Eosinophils: changing perspectives in health and diseas

Nature Reviews Immunology 13, 9-22

DOI: 10.1038/nri3341

Citation Report

#	Article	IF	CITATIONS
1	THE EFFECT OF BLOOD CELL COUNT ON CORONARY FLOW IN PATIENTS WITH CORONARY SLOW FLOW PHENOMENON. Pakistan Journal of Medical Sciences, 1969, 30, 936-41.	0.3	5
2	Chronic adipose tissue inflammation: all immune cells on the stage. Trends in Molecular Medicine, 2013, 19, 487-500.	3.5	239
3	Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology, 2013, 13, 607-614.	10.6	396
4	Ym1, an eosinophilic chemotactic factor, participates in the brain inflammation induced by Angiostrongylus cantonensis in mice. Parasitology Research, 2013, 112, 2689-2695.	0.6	33
5	Reply to Eosinophil cytolysis and release of cell-free granules. Nature Reviews Immunology, 2013, 13, 902-902.	10.6	4
6	Chemotaxis of bone marrow derived eosinophils in vivo: A novel method to explore receptorâ€dependent trafficking in the mouse. European Journal of Immunology, 2013, 43, 2217-2228.	1.6	6
8	IL-33 promotes eosinophilia in vivo and antagonizes IL-5-dependent eosinophil hematopoiesis ex vivo. Immunology Letters, 2013, 150, 41-47.	1.1	35
9	Anti-Inflammatory Dimethylfumarate: A Potential New Therapy for Asthma?. Mediators of Inflammation, 2013, 2013, 1-10.	1.4	30
10	Eosinophil as a Protective Cell inS. aureusVentilator-Associated Pneumonia. Mediators of Inflammation, 2013, 2013, 1-5.	1.4	5
11	Editorial: Mouse eosinophils expressing Cre recombinase: endless "floxâ€ibilities. Journal of Leukocyte Biology, 2013, 94, 3-4.	1.5	2
12	The Molecular Choreography of IRF4 and IRF8 with Immune System Partners. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 101-104.	2.0	17
13	The Promised Land of Human Immunology. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 203-213.	2.0	16
14	Eosinophils secrete IL-4 to facilitate liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9914-9919.	3.3	228
15	Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nature Reviews Immunology, 2013, 13, 902-902.	10.6	24
16	Blood spotlight on leukocytes and obesity. Blood, 2013, 122, 3263-3267.	0.6	47
17	Eosinophil Apoptosis and Clearance in Asthma. Journal of Cell Death, 2013, 6, JCD.S10818.	0.8	43
18	Eosinophil activation markers in clonal and non-clonal eosinophilia. Romanian Journal of Laboratory Medicine, 2013, 21, .	0.1	1
19	Eosinophils in Fungus-Associated Allergic Pulmonary Disease. Frontiers in Pharmacology, 2013, 4, 8.	1.6	32

#	Article	IF	CITATIONS
20	Integrin Activation States and Eosinophil Recruitment in Asthma. Frontiers in Pharmacology, 2013, 4, 33.	1.6	46
21	Eosinophilic Inflammation in Allergic Asthma. Frontiers in Pharmacology, 2013, 4, 46.	1.6	136
22	Mycoplasma pneumoniae CARDS Toxin Exacerbates Ovalbumin-Induced Asthma-Like Inflammation in BALB/c Mice. PLoS ONE, 2014, 9, e102613.	1.1	32
23	c-FLIP Protects Eosinophils from TNF-α-Mediated Cell Death In Vivo. PLoS ONE, 2014, 9, e107724.	1.1	12
24	Enhanced Tissue Factor Expression by Blood Eosinophils from Patients with Hypereosinophilia: A Possible Link with Thrombosis. PLoS ONE, 2014, 9, e111862.	1.1	41
25	Protein postâ€translational modification in host defense: the antimicrobial mechanism of action of human eosinophil cationic protein native forms. FEBS Journal, 2014, 281, 5432-5446.	2.2	19
27	CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunology, 2014, 7, 292-303.	2.7	29
28	Virus-like particles presenting interleukin-33 molecules. Human Vaccines and Immunotherapeutics, 2014, 10, 2303-2311.	1.4	17
29	The role of adipose tissue immune cells in obesity and low-grade inflammation. Journal of Endocrinology, 2014, 222, R113-R127.	1.2	409
30	Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation. Mediators of Inflammation, 2014, 2014, 1-10.	1.4	14
31	Surfactant protein SP-D modulates activity of immune cells: proteomic profiling of its interaction with eosinophilic cells. Expert Review of Proteomics, 2014, 11, 355-369.	1.3	20
32	Diagnostic and therapeutic strategies for eosinophilic esophagitis. Clinical Practice (London,) Tj ETQq1 1 0.7843	14 _{og} BT/C	Overlock 10 T
33	Biomarkers of eosinophilic inflammation in asthma. Expert Review of Respiratory Medicine, 2014, 8, 143-150.	1.0	23
34	Reâ€defining the unique roles for eosinophils in allergic respiratory inflammation. Clinical and Experimental Allergy, 2014, 44, 1119-1136.	1.4	62
35	Infection and Hyperinfection with Strongyloides stercoralis: Clinical Presentation, Etiology of Disease, and Treatment Options. Current Tropical Medicine Reports, 2014, 1, 223-228.	1.6	8
36	Balance of apoptotic cell death and survival in allergic diseases. Microbes and Infection, 2014, 16, 811-821.	1.0	5
37	Eosinophil Deficiency Compromises Lung Defense against Aspergillus fumigatus. Infection and Immunity, 2014, 82, 1315-1325.	1.0	75
38	Animal model of human disease with optic neuritis: neuropapillitis in a rat model infected with Angiostrongylus cantonensis. Parasitology Research, 2014, 113, 4005-4013.	0.6	4

3

#	ARTICLE	IF	CITATIONS
39	Unraveling the complexity of lipid body organelles in human eosinophils. Journal of Leukocyte Biology, 2014, 96, 703-712.	1.5	32
40	Paragonimiasis. Advances in Experimental Medicine and Biology, 2014, 766, 115-152.	0.8	34
41	Beneficial Autoimmunity at Body Surfaces ââ,¬â€œ Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer. Frontiers in Immunology, 2014, 5, 347.	2.2	16
42	Eosinophil Cytokines, Chemokines, and Growth Factors: Emerging Roles in Immunity. Frontiers in Immunology, 2014, 5, 570.	2,2	250
43	Eosinophils and Cancer. Cancer Immunology Research, 2014, 2, 1-8.	1.6	210
44	Eosinophils Regulate Peripheral B Cell Numbers in Both Mice and Humans. Journal of Immunology, 2014, 192, 3548-3558.	0.4	54
45	Human Eosinophil Leukocytes Express Protein Disulfide Isomerase in Secretory Granules and Vesicles. Journal of Histochemistry and Cytochemistry, 2014, 62, 450-459.	1.3	14
46	Eosinophil chemotactic chemokine profilings of the brain from permissive and non-permissive hosts infected with Angiostrongylus cantonenis. Parasitology Research, 2014, 113, 517-525.	0.6	7
47	Novel therapies targeting eosinophilic inflammation in asthma. Clinical and Experimental Allergy, 2014, 44, 462-468.	1.4	3
48	Systemic impact of intestinal helminth infections. Mucosal Immunology, 2014, 7, 753-762.	2.7	99
49	Pathogenic memory type Th2 cells in allergic inflammation. Trends in Immunology, 2014, 35, 69-78.	2.9	104
50	Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5–induced eosinophil development. Nature Immunology, 2014, 15, 36-44.	7.0	56
51	Activation states of blood eosinophils in asthma. Clinical and Experimental Allergy, 2014, 44, 482-498.	1.4	122
52	Eosinophil-Derived IL-10 Supports Chronic Nematode Infection. Journal of Immunology, 2014, 193, 4178-4187.	0.4	65
53	Siglec-mediated regulation of immune cell function in disease. Nature Reviews Immunology, 2014, 14, 653-666.	10.6	835
54	Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nature Protocols, 2014, 9, 2382-2394.	5.5	66
55	Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. Journal of Experimental Medicine, 2014, 211, 1657-1672.	4.2	126
56	Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nature Reviews Rheumatology, 2014, 10, 474-483.	3.5	126

#	Article	IF	Citations
57	Sustained inflammation and differential expression of interferons type I and III in PVM-infected interferon-gamma (IFN \hat{I}^3) gene-deleted mice. Virology, 2014, 468-470, 140-149.	1.1	6
58	Eosinophils as a pharmacological target for the treatment of allergic diseases. Current Opinion in Pharmacology, 2014, 17, 71-80.	1.7	15
59	Siglec-F-dependent negative regulation of allergen-induced eosinophilia depends critically on the experimental model. Immunology Letters, 2014, 160, 11-16.	1.1	20
60	Innate Immunity in Disease. Clinical Gastroenterology and Hepatology, 2014, 12, 749-755.	2.4	20
61	Role of interleukin 33 in respiratory allergy and asthma. Lancet Respiratory Medicine, the, 2014, 2, 226-237.	5.2	60
62	Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. Journal of Allergy and Clinical Immunology, 2014, 134, 100-107.e12.	1.5	68
63	Eosinophil Granule Proteins: Form and Function. Journal of Biological Chemistry, 2014, 289, 17406-17415.	1.6	396
64	Biological Effects of Clinically Relevant CoCr Nanoparticles in the Dura Mater: An Organ Culture Study. Nanomaterials, 2014, 4, 485-504.	1.9	10
65	Activated mouse eosinophils protect against lethal respiratory virus infection. Blood, 2014, 123, 743-752.	0.6	100
66	28 days later: eosinophils stop viruses. Blood, 2014, 123, 609-611.	0.6	5
69	Elevated Bronchoalveolar Lavage Eosinophilia Correlates With Poor Outcome After Lung Transplantation. Transplantation, 2014, 97, 83-89.	0.5	59
70	The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunology, 2015, 37, 605-613.	0.7	140
71	The role of inflammatory mediators in the pathogenesis of nasal polyposis: Literature review. Romanian Journal of Rhinology, 2015, 5, 81-85.	0.1	2
72	Host defences against <i>Giardia lamblia</i> . Parasite Immunology, 2015, 37, 394-406.	0.7	44
73	NFκB signaling drives pro-granulocytic astroglial responses to neuromyelitis optica patient IgG. Journal of Neuroinflammation, 2015, 12, 185.	3.1	27
74	Differential activation of airway eosinophils induces <scp>IL</scp> â€13â€mediated allergic Th2 pulmonary responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1148-1159.	2.7	47
76	Mepolizumab-based therapy in asthma. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 392-396.	1.1	25
77	Artifacts That Can Be Confused with Parasitic Organisms. , 2015, , 195-211.		0

