <i>acteroidetes</i> podovirus genera. Environmental Microbiology, 2014, 16, 2501-2513.	3.8	31
35	Growth activity of gammaproteobacterial subgroups in waters off the west <scp>A</scp> ntarctic <scp>P</scp> eninsula in summer and fall. Environmental Microbiology, 2014, 16, 1513-1523.	3.8	17
36	Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annual Review of Marine Science, 2014, 6, 393-414.	11.6	68

3

#	Article	IF	CITATIONS
37	Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME Journal, 2014, 8, 816-829.	9.8	300
38	Improved Bacteriophage Genome Data is Necessary for Integrating Viral and Bacterial Ecology. Microbial Ecology, 2014, 67, 242-244.	2.8	23
39	Variations in Abundance, Genome Size, Morphology, and Functional Role of the Virioplankton in Lakes Annecy and Bourget over a 1-Year Period. Microbial Ecology, 2014, 67, 66-82.	2.8	19
40	Sulfur Oxidation Genes in Diverse Deep-Sea Viruses. Science, 2014, 344, 757-760.	12.6	223
41	Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15786-15791.	7.1	56
42	Elucidating marine virus ecology through a unified heartbeat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15606-15607.	7.1	10
43	Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME Journal, 2014, 8, 1440-1451.	9.8	119
44	Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME Journal, 2014, 8, 1391-1402.	9.8	127
45	Bacteria–Phage Interactions in Natural Environments. Advances in Applied Microbiology, 2014, 89, 135-183.	2.4	138
46	A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nature Communications, 2014, 5, 4498.	12.8	617
47	Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome, 2014, 2, 9.	11.1	66
48	The elemental composition of virus particles: implications for marine biogeochemical cycles. Nature Reviews Microbiology, 2014, 12, 519-528.	28.6	273
49	Marine viruses, a genetic reservoir revealed by targeted viromics. ISME Journal, 2014, 8, 1079-1088.	9.8	83
50	The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology, 2014, 450-451, 84-97.	2.4	34
51	Single cell genomics of deep ocean bacteria. Trends in Microbiology, 2014, 22, 233-234.	7.7	3
52	A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Marine Genomics, 2014, 15, 17-28.	1.1	69
53	Deciphering Diversity and Ecological Function From Marine Metagenomes. Biological Bulletin, 2014, 227, 107-116.	1.8	6
54	Heterotrophic Planktonic Microbes: Virus, Bacteria, Archaea, and Protozoa. , 2015, , 4.2.2-1-4.2.2-34.		8

#	Article	IF	CITATIONS
55	Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Frontiers in Microbiology, 2015, 6, 265.	3.5	72
56	What difference does it make if viruses are strain-, rather than species-specific?. Frontiers in Microbiology, 2015, 6, 320.	3.5	21
57	Trends and determinants of gastric bacterial colonization of preterm neonates in a NICU setting. PLoS ONE, 2015, 10, e0114664.	2.5	26
58	Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea. PLoS ONE, 2015, 10, e0114829.	2.5	13
59	Patterns and ecological drivers of ocean viral communities. Science, 2015, 348, 1261498.	12.6	617
60	Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes. Frontiers in Microbiology, 2015, 6, 381.	3.5	28
61	Complete genome sequence of bacteriophage P8625, the first lytic phage that infects Verrucomicrobia. Standards in Genomic Sciences, 2015, 10, 96.	1.5	1
62	Complete genome sequences of bacteriophages P12002L and P12002S, two lytic phages that infect a marine Polaribacter strain. Standards in Genomic Sciences, 2015, 10, 82.	1.5	25
63	Rising to the challenge: accelerated pace of discovery transforms marine virology. Nature Reviews Microbiology, 2015, 13, 147-159.	28.6	287
64	Depth-stratified functional and taxonomic niche specialization in the â€~core' and â€~flexible' Pacific Ocean Virome. ISME Journal, 2015, 9, 472-484.	9.8	180
65	The physiology and ecological implications of efficient growth. ISME Journal, 2015, 9, 1481-1487.	9.8	155
66	Counts and sequences, observations that continue to change our understanding of viruses in nature. Journal of Microbiology, 2015, 53, 181-192.	2.8	58
67	Viromes, Not Gene Markers, for Studying Double-Stranded DNA Virus Communities. Journal of Virology, 2015, 89, 2459-2461.	3.4	59
68	Novel N4 Bacteriophages Prevail in the Cold Biosphere. Applied and Environmental Microbiology, 2015, 81, 5196-5202.	3.1	19
69	Distribution and diversity of bacterioplankton communities in subtropical seawater around Xiamen Island, China. Microbiological Research, 2015, 175, 16-23.	5.3	20
70	Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME Journal, 2015, 9, 2386-2399.	9.8	207
71	Genomic characteristics and environmental distributions of the uncultivated Far-T4 phages. Frontiers in Microbiology, 2015, 6, 199.	3.5	24
72	The Caulobacter crescentus Transducing Phage Cr30 is a Unique Member of the T4-Like Family of Myophages. Current Microbiology, 2015, 70, 854-858.	2.2	11

