Mammalian heart renewal by pre-existing cardiomyocy

Nature 493, 433-436 DOI: 10.1038/nature11682

Citation Report

	IF	CITATIONS

1	HYPOTENSIVE ANAESTHESIA FOR CRANIECTOMY IN INFANCY. British Journal of Anaesthesia, 1979, 51, 233-235.	1.5	41
2	A boost for heart regeneration. Nature, 2012, 492, 360-361.	13.7	13
3	Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews Molecular Cell Biology, 2013, 14, 529-541.	16.1	431
4	The zebrafish as a model for complex tissue regeneration. Trends in Genetics, 2013, 29, 611-620.	2.9	439
5	Concise Review: Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology. Stem Cells, 2013, 31, 2587-2598.	1.4	40
6	The Non-coding Road Towards Cardiac Regeneration. Journal of Cardiovascular Translational Research, 2013, 6, 909-923.	1.1	10
7	Adult c-kitpos Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair. Cell, 2013, 154, 827-842.	13.5	469
8	Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology, 2013, 62, 43-50.	0.9	51
9	Sca1-Derived Cells Are a Source of Myocardial Renewal in the Murine Adult Heart. Stem Cell Reports, 2013, 1, 397-410.	2.3	140
10	Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. Journal of Molecular and Cellular Cardiology, 2013, 60, 164-171.	0.9	22
11	Direct Cardiac Reprogramming. Circulation Research, 2013, 113, 915-921.	2.0	41
12	Polyploidization and Cell Fusion Contribute to Wound Healing in the Adult Drosophila Epithelium. Current Biology, 2013, 23, 2224-2232.	1.8	174
13	Cellular Reprogramming. Circulation: Heart Failure, 2013, 6, 1102-1107.	1.6	2
14	Heart Factory or Fiction?. Circulation, 2013, 128, 2181-2182.	1.6	4
15	Hippo signaling impedes adult heart regeneration. Development (Cambridge), 2013, 140, 4683-4690.	1.2	400
16	A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Developmental Biology, 2013, 382, 457-469.	0.9	132
17	Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13416-13421.	3.3	161
18	Rejuvenation: an integrated approach to regenerative medicine. Regenerative Medicine Research, 2013, 1, 7.	2.2	6

ARTICLE

#

#	Article	IF	CITATIONS
19	Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells. Journal of Cardiovascular Translational Research, 2013, 6, 989-999.	1.1	150
20	Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. Journal of Molecular and Cellular Cardiology, 2013, 62, 203-213.	0.9	74
21	Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development (Cambridge), 2013, 140, 4165-4176.	1.2	57
22	Engineering Biomaterials for Myocardial Regeneration and Repair. Israel Journal of Chemistry, 2013, 53, 695-709.	1.0	2
23	Recent advances in heart regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 160-169.	3.6	5
24	Current frontiers in clinical research application of MALDI imaging mass spectrometry. Expert Review of Proteomics, 2013, 10, 259-273.	1.3	28
25	Concise Review: Heart Regeneration and the Role of Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 434-443.	1.6	69
26	Patching the Heart. Circulation Research, 2013, 113, 922-932.	2.0	131
27	Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 2013, 15, 1282-1293.	4.6	126
28	miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration. Developmental Biology, 2013, 383, 253-263.	0.9	25
29	Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry. Seminars in Cell and Developmental Biology, 2013, 24, 661-667.	2.3	58
30	Reprogramming toward Heart Regeneration: Stem Cells and Beyond. Cell Stem Cell, 2013, 12, 275-284.	5.2	64
31	Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14, 225-236.	16.1	200
32	Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 2013, 497, 249-253.	13.7	470
33	New Cells in Old Hearts. New England Journal of Medicine, 2013, 368, 1358-1360.	13.9	13
34	Stem cell stimulation of endogenous myocyte regeneration. Clinical Science, 2013, 125, 109-119.	1.8	23
35	In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.	13.7	229
36	Adult Pituitary Cell Maintenance: Lineage-Specific Contribution of Self-Duplication. Molecular Endocrinology, 2013, 27, 1103-1112.	3.7	42

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Cardiac Stem Cell Therapy and the Promise of Heart Regeneration. Cell Stem Cell, 2013,	12, 689-698.	5.2	334
38	Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harbor Perspectives in Med a013847-a013847.	icine, 2013, 3,	2.9	187
39	The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. Re Physiology, Biochemistry and Pharmacology, 2013, 165, 67-96.	views of	0.9	55
40	Identification of Chemicals Inducing Cardiomyocyte Proliferation in Developmental Stage Manner With Pluripotent Stem Cells. Circulation: Cardiovascular Genetics, 2013, 6, 624-	e–Specific 633.	5.1	44
41	Expanding Mouse Ventricular Cardiomyocytes Through GSKâ€3 Inhibition. Current Proto Biology, 2013, 61, 23.9.1-23.9.10.	cols in Cell	2.3	9
42	An Unexpected Switch. Circulation Research, 2013, 113, 245-248.		2.0	9
43	Nestin Expression in End-Stage Disease in Dystrophin-Deficient Heart: Implications for Re From Endogenous Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 848-8	generation 61.	1.6	16
44	microRNAs in cardiac development and regeneration. Clinical Science, 2013, 125, 151-16	56.	1.8	85
45	Adaptive inflammatory microenvironment for cell-based regeneration in ischemic cardiov disease. Organogenesis, 2013, 9, 121-124.	ascular	0.4	0
46	Pathological Ventricular Remodeling. Circulation, 2013, 128, 388-400.		1.6	607
47	Regeneration potential of adult cardiac myocytes. Cell Research, 2013, 23, 978-979.		5.7	14
48	Harnessing the power of dividing cardiomyocytes. Global Cardiology Science & Practice,	2013, 2013, 29.	0.3	9
49	Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate co Global Cardiology Science & Practice, 2013, 2013, 37.	ontinues.	0.3	14
50	Heart Regeneration. Circulation Research, 2013, 113, 1109-1111.		2.0	1
51	Heart to heart: grafting cardiosphereâ€derived cells augments cardiac selfâ€repair by bo stem cells. EMBO Molecular Medicine, 2013, 5, 177-179.	th myocytes and	3.3	4
52	Small Solutions to Big Problems. Circulation Research, 2013, 112, 1412-1414.		2.0	12
53	A Repair Tool-(c)Kit for the Injured Heart. Circulation: Cardiovascular Genetics, 2013, 6, 6	640-641.	5.1	0
54	Hippo pathway effector Yap promotes cardiac regeneration. Proceedings of the National Sciences of the United States of America, 2013, 110, 13839-13844.	Academy of	3.3	735