#	Article	IF	CITATIONS
78	Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. International Journal of Molecular Sciences, 2015, 16, 15442-15455.	1.8	73
79	Physiologic Concentrations of HMGB1 Have No Impact on Cytokine-Mediated Eosinophil Survival or Chemotaxis in Response to Eotaxin-2 (CCL24). PLoS ONE, 2015, 10, e0118887.	1.1	9
80	Profile of anti-IL-5 mAb mepolizumab in the treatment of severe refractory asthma and hypereosinophilic diseases. Journal of Asthma and Allergy, 2015, 8, 105.	1.5	46
81	Quantitative microscopy of mole rat eosinophil granule morphology. Cell and Tissue Research, 2015, 362, 139-151.	1.5	1
82	Effector Cells of the Mucosal Immune System. , 2015, , 787-804.		0
83	The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Letters, 2015, 364, 106-117.	3.2	73
84	Correlation between eosinophil count and soil-transmitted helminth infection in children. Asian Pacific Journal of Tropical Disease, 2015, 5, 813-816.	0.5	14
85	Derivation of Functionally Mature Eosinophils from Human Pluripotent Stem Cells. SpringerBriefs in Stem Cells, 2015, , 51-68.	0.1	0
87	New pathogenic and therapeutic paradigms in atopic dermatitis. Cytokine, 2015, 73, 311-318.	1.4	95
88	B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cellular and Molecular Immunology, 2015, 12, 202-212.	4.8	22
89	Exogenous Interleukin-17A Inhibits Eosinophil Differentiation and Alleviates Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 459-470.	1.4	22
90	A survivor: The eosinophil as a regulator in asthma. Journal of Allergy and Clinical Immunology, 2015, 135, 461-462.	1.5	1
91	The translational revolution and use of biologics in patients with inflammatory skin diseases. Journal of Allergy and Clinical Immunology, 2015, 135, 324-336.	1.5	175
92	Chitin enhances serum IgE in Aspergillus fumigatus induced allergy in mice. Immunobiology, 2015, 220, 714-721.	0.8	13
93	The Interleukin-33-p38 Kinase Axis Confers Memory T Helper 2 Cell Pathogenicity in the Airway. Immunity, 2015, 42, 294-308.	6.6	199
94	Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 626-636.	2.5	62
95	Group 2 Innate Lymphoid Cells in the Regulation of Immune Responses. Advances in Immunology, 2015, 125, 111-154.	1.1	64
96	Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology, 2015, 220, 899-909.	0.8	9

#	Article	IF	Citations
97	Novel Therapies for Eosinophilic Disorders. Immunology and Allergy Clinics of North America, 2015, 35, 577-598.	0.7	23
98	Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis. Immunity, 2015, 43, 187-199.	6.6	150
99	Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease. Mucosal Immunology, 2015, 8, 1201-1211.	2.7	17
100	Biologic Therapies Targeting Eosinophils: Current Status and Future Prospects. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 167-174.	2.0	88
101	The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature Reviews Immunology, 2015, 15, 283-294.	10.6	488
102	Mast Cells' Integrated Actions with Eosinophils and Fibroblasts in Allergic Inflammation. Advances in Immunology, 2015, 125, 41-85.	1.1	33
103	Type 2 cytokines: mechanisms and therapeutic strategies. Nature Reviews Immunology, 2015, 15, 271-282.	10.6	535
104	Immune Regulation of Metabolic Homeostasis in Health and Disease. Cell, 2015, 161, 146-160.	13.5	380
105	CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. Journal of Leukocyte Biology, 2015, 98, 467-477.	1.5	41
106	Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nature Immunology, 2015, 16, 609-617.	7.0	371
107	Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation. Molecular Cell, 2015, 57, 1011-1021.	4.5	88
108	Eosinophils in mucosal immune responses. Mucosal Immunology, 2015, 8, 464-475.	2.7	158
109	Endogenous Allosteric Modulators of G Protein–Coupled Receptors. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 246-260.	1.3	127
110	New dog and new tricks: evolving roles for IL-33 in type 2 immunity. Journal of Leukocyte Biology, 2015, 97, 1037-1048.	1.5	76
111	Eosinophilia in Patients Infected with Human Immunodeficiency Virus. Current HIV/AIDS Reports, 2015, 12, 313-316.	1.1	21
112	Methylation of Gata3 Protein at Arg-261 Regulates Transactivation of the II5 Gene in T Helper 2 Cells. Journal of Biological Chemistry, 2015, 290, 13095-13103.	1.6	28
113	Transcription Factor Repertoire of Homeostatic Eosinophilopoiesis. Journal of Immunology, 2015, 195, 2683-2695.	0.4	43
114	Eosinophils Contribute to Early Clearance of <i>Pneumocystis murina</i> Infection. Journal of Immunology, 2015, 195, 185-193.	0.4	37

#	ARTICLE	IF	Citations
115	Adipose Tissue Inflammation in the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2015, 15, 92.	1.7	117
116	Allergic Inflammationâ€"Innately Homeostatic. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016352.	2.3	21
117	Aberrant Expression of Regulatory Cytokine IL-35 and Pattern Recognition Receptor NOD2 in Patients with Allergic Asthma. Inflammation, 2015, 38, 348-360.	1.7	32
118	Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. Journal of Allergy and Clinical Immunology, 2015, 135, 451-460.e5.	1.5	40
119	Dusp5 negatively regulates <scp>IL</scp> â€33â€mediated eosinophil survival and function. EMBO Journal, 2015, 34, 218-235.	3.5	45
120	Immune Responses to Viral Infection. , 0, , 321-350.		1
121	Eosinophils. , 2016, , 334-344.		1
122	The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. International Journal of Molecular Sciences, 2016, 17, 1278.	1.8	125
123	United airway disease: current perspectives. Journal of Asthma and Allergy, 2016, 9, 93.	1.5	159
124	Eosinophils in Homeostasis and Their Contrasting Roles during Inflammation and Helminth Infections. Critical Reviews in Immunology, 2016, 36, 193-238.	1.0	23
125	Pulmonary embolism, deep vein thrombosis and recurrent bone cysts in a patient with hypereosinophilic syndrome. Blood Coagulation and Fibrinolysis, 2016, 27, 831-834.	0.5	7
126	Thymic stromal lymphopoietin regulates eosinophil migration via phosphorylation of <scp> < scp> < scp> 2016, 25, 880-886.</scp>	1.4	16
127	Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells. Experimental Dermatology, 2016, 25, 548-552.	1.4	3
128	Functional Immune Anatomy of the Liver—As an Allograft. American Journal of Transplantation, 2016, 1653-1680.	2.6	89
129	Eosinophilic bioactivities in severe asthma. World Allergy Organization Journal, 2016, 9, 21.	1.6	66
130	Emerging Roles for Eosinophils in the Tumor Microenvironment. Trends in Cancer, 2016, 2, 664-675.	3.8	87
131	Allergies: diseases closely related to cancer. BoletÃn Médico Del Hospital Infantil De México, 2016, 73, 432-445.	0.2	10
132	Autophagy mechanisms in sputum and peripheral blood cells of patients with severe asthma: a new therapeutic target. Clinical and Experimental Allergy, 2016, 46, 48-59.	1.4	79

#	Article	IF	Citations
133	In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium. European Journal of Pharmacology, 2016, 777, 49-59.	1.7	15
134	Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 186-200.	1.1	152
135	The Peripheral Blood Eosinophil Proteome. Journal of Proteome Research, 2016, 15, 1524-1533.	1.8	79
136	Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis. Immunity, 2016, 44, 795-806.	6.6	33
137	Olig2 is expressed late in human eosinophil development and controls Siglec-8 expression. Journal of Leukocyte Biology, 2016, 100, 711-723.	1.5	24
138	IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. Journal of Immunology, 2016, 197, 3445-3453.	0.4	115
139	Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. Environmental and Molecular Mutagenesis, 2016, 57, 615-622.	0.9	17
140	Eosinophils, galectins, and a reason to breathe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9139-9141.	3.3	6
141	Effective antigen presentation to helper T cells by human eosinophils. Immunology, 2016, 149, 413-422.	2.0	30
142	CD4 Tâ€cell hyporesponsiveness induced by schistosome larvae is notÂdependent upon eosinophils but may involve connective tissue mast cells. Parasite Immunology, 2016, 38, 81-92.	0.7	14
143	Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Experimental Cell Research, 2016, 347, 385-390.	1.2	17
144	Exploring the mechanisms of action of human secretory <scp>RN</scp> ase 3 and <scp>RN</scp> ase 7 against <i>Candida albicans</i> . MicrobiologyOpen, 2016, 5, 830-845.	1.2	43
145	Eosinophils, probiotics, and the microbiome. Journal of Leukocyte Biology, 2016, 100, 881-888.	1.5	38
146	2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide as a new lead compound for management of allergic rhinitis. Inflammation Research, 2016, 65, 963-973.	1.6	6
147	Impaired CD23 and CD62L expression and tissue inhibitors of metalloproteinases secretion by eosinophils in adults with atopic dermatitis. Journal of the European Academy of Dermatology and Venereology, 2016, 30, 2072-2076.	1.3	4
148	RhoH is a negative regulator of eosinophilopoiesis. Cell Death and Differentiation, 2016, 23, 1961-1972.	5.0	18
149	The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nature Microbiology, 2016, 1, 16108.	5.9	140
150	Allergies: diseases closely related to cancer. BoletÃn Médico Del Hospital Infantil De México (English) Tj ETQ	q1 ₀ 1 ₀ 0.78	4314 rgBT /O

#	Article	IF	CITATIONS
151	Severe Asthma: Challenges and Precision Approaches to Therapy. Pulmonary Therapy, 2016, 2, 139-152.	1.1	1
152	Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biology of Sex Differences, 2016, 7, 59.	1.8	10
153	A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfusion Medicine and Hemotherapy, 2016, 43, 96-108.	0.7	68
154	Eosinophils in Helminth Infection: Defenders and Dupes. Trends in Parasitology, 2016, 32, 798-807.	1.5	171
155	Primary immunodeficiencies associated with eosinophilia. Allergy, Asthma and Clinical Immunology, 2016, 12, 27.	0.9	31
156	Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets. Current Allergy and Asthma Reports, 2016, 16, 48.	2.4	72
157	The role of myeloid cells in cancer therapies. Nature Reviews Cancer, 2016, 16, 447-462.	12.8	570
158	Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organization Journal, 2016, 9, 7.	1.6	124
159	IL-4 gene expression in adventitial layer (fibrous layer) of hepatic ovine and bovine hydatid cysts. Journal of Parasitic Diseases, 2016, 40, 855-859.	0.4	7
160	Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF. Immunology Letters, 2016, 173, 7-20.	1.1	10
161	Interferonâ€∢i>γ constrains cytokine production of group 2 innate lymphoid cells. Immunology, 2016, 147, 21-29.	2.0	32
162	The Eosinophil in Infection. Clinical Reviews in Allergy and Immunology, 2016, 50, 214-227.	2.9	131
163	The Eosinophil in Health and Disease: from Bench to Bedside and Back. Clinical Reviews in Allergy and Immunology, 2016, 50, 125-139.	2.9	36
164	Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. Journal of Allergy and Clinical Immunology, 2016, 137, 75-86.e8.	1.5	388
165	Inflammatory and Effector Cells/Cell Migration. , 2016, , 41-53.e4.		3
166	The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunology, 2016, 9, 322-335.	2.7	43
167	A key requirement for CD300f in innate immune responses of eosinophils in colitis. Mucosal Immunology, 2017, 10, 172-183.	2.7	27
168	Exosomes from eosinophils autoregulate and promote eosinophil functions. Journal of Leukocyte Biology, 2017, 101, 1191-1199.	1.5	58