#	Article	IF	CITATIONS
73	Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME Journal, 2015, 9, 2046-2058.	9.8	61
74	Biogeography of Viruses in the Sea. Annual Review of Virology, 2015, 2, 41-66.	6.7	96
75	Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. Journal of Virology, 2015, 89, 10945-10958.	3.4	29
76	Marine Cyanophages Demonstrate Biogeographic Patterns throughout the Global Ocean. Applied and Environmental Microbiology, 2015, 81, 441-452.	3.1	37
77	Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environmental Microbiology, 2015, 17, 3500-3514.	3.8	148
78	Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China. Viruses, 2016, 8, 35.	3.3	55
79	Abundance of Two Pelagibacter ubique Bacteriophage Genotypes along a Latitudinal Transect in the North and South Atlantic Oceans. Frontiers in Microbiology, 2016, 7, 1534.	3.5	16
80	Microbial Control of the Concentrations of Dissolved Aquatic Hydrocarbons. Springer Protocols, 2016, , 149-166.	0.3	0
81	Metagenomic Characterisation of the Viral Community of Lough Neagh, the Largest Freshwater Lake in Ireland. PLoS ONE, 2016, 11, e0150361.	2.5	87
82	Complete genome sequence of bacteriophage P2559Y, a marine phage that infects Croceibacter atlanticus HTCC2559. Marine Genomics, 2016, 29, 35-38.	1.1	20
83	Linking internal and external bacterial community control gives mechanistic framework for pelagic virusâ€ŧoâ€bacteria ratios. Environmental Microbiology, 2016, 18, 3932-3948.	3.8	10
84	A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Scientific Reports, 2016, 6, 30372.	3.3	43
85	Transcriptional Control in Marine Copiotrophic and Oligotrophic Bacteria with Streamlined Genomes. Applied and Environmental Microbiology, 2016, 82, 6010-6018.	3.1	45
86	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 2016, 537, 689-693.	27.8	629
87	Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology. Aquatic Microbial Ecology, 2016, 77, 183-196.	1.8	22
88	Genomes of Abundant and Widespread Viruses from the Deep Ocean. MBio, 2016, 7, .	4.1	99
89	Metagenomic characterization of viral communities in Goseong Bay, Korea. Ocean Science Journal, 2016, 51, 599-612.	1.3	6
90	Marine Viruses. , 2016, , 155-183.		7