	CITATION REP	ORT	
Article		IF	CITATIONS
Keep PNUTS in Your Heart. Circulation Research, 2013, 113, 97-99.		2.0	11
CADUCEUS, SCIPIO, ALCADIA: Cell therapy trials using cardiac-derived cells for patients myocardial infarction LV dysfunction, still evolving. Global Cardiology Science & Practice 3.	with post e, 2013, 2013,	0.3	30
Together and apart: inhibition of DNA synthesis by connexin-43 and its relationship to t growth factor l ² . Frontiers in Pharmacology, 2013, 4, 90.	ransforming	1.6	3
A Replicative Self-Renewal Model for Long-Lived Plasma Cells: Questioning Irreversible C Frontiers in Immunology, 2013, 4, 460.	Cell Cycle Exit.	2.2	28
Epicardial Lineages and Cardiac Repair. Journal of Developmental Biology, 2013, 1, 141-	158.	0.9	6
Newt sequencing may set back efforts to regrow human limbs. Nature, 0, , .		13.7	0
Recombinant Neuregulin 1 Does Not Activate Cardiomyocyte DNA Synthesis in Normal Adult Mice. PLoS ONE, 2014, 9, e115871.	or Infarcted	1.1	51
The Role of Bioactive Lipids in Stem Cell Mobilization and Homing: Novel Therapeutics f Ischemia. BioMed Research International, 2014, 2014, 1-12.	or Myocardial	0.9	12
HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines, 2014, 2, 247-262.		1.4	32
Wnt/β-Catenin Signaling during Cardiac Development and Repair. Journal of Cardiovasc Development and Disease, 2014, 1, 98-110.	cular	0.8	9
Heterogeneity of Progenitor Cell Populations and their Therapeutic Implications. Journa Research & Therapy, 2014, 04, .	l of Stem Cell	0.3	0
Imaging Mass Spectrometry for Single-Cell Analysis. , 2014, , .			1
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regenerati Proceedings of the National Academy of Sciences of the United States of America, 2014	on. 4, 111, 1403-1408.	3.3	216
The hippo signaling pathway: implications for heart regeneration and disease. Clinical a Translational Medicine, 2014, 3, 27.	nd	1.7	7
Reduction of Na/K-ATPase affects cardiac remodeling and increases c-kit cell abundance nephrectomized mice. American Journal of Physiology - Heart and Circulatory Physiology H1631-H1643.	in partial y, 2014, 306,	1.5	23
Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Fac Perspectives. BioMed Research International, 2014, 2014, 1-6.	ts and	0.9	32

Human embryonic stem cells (hESCs) for heart regeneration. , 2014, , 266-296.

74	Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nature Communications, 2014, 5, 5288.	5.8	272
----	---	-----	-----

#

#	Article	IF	CITATIONS
75	The Hippo signal transduction network in skeletal and cardiac muscle. Science Signaling, 2014, 7, re4.	1.6	74
76	A neonatal blueprint for cardiac regeneration. Stem Cell Research, 2014, 13, 556-570.	0.3	159
77	Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Research, 2014, 13, 542-555.	0.3	48
78	Cardiac regeneration in vivo: Mending the heart from within?. Stem Cell Research, 2014, 13, 523-531.	0.3	33
79	Oxygen. Circulation Research, 2014, 115, 824-825.	2.0	5
80	Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nature Communications, 2014, 5, 5863.	5.8	125
81	Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Research, 2014, 13, 532-541.	0.3	114
82	Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E813-E821.	1.8	36
83	Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovascular Research, 2014, 102, 312-320.	1.8	42
84	An emerging consensus on cardiac regeneration. Nature Medicine, 2014, 20, 1386-1393.	15.2	222
85	Concise Review: The Role of C-kit Expressing Cells in Heart Repair at the Neonatal and Adult Stage. Stem Cells, 2014, 32, 1701-1712.	1.4	37
86	Secondary Ion Mass Spectrometry. New Developments in Mass Spectrometry, 2014, , 439-499.	0.2	9
87	Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. International Journal of Biochemistry and Cell Biology, 2014, 56, 38-46.	1.2	30
88	Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Molecular Medicine, 2014, 6, 760-777.	3.3	82
89	Auditory Hair Cell-Specific Deletion of p27 ^{Kip1} in Postnatal Mice Promotes Cell-Autonomous Generation of New Hair Cells and Normal Hearing. Journal of Neuroscience, 2014, 34, 15751-15763.	1.7	39
90	Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion. Physiological Reports, 2014, 2, e12115.	0.7	27
91	Cycling up the epidermis: reconciling 100Âyears of debate. Experimental Dermatology, 2014, 23, 87-91.	1.4	32
92	Heart failure highlights in 2012–2013. European Journal of Heart Failure, 2014, 16, 122-132. 	2.9	11

#	Article	IF	CITATIONS
93	Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proceedings of the United States of America, 2014, 111, E5178-86.	3.3	92
94	Correlated optical and isotopic nanoscopy. Nature Communications, 2014, 5, 3664.	5.8	84
95	Strategies for Cardiac Regeneration and Repair. Science Translational Medicine, 2014, 6, 239rv1.	5.8	100
96	Cardiomyocyte cell cycle: Meis-ing something?. Cell Cycle, 2014, 13, 1057-1058.	1.3	7
97	Mechanisms and Consequences of Injury and Repair in Older Organ Transplants. Transplantation, 2014, 97, 1091-1099.	0.5	35
98	Repairing quite swimmingly: advances in regenerative medicine using zebrafish. DMM Disease Models and Mechanisms, 2014, 7, 769-776.	1.2	45
99	Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nature Communications, 2014, 5, 4054.	5.8	35
100	MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells, 2014, 3, 724-750.	1.8	21
101	Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration. Cells, 2014, 3, 996-1026.	1.8	25
102	MicroRNAs in heart failure: Small molecules with major impact. Global Cardiology Science & Practice, 2014, 2014, 30.	0.3	32
103	Stem cell and gene therapy for cardiac regeneration. , 2014, , 347-379.		3
104	Macro advances in microRNAs and myocardial regeneration. Current Opinion in Cardiology, 2014, 29, 207-213.	0.8	28
105	Cardiac regeneration in non-mammalian vertebrates. Experimental Cell Research, 2014, 321, 58-63.	1.2	6
106	Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Research, 2014, 13, 571-581.	0.3	49
107	Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques. Methods, 2014, 68, 317-324.	1.9	41
108	Concise Review: Mechanotransduction via p190RhoGAP Regulates a Switch Between Cardiomyogenic and Endothelial Lineages in Adult Cardiac Progenitors. Stem Cells, 2014, 32, 1999-2007.	1.4	11
109	Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart. Journal of Cardiovascular Translational Research, 2014, 7, 232-241.	1.1	93
110	Cardiac Regeneration in Model Organisms. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 288.	0.4	39

#	Article	IF	CITATIONS
111	Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cellular and Molecular Life Sciences, 2014, 71, 615-627.	2.4	8
112	Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytologist, 2014, 202, 594-605.	3.5	109
113	Epigenetic mechanisms underlying cardiac degeneration and regeneration. International Journal of Cardiology, 2014, 173, 1-11.	0.8	44
114	New insights into IGF-1 signaling in the heart. Trends in Endocrinology and Metabolism, 2014, 25, 128-137.	3.1	190
115	Regulation of cardiomyocyte proliferation during development and regeneration. Development Growth and Differentiation, 2014, 56, 402-409.	0.6	32
116	Multiplexed ion beam imaging of human breast tumors. Nature Medicine, 2014, 20, 436-442.	15.2	881
117	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341.	13.7	723
119	A Proliferative Burst during Preadolescence Establishes the Final Cardiomyocyte Number. Cell, 2014, 157, 795-807.	13.5	233
120	CDK inhibitors, p21Cip1 and p27Kip1, participate in cell cycle exit of mammalian cardiomyocytes. Biochemical and Biophysical Research Communications, 2014, 443, 1105-1109.	1.0	76
121	CCN1 enables Fas ligand-induced apoptosis in cardiomyoblast H9c2 cells by disrupting caspase inhibitor XIAP. Cellular Signalling, 2014, 26, 1326-1334.	1.7	17
122	Complement Component 3 is Necessary to Preserve Myocardium and Myocardial Function in Chronic Myocardial Infarction. Stem Cells, 2014, 32, 2502-2515.	1.4	30
123	c-Kit–Positive Cardiac Stem Cells Nested in Hypoxic Niches Are Activated by Stem Cell Factor Reversing the Aging Myopathy. Circulation Research, 2014, 114, 41-55.	2.0	87
124	Direct Reprogramming of Fibroblasts into Myocytes to Reverse Fibrosis. Annual Review of Physiology, 2014, 76, 21-37.	5.6	30
125	Small Molecules Targeting <i>in Vivo</i> Tissue Regeneration. ACS Chemical Biology, 2014, 9, 57-71.	1.6	36
126	Small Molecules for Cell Reprogramming and Heart Repair: Progress and Perspective. ACS Chemical Biology, 2014, 9, 34-44.	1.6	24
127	MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cellular and Molecular Life Sciences, 2014, 71, 1439-1452.	2.4	34
128	Human heart failure: Is cell therapy a valid option?. Biochemical Pharmacology, 2014, 88, 129-138.	2.0	10
129	Re-growth of the adult heart by stem cells?. European Journal of Cardio-thoracic Surgery, 2014, 45, 6-9.	0.6	4

