Homogeneous palladium-catalyzed asymmetric hydrog

Chemical Society Reviews 42, 497-511 DOI: 10.1039/c2cs35333d

Citation Report

#	Article	IF	CITATIONS
1	Practical Asymmetric Synthesis of a Chiral Piperazinone Derivative. Organic Process Research and Development, 2013, 17, 1052-1060.	1.3	29
2	H ₂ Cleavage, Hydride Formation, and Catalytic Hydrogenation of Imines with Zinc Complexes of C ₅ Me ₅ and Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2013, 52, 9831-9835.	7.2	86
3	Copper-Catalyzed Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones. Organic Letters, 2013, 15, 4560-4563.	2.4	62
4	Palladium atalyzed Asymmetric Hydrogenolysis of <i>N</i> â€Sulfonyl Aminoalcohols via Achiral Enesulfonamide Intermediates. Angewandte Chemie - International Edition, 2013, 52, 13365-13368.	7.2	18
5	Palladium-catalyzed asymmetric hydrogenation of fluorinated quinazolinones. Tetrahedron Letters, 2013, 54, 6161-6163.	0.7	22
6	Palladiumâ€Catalyzed Asymmetric Hydrogenation of αâ€Acyloxyâ€1â€arylethanones. Angewandte Chemie - International Edition, 2013, 52, 11632-11636.	7.2	72
7	Palladium-catalyzed asymmetric hydrogenation of dibenzo[b,f][1,4]thiazepines activated by BrÃ,nsted acid. Tetrahedron Letters, 2013, 54, 5956-5959.	0.7	17
8	[Ir(Pâ^'OP)]-Catalyzed Asymmetric Hydrogenation of Diversely Substituted Câ•N-Containing Heterocycles. Organic Letters, 2013, 15, 2066-2069.	2.4	87
9	Highly enantioselective hydrogenation of N-unprotected indoles using (S)-C10–BridgePHOS as the chiral ligand. Tetrahedron, 2013, 69, 6839-6844.	1.0	58
10	Asymmetric Hydrogenation of Imines. Topics in Current Chemistry, 2013, 343, 103-144.	4.0	24
11	Synthesis and <i>In Vitro</i> Anti-Inflammatory Activity of Pyrrolo[1,2- <i>A</i>]pyrazines via Pd-Catalyzed Intermolecular Cyclization Reaction. Advanced Materials Research, 2013, 830, 115-118.	0.3	4
17	Regioselective Conjugate Addition of Nitriles to α,βâ€Unsaturated Imines: Synthesis of Fluorinated Primary Enamines and 2â€Aminopyridine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 5614-5620.	1.2	12
19	Theoretical Study on Homogeneous Hydrogen Activation Catalyzed by Cationic Ag(I) Complex. Organometallics, 2014, 33, 6577-6584.	1.1	12
20	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Applied Catalysis A: General, 2014, 476, 133-139.	2.2	73
21	Zincocene and Dizincocene Nâ€Heterocyclic Carbene Complexes and Catalytic Hydrogenation of Imines and Ketones. Chemistry - A European Journal, 2014, 20, 8370-8378.	1.7	48
22	Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2014, 136, 7688-7700.	6.6	169
23	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	23.0	595
24	Synthesis of Fluorinated Heteroaromatics through Formal Substitution of a Nitro Group by Fluorine under Transitionâ€Metalâ€Free Conditions. Chemistry - A European Journal, 2014, 20, 8343-8346.	1.7	11

#	Article	IF	CITATIONS
25	Iron Catalyzed Asymmetric Hydrogenation of Ketones. Journal of the American Chemical Society, 2014, 136, 4031-4039.	6.6	215
26	Chiral Phosphoric Acid-Catalyzed Asymmetric Transfer Hydrogenation of Quinolin-3-amines. Organic Letters, 2014, 16, 2680-2683.	2.4	70
27	The Concise Synthesis of Spiro-Cyclopropane Compounds via the Dearomatization of Indole Derivatives. Organic Letters, 2014, 16, 2578-2581.	2.4	41
28	Synthesis of Chiral Exocyclic Amines by Asymmetric Hydrogenation of Aromatic Quinolinâ€3â€amines. Chemistry - A European Journal, 2014, 20, 7245-7248.	1.7	35
29	Asymmetric Hydrogenation via Capture of Active Intermediates Generated from Aza-Pinacol Rearrangement. Journal of the American Chemical Society, 2014, 136, 15837-15840.	6.6	30
30	Metal-free asymmetric hydrogenation and hydrosilylation catalyzed by frustrated Lewis pairs. Tetrahedron Letters, 2014, 55, 6959-6964.	0.7	122
31	Imine hydrogenation by alkylaluminum catalysts. Chemical Communications, 2014, 50, 301-303.	2.2	49
32	Diastereo- and enantioselective reductive amination of cycloaliphatic ketones by preformed chiral palladium complexes. Catalysis Science and Technology, 2014, 4, 2626-2630.	2.1	15
33	Advances in Catalyst Systems for the Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones. Catalysis Reviews - Science and Engineering, 2014, 56, 82-174.	5.7	66
34	8.04 Reduction of CO to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation. , 2014, , 198-273.		7
35	Hydrogen Activation by an Aromatic Triphosphabenzene. Journal of the American Chemical Society, 2014, 136, 13453-13457.	6.6	71
36	8.17 Homogeneous Catalytic Hydrogenation of CÃ¥C and CÃ¥C. , 2014, , 605-631.		2
37	Palladium-catalyzed asymmetric hydrogenation of 3-phthalimido substituted quinolines. Chemical Communications, 2014, 50, 9588-9590.	2.2	65
38	Palladium Complex Immobilized on Graphene Oxide as an Efficient and Recyclable Catalyst for Suzuki Coupling Reaction. Catalysis Letters, 2014, 144, 1617-1623.	1.4	62
39	Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes. Catalysis Letters, 2014, 144, 1258-1267.	1.4	29
40	Development and outlook of chiral carbene–gold(I) complexes catalyzed asymmetric reactions. Tetrahedron Letters, 2014, 55, 577-584.	0.7	32
41	Recent topics in catalytic asymmetric hydrogenation of ketones. Tetrahedron Letters, 2014, 55, 3635-3640.	0.7	105
42	Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis and Catalysis, 2015, 357, 1655-1685.	2.1	193