#	Article	IF	CITATIONS
91	Biogeography of Marine Microorganisms. , 2016, , 187-207.		5
92	Marine phage genomics: the tip of the iceberg. FEMS Microbiology Letters, 2016, 363, fnw158.	1.8	48
93	Illuminating structural proteins in viral "dark matter―with metaproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2436-2441.	7.1	95
94	Transbiome invasions of femtoplankton. Contemporary Problems of Ecology, 2016, 9, 266-271.	0.7	2
95	New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environmental Microbiology, 2016, 18, 4337-4347.	3.8	23
96	Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods. Journal of Virology, 2016, 90, 3458-3468.	3.4	27
97	Expansion of Cultured Bacterial Diversity by Large-Scale Dilution-to-Extinction Culturing from a Single Seawater Sample. Microbial Ecology, 2016, 71, 29-43.	2.8	42
98	Assessment of a metaviromic dataset generated from nearshore Lake Michigan. Marine and Freshwater Research, 2016, 67, 1700.	1.3	41
99	Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary. ISME Journal, 2016, 10, 823-832.	9.8	63
100	Growth Rates of Microbes in the Oceans. Annual Review of Marine Science, 2016, 8, 285-309.	11.6	218
101	Deciphering the virusâ€ŧoâ€prokaryote ratio (<scp>VPR</scp>): insights into virus–host relationships in a variety of ecosystems. Biological Reviews, 2017, 92, 1081-1100.	10.4	153
102	Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly. ISME Journal, 2017, 11, 201-211.	9.8	40
103	Virus–host interactions and their roles in coral reef health and disease. Nature Reviews Microbiology, 2017, 15, 205-216.	28.6	144
104	The Baltic Sea Virome: Diversity and Transcriptional Activity of DNA and RNA Viruses. MSystems, 2017, 2,	3.8	80
105	Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME Journal, 2017, 11, 1614-1629.	9.8	158
106	Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota. Current Biology, 2017, 27, 1362-1368.	3.9	81
107	Characterization and Complete Genome Sequence of a Novel Siphoviridae Bacteriophage BS5. Current Microbiology, 2017, 74, 815-820.	2.2	8
108	Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nature Communications, 2017, 8, 15892.	12.8	165

#	Article	IF	CITATIONS
110	Ecogenomics of Deep-Ocean Microbial Bathytypes. , 2017, , 7-50.		8
111	Drivers of interannual variability in virioplankton abundance at the coastal western <scp>A</scp> ntarctic peninsula and the potential effects of climate change. Environmental Microbiology, 2017, 19, 740-755.	3.8	27
112	Surface properties of SAR11 bacteria facilitate grazing avoidance. Nature Microbiology, 2017, 2, 1608-1615.	13.3	44
113	Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environmental Microbiology, 2017, 19, 4493-4505.	3.8	39
114	Genome characteristics and environmental distribution of the first phage that infects the LD28 clade, aÂfreshwater methylotrophic bacterial group. Environmental Microbiology, 2017, 19, 4714-4727.	3.8	26
115	Environmental Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. MSphere, 2017, 2, .	2.9	114
116	Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nature Communications, 2017, 8, 84.	12.8	169
117	Bacteriophage Distributions and Temporal Variability in the Ocean's Interior. MBio, 2017, 8, .	4.1	76
118	Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genomics, 2017, 18, 485.	2.8	10
119	Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virology Journal, 2017, 14, 104.	3.4	30
120	Complete genome sequence of Pseudoalteromonas phage vB_PspS-H40/1 (formerly H40/1) that infects Pseudoalteromonas sp. strain H40 and is used as biological tracer in hydrological transport studies. Standards in Genomic Sciences, 2017, 12, 20.	1.5	8
122	SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 2017, 9, 231-255.	11.6	417
123	A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea. Viruses, 2017, 9, 109.	3.3	41
124	Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME Journal, 2018, 12, 1846-1860.	9.8	123
125	Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME Journal, 2018, 12, 1287-1295.	9.8	44
126	Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiology Letters, 2018, 365, .	1.8	8
127	Homologous Recombination in Core Genomes Facilitates Marine Bacterial Adaptation. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
128	Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME Journal, 2018, 12, 185-198.	9.8	227