#	Article	IF	CITATIONS
169	Negative Regulation of Type 2 Immunity. Trends in Immunology, 2017, 38, 154-167.	2.9	21
170	Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology, 2017, , .	0.1	1
171	Fuelling the mechanisms of asthma: Increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clinical and Experimental Allergy, 2017, 47, 1170-1184.	1.4	28
172	Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. International Immunopharmacology, 2017, 48, 43-54.	1.7	23
173	Activation of Eosinophils Interacting with Bronchial Epithelial Cells by Antimicrobial Peptide LL-37: Implications in Allergic Asthma. Scientific Reports, 2017, 7, 1848.	1.6	17
174	New Anti-Eosinophil Drugs for Asthma andÂCOPD. Chest, 2017, 152, 1276-1282.	0.4	103
175	Frontline Science: Eosinophil-deficient MBP-1 and EPX double-knockout mice link pulmonary remodeling and airway dysfunction with type 2 inflammation. Journal of Leukocyte Biology, 2017, 102, 589-599.	1.5	15
176	Eosinophils in COPD: just another biomarker?. Lancet Respiratory Medicine, the, 2017, 5, 747-759.	5.2	160
177	Interleukin-5 Inhibitors for Severe Asthma: Rationale and Future Outlook. BioDrugs, 2017, 31, 93-103.	2.2	20
178	Thymus. Molecular and Integrative Toxicology, 2017, , 1-35.	0.5	1
179	The targeted eosinophil-lowering effects of dexpramipexole in clinical studies. Blood Cells, Molecules, and Diseases, 2017, 63, 62-65.	0.6	32
180	Techniques Used in Pharmacological Evaluation of Histamine H4 Receptor Function on Native Human Eosinophils. Methods in Pharmacology and Toxicology, 2017, , 209-232.	0.1	0
181	A flow-cytometric method to evaluate eosinophil-mediated uptake of probiotic Lactobacillus reuteri. Journal of Microbiological Methods, 2017, 137, 19-24.	0.7	3
182	Effect of waterpipe tobacco smoking on airway inflammation in murine model of asthma. Inhalation Toxicology, 2017, 29, 46-52.	0.8	21
183	Mouse Eosinophils: Identification, Isolation, and Functional Analysis. Current Protocols in Immunology, 2017, 119, 14.43.1-14.43.22.	3.6	11
184	Functions of tissue-resident eosinophils. Nature Reviews Immunology, 2017, 17, 746-760.	10.6	376
185	Reslizumab in the treatment of inadequately controlled asthma in adults and adolescents with elevated blood eosinophils: clinical trial evidence and future prospects. Therapeutic Advances in Respiratory Disease, 2017, 11, 311-325.	1.0	25
186	Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 andÂGM-CSF. Nature Cell Biology, 2017, 19, 974-987.	4.6	205

#	Article	IF	CITATIONS
187	Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 1007-1013.	1.5	30
188	Transcriptome profiling of mouse colonic eosinophils reveals a key role for eosinophils in the induction of s100a8 and s100a9 in mucosal healing. Scientific Reports, 2017, 7, 7117.	1.6	18
189	Charcot–Leyden crystals: do they exist in veterinary species? A case report and literature review. Journal of Veterinary Diagnostic Investigation, 2017, 29, 904-909.	0.5	10
190	Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine, 2017, 35, 6977-6983.	1.7	10
191	Type 2 Cytokine Responses: Regulating Immunity to Helminth Parasites and Allergic Inflammation. Current Pharmacology Reports, 2017, 3, 346-359.	1.5	21
192	The potential protective role of taurine against experimental allergic inflammation. Life Sciences, 2017, 184, 18-24.	2.0	16
193	Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils. Journal of Molecular Endocrinology, 2017, 59, 245-255.	1.1	17
194	Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. Journal of Proteome Research, 2017, 16, 2663-2679.	1.8	15
195	Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nature Reviews Immunology, 2017, 17, 595-607.	10.6	75
196	Epigenetic regulation of Tâ€helper cell differentiation, memory, and plasticity in allergic asthma. Immunological Reviews, 2017, 278, 8-19.	2.8	70
197	Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF- \hat{l}^2 . Science Translational Medicine, 2017, 9, .	5.8	110
198	Cellular and molecular mechanisms of asthma and COPD. Clinical Science, 2017, 131, 1541-1558.	1.8	339
199	Mouse eosinophil associated ribonucleases: Mechanism of cytotoxic, antibacterial and antiparasitic activities. International Journal of Biological Macromolecules, 2017, 94, 445-450.	3.6	23
200	Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. , 2017, 170, 37-63.		38
201	Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation., 2017, 169, 57-77.		65
202	Inflammatory bowel disease detection and monitoring by measuring biomarkers in nonâ€invasively collected colorectal mucus. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 992-1002.	1.4	15
203	Regulation of hypothalamic-pituitary-adrenal axis activity and immunologic function contributed to the anti-inflammatory effect of acupuncture in the OVA-induced murine asthma model. Neuroscience Letters, 2017, 636, 177-183.	1.0	26
204	Biologics targeting IL-5, IL-4 or IL-13 for the treatment of asthma – an update. Expert Review of Clinical Immunology, 2017, 13, 143-149.	1.3	27

#	Article	IF	CITATIONS
205	Eosinophilia as the presenting sign in pancreatic cancer: an extremely rare occurrence. Postgraduate Medicine, 2017, 129, 399-401.	0.9	6
206	Early local immune defences in the respiratory tract. Nature Reviews Immunology, 2017, 17, 7-20.	10.6	244
207	SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. Journal of Leukocyte Biology, 2017, 101, 321-328.	1.5	66
208	Allergy and Inflammation. , 2017, , 995-1030.		0
209	Th9 Cells: From the Bench to the Bedside and Back Again. , 2017, , 365-394.		0
210	Eosinophil Cytokines in Allergy. , 2017, , 173-218.		14
211	Eosinophils in Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 484.	2.2	134
212	FXYD5 Is an Essential Mediator of the Inflammatory Response during Lung Injury. Frontiers in Immunology, 2017, 8, 623.	2.2	27
213	Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells. Frontiers in Immunology, 2017, 8, 1538.	2.2	10
214	Eosinophil Activation Status in Separate Compartments and Association with Asthma. Frontiers in Medicine, 2017, 4, 75.	1.2	67
215	The Biology of Eosinophils and Their Role in Asthma. Frontiers in Medicine, 2017, 4, 93.	1.2	250
216	Homeostatic Eosinophils: Characteristics and Functions. Frontiers in Medicine, 2017, 4, 101.	1.2	124
217	Anti-Interleukin 5 (IL-5) and IL-5Ra Biological Drugs: Efficacy, Safety, and Future Perspectives in Severe Eosinophilic Asthma. Frontiers in Medicine, 2017, 4, 135.	1.2	65
218	Proteomics of Eosinophil Activation. Frontiers in Medicine, 2017, 4, 159.	1.2	6
219	New Insights into Drug Reaction with Eosinophilia and Systemic Symptoms Pathophysiology. Frontiers in Medicine, 2017, 4, 179.	1.2	39
220	Innate Immune Responses to Cryptococcus. Journal of Fungi (Basel, Switzerland), 2017, 3, 35.	1.5	25
221	Correlation between Soil Transmitted Helminth Infection and Eosinophil Levels among Primary School Children in Medan. Open Access Macedonian Journal of Medical Sciences, 2017, 5, 142-146.	0.1	11
222	Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Science Translational Medicine, 2018, 10, .	5.8	58

#	Article	IF	CITATIONS
223	<i>Alternaria alternata</i> challenge at the nasal mucosa results in eosinophilic inflammation and increased susceptibility to influenza virus infection. Clinical and Experimental Allergy, 2018, 48, 691-702.	1.4	11
224	The eosinophil. Annals of Allergy, Asthma and Immunology, 2018, 121, 150-155.	0.5	49
225	The Immune System: Structure, Function, and Roles in Skin Disease. , 2018, , 1-34.		0
226	Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Journal of Leukocyte Biology, 2018, 104, 69-83.	1.5	34
227	Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. Journal of Leukocyte Biology, 2018, 104, 95-108.	1.5	102
228	DP1 receptor signaling prevents the onset of intrinsic apoptosis in eosinophils and functions as a transcriptional modulator. Journal of Leukocyte Biology, 2018, 104, 159-171.	1.5	14
229	Eosinophil Counts in the Small Intestine and Colon of Children Without Apparent Gastrointestinal Disease. Journal of Pediatric Gastroenterology and Nutrition, 2018, 67, 6-12.	0.9	27
230	Human eosinophils and mast cells: Birds of a feather flock together. Immunological Reviews, 2018, 282, 151-167.	2.8	49
231	Mer-mediated eosinophil efferocytosis regulates resolution of allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 1884-1893.e6.	1.5	28
232	Low Variability in Peak Expiratory Flow Predicts Successful Inhaled Corticosteroid Step-Down in Adults with Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 972-979.	2.0	9
233	Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. Journal of Investigative Dermatology, 2018, 138, 1032-1043.	0.3	65
234	Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology, 2018, 154, 298-308.	2.0	42
235	Deciphering sex differences in the immune system and depression. Frontiers in Neuroendocrinology, 2018, 50, 67-90.	2.5	46
236	FACS isolation of live mouse eosinophils at high purity via a protocol that does not target Siglec F. Journal of Immunological Methods, 2018, 454, 27-31.	0.6	9
237	Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Research, 2018, 28, 323-335.	5.7	26
238	Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. Journal of Proteome Research, 2018, 17, 2102-2111.	1.8	11
239	Lysophosphatidylserine receptor P2Y10: A G proteinâ€coupled receptor that mediates eosinophil degranulation. Clinical and Experimental Allergy, 2018, 48, 990-999.	1.4	35
240	A fieldâ€applicable method for flow cytometric analysis of granulocyte activation: Cryopreservation of fixed granulocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 540-547.	1.1	15