			2
#	ARTICLE	IF	CITATIONS
130	Anatomy and Physiology of the Circulatory and Ventilatory Systems. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , .	0.1	9
131	Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Research, 2014, 13, 592-614.	0.3	39
132	Cardiac Stem Cells: Biology and Clinical Applications. Antioxidants and Redox Signaling, 2014, 21, 2002-2017.	2.5	20
133	InÂVivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 2014, 15, 589-604.	5.2	178
134	Aging and Regeneration in Vertebrates. Current Topics in Developmental Biology, 2014, 108, 217-246.	1.0	78
135	Loss of White Adipose Hyperplastic Potential Is Associated with Enhanced Susceptibility to Insulin Resistance. Cell Metabolism, 2014, 20, 1049-1058.	7.2	157
136	How to make a cardiomyocyte. Development (Cambridge), 2014, 141, 4418-4431.	1.2	126
137	Prostaglandin E ₂ promotes postâ€infarction cardiomyocyte replenishment by endogenous stem cells. EMBO Molecular Medicine, 2014, 6, 496-503.	3.3	66
138	Changes in subtypes of Ca microdomains following partial injury to the central nervous system. Metallomics, 2014, 6, 455-464.	1.0	12
139	Redox Signaling in Cardiac Renewal. Antioxidants and Redox Signaling, 2014, 21, 1660-1673.	2.5	21
140	The Heart: Mostly Postmitotic or Mostly Premitotic? Myocyte Cell Cycle, Senescence, and Quiescence. Canadian Journal of Cardiology, 2014, 30, 1270-1278.	0.8	21
141	Endothelial Cells Contribute to Generation of Adult Ventricular Myocytes during Cardiac Homeostasis. Cell Reports, 2014, 8, 229-241.	2.9	54
142	An Update on Stem Cell Therapies for Acute Coronary Syndrome. Current Cardiology Reports, 2014, 16, 526.	1.3	4
143	Epigenetic Modification at Notch Responsive Promoters Blunts Efficacy of Inducing Notch Pathway Reactivation After Myocardial Infarction. Circulation Research, 2014, 115, 636-649.	2.0	56
145	Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. Cell Research, 2014, 24, 278-292.	5.7	62
146	Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Research, 2014, 24, 1091-1107.	5.7	115
147	Proliferative Activity of Cadriomyocytes in Chronic Hypercholesterolemia. Bulletin of Experimental Biology and Medicine, 2014, 156, 578-583.	0.3	2
148	Mechanisms of exercise-induced cardiac growth. Drug Discovery Today, 2014, 19, 1003-1009.	3.2	28

#	Article	IF	CITATIONS
149	Erythropoietin Responsive Cardiomyogenic Cells Contribute to Heart Repair Post Myocardial Infarction. Stem Cells, 2014, 32, 2480-2491.	1.4	22
150	Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8850-8855.	3.3	219
151	Bone marrow cells migrate to the heart and skeletal muscle and participate in tissue repair after <i><scp>T</scp>rypanosoma cruzi</i> infection in mice. International Journal of Experimental Pathology, 2014, 95, 321-329.	0.6	10
152	Has the cardiac stem cell controversy settled down?. Science China Life Sciences, 2014, 57, 949-950.	2.3	3
153	Cardiac Stem Cell Therapy for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 324.	0.4	43
154	Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy Highlights of the Year in JCTR 2013. Journal of Cardiovascular Translational Research, 2014, 7, 518-525.	1.1	3
155	Zebrafish as a Model for Studying Cardiac Regeneration. Current Pathobiology Reports, 2014, 2, 93-100.	1.6	2
156	Repression of Cyclin D1 Expression Is Necessary for the Maintenance of Cell Cycle Exit in Adult Mammalian Cardiomyocytes. Journal of Biological Chemistry, 2014, 289, 18033-18044.	1.6	36
157	Imaging of Distribution of Topically Applied Drug Molecules in Mouse Skin by Combination of Time-of-Flight Secondary Ion Mass Spectrometry and Scanning Electron Microscopy. Analytical Chemistry, 2014, 86, 3443-3452.	3.2	48
158	Simultaneous Imaging of Amyloid-β and Lipids in Brain Tissue Using Antibody-Coupled Liposomes and Time-of-Flight Secondary Ion Mass Spectrometry. Journal of the American Chemical Society, 2014, 136, 9973-9981.	6.6	37
159	Multicolor Live-Cell Chemical Imaging by Isotopically Edited Alkyne Vibrational Palette. Journal of the American Chemical Society, 2014, 136, 8027-8033.	6.6	137
160	Keeping at Arm's Length during Regeneration. Developmental Cell, 2014, 29, 139-145.	3.1	51
161	Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 14-23.	1.3	41
162	The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Research, 2014, 13, 615-630.	0.3	87
163	Detection of immunolabels with multiâ€isotope imaging mass spectrometry. Surface and Interface Analysis, 2014, 46, 147-149.	0.8	22
164	Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science, 2014, 344, 1384-1389.	6.0	83
165	Importance of Cell-Cell Contact in the Therapeutic Benefits of Cardiosphere-Derived Cells. Stem Cells, 2014, 32, 2397-2406.	1.4	55
166	Heart Failure With Preserved Ejection Fraction. Circulation Research, 2014, 115, 97-107.	2.0	154