#	Article	IF	CITATIONS
129	Metaproteomics of marine viral concentrates reveals key viral populations and abundant periplasmic proteins in the oligotrophic deep chlorophyll maximum of the South China Sea. Environmental Microbiology, 2018, 20, 477-491.	3.8	3
130	Interrogating marine virusâ€host interactions and elemental transfer with BONCAT and nanoSIMSâ€based methods. Environmental Microbiology, 2018, 20, 671-692.	3.8	53
131	Family A DNA Polymerase Phylogeny Uncovers Diversity and Replication Gene Organization in the Virioplankton. Frontiers in Microbiology, 2018, 9, 3053.	3.5	18
132	The Effect of Strain Level Diversity on Robust Inference of Virus-Induced Mortality of Phytoplankton. Frontiers in Microbiology, 2018, 9, 1850.	3.5	10
133	Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biology and Biochemistry, 2018, 127, 305-317.	8.8	172
134	Pollen weighs in on a climate conundrum. Nature, 2018, 554, 39-40.	27.8	6
135	A New Freshwater Cyanosiphovirus Harboring Integrase. Frontiers in Microbiology, 2018, 9, 2204.	3.5	26
136	Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium. Scientific Reports, 2018, 8, 7989.	3.3	19
137	Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecology Letters, 2018, 21, 1440-1452.	6.4	33
138	Low activity of lytic pelagiphages in coastal marine waters. ISME Journal, 2018, 12, 2100-2102.	9.8	23
139	A non-tailed twist in the viral tale. Nature, 2018, 554, 38-39.	27.8	3
140	Phage puppet masters of the marine microbial realm. Nature Microbiology, 2018, 3, 754-766.	13.3	438
141	The North Sea goes viral: Occurrence and distribution of North Sea bacteriophages. Marine Genomics, 2018, 41, 31-41.	1.1	17
142	Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud volcanic soil in Xinjiang, China. Journal of Soils and Sediments, 2019, 19, 81-90.	3.0	10
143	Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15645-15650.	7.1	49
144	Thermal stress modifies the marine sponge virome. Environmental Microbiology Reports, 2019, 11, 690-698.	2.4	13
145	Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium <i>Rheinheimera</i> sp. Strain BAL341. Applied and Environmental Microbiology, 2019, 85, .	3.1	20
146	Absolute quantification of infecting viral particles by chipâ€based digital polymerase chain reaction. Environmental Microbiology Reports, 2019, 11, 855-860.	2.4	4