#	Article	IF	CITATIONS
241	Reslizumab in the treatment of severe eosinophilic asthma:Âan update. Immunotherapy, 2018, 10, 695-698.	1.0	8
242	Eosinophils: The unsung heroes in cancer?. Oncolmmunology, 2018, 7, e1393134.	2.1	184
243	Unlike Th1/Th17Âcells, Th2/Th9 cells selectively migrate to the limbus/conjunctiva and initiate an eosinophilic infiltration process. Experimental Eye Research, 2018, 166, 116-119.	1.2	5
244	Eosinophil persistence in vivo and sustained viability ex vivo in response to respiratory challenge with fungal allergens. Clinical and Experimental Allergy, 2018, 48, 29-38.	1.4	13
245	Type 2 immunity in tissue repair and fibrosis. Nature Reviews Immunology, 2018, 18, 62-76.	10.6	718
246	Sialic acid–binding immunoglobulin-like lectin 8 (Siglec-8) is an activating receptor mediating β2-integrin–dependent function in human eosinophils. Journal of Allergy and Clinical Immunology, 2018, 141, 2196-2207.	1.5	37
247	Health status and productivity of sheep fed coffee pulp during fattening. Austral Journal of Veterinary Sciences, 2018, 50, 95-99.	0.2	6
248	Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental Schistosoma mansoni Infection. Frontiers in Immunology, 2018, 9, 3019.	2.2	18
249	An evaluation of fevipiprant for the treatment of asthma: a promising new therapy?. Expert Opinion on Pharmacotherapy, 2018, 19, 2087-2093.	0.9	6
250	Alterations in Blood Components. , 2018, , 249-293.		11
251	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	5.8	144
252	CXCR6 ⁺ ST2 ⁺ memory T helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9849-E9858.	3.3	21
253	Can Eosinophilic Esophagitis Cause Achalasia and Other Esophageal Motility Disorders?. American Journal of Gastroenterology, 2018, 113, 1594-1599.	0.2	61
254	DUSP10 constrains innate IL-33-mediated cytokine production in ST2hi memory-type pathogenic Th2 cells. Nature Communications, 2018, 9, 4231.	5.8	35
255	Eosinophils: Friends or Foes?. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1439-1444.	2.0	51
256	Eosinophils: Old Players in a New Game. Journal of Investigational Allergology and Clinical Immunology, 2018, 28, 289-304.	0.6	45
257	FACS - based isolation of human eosinophils allows purification of high quality RNA. Journal of Immunological Methods, 2018, 463, 47-53.	0.6	4
258	Recent developments in the use of biologics targeting IL-5, IL-4, or IL-13 in severe refractory asthma. Expert Review of Respiratory Medicine, 2018, 12, 957-963.	1.0	10

#	Article	IF	CITATIONS
259	Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe. Journal of the American Chemical Society, 2018, 140, 11771-11776.	6.6	70
260	Defining Eosinophil Function in Adiposity and Weight Loss. BioEssays, 2018, 40, e1800098.	1.2	13
261	The Genetics and Genomics of Asthma. Annual Review of Genomics and Human Genetics, 2018, 19, 223-246.	2.5	47
262	Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. Journal of Leukocyte Biology, 2018, 104, 185-193.	1.5	8
263	Hauterkrankungen mit Eosinophilie. , 2018, , 745-752.		0
264	Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity, 2018, 49, 134-150.e6.	6.6	138
265	Type 2 Immunity. Methods in Molecular Biology, 2018, , .	0.4	1
266	Eosinophils from Physiology to Disease: A Comprehensive Review. BioMed Research International, 2018, 2018, 1-28.	0.9	182
267	Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. Journal of Experimental Medicine, 2018, 215, 2055-2072.	4.2	93
268	Chromatin Preparation from Murine Eosinophils for Genome-Wide Analyses. Methods in Molecular Biology, 2018, 1799, 265-274.	0.4	0
269	Phagocytes. , 2018, , 1-25.		0
270	Effect of Muscle Strength by <i>Trichinella spiralis</i> Infection during Chronic Phase. International Journal of Medical Sciences, 2018, 15, 802-807.	1.1	9
271	Single-Cell Analyses of Human Eosinophils at High Resolution to Understand Compartmentalization and Vesicular Trafficking of Interferon-Gamma. Frontiers in Immunology, 2018, 9, 1542.	2.2	15
272	Epigallocatechin-3-gallate protects against the exacerbation of allergic eosinophilic inflammation associated with obesity in mice. International Immunopharmacology, 2018, 62, 212-219.	1.7	17
273	Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells. Frontiers in Immunology, 2018, 9, 191.	2.2	74
274	Elevated Plasma Chemokines for Eosinophils in Neuromyelitis Optica Spectrum Disorders during Remission. Frontiers in Neurology, 2018, 9, 44.	1.1	18
275	Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils. Frontiers in Immunology, 2018, 9, 1445.	2.2	29
276	NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacological Research, 2018, 135, 25-36.	3.1	66

#	Article	IF	CITATIONS
277	Contemporary understanding of the secretory granules in human eosinophils. Journal of Leukocyte Biology, 2018, 104, 85-93.	1.5	77
278	β-eudesmol inhibits thymic stromal lymphopoietin through blockade of caspase-1/NF-κB signal cascade in allergic rhinitis murine model. Chemico-Biological Interactions, 2018, 294, 101-106.	1.7	15
279	The Emerging Roles of Surfactant Protein-A in Asthma. Journal of Clinical & Cellular Immunology, 2018, 09, .	1.5	17
280	A recessive form of hyper-lgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Science Immunology, 2018, 3, .	5.6	132
281	Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge. International Archives of Allergy and Immunology, 2018, 177, 16-28.	0.9	21
282	Organization of the Immune System. , 2019, , 19-38.e1.		9
283	Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 507-517.	2.7	51
284	Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Experimental Dermatology, 2019, 28, 1405-1411.	1.4	50
285	Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway. FASEB Journal, 2019, 33, 11706-11720.	0.2	22
286	Eosinophils Affect Antibody Isotype Switching and May Partially Contribute to Early Vaccine-Induced Immunity against Coxiella burnetii. Infection and Immunity, 2019, 87, .	1.0	6
287	Paragonimiasis. Advances in Experimental Medicine and Biology, 2019, 1154, 105-138.	0.8	29
288	Eosinophilic esophagitis: novel concepts regarding pathogenesis and clinical manifestations. Journal of Gastroenterology, 2019, 54, 837-844.	2.3	15
289	Development of an automated ImmunoCAP research assay for eosinophil derived neurotoxin and its use in asthma diagnosis in children. Practical Laboratory Medicine, 2019, 17, e00138.	0.6	5
290	Resolution of allergic asthma. Seminars in Immunopathology, 2019, 41, 665-674.	2.8	30
291	IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers, 2019, 11, 1664.	1.7	45
292	The Intersection of IgE Autoantibodies and Eosinophilia in the Pathogenesis of Bullous Pemphigoid. Frontiers in Immunology, 2019, 10, 2331.	2.2	46
293	Expression of eosinophil \hat{l}^2 chain-signaling cytokines receptors, outer-membrane integrins, and type 2 inflammation biomarkers in severe non-allergic eosinophilic asthma. BMC Pulmonary Medicine, 2019, 19, 158.	0.8	16
294	Human Peripheral Blood Eosinophils Express High Levels of the Purinergic Receptor P2X4. Frontiers in Immunology, 2019, 10, 2074.	2.2	12

#	Article	IF	CITATIONS
295	Association study reveals Th17, Treg, and Th2 loci related to resistance to Haemonchus contortus in Florida Native sheep1. Journal of Animal Science, 2019, 97, 4428-4444.	0.2	14
296	Activated Eosinophils Exert Antitumorigenic Activities in Colorectal Cancer. Cancer Immunology Research, 2019, 7, 388-400.	1.6	113
297	Intravital imaging allows real-time characterization of tissue resident eosinophils. Communications Biology, 2019, 2, 181.	2.0	26
298	Phagocytes (Innate Immunity)., 2019,, 496-496.		1
299	Eosinophils: Nemeses of Pulmonary Pathogens?. Current Allergy and Asthma Reports, 2019, 19, 36.	2.4	24
300	Raman imaging highlights biochemical heterogeneity of human eosinophilsversushuman eosinophilic leukaemia cell line. British Journal of Haematology, 2019, 186, 685-694.	1.2	9
301	Eosinophils Do Not Drive Acute Muscle Pathology in the mdx Mouse Model of Duchenne Muscular Dystrophy. Journal of Immunology, 2019, 203, 476-484.	0.4	14
302	Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. Journal of Immunology, 2019, 203, 520-531.	0.4	8
303	The Dynamics of the Skin's Immune System. International Journal of Molecular Sciences, 2019, 20, 1811.	1.8	336
304	Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine and Growth Factor Reviews, 2019, 47, 83-98.	3.2	55
305	Preformulation and Evaluation of Tofacitinib as a Therapeutic Treatment for Asthma. AAPS PharmSciTech, 2019, 20, 167.	1.5	25
306	Dual mechanism of action of T2 inhibitor therapies in virally induced exacerbations of asthma: evidence for a beneficial counter-regulation. European Respiratory Journal, 2019, 54, 1802390.	3.1	12
307	Involvement of EP2 and EP4 Receptors in Eosinophilic Esophagitis: A Pilot Study. Digestive Diseases and Sciences, 2019, 64, 2806-2814.	1.1	4
308	Primary care of asthma: new options for severe eosinophilic asthma. Current Medical Research and Opinion, 2019, 35, 1309-1318.	0.9	10
309	Eosinophilic Upper Airway Inflammation in a Murine Model Using an Adoptive Transfer System Induces Hyposmia and Epithelial Layer Injury with Convex Lesions. Medical Sciences (Basel, Switzerland), 2019, 7, 22.	1.3	4
310	Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program. Blood, 2019, 133, 2413-2426.	0.6	27
311	The immunopathology of lung fibrosis: amphiregulin-producing pathogenic memory T helper-2 cells control the airway fibrotic responses by inducing eosinophils to secrete osteopontin. Seminars in Immunopathology, 2019, 41, 339-348.	2.8	22
312	Regulation of Type 2 Immunity in Myocardial Infarction. Frontiers in Immunology, 2019, 10, 62.	2.2	26

#	Article	IF	CITATIONS
313	Innate Immune Modulation by GM-CSF and IL-3 in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 834.	1.8	48
314	Activated T-Follicular Helper 2 Cells Are Associated With Disease Activity in IgG4-Related Sclerosing Cholangitis and Pancreatitis. Clinical and Translational Gastroenterology, 2019, 10, e00020.	1.3	29
315	Biologics for Asthma and Risk of Infection. Immunology and Allergy Clinics of North America, 2019, 39, 429-445.	0.7	2
316	Eosinophil Activation by Toll-Like Receptor 4 Ligands Regulates Macrophage Polarization. Frontiers in Cell and Developmental Biology, 2019, 7, 329.	1.8	20
317	Zinc Oxide Nanowires Exposure Induces a Distinct Inflammatory Response via CCL11-Mediated Eosinophil Recruitment. Frontiers in Immunology, 2019, 10, 2604.	2.2	15
318	Eosinophil Polymorphonuclear Leukocytes in TB: What We Know so Far. Frontiers in Immunology, 2019, 10, 2639.	2.2	7
319	Eosinophils and Eosinophilia. , 2019, , 349-361.e1.		3
320	Anti–IL-5 in Mild Asthma Alters Rhinovirus-induced Macrophage, B-Cell, and Neutrophil Responses (MATERIAL). A Placebo-controlled, Double-Blind Study. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 508-517.	2.5	68
321	Eosinophils attenuate arthritis by inducing M2 macrophage polarization via inhibiting the lîºB/P38 MAPK signaling pathway. Biochemical and Biophysical Research Communications, 2019, 508, 894-901.	1.0	19
322	Professional and â€~Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends in Immunology, 2019, 40, 22-34.	2.9	86
323	Prevalence and genotyping of Pneumocystis jirovecii in renal transplant recipientsâ€"preliminary report. Parasitology Research, 2019, 118, 181-189.	0.6	12
324	SEMA4A promotes eosinophil survival and contributes to eosinophil-mediated allergic diseases. Allergology International, 2019, 68, 274-276.	1.4	7
326	The Effect of Helminths on Granulocyte Activation: A Cluster-Randomized Placebo-Controlled Trial in Indonesia. Journal of Infectious Diseases, 2019, 219, 1474-1482.	1.9	3
328	Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. Journal of Ethnopharmacology, 2019, 232, 165-175.	2.0	11
329	Opposing roles of eosinophils in cancer. Cancer Immunology, Immunotherapy, 2019, 68, 823-833.	2.0	86
330	Effects of Anti–IL-5 on Virus-induced Exacerbation in Asthma. Light and Shadow. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 410-411.	2.5	3
331	Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. Journal of Leukocyte Biology, 2018, 105, 151-161.	1.5	13
332	Treatment of severe, uncontrolled eosinophilic asthma: Where we are heading. Journal of Asthma, 2019, 56, 459-472.	0.9	7