#	Article	IF	CITATIONS
43	Hydrodynamic and Thermophoretic Effects on the Supramolecular Chirality of Pyreneâ€Đerived Nanosheets. Chemistry - A European Journal, 2015, 21, 9505-9513.	1.7	17
44	Substrate Activation in the Catalytic Asymmetric Hydrogenation of <i>N</i> â€Heteroarenes. European Journal of Organic Chemistry, 2015, 2015, 5293-5303.	1.2	57
47	Functionalized Magnetic Mesoporous Silica Nanoparticleâ€Supported Palladium Catalysts for Carbonylative Sonogashira Coupling Reactions of Aryl Iodides. ChemCatChem, 2015, 7, 2230-2240.	1.8	34
48	Enantioselective Metal-Free Hydrogenations of Disubstituted Quinolines. Organic Letters, 2015, 17, 6266-6269.	2.4	89
49	Computational Mechanistic Study of the Hydrogenation and Dehydrogenation Reactions Catalyzed by Cobalt Pincer Complexes. Organometallics, 2015, 34, 5716-5722.	1.1	35
50	Formal Palladium-Catalyzed Asymmetric Hydrogenolysis of Racemic <i>N</i> -Sulfonyloxaziridines. Organic Letters, 2015, 17, 190-193.	2.4	32
51	Relay Iron/Chiral BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2015, 137, 2763-2768.	6.6	96
52	Chemoselective Hydrogenation of Nitrobenzaldehyde to Nitrobenzyl Alcohol with Unsupported Au Nanorod Catalysts in Water. Journal of Physical Chemistry C, 2015, 119, 11143-11147.	1.5	31
53	Kinetics of palladium nano-particles catalyzed reduction of Methylene Green by hydrazine: Role of induction period in determining mechanistic pathway. Inorganica Chimica Acta, 2015, 428, 185-192.	1.2	7
54	Enhancing Effects of Salt Formation on Catalytic Activity and Enantioselectivity for Asymmetric Hydrogenation of Isoquinolinium Salts by Dinuclear Halideâ€Bridged Iridium Complexes Bearing Chiral Diphosphine Ligands. Chemistry - A European Journal, 2015, 21, 1915-1927.	1.7	42
55	Nickelâ€Catalyzed Asymmetric Transfer Hydrogenation of Hydrazones and Other Ketimines. Angewandte Chemie - International Edition, 2015, 54, 5112-5116.	7.2	138
56	Ruthenium-Catalyzed Straightforward Synthesis of 1,2,3,4-Tetrahydronaphthyridines via Selective Transfer Hydrogenation of Pyridyl Ring with Alcohols. Organic Letters, 2015, 17, 4054-4057.	2.4	52
57	An easily recoverable and recyclable homogeneous polyester-based Pd catalytic system for the hydrogenation of α,β-unsaturated carbonyl compounds. Catalysis Communications, 2015, 69, 228-233.	1.6	8
58	Novel heterogeneous catalyst systems based on Pd(0) nanoparticles onto amine functionalized silica-cellulose substrates [Pd(0)-EDA/SCs]: Synthesis, characterization and catalytic activity toward C–C and C–S coupling reactions in water under limiting basic conditions. Journal of Molecular Catalysis A. 2015, 408, 48-59.	4.8	33
59	The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry, 2015, 116, 193-363.	0.9	12
60	Frustrated Lewis Pair Chemistry: Development and Perspectives. Angewandte Chemie - International Edition, 2015, 54, 6400-6441.	7.2	1,444
61	Cis-Selective and Highly Enantioselective Hydrogenation of 2,3,4-Trisubstituted Quinolines. Organic Letters, 2015, 17, 2816-2819.	2.4	86
62	Nickel complexes of 1,2,4-triazole derived amido-functionalized N-heterocyclic carbene ligands: Synthesis, theoretical studies and catalytic application. Journal of Organometallic Chemistry, 2015, 786–63-70	0.8	22

#	ARTICLE	IF	CITATIONS
63	Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Chemical Communications, 2015, 51, 16648-16651.	2.2	35
64	Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles. Nanoscale, 2015, 7, 17786-17790.	2.8	28
65	Synthesis of Chiral Trifluoromethyl-Substituted Hydrazines via Pd-Catalyzed Asymmetric Hydrogenation and Reductive Amination. ACS Catalysis, 2015, 5, 6086-6089.	5.5	55
66	Facile synthesis and molecular structure of the tris(amine) complex [PdCl(H2NBz)3]Cl·H2O. Inorganic Chemistry Communication, 2015, 62, 91-93.	1.8	3
67	Lipase immobilization towards improved productivity on kinetic resolutions by a continuous-flow process. RSC Advances, 2015, 5, 102409-102415.	1.7	17
68	Asymmetric tandem reactions of N-sulfonylimines and α,β-unsaturated aldehydes: an alternative reaction pathway to that of using saturated aldehydes. Chemical Communications, 2015, 51, 885-888.	2.2	33
69	Nickel N-heterocyclic carbene complexes and their utility in homogeneous catalysis. Inorganica Chimica Acta, 2015, 431, 61-100.	1.2	111
70	Advances in dearomatization strategies of indoles. Tetrahedron, 2015, 71, 3549-3591.	1.0	320
71	Asymmetric Hydrogenation of 3â€Amidoâ€2â€arylpyridinium Salts by Triply Chlorideâ€Bridged Dinuclear Iridium Complexes Bearing Enantiopure Diphosphine Ligands: Synthesis of Neurokininâ€1 Receptor Antagonist Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1929-1933.	2.1	17
72	Asymmetric Hydrogenation of Sevenâ€Membered C=Nâ€containing Heterocycles and Rationalization of the Enantioselectivity. Chemistry - A European Journal, 2016, 22, 10607-10613.	1.7	38
73	The Discovery and Synthesis of the CGRP Receptor Antagonist MK-3207. ACS Symposium Series, 2016, , 63-136.	0.5	4
74	Synthesis of Chiral Fluorinated Hydrazines via Pd-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 2676-2679.	2.4	36
75	Generation of Hydrogen from Water: A Pd-Catalyzed Reduction of Water Using Diboron Reagent at Ambient Conditions. Organic Letters, 2016, 18, 5062-5065.	2.4	77
76	Nickelâ€Catalyzed Enantioselective Reductive Amination of Ketones with Both Arylamines and Benzhydrazide. Angewandte Chemie, 2016, 128, 12262-12266.	1.6	30
77	Transitionâ€Metalâ€Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation: Sustainable Chemistry to Access Bioactive Molecules. Chemical Record, 2016, 16, 2754-2771.	2.9	58
79	Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization–Carbonylation–Alkynylation. Journal of the American Chemical Society, 2016, 138, 13846-13849.	6.6	49
80	<i>N</i> , <i>N</i> -Dimethylformamide as Hydride Source in Nickel-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Esters. Organic Letters, 2016, 18, 5344-5347.	2.4	58
81	Kinetic Resolution of Axially Chiral 5- or 8-Substituted Quinolines via Asymmetric Transfer Hydrogenation. Journal of the American Chemical Society, 2016, 138, 10413-10416.	6.6	112