0			n	
	ΙΤΔΤ	$1 \cap N$	IVER	PORT
<u> </u>	/			

#	Article	IF	CITATIONS
147	A newly isolated roseophage represents a distinct member of Siphoviridae family. Virology Journal, 2019, 16, 128.	3.4	20
148	Metagenomic Analysis of the Diversity of DNA Viruses in the Surface and Deep Sea of the South China Sea. Frontiers in Microbiology, 2019, 10, 1951.	3.5	34
149	Metagenomic Characterization of the Viral Community of the South Scotia Ridge. Viruses, 2019, 11, 95.	3.3	22
150	Droplet Digital PCR for Estimating Absolute Abundances of Widespread Pelagibacter Viruses. Frontiers in Microbiology, 2019, 10, 1226.	3.5	29
151	Viruses and Evolution – Viruses First? A Personal Perspective. Frontiers in Microbiology, 2019, 10, 523.	3.5	50
152	Riding the wave of genomics to investigate aquatic coliphage diversity and activity. Environmental Microbiology, 2019, 21, 2112-2128.	3.8	33
153	CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes. MBio, 2019, 10, .	4.1	26
154	Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nature Communications, 2019, 10, 1169.	12.8	62
155	Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome, 2019, 7, 58.	11.1	112
156	Wide Distribution of Phage That Infect Freshwater SAR11 Bacteria. MSystems, 2019, 4, .	3.8	11
157	Diverse, Abundant, and Novel Viruses Infecting the Marine <i>Roseobacter</i> RCA Lineage. MSystems, 2019, 4, .	3.8	27
158	A Novel Benthic Phage Infecting Shewanella with Strong Replication Ability. Viruses, 2019, 11, 1081.	3.3	15
159	A Conserved Mechanism of APOBEC3 Relocalization by Herpesviral Ribonucleotide Reductase Large Subunits. Journal of Virology, 2019, 93, .	3.4	31
160	Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME Journal, 2019, 13, 232-236.	9.8	36
161	Bacteriophages that infect marine roseobacters: genomics and ecology. Environmental Microbiology, 2019, 21, 1885-1895.	3.8	34
162	Pelagiphages in the <i>Podoviridae</i> family integrate into host genomes. Environmental Microbiology, 2019, 21, 1989-2001.	3.8	50
163	Analysis of viral and bacterial communities in groundwater associated with contaminated land. Science of the Total Environment, 2019, 656, 1413-1426.	8.0	18
164	Regulation of Low and High Nucleic Acid Fluorescent Heterotrophic Prokaryote Subpopulations and Links to Viral-Induced Mortality Within Natural Prokaryote-Virus Communities. Microbial Ecology, 2020, 79, 213-230.	2.8	20

#	Article	IF	CITATIONS
165	Long-term stability and Red Queen-like strain dynamics in marine viruses. Nature Microbiology, 2020, 5, 265-271.	13.3	62
166	Single-virus genomics and beyond. Nature Reviews Microbiology, 2020, 18, 705-716.	28.6	18
167	Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Scientific Reports, 2020, 10, 19773.	3.3	12
168	Microbial Diversity and Phage–Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing. Marine Drugs, 2020, 18, 558.	4.6	7
169	A marine virus as foe and friend. Nature Microbiology, 2020, 5, 982-983.	13.3	1
170	A novel circular ssDNA virus of the phylum Cressdnaviricota discovered in metagenomic data from otter clams (Lutraria rhynchaena). Archives of Virology, 2020, 165, 2921-2926.	2.1	2
171	Quantification of Lysogeny Caused by Phage Coinfections in Microbial Communities from Biophysical Principles. MSystems, 2020, 5, .	3.8	28
172	Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environmental Microbiology, 2020, 22, 4919-4933.	3.8	25
173	Metagenome Mining Reveals Hidden Genomic Diversity of Pelagimyophages in Aquatic Environments. MSystems, 2020, 5, .	3.8	23
174	Lysogenic host–virus interactions in SAR11 marine bacteria. Nature Microbiology, 2020, 5, 1011-1015.	13.3	33
175	Expanding the Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-Extinction Cultivation. Applied and Environmental Microbiology, 2020, 86, .	3.1	34
176	Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Frontiers in Microbiology, 2020, 11, 1210.	3.5	16
177	Minireview: The role of viruses in marine photosynthetic biofilms. Marine Life Science and Technology, 2020, 2, 203-208.	4.6	7
178	Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
179	Isolation and Characterization of the First Freshwater Cyanophage Infecting <i>Pseudanabaena</i> . Journal of Virology, 2020, 94, .	3.4	21
180	Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME Journal, 2020, 14, 1304-1315.	9.8	65
181	Characterization and Genome Analysis of a Novel Mu-like Phage VW-6B Isolated from the Napahai Plateau Wetland of China. Current Microbiology, 2021, 78, 150-158.	2.2	5
182	Culturing novel and abundant pelagiphages in the ocean. Environmental Microbiology, 2021, 23, 1145-1161.	3.8	27