#	Article	IF	CITATIONS
167	Sca-1+Cardiac Progenitor Cells and Heart-Making: A Critical Synopsis. Stem Cells and Development, 2014, 23, 2263-2273.	1.1	45
168	The higher-order structure in the cells nucleus as the structural basis of the post-mitotic state. Progress in Biophysics and Molecular Biology, 2014, 114, 137-145.	1.4	9
169	Brain stem cell division and maintenance studied using multiâ€isotope imaging mass spectrometry (MIMS). Surface and Interface Analysis, 2014, 46, 140-143.	0.8	7
170	Quasi-simultaneous acquisition of nine secondary ions with seven detectors on NanoSIMS50L: application to biological samples. Surface and Interface Analysis, 2014, 46, 150-153.	0.8	9
171	Quantitative imaging of selenoprotein with multiâ€isotope imaging mass spectrometry (MIMS). Surface and Interface Analysis, 2014, 46, 154-157.	0.8	6
172	Approaches to increasing analytical throughput of human samples with multi-isotope imaging mass spectrometry. Surface and Interface Analysis, 2014, 46, 165-168.	0.8	7
174	Secondaryâ€lon Mass Spectrometry of Genetically Encoded Targets. Angewandte Chemie - International Edition, 2015, 54, 5784-5788.	7.2	54
175	Bone Marrow Therapies for Chronic Heart Disease. Stem Cells, 2015, 33, 3212-3227.	1.4	18
176	Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells. Scientific Reports, 2015, 5, 17686.	1.6	25
177	The Quest for the Adult Cardiac Stem Cell. Circulation Journal, 2015, 79, 1422-1430.	0.7	24
178	Improved Generation of Induced Cardiomyocytes Using a Polycistronic Construct Expressing Optimal Ratio of Gata4, Mef2c and Tbx5. Journal of Visualized Experiments, 2015, , .	0.2	29
179	Cardiac Bmi1 + cells contribute to myocardial renewal in the murine adult heart. Stem Cell Research and Therapy, 2015, 6, 205.	2.4	35
180	Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry. Scientific Reports, 2015, 5, 10000.	1.6	6
181	Hepatocyte growth factor (HGF) promotes cardiac stem cell differentiation after myocardial infarction by increasing mTOR activation in p27kip haploinsufficient mice. Genes and Genomics, 2015, 37, 905-912.	0.5	3
182	Lysophospholipids in coronary artery and chronic ischemic heart disease. Current Opinion in Lipidology, 2015, 26, 432-437.	1.2	38
183	Theory and Practice of Lineage Tracing. Stem Cells, 2015, 33, 3197-3204.	1.4	54
184	The Future of Therapeutics: Stem Cells, Tissue Plasticity, and Tissue Engineering. , 0, , 306-316.		0

#	Article	IF	CITATIONS
186	Stem Cells Transplantation in Myocardial Tissue Induces Pro- Arrhythmic Effects and Promotes 4 Reperfusion. Comparison between Intramyocardial and Intravenous Approach. Journal of Genetic Syndromes & Gene Therapy, 2015, 06, .	0.2	0
187	Cellular and Molecular Effects of Bioactive Phenolic Compounds in Olives and Olive Oil. , 2015, , 53-91.		6
188	Stimulating endogenous cardiac repair. Frontiers in Cell and Developmental Biology, 2015, 3, 57.	1.8	22
189	Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. ELife, 2015, 4, .	2.8	244
190	Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells. PLoS ONE, 2015, 10, e0120176.	1.1	19
191	Cell Kinetic Studies Fail to Identify Sequentially Proliferating Progenitors as the Major Source of Epithelial Renewal in the Adult Murine Prostate. PLoS ONE, 2015, 10, e0128489.	1.1	7
192	Advanced Strategies for End-Stage Heart Failure: Combining Regenerative Approaches with LVAD, a New Horizon?. Frontiers in Surgery, 2015, 2, 10.	0.6	12
193	Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease. BioMed Research International, 2015, 2015, 1-15.	0.9	13
194	Non-coding RNAs in cardiac regeneration. Oncotarget, 2015, 6, 42613-42622.	0.8	46
195	Proteotoxicity and Cardiac Dysfunction. Circulation Research, 2015, 116, 1863-1882.	2.0	80
196	Arrhythmia in Stem Cell Transplantation. Cardiac Electrophysiology Clinics, 2015, 7, 357-370.	0.7	40
197	Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction. Biochemical and Biophysical Research Communications, 2015, 458, 823-829.	1.0	13
198	Activation of FGF1B Promoter and FGF1 Are Involved in Cardiogenesis Through the Signaling of PKC, but Not MAPK. Stem Cells and Development, 2015, 24, 2853-2863.	1.1	11
199	Cardiac adaptations from 4Âweeks of intensity-controlled vigorous exercise are lost after a similar period of detraining. Physiological Reports, 2015, 3, e12302.	0.7	21
200	Recent advances in direct cardiac reprogramming. Current Opinion in Genetics and Development, 2015, 34, 77-81.	1.5	19
201	Cardiac regeneration: epicardial mediated repair. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152147.	1.2	23
202	C-kit + resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Research, 2015, 15, 700-711.	0.3	20
203	What do we know about the cardiac benefits of exercise?. Trends in Cardiovascular Medicine, 2015, 25, 529-536.	2.3	47

#	Article	IF	CITATIONS
204	Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration. Circulation Research, 2015, 116, 804-815.	2.0	131
205	Origin of Cardiomyocytes in the Adult Heart. Circulation Research, 2015, 116, 150-166.	2.0	76
206	Cardiac regeneration — Alchemy, science, and a wee bit of magic?. Journal of Molecular and Cellular Cardiology, 2015, 81, 10-11.	0.9	3
207	Using Exercise to Measure and Modify Cardiac Function. Cell Metabolism, 2015, 21, 227-236.	7.2	41
208	The Type of Injury Dictates the Mode of Repair in Neonatal and Adult Heart. Journal of the American Heart Association, 2015, 4, e001320.	1.6	44
209	Regeneration across Metazoan Phylogeny: Lessons from Model Organisms. Journal of Genetics and Genomics, 2015, 42, 57-70.	1.7	52
210	Bridge to Recovery and Myocardial CellÂDivision. Journal of the American College of Cardiology, 2015, 65, 901-903.	1.2	3
211	A fibrin-supported myocardial organ culture for isolation of cardiac stem cells via the recapitulation of cardiac homeostasis. Biomaterials, 2015, 48, 66-83.	5.7	10
212	c-kit+ cells: the tell-tale heart of cardiac regeneration?. Cellular and Molecular Life Sciences, 2015, 72, 1725-1740.	2.4	19
213	Programming and reprogramming a human heartÂcell. EMBO Journal, 2015, 34, 710-738.	3.5	96
214	Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Laboratory Investigation, 2015, 95, 397-405.	1.7	94
215	The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. , 2015, 151, 8-15.		72
216	Noncoding RNAs as regulators of cardiomyocyte proliferation and death. Journal of Molecular and Cellular Cardiology, 2015, 89, 59-67.	0.9	56
217	Dedifferentiation, Transdifferentiation, and Proliferation: Mechanisms Underlying Cardiac Muscle Regeneration in Zebrafish. Current Pathobiology Reports, 2015, 3, 81-88.	1.6	36
218	How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration. Drug Discovery Today, 2015, 20, 667-685.	3.2	6
219	Cardiomyocyte Regeneration in the <i>mdx</i> Mouse Model of Nonischemic Cardiomyopathy. Stem Cells and Development, 2015, 24, 1672-1679.	1.1	22
220	RNA Mimics as Therapeutics for Cardiac Regeneration: A Paradigm Shift. Molecular Therapy, 2015, 23, 984-986.	3.7	0
221	Effects of isoflurane postconditioning on chronic phase of ischemia–reperfusion heart injury in rats. Cardiovascular Pathology, 2015, 24, 94-101.	0.7	18