#	Article	IF	CITATIONS
333	Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2. Immunobiology, 2020, 225, 151847.	0.8	22
334	Cysteinyl leukotriene metabolism of human eosinophils in allergic disease. Allergology International, 2020, 69, 28-34.	1.4	24
335	Frontline Science: Cytokine-mediated developmental phenotype of mouse eosinophils: IL-5-associated expression of the Ly6G/Gr1 surface Ag. Journal of Leukocyte Biology, 2020, 107, 367-377.	1.5	13
336	Deciphering the role of eosinophils in solid organ transplantation. American Journal of Transplantation, 2020, 20, 924-930.	2.6	11
337	Diffusion Mapping of Eosinophilâ€Activation State. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 253-258.	1.1	5
338	Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model. Experimental and Molecular Pathology, 2020, 113, 104373.	0.9	17
339	The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by <i>C difficile </i> toxins. FASEB Journal, 2020, 34, 2198-2212.	0.2	16
340	Interleukinâ€5 drives glycolysis and reactive oxygen speciesâ€dependent citric acid cycling by eosinophils. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1361-1370.	2.7	17
341	Multiple Biological Aspects of Eosinophils in Host Defense, Eosinophil-Associated Diseases, Immunoregulation, and Homeostasis: Is Their Role Beneficial, Detrimental, Regulator, or Bystander?. Biological and Pharmaceutical Bulletin, 2020, 43, 20-30.	0.6	22
342	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	0.9	65
343	Immune Response and Tissue Damage. , 2020, , 155-203.		2
344	Long Noncoding RNAs in the Regulation of Asthma: Current Research and Clinical Implications. Frontiers in Pharmacology, 2020, 11, 532849.	1.6	17
345	Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. International Journal of Molecular Sciences, 2020, 21, 7165.	1.8	33
346	A new dawn for eosinophils in the tumour microenvironment. Nature Reviews Cancer, 2020, 20, 594-607.	12.8	164
347	Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms, 2020, 8, 1808.	1.6	13
348	<p>Switch from IL-5 to IL-5-Receptor α Antibody Treatment in Severe Eosinophilic Asthma</p> . Journal of Asthma and Allergy, 2020, Volume 13, 605-614.	1.5	30
349	The Immune Endocannabinoid System of the Tumor Microenvironment. International Journal of Molecular Sciences, 2020, 21, 8929.	1.8	28
350	Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation. Thorax, 2020, 75, 918-927.	2.7	40

#	Article	IF	CITATIONS
351	$12/15\mbox{-Lipoxygenase}$ choreographs the resolution of IgG-mediated skin inflammation. Journal of Autoimmunity, 2020, 115, 102528.	3.0	5
352	Peripheral leukocyte counts vary with lipid levels, age and sex in subjects from the healthy population. Atherosclerosis, 2020, 308, 15-21.	0.4	10
353	Eosinophils and White Fat: Protection from Worms and Inflammaging. Rejuvenation Research, 2020, 23, 349-352.	0.9	2
354	Eosinophils promote corneal wound healing via the 12/15â€lipoxygenase pathway. FASEB Journal, 2020, 34, 12492-12501.	0.2	18
355	Dysregulated metabolism of polyunsaturated fatty acids in eosinophilic allergic diseases. Prostaglandins and Other Lipid Mediators, 2020, 150, 106477.	1.0	14
356	Eosinophilic Interstitial Pneumonia. , 2020, , .		0
357	Eosinophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 1-28.	0.8	20
358	Elevated Levels of Activated and Pathogenic Eosinophils Characterize Moderate-Severe House Dust Mite Allergic Rhinitis. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	18
359	Eosinophils and Neutrophilsâ€"Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells, 2020, 9, 2041.	1.8	13
360	Eosinopenia as predictor of infection in patients admitted to an internal medicine ward: a cross-sectional study. Porto Biomedical Journal, 2020, 5, e084.	0.4	3
361	"NETs and EETs, a Whole Web of Mess― Microorganisms, 2020, 8, 1925.	1.6	16
362	Achalasia: physiology and diagnosis. Annals of the New York Academy of Sciences, 2020, 1482, 85-94.	1.8	19
363	Granulocyte-targeted therapies for airway diseases. Pharmacological Research, 2020, 157, 104881.	3.1	14
364	Dual infective burden of Helicobacter pylori and intestinal parasites: Good or bad news for the host?. Indian Journal of Gastroenterology, 2020, 39, 111-116.	0.7	7
365	The search for the "healthy―blood eosinophil count. European Respiratory Journal, 2020, 55, 2000473.	3.1	4
366	Focal eosinophilic myositis with Charcot-Leyden crystal formation. Allergology International, 2020, 69, 633-635.	1.4	4
367	Anti-IL-5 monoclonal antibodies for the treatment of asthma: an update. Expert Opinion on Biological Therapy, 2020, 20, 1237-1244.	1.4	13
368	Homeostatic and early-recruited CD101 ^{â^'} eosinophils suppress endotoxin-induced acute lung injury. European Respiratory Journal, 2020, 56, 1902354.	3.1	30

#	Article	IF	Citations
369	Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: Implications in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3159-3170.	2.7	29
370	Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 4441.	1.8	20
371	IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. Oncolmmunology, 2020, 9, 1776059.	2.1	43
372	CALIPER Hematology Reference Standards (I). American Journal of Clinical Pathology, 2020, 154, 330-341.	0.4	11
373	Infectious Implications of Interleukin-1, Interleukin-6, and T Helper Type 2 Inhibition. Infectious Disease Clinics of North America, 2020, 34, 211-234.	1.9	10
374	Divergent Siglecâ€F(eights) of mouse and human eosinophil death. Journal of Leukocyte Biology, 2020, 108, 9-11.	1.5	O
375	RAGE-induced ILC2 expansion in acute lung injury due to haemorrhagic shock. Thorax, 2020, 75, 209-219.	2.7	23
376	The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunology, 2020, 13, 574-583.	2.7	58
377	Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Scientific Reports, 2020, 10, 4425.	1.6	18
378	EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1495-1505.	0.9	14
379	Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Frontiers in Immunology, 2020, 11, 155.	2.2	36
380	Benralizumab: an updated treatment of eosinophilic asthma. Expert Review of Respiratory Medicine, 2020, 14, 435-444.	1.0	11
381	Vibrational imaging of proteins: changes in the tissues and cells in the lifestyle disease studies. , 2020, , 177-218.		1
382	Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nature Metabolism, 2020, 2, 688-702.	5.1	64
383	High PI3K/mTOR and low MAPK/JNK activity results in decreased apoptosis and autophagy in nasal polyposis. Brazilian Journal of Otorhinolaryngology, 2021, 87, 572-577.	0.4	6
384	Alternatively activated macrophages; a double-edged sword in allergic asthma. Journal of Translational Medicine, 2020, 18, 58.	1.8	160
385	Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. International Journal of Molecular Sciences, 2020, 21, 1036.	1.8	31
386	Tumor-Derived Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Reports, 2020, 30, 2743-2757.e5.	2.9	48

#	Article	IF	CITATIONS
387	Eosinophil count and mortality risk in incident hemodialysis patients. Nephrology Dialysis Transplantation, 2020, 35, 1032-1042.	0.4	5
388	Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergology International, 2020, 69, 232-238.	1.4	28
389	Contributions of Eosinophils to Human Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 179-209.	9.6	144
390	Siglecs as Immune Cell Checkpoints in Disease. Annual Review of Immunology, 2020, 38, 365-395.	9.5	240
391	The Charcot–Leyden crystal protein revisited—A lysopalmitoylphospholipase and more. Journal of Leukocyte Biology, 2020, 108, 105-112.	1.5	13
392	Eosinophil diversity in asthma. Biochemical Pharmacology, 2020, 179, 113963.	2.0	25
393	Biologics or immunotherapeutics for asthma?. Pharmacological Research, 2020, 158, 104782.	3.1	7
394	Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Annals of the Rheumatic Diseases, 2021, 80, 451-468.	0.5	43
395	Prediction of non-muscle-invasive bladder cancer recurrence during intravesical BCG immunotherapy by use of peripheral blood eosinophil count and percentage: a preliminary report. Cancer Immunology, Immunotherapy, 2021, 70, 245-252.	2.0	9
396	Eosinophils: Cells known for over 140 years with broad and new functions. Allergology International, 2021, 70, 3-8.	1.4	30
397	Human RNase3 immune modulation by catalytic-dependent and independent modes in a macrophage-cell line infection model. Cellular and Molecular Life Sciences, 2021, 78, 2963-2985.	2.4	10
398	Assessment of Lung Eosinophils In Situ Using Immunohistological Staining. Methods in Molecular Biology, 2021, 2223, 237-266.	0.4	2
400	The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergology International, 2021, 70, 9-18.	1.4	39
401	The Crucial Role of Eosinophils in the Life Cycle, Radiographical Architecture, and Risk of Recurrence of Chronic Subdural Hematomas. Neurotrauma Reports, 2021, 2, 76-83.	0.5	4
402	Generation of Mouse Eosinophils in Tissue Culture from Unselected Bone Marrow Progenitors. Methods in Molecular Biology, 2021, 2241, 37-47.	0.4	4
403	Sex Hormones and Lung Inflammation. Advances in Experimental Medicine and Biology, 2021, 1304, 259-321.	0.8	29
404	Eosinophils in the Field of Nasal Polyposis: Towards a Better Understanding of Biologic Therapies. Clinical Reviews in Allergy and Immunology, 2022, 62, 90-102.	2.9	15
405	A retrospective clinical analysis of pediatric paragonimiasis in a Chinese children's hospital from 2011 to 2019. Scientific Reports, 2021, 11, 2005.	1.6	6