#	Article	IF	CITATIONS
82	Nickel atalyzed Enantioselective Reductive Amination of Ketones with Both Arylamines and Benzhydrazide. Angewandte Chemie - International Edition, 2016, 55, 12083-12087.	7.2	110
83	Bioâ€Waste Corn–cob Cellulose Supported Poly(amidoxime) Palladium Nanoparticles for Suzukiâ€Miyaura Crossâ€Coupling Reactions. ChemistrySelect, 2016, 1, 4108-4112.	0.7	17
84	A Hydrogenation/Oxidative Fragmentation Cascade for Synthesis of Chiral 4,5-Dihydro-1 <i>H</i> -benzo[<i>d</i>]azepin-1-ones. Organic Letters, 2016, 18, 5920-5923.	2.4	15
85	Asymmetric Hydrogenation of Allylic Alcohols Using Ir–N,P-Complexes. ACS Catalysis, 2016, 6, 8342-8349.	5.5	34
86	Neutral and cationic (pyrazolylmethyl)pyridine palladium(II) complexes: kinetics and chemoselectivity studies in hydrogenation of alkenes and alkynes. Transition Metal Chemistry, 2016, 41, 539-546.	0.7	4
87	Synthesis, characterization and first application of chiral <i>C</i> ₂ â€symmetric bis(phosphinite)–Pd(II) complexes as catalysts in asymmetric intermolecular Heck reactions. Applied Organometallic Chemistry, 2016, 30, 193-198.	1.7	6
88	Homogeneous metal catalysis for conversion between aromatic and saturated compounds. Coordination Chemistry Reviews, 2016, 314, 134-181.	9.5	93
89	Assessment of the Electronic Factors Determining the Thermodynamics of "Oxidative Addition―of C–H and N–H Bonds to Ir(I) Complexes. Journal of the American Chemical Society, 2016, 138, 149-163.	6.6	52
90	Palladium nanoparticles supported on a titanium dioxide cellulose composite (PdNPs@TiO ₂ –Cell) for ligand-free carbon–carbon cross coupling reactions. RSC Advances, 2016, 6, 3406-3420.	1.7	30
91	Enantioselective Synthesis of α-Amino Phosphonates via Pd-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 692-695.	2.4	59
92	(Pyridyl)benzoazole palladium(<scp>ii</scp>) complexes as homogeneous catalysts in hydrogenation of alkenes and alkynes. Catalysis Science and Technology, 2016, 6, 5069-5078.	2.1	20
93	Molecular Coordination-Switch in a New Role: Controlling Highly Selective Catalytic Hydrogenation with Switchability Function. ACS Catalysis, 2016, 6, 2424-2428.	5.5	40
94	Selective hydrosilylation of N-allylimines using a (3-iminophosphine)palladium precatalyst. Catalysis Science and Technology, 2016, 6, 685-689.	2.1	10
95	Asymmetric synthesis of 4-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides via Pd-catalyzed hydrogenation of cyclic ketimines. Organic and Biomolecular Chemistry, 2017, 15, 1325-1328.	1.5	4
96	Platinum functionalized Chiral Polyamides: Efficient Heterogeneous Catalyst for Solvent Free Asymmetric Hydrogenation of Ethyl 2â€oxoâ€4â€phenylbutanoate. ChemistrySelect, 2017, 2, 513-520.	0.7	6
97	Palladium atalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie, 2017, 129, 3269-3273.	1.6	10
98	Palladium atalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie - International Edition, 2017, 56, 3221-3225.	7.2	40
99	Towards highly active Pd/CeO ₂ for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale, 2017, 9, 3140-3149.	2.8	35

			_
#	Article	IF	CITATIONS
100	Pd-catalyzed enantioselective C–H arylation of phosphinamides with boronic acids for the synthesis of P-stereogenic compounds. Tetrahedron: Asymmetry, 2017, 28, 522-531.	1.8	15
101	Efficient access to chiral 1,2-amino alcohols via Ir/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones. Organic Chemistry Frontiers, 2017, 4, 1499-1502.	2.3	32
102	Iridiumâ€Catalyzed Asymmetric Hydrogenation of Unsaturated Piperazinâ€2â€ones. Advanced Synthesis and Catalysis, 2017, 359, 1933-1941.	2.1	18
103	Broad Scope Synthesis of Ester Precursors of Nonfunctionalized Chiral Alcohols Based on the Asymmetric Hydrogenation of α,β-Dialkyl-, α,β-Diaryl-, and α-Alkyl-β-aryl-vinyl Esters. Journal of Organic Chemistry, 2017, 82, 5852-5867.	1.7	26
104	Efficient synthesis of cyclic P-stereogenic phosphinamides from acyclic chiral precursors via radical oxidative intramolecular aryl C–H phosphinamidation. Chemical Communications, 2017, 53, 5826-5829.	2.2	36
105	Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles. Chemistry - A European Journal, 2017, 23, 798-801.	1.7	22
106	Ru-Catalyzed asymmetric transfer hydrogenation of substituted dibenzo[b,f][1,4]oxazepines in water. Organic and Biomolecular Chemistry, 2017, 15, 5263-5267.	1.5	19
107	Synthesis of Chiral γ-Lactams via in Situ Elimination/Iridium-Catalyzed Asymmetric Hydrogenation of Racemic γ-Hydroxy γ-Lactams. Organic Letters, 2017, 19, 1886-1889.	2.4	12
108	Mesoporous silica-based nanotubes loaded Pd nanoparticles: Effect of framework compositions on the performance in heterogeneous catalysis. Microporous and Mesoporous Materials, 2017, 247, 1-8.	2.2	10
109	N/O-doped carbon as a "solid ligand―for nano-Pd catalyzed biphenyl- and triphenylamine syntheses. Catalysis Science and Technology, 2017, 7, 2170-2182.	2.1	10
110	Synthesis of chiral \hat{I}^3 -sultams through intramolecular reductive amination with sulfonylcarbamate as N- source. Tetrahedron Letters, 2017, 58, 1528-1530.	0.7	5
111	The Construction of Chiral Fused Azabicycles Using a Pd-Catalyzed Allylic Substitution Cascade and Asymmetric Desymmetrization Strategy. Organic Letters, 2017, 19, 238-241.	2.4	34
112	Oneâ€Pot Two‣tep Synthesis of Optically Active <i>α</i> â€Amino Phosphonates by Palladiumâ€Catalyzed Hydrogenation/Hydrogenolysis of <i>α</i> â€Hydrazono Phosphonates. Advanced Synthesis and Catalysis, 2017, 359, 153-162.	2.1	11
113	Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination. Chemical Communications, 2017, 53, 1704-1707.	2.2	44
114	Nickelâ€Catalyzed Nâ€Alkylation of Acylhydrazines and Arylamines Using Alcohols and Enantioselective Examples. Angewandte Chemie, 2017, 129, 14894-14898.	1.6	35
115	Nickelâ€Catalyzed Nâ€Alkylation of Acylhydrazines and Arylamines Using Alcohols and Enantioselective Examples. Angewandte Chemie - International Edition, 2017, 56, 14702-14706.	7.2	121
116	Carbon Nanotubeâ€supported Pd/Ni(<scp>OH</scp>) ₂ Nanoparticles: Magnetically Recoverable and Reusable Catalyst for the Reduction of Nitroarenes. Bulletin of the Korean Chemical Society, 2017, 38, 1321-1326.	1.0	3
117	Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as Activator. Organic Letters, 2017, 19, 4988-4991.	2.4	59