		CITATION RE	PORT	
#	Article		IF	CITATIONS
222	Defining the Limit of Embryonic Heart Regeneration. Circulation, 2015, 132, 77-78.		1.6	10
223	Pathological assessment of end-stage heart failure in explanted hearts in correlation w hemodynamics in patients undergoing orthotopic heart transplantation. Cardiovascula 2015, 24, 283-289.	ith ar Pathology,	0.7	24
224	1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mous stem cells. Bioorganic and Medicinal Chemistry, 2015, 23, 5282-5292.	e embryonic	1.4	14
225	Wilms' tumor 1 (re)activation in evidence for both epicardial progenitor and endotheli cardiovascular regeneration. Journal of Molecular and Cellular Cardiology, 2015, 84, 1	al cells for 12-115.	0.9	4
226	Human Placenta-Derived Adherent Cells Improve Cardiac Performance in Mice With Ch Failure. Stem Cells Translational Medicine, 2015, 4, 269-275.	ironic Heart	1.6	19
227	Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Funct Reduces Survival. Journal of Biological Chemistry, 2015, 290, 22061-22075.	ion and	1.6	24
228	A contamination-insensitive probe for imaging specific biomolecules by secondary ion spectrometry. Chemical Communications, 2015, 51, 13221-13224.	mass	2.2	14
229	Thymosin β4: multiple functions in protection, repair and regeneration of the mamma Opinion on Biological Therapy, 2015, 15, 163-174.	lian heart. Expert	1.4	27
230	Dynamics of Cell Generation and Turnover in the Human Heart. Cell, 2015, 161, 1566-	1575.	13.5	923
231	Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature, 201	.5, 523, 226-230.	13.7	284
232	The winding road to regenerating the human heart. Cardiovascular Pathology, 2015, 2	4, 133-140.	0.7	95
233	When bigger is better: the role of polyploidy in organogenesis. Trends in Genetics, 201	.5, 31, 307-315.	2.9	224
234	"String Theory―of c-kit ^{pos} Cardiac Cells. Circulation Research, 201	5, 116, 1216-1230.	2.0	113
236	Embryonic Stem Cell–Derived Exosomes Promote Endogenous Repair Mechanisms a Function Following Myocardial Infarction. Circulation Research, 2015, 117, 52-64.	nd Enhance Cardiac	2.0	598
237	Neuregulin 1 makes heart muscle. Nature, 2015, 520, 445-446.		13.7	20
238	Engineering Cardiovascular Regeneration. Current Stem Cell Reports, 2015, 1, 67-78.		0.7	0
239	Cardiac aging — Getting to the stem of the problem. Journal of Molecular and Cellula 2015, 83, 32-36.	ır Cardiology,	0.9	41
240	Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms Pharmacological Sciences, 2015, 36, 326-348.	. Trends in	4.0	206

#	Article	IF	CITATIONS
241	Coronary Artery Disease: Pathological Anatomy and Pathogenesis. Cardiovascular Medicine, 2015, , 1-20.	0.0	1
242	Generation of cardiac progenitor cells through epicardial to mesenchymal transition. Journal of Molecular Medicine, 2015, 93, 735-748.	1.7	18
243	A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Science Translational Medicine, 2015, 7, 279ra38.	5.8	311
244	Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Research in Cardiology, 2015, 110, 33.	2.5	41
245	Stem cells in the management of advanced heart failure. Current Opinion in Cardiology, 2015, 30, 179-185.	0.8	9
246	Pharmacological inhibition of TGFÎ ² receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovascular Research, 2015, 105, 44-54.	1.8	24
247	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	2.0	118
248	The Hippo Pathway in Heart Development, Regeneration, and Diseases. Circulation Research, 2015, 116, 1431-1447.	2.0	178
249	ERBB2 triggers mammalian heart regeneration byÂpromoting cardiomyocyte dedifferentiation andÂproliferation. Nature Cell Biology, 2015, 17, 627-638.	4.6	541
250	Cell Therapy Circulation Research 2015 117 659-661		10
200		2.0	
251	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74.	0.9	35
251 252	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151.	0.9 5.7	35 123
251 252 253	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151. Wnt/Î ² -catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3.	2.0 0.9 5.7 1.1	35 123 105
251 252 253 254	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151. Wnt/l²-catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell, 2015, 163, 1026-1036.	2.0 0.9 5.7 1.1 13.5	35 123 105 204
251 252 253 254 255	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151. Wnt/l²-catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell, 2015, 163, 1026-1036. <i>> S Acute inflammation eReductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. Journal of the American Heart Association, 2015, 4, .</i>	2.0 0.9 5.7 1.1 13.5 1.6	35 123 105 204 43
251 252 253 254 255 256	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151. Wntll²-catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell, 2015, 163, 1026-1036. <i>> <i>> <i>> Wntl²-catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell, 2015, 163, 1026-1036. <i>> <i>> Heart Progenitors and Myocytes Post Myocardial Infarction. Journal of the American Heart Association, 2015, 4, . Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials, 2015, 70, 94-104.</i></i></i></i></i>	2.0 0.9 5.7 1.1 13.5 1.6 5.7	35 123 105 204 43 81
251 252 253 254 255 255 256	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151. Wnt/l²-catenin signaling in heart regeneration. Cell Regeneration, 2015, 4, 4:3. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell, 2015, 163, 1026-1036. <li< td=""><td>2.0 0.9 5.7 1.1 13.5 1.6 5.7 13.1</td><td> 35 123 105 204 43 81 86 </td></li<>	2.0 0.9 5.7 1.1 13.5 1.6 5.7 13.1	 35 123 105 204 43 81 86

#	Article	IF	CITATIONS
259	Translational aspects of cardiac cell therapy. Journal of Cellular and Molecular Medicine, 2015, 19, 1757-1772.	1.6	24
260	Medicinal Chemistry Approaches to Heart Regeneration. Journal of Medicinal Chemistry, 2015, 58, 9451-9479.	2.9	22
261	Members Only: Hypoxia-Induced Cell-Cycle Activation in Cardiomyocytes. Cell Metabolism, 2015, 22, 365-366.	7.2	3
262	AntimiR-34a to Enhance Cardiac Repair After Ischemic Injury. Circulation Research, 2015, 117, 395-397.	2.0	7
263	Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circulation Research, 2015, 117, 804-816.	2.0	53
264	Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth. Biochemical and Biophysical Research Communications, 2015, 466, 147-154.	1.0	15
265	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.	13.7	402
266	Controversy in myocardial regeneration. Regenerative Medicine, 2015, 10, 921-924.	0.8	1
267	An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy. Frontiers in Biology, 2015, 10, 11-27.	0.7	6
268	Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart. Biochemical and Biophysical Research Communications, 2015, 456, 294-297.	1.0	5
269	Concise Review: Mesoangioblast and Mesenchymal Stem Cell Therapy for Muscular Dystrophy: Progress, Challenges, and Future Directions. Stem Cells Translational Medicine, 2015, 4, 91-98.	1.6	27
270	Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2015, 21, 45-54.	2.5	188
271	Targeting Macrophage Subsets for Infarct Repair. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 36-51.	1.0	75
272	Circulating Cells Contribute to Cardiomyocyte Regeneration After Injury. Circulation Research, 2015, 116, 633-641.	2.0	49
273	Alpha-Catenins Control Cardiomyocyte Proliferation by Regulating Yap Activity. Circulation Research, 2015, 116, 70-79.	2.0	106
274	Therapy with c-kitPOS Cardiac Stem Cells for Ischemic Cardiomyopathy. , 2016, , 201-215.		0
275	Use of Stem Cells in Ischemic Heart Disease. , 2016, , 43-47.		3
276	Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover. Journal of Visualized Experiments, 2016, , .	0.2	20