#	Article	IF	Citations
406	Assays of Eosinophil Apoptosis and Phagocytic Uptake. Methods in Molecular Biology, 2021, 2241, 113-132.	0.4	2
407	Differential expression of Triggering Receptor Expressed on Myeloid cells 2 (<i>Trem2</i>) in tissue eosinophils. Journal of Leukocyte Biology, 2021, 110, 679-691.	1.5	2
408	Simultaneous Examination of Eosinophil Infiltration in Esophageal Mucosa and Muscle in Patients with Achalasia: Direct Biopsy of the Esophageal Muscle at Per-oral Endoscopic Myotomy. Digestive Diseases and Sciences, 2021, , 1.	1.1	5
409	Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment with Deep Learning Computer Vision., 2021, 2021, 44-55.		5
410	Observation and Quantification of Eosinophil Motility. Methods in Molecular Biology, 2021, 2241, 139-148.	0.4	0
411	Microfilariae Trigger Eosinophil Extracellular DNA Traps in a Dectin-1-Dependent Manner. Cell Reports, 2021, 34, 108621.	2.9	31
412	Eosinophil Shape Change and Secretion. Methods in Molecular Biology, 2021, 2241, 199-219.	0.4	3
413	Biology and Function of Eosinophils in Chronic Rhinosinusitis With or Without Nasal Polyps. Allergy, Asthma and Immunology Research, 2021, 13, 8.	1.1	36
414	The Release Kinetics of Eosinophil Peroxidase and Mitochondrial DNA Is Different in Association with Eosinophil Extracellular Trap Formation. Cells, 2021, 10, 306.	1.8	14
415	Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sciences, 2021, 267, 118973.	2.0	16
416	TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model. Biomedicine and Pharmacotherapy, 2021, 134, 111001.	2.5	37
417	Physiology and pathology of eosinophils: Recent developments. Scandinavian Journal of Immunology, 2021, 93, e13032.	1.3	4
418	Blood eosinophils in COPD to predict exacerbations and inform inhaled corticosteroid use: Need for further evidence?. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 136-149.	0.2	0
419	Eosinophil: A central player in modulating pathological complexity in asthma. Allergologia Et Immunopathologia, 2021, 49, 191-207.	1.0	7
420	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	2.8	36
421	Immunological underpinnings of <i>Ascaris</i> infection, reinfection and co-infection and their associated co-morbidities. Parasitology, 2021, 148, 1764-1773.	0.7	4
422	Uridine diphosphate–glucose/P2Y14R axis is a nonchemokine pathway that selectively promotes eosinophil accumulation. Journal of Clinical Investigation, 2021, 131, .	3.9	2
423	Granulocytes and Cells of Granulocyte Origin—The Relevant Players in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 3801.	1.8	6

#	Article	IF	CITATIONS
424	Early-Phase Peripheral Blood Eosinophilia Predicts Lower Overall and Non-Relapse Mortality After Single-Unit Cord Blood Transplantation. Transplantation and Cellular Therapy, 2021, 27, 336.e1-336.e9.	0.6	1
425	Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annual Review of Immunology, 2021, 39, 719-757.	9.5	69
426	Schistosomes in the Lung: Immunobiology and Opportunity. Frontiers in Immunology, 2021, 12, 635513.	2.2	15
427	Innate and adaptive immune responses toward nanomedicines. Acta Pharmaceutica Sinica B, 2021, 11, 852-870.	5.7	26
429	Intestinal eosinophils, homeostasis and response to bacterial intrusion. Seminars in Immunopathology, 2021, 43, 295-306.	2.8	21
430	Lessons learned from targeting eosinophils in human disease. Seminars in Immunopathology, 2021, 43, 459-475.	2.8	10
431	The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells, 2021, 10, 1282.	1.8	31
432	CD101 as an indicator molecule for pathological changes at the interface of host-microbiota interactions. International Journal of Medical Microbiology, 2021, 311, 151497.	1.5	3
433	Roles of Immune Cells in Hereditary Angioedema. Clinical Reviews in Allergy and Immunology, 2021, 60, 369-382.	2.9	9
434	Effects of Deacetylasperulosidic Acid on Atopic Dermatitis through Modulating Immune Balance and Skin Barrier Function in HaCaT, HMC-1, and EOL-1 Cells. Molecules, 2021, 26, 3298.	1.7	9
436	Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. Science Advances, 2021, 7, .	4.7	25
437	Regulation of eosinophil functions by autophagy. Seminars in Immunopathology, 2021, 43, 347-362.	2.8	12
438	Gene therapy for a murine model of eosinophilic esophagitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2740-2752.	2.7	11
439	Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1+ cell activation in mice. Cancer Immunology, Immunotherapy, 2021, 70, 3617-3627.	2.0	6
440	5-lipoxygenase- and Glucocorticoid-dependent eosinophilia in a novel surgical model in mice. International Immunopharmacology, 2021, 94, 107440.	1.7	0
441	Emerging Evidence for Pleiotropism of Eosinophils. International Journal of Molecular Sciences, 2021, 22, 7075.	1.8	18
442	Comparative features of eosinophilic and nonâ€eosinophilic asthma. Clinical and Experimental Allergy, 2022, 52, 205-208.	1.4	3
443	Ameliorative effects of eosinophil deficiency on immune response, endoplasmic reticulum stress, apoptosis, and autophagy in fungus-induced allergic lung inflammation. Respiratory Research, 2021, 22, 173.	1.4	6

#	Article	IF	Citations
444	Crayfish hemocytes develop along the granular cell lineage. Scientific Reports, 2021, 11, 13099.	1.6	18
445	Eosinophilic Esophagitis and Gastroesophageal Reflux Disease: An Overlapping of Clinical, Endoscopic and Manometric Features. Cureus, 2021, 13, e15774.	0.2	1
446	Eosinophils and Bacteria, the Beginning of a Story. International Journal of Molecular Sciences, 2021, 22, 8004.	1.8	18
447	Human pluripotent stem cell-derived eosinophils reveal potent cytotoxicity against solid tumors. Stem Cell Reports, 2021, 16, 1697-1704.	2.3	10
448	Admixture mapping analysis reveals differential genetic ancestry associated with Chagas disease susceptibility in the Colombian population. Human Molecular Genetics, 2021, 30, 2503-2512.	1.4	5
449	Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 659666.	1.8	19
450	Effects of Dingchuan Decoction on Lung Function and Clinical Effectiveness Rate in Children with Asthma: A Systematic Review and Meta-Analysis. Complementary Medicine Research, 2021, 28, 533-544.	0.5	1
451	Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 2021, 6, 263.	7.1	739
452	Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovascular Research, 2022, 118, 2165-2178.	1.8	24
453	Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS ONE, 2021, 16, e0255997.	1.1	5
454	Mepolizumab effectiveness in patients with severe eosinophilic asthma and co-presence of bronchiectasis: A real-world retrospective pilot study. Respiratory Medicine, 2021, 185, 106491.	1.3	33
455	$\hat{l}\pm4\hat{l}^21$ and $\hat{l}\pm M\hat{l}^22$ Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. Journal of Personalized Medicine, 2021, 11, 829.	1.1	1
456	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	4.2	38
457	Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Research, 2021, 81, 5555-5571.	0.4	35
458	Bronchoalveolar lavage fluid cell subsets associate with the disease course in Löfgren's and non-Löfgren's sarcoidosis patients. Respiratory Medicine, 2021, 186, 106521.	1.3	4
459	Neuroimmune regulation of white adipose tissues. FEBS Journal, 2022, 289, 7830-7853.	2.2	4
460	Enhanced eosinophil-mediated inflammation associated with antibody and complement-dependent pneumonic insults in critical COVID-19. Cell Reports, 2021, 37, 109798.	2.9	28
461	Anti-allergic effects of Asarum heterotropoides on an ovalbumin-induced allergic rhinitis murine model. Biomedicine and Pharmacotherapy, 2021, 141, 111944.	2.5	12

#	Article	IF	CITATIONS
462	High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
463	Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. IScience, 2021, 24, 103163.	1.9	6
464	Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Veterinary Journal, 2021, 276, 105741.	0.6	5
465	Eosinophils are dispensable for development of MOG35–55-induced experimental autoimmune encephalomyelitis in mice. Immunology Letters, 2021, 239, 72-76.	1.1	3
467	Pin1 Regulates IL-5 Induced Eosinophil Polarization and Migration. Cells, 2021, 10, 211.	1.8	7
468	Eosinophils, Mast Cells and Basophils. , 2021, , .		0
469	Immunomodulator Galectin-9 is Increased in Blood and Skin of Patients with Bullous Pemphigoid. Acta Dermato-Venereologica, 2021, 101, adv00419.	0.6	5
470	Molecular Biology of Eosinophils: Introduction. Methods in Molecular Biology, 2021, 2241, 1-14.	0.4	2
471	Functionally Active Eosinophil Purification from Peripheral Blood. Methods in Molecular Biology, 2021, 2241, 15-25.	0.4	1
472	Activation states of blood eosinophils in asthma. Clinical and Experimental Allergy, 2014, 44, 482-498.	1.4	12
473	Gr1 makes an unexpected cameo appearance in eosinophils. Journal of Leukocyte Biology, 2020, 107, 363-365.	1.5	2
474	Eosinophils as Major Player in Type 2 Inflammation: Autoimmunity and Beyond. Advances in Experimental Medicine and Biology, 2021, , 197-219.	0.8	16
475	Eosinophil Overview: Structure, Biological Properties, and Key Functions. Methods in Molecular Biology, 2014, 1178, 1-12.	0.4	17
476	Eosinophil Shape Change and Secretion. Methods in Molecular Biology, 2014, 1178, 111-128.	0.4	11
477	Assays of Eosinophil Apoptosis and Phagocytic Uptake. Methods in Molecular Biology, 2014, 1178, 177-195.	0.4	1
478	Eosinophil Purification from Peripheral Blood. Methods in Molecular Biology, 2014, 1178, 13-20.	0.4	6
479	Eosinophils and Respiratory Virus Infection: A Dual-Standard Curve qRT-PCR-Based Method for Determining Virus Recovery from Mouse Lung Tissue. Methods in Molecular Biology, 2014, 1178, 257-266.	0.4	21
480	Siglec-8 in Induced Sputum of COPD Patients. Advances in Experimental Medicine and Biology, 2013, 788, 19-23.	0.8	5