#	Article	IF	Citations
119	Honeycomb-like Bicontinuous P-Doped Porous Polymers from Hyper-Cross-Linking of Diblock Copolymers for Heterogeneous Catalysis. Macromolecules, 2017, 50, 9626-9635.	2.2	30
120	Highly Enantioselective Hydrosilylation of Ketones Catalyzed by a Chiral Oxazaborolidinium Ion. Organic Letters, 2017, 19, 6316-6319.	2.4	28
121	<i>t</i> BuLiâ€Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo Compounds as Nâ€Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European Journal of Organic Chemistry, 2017, 2017, 6137-6145.	1.2	11
122	Synthesis of chiral hydantoin derivatives by homogeneous Pd-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2017, 28, 47-53.	1.8	13
123	lr(I)-catalyzed enantioselective hydrogenolysis of 3-aryl-3-hydroxyisoindolin-1-ones. Tetrahedron Letters, 2017, 58, 142-144.	0.7	10
124	Pd NPs supported on N-doped carbon layer coated ZrSBA-15 for efficient heterogeneous catalysis reactions. Microporous and Mesoporous Materials, 2018, 266, 64-74.	2.2	12
125	Asymmetric transfer hydrogenation reactions of <i>N</i> -sulfonylimines by using alcohols as hydrogen sources. Chemical Communications, 2018, 54, 4963-4966.	2.2	35
126	Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of 2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i>)â€one Tautomers. Angewandte Chemie, 2018, 130, 5955-5959.	1.6	5
127	Asymmetric Transfer and Pressure Hydrogenation with Earthâ€Abundant Transition Metal Catalysts. Chinese Journal of Chemistry, 2018, 36, 443-454.	2.6	148
128	Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of 2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i>)â€one Tautomers. Angewandte Chemie - International Edition, 2018, 57, 5853-5857.	7.2	43
129	Ruthenium-Catalyzed Hydrogenation of Carbocyclic Aromatic Amines: Access to Chiral Exocyclic Amines. Organic Letters, 2018, 20, 1094-1097.	2.4	35
130	Synthesis of chiral sultams with two adjacent stereocenters <i>via</i> palladium-catalyzed dynamic kinetic resolution. Organic Chemistry Frontiers, 2018, 5, 1113-1117.	2.3	17
131	I2/TBHP/cyclohexanone a novel catalyst system for the oxidative dearomatization of indoles to indolin-3-ones at room temperature under solvent-free condition. Catalysis Communications, 2018, 106, 68-72.	1.6	17
132	Iridium-catalyzed asymmetric hydrogenation of 2-substituted 1,4-benzodioxines. Tetrahedron, 2018, 74, 477-482.	1.0	19
133	Highly enantioselective Ir/f-amphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides. Organic Chemistry Frontiers, 2018, 5, 2000-2003.	2.3	16
134	Substrate Directed Asymmetric Reactions. Chemical Reviews, 2018, 118, 3391-3446.	23.0	94
135	Ruthenium-Catalyzed Chemo- and Enantioselective Hydrogenation of Isoquinoline Carbocycles. Journal of Organic Chemistry, 2018, 83, 3829-3839.	1.7	33
136	Sequential asymmetric hydrogenation and photoredox chemistry with a single catalyst. Organic Chemistry Frontiers, 2018, 5, 166-170.	2.3	24

ARTICLE IF CITATIONS # Efficient Pâ€Chiral Biaryl Bisphosphorus Ligands for Palladiumâ€Catalyzed Asymmetric Hydrogenation. 137 2.6 19 Chinese Journal of Chemistry, 2018, 36, 153-156. Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations. Accounts of Chemical Research, 2018, 51, 191-201. 214 Immobilization of a palladium(II) bis(imidazolium) complex onto graphene oxide by noncovalent interactions: an efficient and recyclable catalyst for Suzuki–Miyaura reaction. Journal of the Iranian 139 1.2 11 Chemical Society, 2018, 15, 529-536. Synthesis of chiral seven-membered Î²-substituted lactams <i>via</i> Rh-catalyzed asymmetric 140 hydrogenation. Organic and Biomolecular Chemistry, 2018, 16, 8819-8823. 8. Hydrogenation of nitriles and imines for hydrogen storage., 2018, , 271-294. 141 0 Pd(OAc)2-catalyzed asymmetric hydrogenation of sterically hindered N-tosylimines. Nature Communications, 2018, 9, 5000. 5.8 Iridium-Catalyzed Asymmetric Hydrogenation of 4,6-Disubstituted 2-Hydroxypyrimidines. Organic 143 2.4 28 Letters, 2018, 20, 6415-6419. Pd/Zn(OTf)₂ Co atalyzed Asymmetric Hydrogenation of Imines under Normal Pressure of 1.2 144 Hydrogen. European Journal of Organic Chemistry, 2018, 2018, 6274-6279. A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric 145 2.4 41 Hydrogenation of Ketones. Organic Letters, 2018, 20, 6135-6139. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of 146 1.0 pharmaceutical building blocks. Tetrahedron, 2018, 74, 6453-6458. Rhodium-catalyzed asymmetric hydrogenation of Î²-branched enamides for the synthesis of Î²-stereogenic 147 2.2 38 amines. Chemical Communications, 2018, 54, 6024-6027. Ultrafast Ironâ€Catalyzed Reduction of Functionalized Ketones: Highly Enantioselective Synthesis of Halohydrines, Oxaheterocycles, and Aminoalcohols. Angewandte Chemie - International Edition, 2018, 38 57, 10231-10235. Enantioselective Access to Chiral 2-Substituted 2,3-Dihydrobenzo[1,4]dioxane Derivatives through 149 2.4 22 Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2018, 20, 4173-4177. Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Journal of Organic Chemistry, 2018, 83, 10749-10761. 1.7 58 An <i>Atropos</i> Biphenyl Bisphosphine Ligand with 2,2â€2â€<i>tert</i>â€Butylmethylphosphino Groups for the Rhodiumâ€Catalyzed Ásymmetric Hydrogenation of Enol Esters. Advanced Synthesis and Catalysis, 151 2.1 17 2018, 360, 3793-3800. Ultrafast Ironâ€Catalyzed Reduction of Functionalized Ketones: Highly Enantioselective Synthesis of Halohydrines, Oxaheterocycles, and Aminoalcohols. Angewandte Chemie, 2018, 130, 10388-10392. A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. 153 1.6 16 Angewandte Ćhemie, 2018, 130, 12287-12291. A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. 154 Angewandte Chemie - International Edition, 2018, 57, 12111-12115.