		CITATION RE	PORT	
#	Article		IF	CITATIONS
277	Cellular and molecular basis of cardiac regeneration. Turkish Journal of Biology, 2016, 4	0, 265-275.	2.1	0
278	Label-Retaining Cells and Progenitor Cells in Renal Epithelial Homeostasis and Regenera 407-416.	tion. , 2016, ,		0
279	Underlying mechanisms and prospects of heart regeneration. Turkish Journal of Biology 276-289.	, 2016, 40,	2.1	3
280	Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Is Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy. Stem Cells Interna 2016, 1-14.	chemic tional, 2016,	1.2	11
281	Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for t Natriuretic Peptide?. Stem Cells International, 2016, 2016, 1-18.	he Brain	1.2	15
282	Pathophysiology of Heart Failure and an Overview of Therapies. , 2016, , 271-339.			4
283	Redox Regulation of Heart Regeneration: An Evolutionary Tradeoff. Frontiers in Cell and Developmental Biology, 2016, 4, 137.		1.8	11
284	Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analys Toxicological Effects on Single Cell Level. Toxics, 2016, 4, 5.	is of	1.6	36
285	Role of Telomerase in the Cardiovascular System. Genes, 2016, 7, 29.		1.0	26
286	Ciona as a Simple Chordate Model for Heart Development and Regeneration. Journal of Cardiovascular Development and Disease, 2016, 3, 25.		0.8	34
287	Beyond the Mammalian Heart: Fish and Amphibians as a Model for Cardiac Repair and R Journal of Developmental Biology, 2016, 4, 1.	legeneration.	0.9	20
288	Asxl2â^'/â^' Mice Exhibit De Novo Cardiomyocyte Production during Adulthood. Journal Developmental Biology, 2016, 4, 32.	of	0.9	3
289	5'-Hydroxymethylcytosine Precedes Loss of CpG Methylation in Enhancers and Genes U Activation in Cardiomyocyte Maturation. PLoS ONE, 2016, 11, e0166575.	Indergoing	1.1	13
290	Secretome from resident cardiac stromal cells stimulates proliferation, cardiomyogenes angiogenesis of progenitor cells. International Journal of Cardiology, 2016, 221, 396-40	is and)3.	0.8	15
291	Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine and Inhibiting Wnt in Cardiac Progenitors. Stem Cells, 2016, 34, 445-455.	of Survivin	1.4	16
292	Developmental origin of postnatal cardiomyogenic progenitor cells. Future Science OA, FSO120.	2016, 2,	0.9	2
293	Epigenome Dynamics and Reader Proteins in Cardiomyocyte Development and Heart Fa and Vascular Biology, 2016, , 37-51.	ailure. Cardiac	0.2	0
294	DNA Methylation in Heart Failure. Cardiac and Vascular Biology, 2016, , 75-102.		0.2	0

#	Article	IF	CITATIONS
295	Cardiac progenitor cells for heart repair. Cell Death Discovery, 2016, 2, 16052.	2.0	100
296	TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1189-H1201.	1.5	18
297	Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1773-H1789.	1.5	19
298	Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch. Scientific Reports, 2016, 6, 20674.	1.6	47
299	Bmi1 + cardiac progenitor cells contribute to myocardial repair following acute injury. Stem Cell Research and Therapy, 2016, 7, 100.	2.4	33
300	Direct cellular reprogramming: the hopes and the hurdles. European Journal of Heart Failure, 2016, 18, 157-159.	2.9	4
301	Revisiting Preadolescent Cardiomyocyte Proliferation in Mice. Circulation Research, 2016, 118, 916-919.	2.0	11
302	Hippo/Yap Signaling in Cardiac Development and Regeneration. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 38.	0.4	45
303	Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Research Reviews, 2016, 28, 1-14.	5.0	16
304	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
305	Gene transfer to promote cardiac regeneration. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 359-369.	2.7	9
306	Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development (Cambridge), 2016, 143, 1242-1258.	1.2	65
307	Cell Programming for Future Regenerative Medicine. , 2016, , 389-424.		0
308	Macrophages and regeneration: Lessons from the heart. Seminars in Cell and Developmental Biology, 2016, 58, 26-33.	2.3	30
309	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
310	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
311	Stem cells do not play a significant role in repopulation of adult human cardiomyocytes. Cell and Tissue Biology, 2016, 10, 114-121.	0.2	1
312	The Hippo signal transduction network for exercise physiologists. Journal of Applied Physiology, 2016, 120, 1105-1117.	1.2	32

\sim -	 ~	D -		
	ON		DO	12
\sim			10	IV I

#	Article	IF	CITATIONS
313	Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin. Experimental and Therapeutic Medicine, 2016, 12, 1657-1662.	0.8	1
314	Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiology Clinics, 2016, 34, 515-530.	0.9	30
315	Endogenous Mechanisms of Cardiac Regeneration. International Review of Cell and Molecular Biology, 2016, 326, 67-131.	1.6	10
316	Stimulatory Effects of Mesenchymal Stem Cells on cKit + Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circulation Research, 2016, 119, 921-930.	2.0	81
317	Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opinion on Biological Therapy, 2016, 16, 1341-1352.	1.4	8
318	Apelin-13 infusion salvages the peri-infarct region to preserve cardiac function after severe myocardial injury. International Journal of Cardiology, 2016, 222, 361-367.	0.8	10
319	Cell migration during heart regeneration in zebrafish. Developmental Dynamics, 2016, 245, 774-787.	0.8	30
320	Regeneration versus scarring in vertebrate appendages and heart. Journal of Pathology, 2016, 238, 233-246.	2.1	57
321	Methodologies for Inducing Cardiac Injury and Assaying Regeneration in Adult Zebrafish. Methods in Molecular Biology, 2016, 1451, 225-235.	0.4	8
322	Telocytes in exerciseâ€induced cardiac growth. Journal of Cellular and Molecular Medicine, 2016, 20, 973-979.	1.6	28
323	Direct Cardiac Cellular Reprogramming for Cardiac Regeneration. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 58.	0.4	13
324	Electrical effects of stem cell transplantation for ischaemic cardiomyopathy: friend or foe?. Journal of Physiology, 2016, 594, 2511-2524.	1.3	8
325	In Situ Pluripotency Factor Expression Promotes Functional Recovery From Cerebral Ischemia. Molecular Therapy, 2016, 24, 1538-1549.	3.7	13
326	Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet?. Journal of Cardiovascular Translational Research, 2016, 9, 405-418.	1.1	24
327	Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of Î ² -Catenin. Stem Cell Reviews and Reports, 2016, 12, 731-743.	5.6	2
328	Expression profiles of long noncoding RNAs in cardiac stem cells under hyperglycemic conditions. International Journal of Cardiology, 2016, 222, 933-939.	0.8	4
329	NanoSIMS chemical imaging combined with correlative microscopy for biological sample analysis. Current Opinion in Biotechnology, 2016, 41, 130-135.	3.3	45
330	A series of robust genetic indicators for definitive identification of cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 278-285.	0.9	12

