OXPath: A language for scalable data extraction, automaweb

VLDB Journal 22, 47-72

DOI: 10.1007/s00778-012-0286-6

Citation Report

#	Article	IF	CITATIONS
1	Strigil., 2013,,.		3
2	Parallel Approach and Platform for Large-Scale WEB Data Extraction. , 2013, , .		2
3	Web Information Systems Engineering – WISE 2013. Lecture Notes in Computer Science, 2013, , .	1.3	0
4	Effective web scraping with OXPath. , 2013, , .		11
5	A methodology for social Bl. , 2014, , .		15
6	Ducky., 2014,,.		4
7	Multi-feature and DAG-Based Multi-tree Matching Algorithm for Automatic Web Data Mining. , 2014, , .		3
8	Search in the universe of big networks and data. IEEE Network, 2014, 28, 20-25.	6.9	16
9	DIADEM. Proceedings of the VLDB Endowment, 2014, 7, 1845-1856.	3.8	43
10	The Augmented Web. ACM Transactions on the Web, 2015, 9, 1-30.	2.5	27
11	A Scalable Approach to Harvest Modern Weblogs. International Journal on Artificial Intelligence Tools, 2015, 24, 1540005.	1.0	0
12	Crawling images with web browser support. , 2015, , .		2
13	A deep web query interface discovery method. , 2015, , .		2
14	AutoRM: An effective approach for automatic Web data record mining. Knowledge-Based Systems, 2015, 89, 314-331.	7.1	12
15	Complexities of practical web automation. , 2015, , .		1
16	WADaR. Proceedings of the VLDB Endowment, 2015, 8, 1996-1999.	3.8	18
17	CWrap: web wrapping using context variables. International Journal of Knowledge and Web Intelligence, 2016, 5, 304.	0.2	0
18	Dynamic Integration for Deep Web Search Results. , 2016, , .		1

#	Article	IF	Citations
19	Social Business Intelligence in Action. Lecture Notes in Computer Science, 2016, , 33-48.	1.3	6
20	P <scp>ea</scp> CE-Ful Web Event Extraction and Processing as Bitemporal Mutable Events. ACM Transactions on the Web, 2016, 10, 1-47.	2.5	1
21	A survey of methods for the extraction of information from Web resources. Programming and Computer Software, 2016, 42, 279-291.	0.9	15
22	Web News Extraction via Tag Path Feature Fusion Using DS Theory. Journal of Computer Science and Technology, 2016, 31, 661-672.	1.5	5
23	Survey on challenges of Question Answering in the Semantic Web. Semantic Web, 2017, 8, 895-920.	1.9	151
24	OXPath-Based Data Acquisition for dblp., 2017,,.		7
25	Data context informed data wrangling. , 2017, , .		11
26	Advances in Information Systems Development. Lecture Notes in Information Systems and Organisation, 2018, , .	0.6	3
27	Browserless Web Data Extraction. , 2018, , .		9
28	Stable web scraping: an approach based on neighbour zone and path similarity of page elements. International Journal of Web Engineering and Technology, 2018, 13, 301.	0.2	3
30	Deep Web crawling: a survey. World Wide Web, 2019, 22, 1577-1610.	4.0	24
31	VADA: an architecture for end user informed data preparation. Journal of Big Data, 2019, 6, .	11.0	16
32	Dynamap. , 2019, , .		4
33	A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. , 2019, , .		25
34	Design and Implementation of Engineering Standard Database System Based on Data Mining., 2019,,.		0
35	A novel approach for Web page modeling in personal information extraction. World Wide Web, 2019, 22, 603-620.	4.0	4
36	Leopard — A baseline approach to attribute prediction and validation for knowledge graph population. Web Semantics, 2019, 55, 102-107.	2.9	4
37	DCADE: divide and conquer alignment with dynamic encoding for full page data extraction. Applied Intelligence, 2020, 50, 271-295.	5.3	2

#	Article	IF	CITATIONS
38	Feedback driven improvement of data preparation pipelines. Information Systems, 2020, 92, 101480.	3.6	9
39	Robust Web Data Extraction Based on Weighted Path-layer Similarity. Journal of Computer Information Systems, 2022, 62, 536-546.	2.9	1
40	inTIME: A Machine Learning-Based Framework for Gathering and Leveraging Web Data to Cyber-Threat Intelligence. Electronics (Switzerland), 2021, 10, 818.	3.1	36
41	IHWC: intelligent hidden web crawler for harvesting data in urban domains. Complex & Intelligent Systems, 0, , $1.$	6.5	1
43	Bitemporal Complex Event Processing of Web Event Advertisements. Lecture Notes in Computer Science, 2013, , 333-346.	1.3	5
44	Ringer: web automation by demonstration. , 2016, , .		30
45	Ringer: web automation by demonstration. ACM SIGPLAN Notices, 2016, 51, 748-764.	0.2	6
46	Research on Deep Web Query Interface Clustering Based on Hadoop. Journal of Software, 2014, 9, .	0.6	2
47	Predicting Economic Indicators from Web Text Using Sentiment Composition. International Journal of Computer and Communication Engineering, 2014, 3, 109-115.	0.2	26
48	NEXIR: A Novel Web Extraction Rule Language toward a Three-Stage Web Data Extraction Model. Lecture Notes in Computer Science, 2013, , 29-42.	1.3	3
49	PeaCE-Ful Web Event Extraction and Processing. Lecture Notes in Computer Science, 2013, , 523-526.	1.3	0
51	Heterogeneous Web Data Extraction Algorithm Based On Modified Hidden Conditional Random Fields. Journal of Networks, 2014, 9, .	0.4	0
52	CWrap: web wrapping using context variables. International Journal of Knowledge and Web Intelligence, 2016, 5, 304.	0.2	0
53	UniQue: An Approach for Unified and Efficient Querying of Heterogeneous Web Data Sources. , 2016, , .		0
54	Enriching Existing Test Collections with OXPath. Lecture Notes in Computer Science, 2017, , 152-158.	1.3	1
55	A MODEL FOR AUTOMATED MATCHING BETWEEN JOB MARKET DEMAND AND UNIVERSITY CURRICULA OFFER. SEEU Review, 2017, 12, 188-217.	0.8	0
56	User-Friendly and Extensible Web Data Extraction. Lecture Notes in Information Systems and Organisation, 2018, , 225-241.	0.6	0
57	Crawling Chinese-Myanmar Parallel Corpus: Automatic Collection, Screening and Cleaning Corpus. IOP Conference Series: Materials Science and Engineering, 0, 646, 012046.	0.6	0

CITATION REPORT

#	Article	IF	CITATION
58	A browserless architecture for extracting web prices. , 2020, , .		0
59	Data science with Vadalog: Knowledge Graphs with machine learning and reasoning in practice. Future Generation Computer Systems, 2022, 129, 407-422.	7.5	11
60	Modified Kleene Star Algorithm Using Max-Plus Algebra and Its Application in the Railroad Scheduling Graphical User Interface. Computation, 2023, 11, 11.	2.0	2
61	Scraping Data fromÂWeb Pages Using SPARQL Queries. Lecture Notes in Computer Science, 2023, , 293-300.	1.3	O
62	When Automatic Filtering Comes to the Rescue: Pre-Computing Company Competitor Pairs in Owler. , 2023, 1, 1-23.		0
63	Manipulation Mask Generator: High-Quality Image Manipulation Mask Generation Method Based on Modified Total Variation Noise Reduction. , 2023, , .		O