#	Article	IF	CITATIONS
183	Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. Marine Life Science and Technology, 2021, 3, 395-404.	4.6	12
184	Draft Genome Sequences of Pelagimyophage Mosig EXVC030M and Pelagipodophage Lederberg EXVC029P, Isolated from Devil's Hole, Bermuda. Microbiology Resource Announcements, 2021, 10, .	0.6	5
185	Metaviromics coupled with phage-host identification to open the viral â€~black box'. Journal of Microbiology, 2021, 59, 311-323.	2.8	10
186	Microbial diversity characterization of seawater in a pilot study using Oxford Nanopore Technologies long-read sequencing. BMC Research Notes, 2021, 14, 42.	1.4	6
187	Patterns of virus growth across the diversity of life. Integrative Biology (United Kingdom), 2021, 13, 44-59.	1.3	7
188	Genomic Characterization and Distribution Pattern of a Novel Marine OM43 Phage. Frontiers in Microbiology, 2021, 12, 651326.	3.5	7
189	Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens. Microbiome, 2021, 9, 65.	11.1	182
190	Uncultivated Viral Populations Dominate Estuarine Viromes on the Spatiotemporal Scale. MSystems, 2021, 6, .	3.8	13
192	Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Science Bulletin, 2021, 66, 871-874.	9.0	32
194	The landscape of lysogeny across microbial community density, diversity and energetics. Environmental Microbiology, 2021, 23, 4098-4111.	3.8	50
195	Unique <scp>phage–bacterium</scp> interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent. Environmental Microbiology Reports, 2021, 13, 675-683.	2.4	6
196	Genomic diversity, life strategies and ecology of marine HTVC010P-type pelagiphages. Microbial Genomics, 2021, 7, .	2.0	6
197	Dynamics of Baltic Sea phages driven by environmental changes. Environmental Microbiology, 2021, 23, 4576-4594.	3.8	5
199	Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME Journal, 2022, 16, 488-499.	9.8	20
201	Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster. BMC Genomics, 2021, 22, 675.	2.8	7
202	Viral Characteristics of the Warm Atlantic and Cold Arctic Water Masses in the Nordic Seas. Applied and Environmental Microbiology, 2021, 87, e0116021.	3.1	12
205	Efficient dilution-to-extinction isolation of novel virus–host model systems for fastidious heterotrophic bacteria. ISME Journal, 2021, 15, 1585-1598.	9.8	26
206	Viruses in Glacial Environments. , 2017, , 111-131.		5

		CITATION REPORT		
#	Article		IF	CITATIONS
207	Phage diversity, genomics and phylogeny. Nature Reviews Microbiology, 2020, 18, 125-138.		28.6	455
208	Seasonal and diel patterns of abundance and activity of viruses in the Red Sea. Proceedings National Academy of Sciences of the United States of America, 2020, 117, 29738-29747.	of the	7.1	27
218	Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matt Genetics, 2017, 13, e1007018.	ers. PLoS	3.5	82
219	Water column stratification structures viral community composition in the Sargasso Sea. Aq Microbial Ecology, 2015, 76, 85-94.	uatic	1.8	16
220	Viral assemblage variation in an Arctic shelf seafloor. Aquatic Microbial Ecology, 2017, 78, 13	35-145.	1.8	4
221	Elevated Contribution of Low Nucleic Acid Prokaryotes and Viral Lysis to the Prokaryotic Cor Along the Nutrient Gradient From an Estuary to Open Ocean Transect. Frontiers in Microbiol 2020, 11, 612053.		3.5	6
222	Depth-Specific Distribution of the SAR116 Phages Revealed by Virome Binning. Journal of Mi and Biotechnology, 2014, 24, 592-596.	crobiology	2.1	5
223	Assessing Illumina technology for the high-throughput sequencing of bacteriophage genome 2016, 4, e2055.	es. PeerJ,	2.0	38
224	Long-read viral metagenomics captures abundant and microdiverse viral populations and the niche-defining genomic islands. PeerJ, 2019, 7, e6800.	ir	2.0	109
225	Deep sequencing of the viral <i>phoH</i> gene reveals temporal variation, depth-specific com and persistent dominance of the same viral <i>phoH</i> genes in the Sargasso Sea. PeerJ, 201		2.0	44
226	Genome and Ecology of a Novel <i>Alteromonas</i> Podovirus, ZP6, Representing a New Vira Genus, <i>Mareflavirus</i> . Microbiology Spectrum, 2021, 9, e0046321.	I	3.0	13
232	Seasonal Dynamics of Bacterial Community Composition in Coastal Seawater at Sendai Bay, 2019, , 137-147.	Japan. ,		1
237	Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth. ISME Journal, 2022, 16, 1025-1035.	1	9.8	8
238	Viral Production in Seawater Filtered Through 0.2-μm Pore-Size Filters: A Hidden Biogeoche in a Neglected Realm. Frontiers in Microbiology, 2021, 12, 774849.	mical Cycle	3.5	1
239	Introducing a Novel, Broad Host Range Temperate Phage Family Infecting Rhizobium legumin and Beyond. Frontiers in Microbiology, 2021, 12, 765271.	nosarum	3.5	7
240	Saline lakes on the Qinghai-Tibet Plateau harbor unique viral assemblages mediating microbi environmental adaption. IScience, 2021, 24, 103439.	al	4.1	13
241	Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography. PeerJ, 0, 10, e12748.		2.0	3
243	Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distribution this marine viral group. ISME Journal, 2022, 16, 1363-1375.	itions of	9.8	8