#	Article	IF	CITATIONS
155	Synthesis of 3- <i>C</i> -Branched Kdo Analogues via Sonogashira Coupling of 3-lodo Kdo Glycal with Terminal Alkynes. Journal of Organic Chemistry, 2018, 83, 6171-6177.	1.7	15
156	RuPHOX-Ru-Catalyzed Selective Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Pentanones. Organometallics, 2019, 38, 3970-3978.	1.1	20
157	Synthesis of P-Stereogenic Diarylphosphinamides as Novel Inhibitors of Melanoma. Chemical Research in Chinese Universities, 2019, 35, 812-816.	1.3	1
158	Chemo―and Enantioselective Hydrogenation of αâ€Formyl Enamides: An Efficient Access to Chiral αâ€Amido Aldehydes. Angewandte Chemie, 2019, 131, 11629-11636.	1.6	18
159	Synthesis and application of axially chiral biscarbolines with functional N-O and sulfone for 1,2-transfer hydrogenations of ketimines. Tetrahedron, 2019, 75, 130495.	1.0	7
160	Catalytic Mechanism Study on the 1,2―and 1,4â€Transfer Hydrogenation of Ketimines and βâ€Enamino Esters Catalyzed by Axially Chiral Biscarbolineâ€Based Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 4602-4610.	2.1	9
161	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates. IScience, 2019, 19, 63-73.	1.9	31
162	Cobaltâ€Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angewandte Chemie - International Edition, 2019, 58, 15767-15771.	7.2	92
163	Synthesis of chiral quaternary fluorinated cyclic sulfamidates via palladium-catalyzed arylation with arylboronic acids. Tetrahedron Letters, 2019, 60, 151280.	0.7	3
164	The application of the chiral ligand DTBM-SegPHOS in asymmetric hydrogenation. Research on Chemical Intermediates, 2019, 45, 5959-5974.	1.3	12
165	Cobaltâ€Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angewandte Chemie, 2019, 131, 15914-15918.	1.6	27
166	Pd(OAc) ₂ -Catalyzed Asymmetric Hydrogenation of α-Iminoesters. Organic Letters, 2019, 21, 9060-9065.	2.4	19
167	Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Molecular Catalysis, 2019, 477, 110551.	1.0	0
168	Nickel-Catalyzed Desymmetric Hydrogenation of Cyclohexadienones: An Efficient Approach to All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 14560-14564.	6.6	41
169	Synthesis of enantiomerically pure alcohols and amines <i>via</i> biocatalytic deracemisation methods. Catalysis Science and Technology, 2019, 9, 5487-5503.	2.1	43
170	<i>n</i> -Butyllithium catalyzed hydroboration of imines and alkynes. Organic Chemistry Frontiers, 2019, 6, 648-653.	2.3	64
171	Enantioselective Access to Chiral Cyclic Sulfamidates Through Iridium atalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2019, 361, 1582-1586.	2.1	14
172	Enantioselective synthesis of trifluoromethylated dihydroquinoxalinones <i>via</i> palladium-catalyzed hydrogenation. Organic Chemistry Frontiers, 2019, 6, 746-750.	2.3	20

#	Article	IF	Citations
173	Synthesis of Chiral α-Aminosilanes through Palladium-Catalyzed Asymmetric Hydrogenation of Silylimines. Organic Letters, 2019, 21, 1042-1045.	2.4	28
174	Selective Asymmetric Hydrogenation of Four-Membered <i>Exo</i> -α,β-Unsaturated Cyclobutanones Using RuPHOX–Ru as a Catalyst. Organic Letters, 2019, 21, 4331-4335.	2.4	24
175	Graphene oxide supported Schiff-base/palladium complex: An efficient and recoverable catalyst for Suzuki–Miyaura coupling reaction. Polyhedron, 2019, 170, 530-536.	1.0	24
176	Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Letters, 2019, 60, 1749-1757.	0.7	59
177	Transitionâ€Metalâ€Free Hydrogen Autotransfer: Diastereoselective Nâ€Alkylation of Amines with Racemic Alcohols. Angewandte Chemie, 2019, 131, 10638-10646.	1.6	12
178	Transitionâ€Metalâ€Free Hydrogen Autotransfer: Diastereoselective Nâ€Alkylation of Amines with Racemic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 10528-10536.	7.2	65
179	Chemo―and Enantioselective Hydrogenation of αâ€Formyl Enamides: An Efficient Access to Chiral αâ€Amido Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 11505-11512.	7.2	54
180	A Condensation/Reductive Alkylation/Hydrogenation Cascade for Facile Synthesis of Chiral 2,3â€Disubstituted Indolines. Asian Journal of Organic Chemistry, 2019, 8, 1118-1121.	1.3	3
181	Synthesis of chiral Î ³ -lactones via a RuPHOX-Ru catalyzed asymmetric hydrogenation of aroylacrylic acids. Tetrahedron, 2019, 75, 3643-3649.	1.0	13
182	Photocatalyzed transfer hydrogenation and deuteriation of cyclic <i>N</i> -sulfonylimines. Organic Chemistry Frontiers, 2019, 6, 2410-2414.	2.3	23
183	Synthesis of tetracyclic indolin-3-ones through Pd-catalyzed intramolecular deacetylative dearomatization of 3-acetoxy-indoles. RSC Advances, 2019, 9, 13959-13967.	1.7	12
184	Enantioselective Reduction of α,β-Unsaturated Ketones and Aryl Ketones by Perakine Reductase. Organic Letters, 2019, 21, 4411-4414.	2.4	16
185	Iridium-catalyzed asymmetric hydrogenation of quinazolinones. Organic Chemistry Frontiers, 2019, 6, 2250-2253.	2.3	11
186	Nickelâ€Catalyzed Asymmetric Hydrogenation of <i>N</i> â€Sulfonyl Imines. Angewandte Chemie - International Edition, 2019, 58, 7329-7334.	7.2	131
187	Nickelâ€Catalyzed Asymmetric Hydrogenation of N â€Sulfonyl Imines. Angewandte Chemie, 2019, 131, 7407-7412.	1.6	33
188	Chemical Design of Palladiumâ€Based Nanoarchitectures for Catalytic Applications. Small, 2019, 15, e1804378.	5.2	90
189	Enantioselective Hydrogenation of Ketones using Different Metal Complexes with a Chiral PNP Pincer Ligand. Advanced Synthesis and Catalysis, 2019, 361, 1913-1920.	2.1	37
190	Asymmetric Transfer Hydrogenation of Heterobicyclic Alkenes with Water as Hydrogen Source. Organic Letters, 2019, 21, 1364-1367.	2.4	31