# 331	ARTICLE Evolution, comparative biology and ontogeny of vertebrate heart regeneration. Npj Regenerative Medicine, 2016, 1, 16012.	IF 2.5	Citations
332	Regulation of Myocardial Cell Growth and Death by the Hippo Pathway. Circulation Journal, 2016, 80, 1511-1519.	0.7	55
333	Development of Therapeutics for Heart Failure. Circulation: Heart Failure, 2016, 9, .	1.6	0
334	Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11237-11242.	3.3	172
335	Is Stimulation of Cardiomyocyte Renewal a Facette of Reversible Catecholamine Toxicity?. Circulation Research, 2016, 119, 779-781.	2.0	2
336	Zebrafish. Methods in Molecular Biology, 2016, , .	0.4	9
337	Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circulation Research, 2016, 119, 865-879.	2.0	71
338	What Determines the Regenerative Capacity in Animals?. BioScience, 2016, 66, 735-746.	2.2	58
339	Preconditioning boosts regenerative programmes in the adult zebrafish heart. Open Biology, 2016, 6, 160101.	1.5	28
340	Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Science Advances, 2016, 2, e1600844.	4.7	106
341	Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells. Scientific Data, 2016, 3, 160079.	2.4	15
342	Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells. Scientific Reports, 2016, 6, 28739.	1.6	11
343	Genome-wide analysis of alternative splicing during human heart development. Scientific Reports, 2016, 6, 35520.	1.6	29
344	Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Research and Therapy, 2016, 7, 84.	2.4	38
345	Pairwise comparison of mammalian transcriptomes associated with the effect of polyploidy on the expression activity of developmental gene modules. Cell and Tissue Biology, 2016, 10, 122-132.	0.2	2
346	Changes in gene methylation patterns in neonatal murine hearts: Implications for the regenerative potential. BMC Genomics, 2016, 17, 231.	1.2	22
347	Search for magic patches that heal the broken heart. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 290-293.	0.9	4
348	Wound-Induced Polyploidy Is Required for Tissue Repair. Advances in Wound Care, 2016, 5, 271-278.	2.6	26

ARTICLE IF CITATIONS Mending a Faltering Heart. Circulation Research, 2016, 118, 344-351. 349 2.0 21 Myocardial tissue engineering for cardiac repair. Journal of Heart and Lung Transplantation, 2016, 35, 0.3 <u>29</u>4-298. Resetting the epigenome for heart regeneration.. Seminars in Cell and Developmental Biology, 2016, 58, 351 2.318 2 - 13Personalizing cardiac regenerative therapy: At the heart of Pim1 kinase. Pharmacological Research, 3.1 2016, 103, 13-16. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circulation 353 2.0 272 Research, 2016, 118, 216-221. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. Mass Spectrometry Reviews, 2016, 35, 147-169. 354 2.8 Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies 355 1.8 36 miRNA-dependent repair pathways. Cardiovascular Research, 2016, 110, 73-84. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat 2.0 myocardial infarction model. Life Sciences, 2016, 149, 1-9. 357 Ionizing radiation and heart risks. Seminars in Cell and Developmental Biology, 2016, 58, 14-25. 2.3 51 Overview of chemical imaging methods to address biological questions. Micron, 2016, 84, 23-36. 1.1 54 Macrophage precursor cells from the left atrial appendage of the heart spontaneously reprogram 359 0.8 10 into a C-kit+/CD45â[°] stem cell-like phenotype. International Journal of Cardiology, 2016, 209, 296-306. Murine Models Demonstrate Distinct Vasculogenic and Cardiomyogenic cKit ⁺ Lineages in the Heart. Circulation Research, 2016, 118, 382-387. Delivery Modes for Cardiac Stem Cell Therapy. Pancreatic Islet Biology, 2016, , 165-190. 361 0.1 2 Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochemical 28 Pharmacology, 2016, 113, 1-11. 363 Mechanisms of Cardiac Regeneration. Developmental Cell, 2016, 36, 362-374. 3.1 233 Building and re-building the heart by cardiomyocyte proliferation. Development (Cambridge), 2016, 143, 364 1.2 729-740. Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac 365 1.6 133 Function After Myocardial Infarction. Circulation, 2016, 133, 1081-1092. The role of microRNAs in cardiac development and regenerative capacity. American Journal of 1.5 Physiology - Heart and Circulatory Physiology, 2016, 310, H528-H541.

	CHATON R	EPORT	
# 367	ARTICLE Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential	IF 3.1	Citations
368	Comparative Pathology of Aging Great Apes. Veterinary Pathology, 2016, 53, 250-276.	0.8	139
369	Stem Cells and Cardiac Regeneration. Pancreatic Islet Biology, 2016, , .	0.1	2
370	Molecular histology of arteries: mass spectrometry imaging as a novel <i>ex vivo</i> tool to investigate atherosclerosis. Expert Review of Proteomics, 2016, 13, 69-81.	1.3	14
371	Stem cells in clinical practice for cardiovascular diseases. Polish Annals of Medicine, 2016, 23, 49-56.	0.3	2
372	Heart regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1749-1759.	1.9	25
373	Introduction and Overview of Stem Cells. , 2016, , 3-11.		0
374	Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation. Circulation Research, 2016, 118, 20-28.	2.0	34
375	Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 58-68.	1.4	21
376	Regulatory aspects of small molecule drugs for heart regeneration. Advanced Drug Delivery Reviews, 2016, 96, 245-252.	6.6	7
377	The Elusive Progenitor Cell in Cardiac Regeneration. Circulation Research, 2017, 120, 400-406.	2.0	73
378	Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Reviews and Reports, 2017, 13, 170-191.	5.6	30
379	Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. , 2017, 171, 1-12.		27
380	Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells InÂVivo. Cell Stem Cell, 2017, 20, 345-359.e5.	5.2	393
381	Nanosims Imaging: An Approach for Visualizing and Quantifying Lipids in Cells and Tissues. Journal of Investigative Medicine, 2017, 65, 669-672.	0.7	28
382	Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction. Circulation Research, 2017, 120, 1298-1304.	2.0	162
383	A p53 based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration. Development (Cambridge), 2017, 144, 580-589.	1.2	14
384	Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Scientific Reports, 2017, 7, 41318.	1.6	5

ARTICLE IF CITATIONS # Manipulating the Proliferative Potential of Cardiomyocytes by Gene Transfer. Methods in Molecular 385 0.4 3 Biology, 2017, 1553, 41-53. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart. Journal of Cellular 1.2 Biochemistry, 2017, 118, 2828-2840. 387 Cardiomyocyte Proliferation. Circulation Research, 2017, 120, 627-629. 2.0 57 A growing role for the Hippo signaling pathway in the heart. Journal of Molecular Medicine, 2017, 95, 388 24 465-472. Concise Review: Mending a Broken Heart: The Evolution of Biological Therapeutics. Stem Cells, 2017, 389 1.4 11 35, 1131-1140. Resolving Heart Regeneration by Replacement Histone Profiling. Developmental Cell, 2017, 40, 3.1 392-404.e5. 391 Physiology of Stem Cells., 2017, , 711-725. 0 Dating the Heart: Exploring Cardiomyocyte Renewal in Humans. Physiology, 2017, 32, 33-41. 1.6 Harnessing the early post-injury inflammatory responses for cardiac regeneration. Journal of 393 2.6 41 Biomedical Science, 2017, 24, 7. 394 How Plastic Are Pericytes?. Stem Cells and Development, 2017, 26, 1013-1019. 1.1 58 Cardiac resident macrophages are involved in hypoxia-induced postnatal cardiomyocyte proliferation. 395 1.1 20 Molecular Medicine Reports, 2017, 15, 3541-3548. Mesenchymal stromal cell therapy to promote cardiac tissue regeneration and repair. Current 0.8 Opinion in Organ Transplantation, 2017, 22, 86-96. Detection of Localized Hepatocellular Amino Acid Kinetics by using Mass Spectrometry Imaging of 397 7.2 34 Stable Isotopes. Angewandte Chemie - International Edition, 2017, 56, 7146-7150. A Deep Proteome Analysis Identifies the Complete Secretome as the Functional Unit of Human Cardiac 398 123 Progenitor Cells. Circulation Research, 2017, 120, 816-834. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial 399 10 0.4 Infarction. Methods in Molecular Biology, 2017, 1521, 69-88. Modified <scp>mRNA</scp> as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1367. Hh signaling in regeneration of the ischemic heart. Cellular and Molecular Life Sciences, 2017, 74, 401 2.4 30 3481-3490. Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart 2.4 healing. Non-coding RNA Research, 2017, 2, 93-99.