#	Article	IF	CITATIONS
244	Genomic Characterization of a Novel Freshwater Cyanophage Reveals a New Lineage of Cyanopodovirus. Frontiers in Microbiology, 2021, 12, 768868.	3.5	8
246	Dynamics of actively dividing prokaryotes in the western Mediterranean Sea. Scientific Reports, 2022, 12, 2064.	3.3	3
247	A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Applied and Environmental Microbiology, 2022, 88, e0025522.	3.1	2
248	Mechanisms Generating Dichotomies in the Life Strategies of Heterotrophic Marine Prokaryotes. Diversity, 2022, 14, 217.	1.7	5
249	An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses, 2022, 14, 731.	3.3	1
250	Record-Breaking Rain Event Altered Estuarine Viral Assemblages. Microorganisms, 2022, 10, 729.	3.6	5
251	Characterization and Genomic Analysis of the First Podophage Infecting Shewanella, Representing a Novel Viral Cluster. Frontiers in Microbiology, 2022, 13, 853973.	3.5	3
264	Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. Science Advances, 2022, 8, eabj9670.	10.3	18
266	The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Frontiers in Microbiology, 2022, 13, .	3.5	1
267	Virioplankton assemblages from challenger deep, the deepest place in the oceans. IScience, 2022, 25, 104680.	4.1	7
269	Comparative genomic analysis of five freshwater cyanophages and reference-guided metagenomic data mining. Microbiome, 2022, 10, .	11.1	8
270	Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting Extensive Auxiliary Metabolic Genes and Cross-Family Multigene Transfers. MSystems, 2022, 7, .	3.8	4
271	Distribution of rare <scp>N4</scp> â€like viruses in temperate estuaries unveiled by viromics. Environmental Microbiology, 0, , .	3.8	0
275	Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Advances in Virus Research, 2022, , 67-146.	2.1	1
276	Viruses in astrobiology. Frontiers in Microbiology, 0, 13, .	3.5	5
277	Mortality by ribosomal sequencing (MoRS) provides a window into taxon-specific cell lysis. ISME Journal, 2023, 17, 105-116.	9.8	6
278	Virus diversity and interactions with hosts in deep-sea hydrothermal vents. Microbiome, 2022, 10, .	11.1	12
279	Antagonistic Mobile Genetic Elements Can Counteract Each Other's Effects on Microbial Community Composition. MBio, 2023, 14, .	4.1	3