0			-	
(17	ΔΤΙ	ON	REE	PORT
\sim				

#	Article	IF	CITATIONS
191	Construction of Multiple-Substituted Chiral Cyclohexanes through Hydrogenative Desymmetrization of 2,2,5-Trisubstituted 1,3-Cyclohexanediones. Organic Letters, 2019, 21, 9401-9404.	2.4	15
192	Mechanism of Cu-Catalyzed Aerobic C(CO)–CH ₃ Bond Cleavage: A Combined Computational and Experimental Study. ACS Catalysis, 2019, 9, 1066-1080.	5.5	28
193	Hydrogenation of nitriles and imines for hydrogen storage. Physical Sciences Reviews, 2019, 4, .	0.8	2
194	Asymmetric Hydrogenation of Aromatic Carbocycles. , 2019, , 97-108.		3
195	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
196	Recent advances in asymmetric synthesis of 2-substituted indoline derivatives. Chinese Chemical Letters, 2020, 31, 311-323.	4.8	49
197	Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones. Science China Chemistry, 2020, 63, 215-221.	4.2	15
198	Metalâ€Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chinese Journal of Chemistry, 2020, 38, 185-201.	2.6	46
199	Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. Chinese Chemical Letters, 2020, 31, 1859-1862.	4.8	5
200	<i>gem</i> -Dialkyl Effect in Diphosphine Ligands: Synthesis, Coordination Behavior, and Application in Pd-Catalyzed Hydroformylation. ACS Catalysis, 2020, 10, 663-671.	5.5	9
201	Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes, 2020, 8, 1172.	1.3	6
202	Redox-driven deracemization of secondary alcohols by sequential ether/O2-mediated oxidation and Ru-catalyzed asymmetric reduction. Tetrahedron Letters, 2020, 61, 152530.	0.7	5
203	Heterolytic Scission of Hydrogen Within a Crystalline Frustrated Lewis Pair. Inorganic Chemistry, 2020, 59, 15295-15301.	1.9	8
204	Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines. Nature Communications, 2020, 11, 5935.	5.8	78
205	Electrochemical Reduction of the Simplest Monosaccharides: Dihydroxyacetone and Glyceraldehyde. ACS Catalysis, 2020, 10, 13895-13903.	5.5	16
206	Sharp Increase in Catalytic Selectivity in Acetylene Semihydrogenation on Pd Achieved by a Machine Learning Simulation-Guided Experiment. ACS Catalysis, 2020, 10, 9694-9705.	5.5	30
207	Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. Inorganic Chemistry Communication, 2020, 121, 108181.	1.8	38
208	Asymmetric Hydrogenation of Acetophenone Catalyzed by Chirally Modified Ruthenium Nanoparticles Supported on Carbon Nanotubes. ChemistrySelect, 2020, 5, 11803-11810.	0.7	5

#	Article	IF	CITATIONS
209	Recent Advances in Reductive Desymmetrization of Diketones. Asian Journal of Organic Chemistry, 2020, 9, 1942-1952.	1.3	18
210	Synthesis of Enantioenriched α,α-Difluoro-β-arylbutanoic Esters by Pd-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2020, 22, 7508-7512.	2.4	5
211	Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity. ACS Catalysis, 2020, 10, 11153-11161.	5.5	41
212	Platinum Nanoparticle Based Dip atalyst for Facile Hydrogenation of Quinoline, Unfunctionalized Olefins, and Imines. ChemistrySelect, 2020, 5, 14827-14838.	0.7	12
213	1,3,2â€Ðiazaphospholenes Catalyze the Conjugate Reduction of Substituted Acrylic Acids. ChemCatChem, 2020, 12, 4262-4266.	1.8	13
214	Palladium-Catalyzed <i>anti</i> -Michael Reductive Heck Reaction of α,β-Unsaturated Esters. ACS Catalysis, 2020, 10, 7262-7268.	5.5	32
215	Distinct Roles of Ag(I) and Cu(II) as Cocatalysts in Achieving Positional-Selective C–H Alkenylation of Isoxazoles: A Theoretical Investigation. Journal of Organic Chemistry, 2020, 85, 8387-8396.	1.7	9
216	Design of Ru(II)-NHC-Diamine Precatalysts Directed by Ligand Cooperation: Applications and Mechanistic Investigations for Asymmetric Hydrogenation. Journal of the American Chemical Society, 2020, 142, 7100-7107.	6.6	53
217	Synthesis of chiral α-substituted α-amino acid and amine derivatives through Ni-catalyzed asymmetric hydrogenation. Chemical Communications, 2020, 56, 4934-4937.	2.2	19
218	Synthesis of a Cellulosic Pd(salen)-Type Catalytic Complex as a Green and Recyclable Catalyst for Cross-Coupling Reactions. Catalysis Letters, 2020, 150, 2900-2910.	1.4	11
219	Selfâ€assembling of <i>Shewanella</i> @ <scp>rGO</scp> @Pd bionanohybrid for synergistic bioâ€abiotic removal of Cr(<scp>VI</scp>). Journal of Chemical Technology and Biotechnology, 2020, 95, 2222-2228.	1.6	9
220	Deracemization and Stereoinversion of Alcohols Using Two Mutants of Secondary Alcohol Dehydrogenase from <i>Thermoanaerobacter pseudoethanolicus</i> . European Journal of Organic Chemistry, 2020, 2020, 4750-4754.	1.2	7
221	Planar chiral palladacycle precatalysts for asymmetric synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5466-5472.	1.5	11
222	Understanding the roles of variable Pd(II)/Pd(0) ratio supported on conjugated poly-azobenzene network: From characteristic alteration in properties to their cooperation towards visible-light-induced selective hydrogenation. Journal of Catalysis, 2020, 385, 120-128.	3.1	7
223	Noble-metal-free TiO2 photocatalysis for selective C reduction of α,β-enones by CF3SO3H modification. Catalysis Science and Technology, 2020, 10, 4917-4922.	2.1	3
224	Asymmetric Hydrogenation of \hat{I}_{\pm} -Boryl Enamides Enabled by Nonbonding Interactions. ACS Catalysis, 2020, 10, 3232-3240.	5.5	28
225	Bisoxazoline-pincer ligated cobalt-catalyzed hydrogenation of alkenes. Polyhedron, 2020, 180, 114416.	1.0	3
226	Theoretical investigation on the palladium-catalyzed selective formation of spirocyclenes from dienallenes. Journal of Organometallic Chemistry, 2020, 912, 121173.	0.8	2