#	Article	IF	CITATIONS
481	Primary tumors from mucosal barrier organs drive unique eosinophil infiltration patterns and clinical associations. Oncolmmunology, 2021, 10, 1859732.	2.1	14
484	Eosinophils promote inducible NOS–mediated lung allograft acceptance. JCI Insight, 2017, 2, .	2.3	22
485	Lung-resident eosinophils represent a distinct regulatory eosinophil subset. Journal of Clinical Investigation, 2016, 126, 3279-3295.	3.9	373
486	Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biology, 2020, 21, 122.	3.8	48
487	Recent advances in understanding eosinophil biology. F1000Research, 2017, 6, 1084.	0.8	23
488	Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase. PLoS Neglected Tropical Diseases, 2017, 11, e0005443.	1.3	43
489	Functional and phenotypic evaluation of eosinophils from patients with the acute form of paracoccidioidomycosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005601.	1.3	8
490	Expression Profiling of Differentiating Eosinophils in Bone Marrow Cultures Predicts Functional Links between MicroRNAs and Their Target mRNAs. PLoS ONE, 2014, 9, e97537.	1.1	17
491	Human Eosinophils Express the High Affinity IgE Receptor, FclμRI, in Bullous Pemphigoid. PLoS ONE, 2014, 9, e107725.	1.1	72
492	Co-Infection and Wild Animal Health: Effects of Trypanosomatids and Gastrointestinal Parasites on Coatis of the Brazilian Pantanal. PLoS ONE, 2015, 10, e0143997.	1.1	23
493	Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A. PLoS ONE, 2016, 11, e0149354.	1.1	20
494	Histological assessment of granulomas in natural and experimental Schistosoma mansoni infections using whole slide imaging. PLoS ONE, 2017, 12, e0184696.	1.1	48
495	Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma. PLoS Pathogens, 2017, 13, e1006175.	2.1	75
496	Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. Journal of Clinical Medicine Research, 2019, 11, 667-675.	0.6	24
497	Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction, 2020, 159, 325-337.	1.1	70
498	Long-term outcomes of imatinib in patients with FIP1L1/PDGFRA associated chronic eosinophilic leukemia: experience of a single center in China. Oncotarget, 2016, 7, 33229-33236.	0.8	36
499	Novel Biological Therapies in Severe Asthma: Targeting the Right Trait. Current Medicinal Chemistry, 2019, 26, 2801-2822.	1.2	6
500	Practical Approach to Children Presenting with Eosinophila and Hypereosinophilia. Current Pediatric Reviews, 2020, 16, 81-88.	0.4	6

#	Article	IF	CITATIONS
501	Clinical Outcome of Eosinophilia in Patients with COVID-19: A Controlled Study. Acta Biomedica, 2020, 91, e2020165.	0.2	25
502	Increase in the Level of Proinflammatory Cytokine HMGB1 in Nasal Fluids of Patients With Rhinitis and its Sequestration by Glycyrrhizin Induces Eosinophil Cell Death. Clinical and Experimental Otorhinolaryngology, 2015, 8, 123.	1.1	43
503	Blood Eosinophils Subtypes and Their Survivability in Asthma Patients. Cells, 2020, 9, 1248.	1.8	18
504	Proposed criteria to differentiate heterogeneous eosinophilic gastrointestinal disorders of the esophagus, including eosinophilic esophageal myositis. World Journal of Gastroenterology, 2017, 23, 2414.	1.4	35
505	Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World Journal of Gastroenterology, 2019, 25, 3503-3526.	1.4	63
506	Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications. Korean Journal of Internal Medicine, 2020, 35, 823-833.	0.7	23
507	The Emerging Role of Eosinophils as Multifunctional Leukocytes in Health and Disease. Immune Network, 2020, 20, e24.	1.6	22
508	Correlation of Absolute Eosinophil Count (AEC) and Body Mass Index (BMI) of MBBS Students in an Indian Scenario. Anatomy & Physiology: Current Research, 2016, 6, .	0.1	1
509	Eosinophilic esophagitis: From pathophysiology to treatment. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 150.	0.5	34
510	Activation of IL5R and CRTH2 on Human Eosinophils Elicit a Similar Molecular Response and Reveal a Synergistic Effect. European Journal of Molecular and Clinical Medicine, 2018, 5, 1-11.	0.5	1
511	Innate Lymphoid Cells in Skin Homeostasis and Malignancy. Frontiers in Immunology, 2021, 12, 758522.	2.2	7
512	ldiopathic eosinophilic myositis: a systematic literature review. Neuromuscular Disorders, 2022, 32, 116-124.	0.3	5
513	The Role of Blood Eosinophils in the Management of COPD: An Attempt to Answer the Important Clinical Questions. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 690-699.	0.7	2
514	Eosinophils and allergy. Russian Journal of Allergy, 2013, 10, 3-12.	0.1	1
515	Eosinophil Purification from Human Bone Marrow. Methods in Molecular Biology, 2014, 1178, 21-27.	0.4	0
516	Algorithm of biophenotyping and choice of medication for targeted therapy of severe uncontrolled asthma with eosinophilic type of airways inflammation. Russian Journal of Allergy, 2017, 14, 5-18.	0.1	5
517	PECULIARITIES OF THE FUNCTIONAL ACTIVITY OF BLOOD EOSINOPHIL GRANULOCYTES IN PULMONARY TUBERCULOSIS. Bulletin of Siberian Medicine, 2014, 13, 42-48.	0.1	0
518	Granulocytic Phagocytes. , 2015, , 78-92.e6.		2

#	Article	IF	CITATIONS
519	æ°—é"ç,Žç—‡å±€æ‰€ã®å¥½é…,çƒã•å‱§~ã³ãf•ã,§ãƒŽã,¿ã,∰f—ã,'有ã⊷ç,Žç—‡ã,'å^¶å¾¡ã™ã,‹. Nihon Bika	Gadakoai Ka	isho(Japanese
520	Activated but not resting eosinophils promote airway inflammation through eosinophil-derived IFN-Î ³ . Nihon Bika Gakkai Kaishi (Japanese Journal of Rhinology), 2016, 55, 57-59.	0.0	0
521	Eosinophile Granulozyten. , 2016, , 77-85.		0
522	The Immunobiology of Asthma. , 2016, , 295-305.		1
523	Human and Mouse Memory-Type Pathogenic Th2 (Tpath2) Cells in Airway Inflammation., 2016,, 401-415.		0
524	Overview of Immune System. , 2016, , 113-142.		O
526	Cells in the Skin. , 2017, , 63-113.		0
527	Hauterkrankungen mit Eosinophilie. , 2018, , 1-8.		O
528	EOSINOPHILS AS A NON-INVASIVE MARKER TO ASSESS INFLAMMATORY ACTIVITIES INÂTHOSE SUFFERING FROM CHRONIC OBSTRUCTIVE PULMONARY DISEASE. Tuberculosis and Lung Diseases, 2018, 96, 54-61.	0.2	2
530	Functional Organization of theÂlmmune System. , 2019, , 1-100.		O
531	Cocktail of periodic Acid–Schiff and papanicolaou: Novel staining technique for the identification of leukemic eosinophils – A pilot study. Journal of Oral and Maxillofacial Pathology, 2019, 23, 476.	0.3	1
532	VEGF-and EGF-mediated cooperation of eosinophilic granulocytes and tumor cells in gastric and colon cancer. Bulletin of Siberian Medicine, 2019, 18, 211-219.	0.1	O
533	Đ¢2-high and T2-low bronchial asthma, endotype characteristics and biomarkers. Pulmonologiya, 2019, 29, 216-228.	0.2	10
534	Immune cells: sources, properties, and cell types. , 2020, , 197-229.		O
536	Hypereosinophilia: An Unusual Bystander in Cancer. Journal of Immunotherapy and Precision Oncology, 2021, 4, 26-27.	0.6	0
537	Role of Th1 and Th2 in autoimmunity. , 2022, , 61-92.		O
539	Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain?. Frontiers in Immunology, 2021, 12, 754413.	2.2	24
540	Immune Modulation of Metastatic Niche Formation in the Bone. Frontiers in Immunology, 2021, 12, 765994.	2.2	9

#	Article	IF	CITATIONS
541	Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 422-432.	2.0	28
543	Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 1166-1181.	0.6	1
544	Characterization of Cotton Rat () Eosinophils, Including Their Response to Respiratory Syncytial Virus Infection. Comparative Medicine, 2018, 68, 31-40.	0.4	10
546	Serum Levels of Eosinophil-derived Neurotoxin in Patients with Chronic Urticaria. Journal of Clinical and Aesthetic Dermatology, 2020, 13, 21-23.	0.1	0
547	Blood eosinophils in COPD: friend or foe?. Expert Review of Respiratory Medicine, 2021, , 1-7.	1.0	1
548	Role of ILâ€18â€transformed CD274â€expressing eosinophils in promoting airway obstruction in experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	2.7	3
549	Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. Ecotoxicology and Environmental Safety, 2021, 228, 112956.	2.9	19
550	Role of activated eosinophils on Eosinophilic chronic rhinosinusitis. The Journal of Kansai Medical University, 2021, 72, 17-21.	0.3	0
551	Are serum immunoglobulin concentrations a predictive biomarker of response to anti-IL5/IL5Rα therapies?. Respiratory Medicine and Research, 2022, 81, 100882.	0.4	0
552	Persistent eosinophilia and associated organ involvement in Thai patients with systemic sclerosis: Data from the Siriraj scleroderma cohort. Archives of Rheumatology, 2021, 36, 527-537.	0.3	1
553	Eosinophils and melanoma: Implications for immunotherapy. Pigment Cell and Melanoma Research, 2022, 35, 192-202.	1.5	5
556	Safety of eosinophil depletion. , 2022, , 238-252.		2
557	Mature eosinophils: General morphology. , 2022, , 7-60.		0
558	Peripheral blood eosinophil count is associated with response to chemoimmunotherapy in metastatic triple-negative breast cancer. Immunotherapy, 2022, , .	1.0	12
559	Type 2 Inflammation in Eosinophilic Esophagitis: From Pathophysiology to Therapeutic Targets. Frontiers in Physiology, 2021, 12, 815842.	1.3	22
560	Future prospects of translational and clinical eosinophil research. , 2022, , 253-262.		1
561	2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis With Polyangiitis. Arthritis and Rheumatology, 2022, 74, 386-392.	2.9	50
562	2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis with Polyangiitis. Annals of the Rheumatic Diseases, 2022, 81, 309-314.	0.5	157

#	Article	IF	CITATIONS
563	RSV Infection in Neonatal Mice Induces Pulmonary Eosinophilia Responsible for Asthmatic Reaction. Frontiers in Immunology, 2022, 13, 817113.	2.2	5
564	The horizon of bone organoid: A perspective on construction and application. Bioactive Materials, 2022, 18, 15-25.	8.6	78
565	Tissue eosinophilia correlates with mice susceptibility, granuloma formation, and damage during Toxocara canis infection. Parasitology, 2022, , 1-38.	0.7	1
566	Investigating the development of diarrhoea through gene expression analysis in sheep genetically resistant to gastrointestinal helminth infection. Scientific Reports, 2022, 12, 2207.	1.6	4
567	The emerging roles of eosinophils: Implications for the targeted treatment of eosinophilic-associated inflammatory conditions. Current Research in Immunology, 2022, 3, 42-53.	1.2	38
569	Effect of Probiotics on Respiratory Tract Allergic Disease and Gut Microbiota. Frontiers in Nutrition, 2022, 9, 821900.	1.6	23
570	Innate and adaptive immune system cells implicated in tendon healing and disease., 2022, 43, 39-52.		6
571	Blast Waves Cause Immune System Dysfunction and Transient Bone Marrow Failure in a Mouse Model. Frontiers in Bioengineering and Biotechnology, 2022, 10, 821169.	2.0	3
572	The roles of eosinophils and interleukinâ€5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2022, 12, 1413-1423.	1.5	41
573	The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	22
574	Pathophysiology of Dysphagia in Eosinophilic Esophagitis: Causes, Consequences, and Management. Digestive Diseases and Sciences, 2022, 67, 1101-1115.	1.1	6
575	Quantity and Distribution of Eosinophils in Esophageal Specimens of Adults: An Iranian Population-Based Study. Iranian Journal of Pathology, 2022, 17, 136-142.	0.2	1
576	Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. European Clinical Respiratory Journal, 2022, 9, 2040707.	0.7	5
577	Eosinophil-Derived Osteopontin Induces the Expression of Pro-Inflammatory Mediators and Stimulates Extracellular Matrix Production in Nasal Fibroblasts: The Role of Osteopontin in Eosinophilic Chronic Rhinosinusitis. Frontiers in Immunology, 2022, 13, 777928.	2.2	11
578	Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Science Immunology, 2022, 7, eabn3286.	5.6	15
579	Strongyloides stercoralis. Lung, 2022, 200, 141-148.	1.4	20
580	Effects of Cigarette Smoking on Influenza Virus/Host Interplay. Pathogens, 2021, 10, 1636.	1.2	9
581	Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Frontiers in Immunology, 2021, 12, 802839.	2.2	19