#	Article	IF	CITATIONS
280	Prevalence of Viral Frequency-Dependent Infection in Coastal Marine Prokaryotes Revealed Using Monthly Time Series Virome Analysis. MSystems, 2023, 8, .	3.8	3
281	Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features. MSystems, 2023, 8, .	3.8	4
282	Characterization and genomic analysis of a novel Synechococcus phage S-H9–2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Research, 2023, 328, 199072.	2.2	1
283	Spatiotemporal Shift of T4-Like Phage Community Structure in the Three Largest Estuaries of China. Microbiology Spectrum, 2023, 11, .	3.0	0
284	Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. Environmental Science & Technology, 2023, 57, 5485-5498.	10.0	9
285	Discovery of an Abundant Viral Genus in Polar Regions through the Isolation and Genomic Characterization of a New Virus against <i>Oceanospirillaceae</i> . Applied and Environmental Microbiology, 2023, 89, .	3.1	4
286	Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Frontiers in Microbiology, 0, 14, .	3.5	0
287	Corrected and Republished from: "Isolation and Characterization of the First Freshwater Cyanophage Infecting <i>Pseudanabaena</i> ― Journal of Virology, 2023, 97, .	3.4	Ο
289	Metavirome Profiling and Dynamics of the DNA Viral Community in Seawater in Chuuk State, Federated States of Micronesia. Viruses, 2023, 15, 1293.	3.3	1
290	<i>Psychrobacter</i> Phage Encoding an Antibiotics Resistance Gene Represents a Novel Caudoviral Family. Microbiology Spectrum, 2023, 11, .	3.0	1
291	Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential. Diversity, 2023, 15, 813.	1.7	0
292	Novel pelagiphage isolate <i>Polarivirus skadi</i> is a polar specialist that dominates SAR11-associated bacteriophage communities at high latitudes. ISME Journal, 2023, 17, 1660-1670.	9.8	5
293	Abundance and ecological footprint of Pseudoalteromonas phage vB_PhoS_XC in the Ulva prolifera green tide. Frontiers in Marine Science, 0, 10, .	2.5	0
294	Virus–Host Interactions Drive Contrasting Bacterial Diel Dynamics in the Ocean. Research, 2023, 6, .	5.7	0
295	Genomic diversity and biogeographic distributions of a novel lineage of bacteriophages that infect marine OM43 bacteria. Microbiology Spectrum, 2023, 11, .	3.0	2
296	<i>In situ</i> cell division and mortality rates of SAR11, SAR86, <i>Bacteroidetes</i> , and <i>Aurantivirga</i> during phytoplankton blooms reveal differences in population controls. MSystems, 2023, 8, .	3.8	1
297	A systematic analysis of marine lysogens and proviruses. Nature Communications, 2023, 14, .	12.8	4
298	Nutritional Status Regulates Bacteriaâ€Virus Interactions in the Northern South China Sea. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	Ο

IF ARTICLE CITATIONS # Development and validation of a real-time PCR assay protocol for the specific detection and quantification of pelagiphages in seawater samples. Marine Environmental Research, 2023, 191, 106168. 299 2.50 Characterization and genomic analysis of Stutzerimonas stutzeri phage vB_PstS_ZQG1, representing a novel viral genus. Virus Research, 2023, 336, 199226. 2.2 Ontology-driven analysis of marine metagenomics: what more can we learn from our data?. 301 6.4 0 GigaScience, 2022, 12, . Vibrio cyclitrophicus phage encoding gene transfer agent fragment, representing a novel viral family. Virus Résearch, 2024, 339, 199270. Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum 304 3.10 in the Northern South China Sea. Applied and Environmental Microbiology, 0, , . <i>Shewanella</i> phage encoding a putative anti-CRISPR-like gene represents a novel potential viral family. Microbiology Spectrum, 2024, 12, .

CITATION REPORT