#	Article	IF	CITATIONS
227	Nickel atalyzed Asymmetric Hydrogenation of 2â€Amidoacrylates. Angewandte Chemie, 2020, 132, 5409-5413.	1.6	24
228	Nickelâ€Catalyzed Asymmetric Hydrogenation of 2â€Amidoacrylates. Angewandte Chemie - International Edition, 2020, 59, 5371-5375.	7.2	83
229	An efficient and heterogeneous Pd-containing modified graphene oxide catalyst for preparation of biaryl compounds. Heliyon, 2020, 6, e03741.	1.4	9
230	Palladium-catalyzed asymmetric hydrogenation of 2-aryl cyclic ketones for the synthesis of <i>trans</i> cycloalkanols through dynamic kinetic resolution under acidic conditions. Chemical Communications, 2020, 56, 5815-5818.	2.2	12
231	A Sustainable Palladiumâ€Intercalated Montmorillonite Clay Catalytic System for Imine Hydrogenation under Mild Conditions. ChemPlusChem, 2021, 86, 540-548.	1.3	7
232	Pd/C-Catalyzed transfer hydrogenation of <i>N</i> –H indoles with trifluoroethanol and tetrahydroxydiboron as the hydrogen source. Organic and Biomolecular Chemistry, 2021, 19, 548-551.	1.5	12
233	Silyleneâ€Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem, 2021, 13, 169-173.	1.8	10
234	Synthesis of chiral piperazin-2-ones through palladium-catalyzed asymmetric hydrogenation of pyrazin-2-ols. Organic Chemistry Frontiers, 2021, 8, 6273-6278.	2.3	5
235	Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source. Organic and Biomolecular Chemistry, 2021, 19, 3601-3610.	1.5	9
236	CuH-Catalyzed Enantio- and Regio-selective Conjugated Reduction of Yne-Allenones. Chinese Journal of Organic Chemistry, 2021, 41, 2916.	0.6	2
237	Nuclearity expansion in Pd clusters triggered by the migration of a phenyl group in cyclooligosilanes. Chemical Communications, 2021, 57, 7649-7652.	2.2	7
238	Mechanistic Insights into Selective Hydrogenation of C=C Bonds Catalyzed by CCC Cobalt Pincer Complexes: A DFT Study. Catalysts, 2021, 11, 168.	1.6	4
239	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[<i>b</i>]thiophene 1,1-Dioxides, with Mechanistic Studies. Organic Letters, 2021, 23, 668-675.	2.4	18
240	Enantioselective Hydroarylation or Hydroalkenylation of Benzo[<i>b</i>]thiophene 1,1-Dioxides with Organoboranes. Organic Letters, 2021, 23, 896-901.	2.4	8
241	Rh-catalyzed asymmetric hydrogenation of α-aryl-β-alkylvinyl esters with chiral ferrocenylphosphine-phosphoramidite ligand. Tetrahedron Letters, 2021, 65, 152763.	0.7	1
242	Highly enantioselective transfer hydrogenation catalyzed by diasteromeric mixtures of axially chiral (aR,S)- and (aS,S)-Biscarbolines. Tetrahedron, 2021, 82, 131924.	1.0	1
244	Asymmetric Hydrogenation: Design of Chiral Ligands and Transition Metal Complexes. Synthetic and Industrial Applications Israel Journal of Chemistry, 2021, 61, 409-426.	1.0	6
246	L-cysteine-functionalized CuPt: A chiral electrode for the asymmetric electroreduction of aromatic ketones. Electrochimica Acta, 2021, 375, 137926.	2.6	6

#	Article	IF	CITATIONS
247	Enantio- and Regioselective CuH-Catalyzed Conjugate Reduction of Yne–Allenones. Organic Letters, 2021, 23, 3828-3833.	2.4	10
248	Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Openâ€Chain <i>N</i> â€Activated Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 3655-3692.	2.1	13
249	Palladium-catalyzed intramolecular tandem dearomatization of indoles for the synthesis of tetracyclic indolines. Arabian Journal of Chemistry, 2021, 14, 103155.	2.3	8
250	Directing Selectivity to Aldehydes, Alcohols, or Esters with Diphobane Ligands in Pd-Catalyzed Alkene Carbonylations. Organometallics, 2021, 40, 1914-1925.	1.1	7
251	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	9.5	36
253	Site―and Enantioselective Iridiumâ€Catalyzed Desymmetric Monoâ€Hydrogenation of 1,4â€Dienes. Angewandt Chemie, 2021, 133, 19577-19583.	e 1.6	1
254	Site―and Enantioselective Iridiumâ€Catalyzed Desymmetric Monoâ€Hydrogenation of 1,4â€Dienes. Angewandt Chemie - International Edition, 2021, 60, 19428-19434.	^e 7.2	4
255	Regioselective asymmetric bioreduction of <i>trans</i> â€4â€phenylbutâ€3â€enâ€2â€one by wholeâ€cell of <i>Weissella cibaria</i> N9 biocatalyst. Chirality, 2021, 33, 535-542.	1.3	12
256	Diboron-mediated palladium-catalyzed asymmetric transfer hydrogenation using the proton of alcohols as hydrogen source. Science China Chemistry, 2021, 64, 1743-1749.	4.2	6
257	Biomimetic Asymmetric Reduction of Tetrasubstituted Olefin 2,3-Disubstituted Inden-1-ones with Chiral and Regenerable NAD(P)H Model CYNAM. Organic Letters, 2021, 23, 7166-7170.	2.4	7
258	Ruâ€NHCâ€katalysierte asymmetrische Hydrierung von 2â€Chinolonen zu chiralen 3,4â€Dihydroâ€2â€chinoloner Angewandte Chemie, 2021, 133, 23377.	^{1.} 1.6	0
259	Oneâ€Pot Synthesis of Tensileâ€Strained PdRuCu Icosahedra toward Electrochemical Hydrogenation of Alkene. ChemElectroChem, 2021, 8, 3855-3862.	1.7	8
260	Ruâ€NHCâ€Catalyzed Asymmetric Hydrogenation of 2â€Quinolones to Chiral 3,4â€Dihydroâ€2â€Quinolones. Angewandte Chemie - International Edition, 2021, 60, 23193-23196.	7.2	12
261	Synthesis of CoFe2O4@Pd/Activated carbon nanocomposite as a recoverable catalyst for the reduction of nitroarenes in water. Journal of Solid State Chemistry, 2021, 302, 122381.	1.4	6
262	Hydrogenation of fluorinated molecules: an overview. Chemical Society Reviews, 2021, 50, 8178-8192.	18.7	32
263	Remotely Controlled Iridiumâ€Catalyzed Asymmetric Hydrogenation of Terminal 1,1â€Diaryl Alkenes. Angewandte Chemie - International Edition, 2013, 52, 8795-8797.	7.2	30
264	Synthesis and redox reactions of bis(verdazyl)palladium complexes. Dalton Transactions, 2017, 46, 12636-12644.	1.6	15
265	Chelation-assisted transition metal-catalysed C–H chalcogenylations. Organic Chemistry Frontiers, 2020, 7, 1022-1060.	2.3	68

#	Article	IF	CITATIONS
266	Other enantioselective reactions catalyzed by transition metals. , 2016, , 133-182.		1
267	Kinetic resolution of azaflavanones via a RuPHOX-Ru catalyzed asymmetric hydrogenation. Organic Chemistry Frontiers, 0, , .	2.3	7
268	Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chemical Reviews, 2022, 122, 269-339.	23.0	166
269	CHAPTER 9. Enantioselective Nickel-Catalysed Hydrogenation Reactions. RSC Catalysis Series, 2016, , 299-309.	0.1	0
270	Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of β-Substituted α-Oxobutyrolactones. Journal of Organic Chemistry, 2021, 86, 17453-17461.	1.7	4
271	P-chirogenic Trost ligands mediated asymmetric hydrogenation of simple ketones. Tetrahedron Letters, 2020, 61, 152386.	0.7	3
272	Computational Study of Mechanism and Enantioselectivity of Imine Reductase from <i>Amycolatopsis orientalis</i> . ChemistryOpen, 2022, 11, e202100250.	0.9	7
273	Eneâ€Reductase Catalyzed Regio―and Stereoselective 1,4â€Monoâ€Reduction of Pseudoionone to Geranylacetone. ChemCatChem, 2022, 14, e202101557.	1.8	5
274	Iridium/ <i>f</i> -diaphos catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones. Organic and Biomolecular Chemistry, 2021, 19, 9746-9751.	1.5	2
275	Chemoselective reduction of \hat{I}_{\pm}, \hat{I}^2 -unsaturated ketones to allylic alcohols under catalyst-free conditions. Organic Chemistry Frontiers, 2022, 9, 1109-1114.	2.3	5
276	Ir/f-Ampha complex catalyzed asymmetric sequential hydrogenation of enones: a general access to chiral alcohols with two contiguous chiral centers. Chemical Science, 2022, 13, 1808-1814.	3.7	5
277	Direct asymmetric reductive amination of $\hat{I}\pm$ -keto acetals: a platform for synthesizing diverse $\hat{I}\pm$ -functionalized amines. Chemical Communications, 2022, 58, 513-516.	2.2	12
278	Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chemical Science, 2022, 13, 985-995.	3.7	12
279	Nickel-catalyzed reductive defluorination of iodo allylic <i>gem</i> -difluorides: allenyl monofluoride synthesis. Chemical Communications, 2022, 58, 1970-1973.	2.2	7
280	RuPHOX–Ru catalyzed asymmetric hydrogenation of α-substituted tetralones <i>via</i> a dynamic kinetic resolution. Chemical Communications, 2022, 58, 4905-4908.	2.2	7
281	Chemoselective Transfer Hydrogenation of Enamides Using Ru Pincer Complexes for the Synthesis of α-Amino Acids. Journal of Organic Chemistry, 2022, 87, 5419-5423.	1.7	3
282	Wood-Sourced Polymers as Support for Catalysis by Group 10 Transition Metals. Processes, 2022, 10, 345.	1.3	7
283	Facile access to chiral 1-pyrrolines through Rh-catalyzed enantioselective partial hydrogenation of unprotected simple pyrroles. Chinese Chemical Letters, 2022, , .	4.8	3