#	Article	IF	CITATIONS
582	SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. Npj Vaccines, 2021, 6, 151.	2.9	36
583	Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults. Thorax, 2022, 77, 552-562.	2.7	17
584	Asthma and autoimmunity. , 2022, , 261-289.		0
587	Chapter 4 Histamine Receptors and Inflammatory Cells. , 0, , .		O
619	Diseases with Eosinophilia. , 2022, , 737-744.		1
620	好é…,ç∮性副鼻腔ç,Žã«ãŠã'ã,‹æ´»æ€§åŒ−好é…,ç∮ã®å½¹å‰². Nihon Bika Gakkai Kaishi (Japanese	Journal of	f Rhûnology), 2
621	Preexisting Trichinella spiralis infection attenuates the severity of Pseudomonas aeruginosa-induced pneumonia. PLoS Neglected Tropical Diseases, 2022, 16, e0010395.	1.3	4
622	Integrated investigation of DNA methylation, gene expression and immune cell population revealed immune cell infiltration associated with atherosclerotic plaque formation. BMC Medical Genomics, 2022, 15, 108.	0.7	2
623	Mouse resident lung eosinophils are dependent on <scp>IL</scp> â€5. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2822-2825.	2.7	6
624	Contribution of the Immune Response in the Ileum to the Development of Diarrhoea caused by Helminth Infection: Studies with the Sheep Model. Functional and Integrative Genomics, 2022, 22, 865-877.	1.4	2
625	Chemokines and chemokine receptors: Insights from human disease and experimental models of helminthiasis. Cytokine and Growth Factor Reviews, 2022, 66, 38-52.	3.2	9
626	Metabolic regulation of type 2 immune response during tissue repair and regeneration. Journal of Leukocyte Biology, 2022, 112, 1013-1023.	1.5	1
627	OX40 Expression in Eosinophils Aggravates OVA-Induced Eosinophilic Gastroenteritis. Frontiers in Immunology, 0, 13 , .	2.2	1
628	Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines, 2022, 10, 1362.	1.4	11
629	Mast Cell Desensitization in Allergen Immunotherapy. Frontiers in Allergy, 0, 3, .	1.2	5
630	Phosphatidylinositol 3-Kinase (PI3K) Orchestrates Aspergillus fumigatus-Induced Eosinophil Activation Independently of Canonical Toll-Like Receptor (TLR)/C-Type-Lectin Receptor (CLR) Signaling. MBio, 2022, 13, .	1.8	2
631	Eosinophils and basophils. , 2022, , 37-51.		0
632	Heterogeneity of Group 2 Innate Lymphoid Cells Defines Their Pleiotropic Roles in Cancer, Obesity, and Cardiovascular Diseases. Frontiers in Immunology, 0, 13, .	2.2	4

#	Article	IF	CITATIONS
633	Pathophysiology of Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunology and Allergy Clinics of North America, 2022, , .	0.7	0
634	Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Frontiers in Immunology, 0, 13, .	2.2	1
635	Artesunate: A review of its therapeutic insights in respiratory diseases. Phytomedicine, 2022, 104, 154259.	2.3	12
636	The cellular and molecular mediators of metastasis to the lung. Growth Factors, 2022, 40, 119-152.	0.5	5
637	Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Reports, 2022, 40, 111144.	2.9	20
638	Eosinophilâ€derived interferonâ€gamma drives transmembrane protein 119â€induced new bone formation in chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 0, , .	1.5	0
639	Copy number variantâ€based genome wide association study reveals immuneâ€related genes associated with parasite resistance in a heritage sheep breed from the United States. Parasite Immunology, 2022, 44, .	0.7	8
640	Efecto de los probi \tilde{A}^3 ticos en las enfermedades al \tilde{A} ©rgicas del tracto respiratorio y la microbiota intestinal. Karger Kompass Neumolog \tilde{A} a, 2022, 4, 81-91.	0.0	0
641	Image-Level Uncertainty in Pseudo-Label Selection for Semi-Supervised Segmentation., 2022,,.		0
643	A Review of Anti-IL-5 Therapies for Eosinophilic Granulomatosis with Polyangiitis. Advances in Therapy, 2023, 40, 25-40.	1.3	11
644	Singlet Molecular Oxygen Generation in the Reaction of Biological Haloamines of Amino Acids and Polyamines with Hydrogen Peroxide $\sup \hat{a} \in A$	1.3	1
645	Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism: Clinical and Experimental, 2023, 138, 155328.	1.5	6
646	Changes in peripheral blood eosinophils may predict colorectal cancer – A retrospective study. World Allergy Organization Journal, 2022, 15, 100696.	1.6	2
647	Benralizumab monotherapy was insufficient to induce remission in patients with active eosinophilic granulomatosis with polyangiitis. Respiratory Medicine Case Reports, 2022, 40, 101763.	0.2	2
648	Schistosomiasis Mansoni-Recruited Eosinophils: An Overview in the Granuloma Context. Microorganisms, 2022, 10, 2022.	1.6	6
649	Eosinophils in filarial infections: Inducers of protection or pathology?. Frontiers in Immunology, 0, 13, .	2.2	12
650	Development and initial validation of a modified lymphocyte transformation test (LTT) assay in patients with DRESS and AGEP. Allergy, Asthma and Clinical Immunology, 2022, 18, .	0.9	4
651	Differential regulation of Type 1 and Type 2 mouse eosinophil activation by apoptotic cells. Frontiers in Immunology, $0,13,.$	2.2	3

#	Article	IF	Citations
652	Monoclonal Antibody-Based Therapy for Eosinophilic Oesophagitis. European Medical Journal Gastroenterology, 0, , 125-129.	0.0	0
653	Eosinophils: A Friend or Foe in Human Health and Diseases. Kidney Diseases (Basel, Switzerland), 2023, 9, 26-38.	1.2	4
654	Knockdown of CCR3 gene inhibits Proliferation, migration and degranulation of eosinophils in mice by downregulating the PI3K/Akt pathway. International Immunopharmacology, 2022, 113, 109439.	1.7	2
655	Real-time visualization of the fluctuations in HOBr with AlE fluorescent probes during myocardial ischemia-reperfusion injury. Chemical Communications, 2023, 59, 1018-1021.	2.2	7
656	Insights from Social Media on the Patient Experience of Living With Rare Eosinophil-Driven Diseases. Journal of Patient Experience, 2022, 9, 237437352211439.	0.4	0
657	CCL4 Regulates Eosinophil Activation in Eosinophilic Airway Inflammation. International Journal of Molecular Sciences, 2022, 23, 16149.	1.8	5
658	IL-5-producing CD4+ TÂcells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer. Cancer Cell, 2023, 41, 106-123.e10.	7.7	52
661	Dietary fibers & immunityâ€"more than meets the eye. Cell Research, 2023, 33, 411-412.	5.7	1
662	Peripheral CD23hi/lgE+ Plasmablasts Secrete IgE and Correlate with Allergic Disease Severity. Journal of Immunology, 2022, 209, 665-674.	0.4	3
663	Androgens Alleviate Allergic Airway Inflammation by Suppressing Cytokine Production in Th2 Cells. Journal of Immunology, 2022, 209, 1083-1094.	0.4	9
664	The innate immune brakes of the lung. Frontiers in Immunology, 0, 14, .	2.2	0
665	Case report: Successful use of mepolizumab for immune checkpoint inhibitors–induced hypereosinophilic syndrome in two patients with solid malignancies. Frontiers in Oncology, 0, 13, .	1.3	1
667	Dupilumab pharmacokinetics and effect on type 2 biomarkers in children with moderate-to-severe asthma. Annals of Allergy, Asthma and Immunology, 2023, 131, 44-51.e4.	0.5	5
668	The shaping of gut immunity in cirrhosis. Frontiers in Immunology, $0,14,.$	2.2	3
670	Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. International Journal of Molecular Sciences, 2023, 24, 3125.	1.8	7
671	Identification of new risk loci shared across systemic vasculitides points towards potential target genes for drug repurposing. Annals of the Rheumatic Diseases, 2023, 82, 837-847.	0.5	3
672	Adaptive Immunosuppression in Lung Transplant Recipients Applying Complementary Biomarkers: The Zurich Protocol. Medicina (Lithuania), 2023, 59, 488.	0.8	0
673	Omics and imaging combinatorial approach reveals butyrate-induced inflammatory effects in the zebrafish gut. Animal Microbiome, 2023, 5, .	1.5	3

#	Article	IF	CITATIONS
674	PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: A biomolecular exploratory, phase II trial. Cell Reports Medicine, 2023, 4, 100972.	3.3	4
675	The interplay between eosinophils and T cells in breast cancer immunotherapy. Molecular Oncology, 2023, 17, 545-547.	2.1	2
676	A case of complete recovery in a hypereosinophilic dermatitis patient with dupilumab. Inflammation Research, 2023, 72, 875-878.	1.6	2
677	Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment. International Journal of Molecular Sciences, 2023, 24, 5716.	1.8	4
678	Development of severe colitis is associated with lung inflammation and pathology. Frontiers in Immunology, 0, 14 , .	2.2	4
679	Treatment of Eosinophilic Annular Erythema With Benralizumab. JAMA Dermatology, 2023, 159, 564.	2.0	2
680	DLBCNet: A Deep Learning Network for Classifying Blood Cells. Big Data and Cognitive Computing, 2023, 7, 75.	2.9	3
693	Recent developments in the use of monoclonal antibodies targeting the type 2 cytokines for severe asthma treatment. Advances in Pharmacology, 2023, , 31-54.	1.2	0
710	B-Cos Aligned Transformers Learn Human-Interpretable Features. Lecture Notes in Computer Science, 2023, , 514-524.	1.0	0
727	Loiasis Disease Typical and Atypical Clinical Manifestations, Burden, and Local Aspects of the Disease., 2023, , 51-75.		0
730	Eosinophils and COPD. , 2024, , 149-167.		0
733	Food protein induced allergic proctocolitis: Definitions, pathophysiology, epidemiology, clinical manifestations. , 2024, , .		0
736	Eosinophilia and the Hypereosinophilic Syndrome: Clinical, Molecular and Translational Aspects. , 2024, , .		0