	CITATION REPORT		
ARTICLE Asymmetric Transfer Hydrogenation of 2,3-Disubstituted Flavanones through Dynamic Kinetic Resolution Enabled by Retro-Oxa-Michael Addition: Construction of Three Contiguous Stereogenic Centers. Journal of Organic Chemistry, 2022, 87, 7521-7530.		F 1.7	CITATIONS
Nickel-catalysed asymmetric hydrogenation of oximes. Nature Chemistry, 2022, 14, 920-927.	6	5.6	63
Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chinese Journal of Catalysis, 2022, 43, 1991-2000.	ć	5.9	10
I ₂ /TBHP Reagent System: A Modern Paradigm for Organic Transformations**. European Journal of Organic Chemistry, 2022, 2022, .	i	1.2	4
Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Allâ€Carbon Aromatic Rings. Angewandte Chemie, 134, .	2022,	1.6	2
Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Allâ€Carbon Aromatic Rings. Angewandte Chemie International Edition, 2022, 61, .	-	7.2	11
Palladium atalyzed Dual Catalytic Synthesis of Heterocycles. European Journal of Organic Chemistry 2022, 2022, .	',]	1.2	5
Pd-modified LaNi5 nanoparticles for efficient hydrogen storage in a carbazole type liquid organic hydrogen carrier. Applied Catalysis B: Environmental, 2022, 317, 121720.		10.8	19
Process analytical technology and its recent applications for asymmetric synthesis. Talanta, 2023, 252, 123787.	2	2.9	1
Covalent organic framework supported palladium catalysts. Journal of Materials Chemistry A, 2022, 10, 20707-20729.	ŧ	5.2	16
Nickel-Catalyzed Asymmetric Hydrogenation of Oximes. Chinese Journal of Organic Chemistry, 2022, 4 2994.	2, (0.6	1
Homogenous palladium(II) pyrazolyl complexes and corresponding Pd-SILP material as catalysts for the selective hydrogenation of furfural. Biomass Conversion and Biorefinery, 0, , .	2	2.9	1
Homogeneous cobalt catalyzed reductive formylation of N-heteroarenes with formic acid. Journal of Catalysis, 2022, 416, 170-175.	ę	3.1	6
Heterometallic palladium–iron metal–organic framework as a highly active catalyst for cross-coupling reactions. Chemical Science, 2022, 14, 179-185.	1	3.7	5
A Mechanistic Study of Asymmetric Transfer Hydrogenation of Imines on a Chiral Phosphoric Acid Derived Indium Metal-Organic Framework. Molecules, 2022, 27, 8244.	1	1.7	2
Cobaltâ€Catalyzed Asymmetric Deuteration of αâ€Amidoacrylates for Stereoselective Synthesis of α,βâ€Dideuterated αâ€Amino Acids. Angewandte Chemie - International Edition, 2023, 62, .		7.2	11
Cobaltâ€Catalyzed Asymmetric Deuteration of αâ€Amidoacrylates for Stereoselective Synthesis of α,βâ€Dideuterated αâ€Amino Acids. Angewandte Chemie, 0, , .]	1.6	0

302	New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules, 2023, 28, 1422.	1.7	0
-----	---	-----	---

#

#	Article	IF	CITATIONS
303	Mechanistic Insights into the Synergistic Effect of Palladium(0) and Copper(I) on the Selective Transformation of Isocyanate to Indole. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
304	Synthesis of Tridentate PNO Ligands with Planar Chirality and Application in Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones. Journal of Organic Chemistry, 2023, 88, 7863-7871.	1.7	4
305	Nickel(II) N-Heterocyclic Carbene Complex for the Hydrogenation of 2-Acetylpyridine under Mild Conditions. Inorganics, 2023, 11, 120.	1.2	2
306	Synthesis of Chiral Diaryl Methanols via RuPHOXâ€Ru Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 0, , .	2.1	2
307	On the nature of optical activity in chiral transition metal complexes: [Pd(Me) ₂ (BINAP)]. New Journal of Chemistry, 2023, 47, 7961-7964.	1.4	1
308	Polymer-supported chiral palladium-based complexes as efficient heterogeneous catalysts for asymmetric reductive Heck reaction. Green Synthesis and Catalysis, 2023, , .	3.7	1
309	New Developments of Chiral Palladiumâ€Aqua Complexes as Cooperative BrÃ,nsted Acidâ€Base Catalysts in Organic Synthesis. ChemCatChem, 0, , .	1.8	1
310	Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and <i>N</i> -Heteroarenes: H ₂ and N–H Activation by Metal–Ligand Cooperation as Key Steps. Journal of the American Chemical Society, 2023, 145, 9164-9175.	6.6	9
311	Pincer Ru with a single stereogenic identity for highly efficient asymmetric transfer hydrogenation of ketones. Science China Chemistry, 0, , .	4.2	0
312	Recent Applications of Process Analytical Technology for Analysis of Industrial Asymmetric Syntheses. , 2023, , .		0
316	Dipolar Microenvironment Enhanced Catalytic Activity of Pd Nanoparticles in MOF Channel. ACS Sustainable Chemistry and Engineering, 2023, 11, 10219-10224.	3.2	0
321	Iodine-promoted transfer of dihydrogen from ketones to alkenes, triphenylmethyl, and diphenylmethyl derivatives. Chemical Communications, 2023, 60, 75-78.	2.2	0
327	TfOH-catalyzed transfer hydrogenation reaction using 1-tetralone as a novel dihydrogen source. Green Chemistry, 2024, 26, 1356-1362.	4.6	0