#	Article	IF	CITATIONS
403	The transcription factor <scp>GATA</scp> 4 promotes myocardial regeneration in neonatal mice. EMBO Molecular Medicine, 2017, 9, 265-279.	3.3	79
404	Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury. Circulation, 2017, 136, 834-848.	1.6	174
405	Cardiac regeneration strategies: Staying young at heart. Science, 2017, 356, 1035-1039.	6.0	303
406	Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflammation Research, 2017, 66, 739-751.	1.6	48
407	Detection of Localized Hepatocellular Amino Acid Kinetics by using Mass Spectrometry Imaging of Stable Isotopes. Angewandte Chemie, 2017, 129, 7252-7256.	1.6	3
408	Cardiac telomere length in heart development, function, and disease. Physiological Genomics, 2017, 49, 368-384.	1.0	31
409	Assessment of aflatoxin B1 myocardial toxicity in rats: mitochondrial damage and cellular apoptosis in cardiomyocytes induced by aflatoxin B1. Journal of International Medical Research, 2017, 45, 1015-1023.	0.4	22
410	Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Non-coding RNA Research, 2017, 2, 27-37.	2.4	8
411	Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart. Pediatric Cardiology, 2017, 38, 700-706.	0.6	7
412	The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a029850.	2.9	12
413	Feline Panleukopenia Virus Is Not Associated With Myocarditis or Endomyocardial Restrictive Cardiomyopathy in Cats. Veterinary Pathology, 2017, 54, 669-675.	0.8	16
414	Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Molecular and Cellular Biochemistry, 2017, 432, 141-158.	1.4	19
415	Cardiac Regeneration. Circulation Research, 2017, 120, 941-959.	2.0	117
417	Suffocating the heart to stimulate regeneration. Nature Reviews Cardiology, 2017, 14, 7-8.	6.1	0
418	Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends in Cell Biology, 2017, 27, 352-364.	3.6	15
419	Specific Cell (Re-)Programming: Approaches and Perspectives. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 71-115.	0.6	3
420	CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Scientific Reports, 2017, 7, 12490.	1.6	39
422	Past and Future of Cell-Based Heart Repair. Cardiac and Vascular Biology, 2017, , 1-17.	0.2	0

		CITATION R	EPORT	
#	Article		IF	Citations
423	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England),	2017, 4, 105-123.	6.3	139
424	Formation of New Cardiomyocytes in Exercise. Advances in Experimental Medicine and 999, 91-102.	Biology, 2017,	0.8	4
425	Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogram Embryonic Fibroblasts. Journal of Visualized Experiments, 2017, , .	mming of Mouse	0.2	3
426	Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2	2017, 120, 2-24.	6.6	29
427	Stem Cells in Regenerative Cardiology. Advances in Experimental Medicine and Biology	v, 2017, 1079, 37-53.	0.8	8
428	Hypoxia-induced myocardial regeneration. Journal of Applied Physiology, 2017, 123, 16	576-1681.	1.2	32
429	Plasma stem cell factor levels are associated with risk of cardiovascular disease and dea of Internal Medicine, 2017, 282, 508-521.	ath. Journal	2.7	27
430	Quantitative imaging of deuterated metabolic tracers in biological tissues with nanoscion mass spectrometry. International Journal of Mass Spectrometry, 2017, 422, 42-50.	ale secondary	0.7	17
431	Genetic insights into mammalian heart regeneration. Nature Genetics, 2017, 49, 1292	-1293.	9.4	3
432	Cell Reprogramming for Cardiac Regeneration and Rare Disease Modeling. Molecular a Translational Medicine, 2017, , 173-196.	nd	0.4	0
433	Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myoca Infarction. Circulation Research, 2017, 121, 1263-1278.	ardial	2.0	45
434	(Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Review 142-167.	s, 2017, 120,	6.6	13
435	Two nuclei inside a single cardiac muscle cell. More questions than answers about the of cardiomyocytes. Biologia (Poland), 2017, 72, 825-830.	binucleation	0.8	6
436	Single-Cell Sequencing Technologies for Cardiac Stem Cell Studies. Stem Cells and Dev 26, 1540-1551.	relopment, 2017,	1.1	7
437	Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiat cycle stress-response in vivo. Nature Communications, 2017, 8, 225.	ion and cell	5.8	95
438	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechno 845-855.	ology, 2017, 12,	15.6	104
439	Heart regeneration and repair after myocardial infarction: translational opportunities for therapeutics. Nature Reviews Drug Discovery, 2017, 16, 699-717.	or novel	21.5	245
440	Cardiomyocyte renewal in the human heart: insights from the fall-out. European Heart 38, 2333-2342.	Journal, 2017,	1.0	109

		CITATION [Report	
#	Article		IF	CITATIONS
441	Multimodal Regulation of Cardiac Myocyte Proliferation. Circulation Research, 2017, 1	21, 293-309.	2.0	86
442	Multicellular Transcriptional Analysis of Mammalian Heart Regeneration. Circulation, 20 1123-1139.	017, 136,	1.6	222
443	Editorial Commentary: Keeping the congenitally malformed heart in shape. Trends in Ca Medicine, 2017, 27, 532-533.	ardiovascular	2.3	0
444	The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Resear 100-110.	rch, 2017, 2,	2.4	15
445	Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart r Nature Genetics, 2017, 49, 1346-1353.	egeneration.	9.4	252
446	Visualizing molecular distributions for biomaterials applications with mass spectrometr review. Journal of Materials Chemistry B, 2017, 5, 7444-7460.	ry imaging: a	2.9	21
447	Parvovirus Infection Is Associated With Myocarditis and Myocardial Fibrosis in Young D Veterinary Pathology, 2017, 54, 964-971.	logs.	0.8	46
448	In Vivo Lineage Reprogramming of Fibroblasts to Cardiomyocytes for Heart Regeneration Islet Biology, 2017, , 45-63.	on. Pancreatic	0.1	1
450	Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolisr Reports, 2017, 7, 15434.	n. Scientific	1.6	37
451	Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myo infarction. Clinical Science, 2017, 131, 2919-2932.	cardial	1.8	58
452	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.		1.6	417
453	Fam64a is a novel cell cycle promoter of hypoxic fetal cardiomyocytes in mice. Scientif 7, 4486.	c Reports, 2017,	1.6	30
454	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.		13.7	566
455	Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cellular a Molecular Life Sciences, 2017, 74, 1019-1034.	nd	2.4	63
456	Nestin Expressed by Preâ€Existing Cardiomyocytes Recapitulated in Part an Embryonic Suppressive Role of p38 MAPK. Journal of Cellular Physiology, 2017, 232, 1717-1727.	Phenotype;	2.0	18
458	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .		0.1	0
459	miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Exp Molecular Medicine, 2017, 49, e386-e386.	perimental and	3.2	31
460	Cell therapy for cardiac diseases. Continuing Cardiology Education, 2017, 3, 170-175.		0.4	0

#	Article	IF	CITATIONS
461	Identification of differentially expressed IncRNAs involved in transient regeneration of the neonatal C57BL/6J mouse heart by next-generation high-throughput RNA sequencing. Oncotarget, 2017, 8, 28052-28062.	0.8	15
462	Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. , 2017, , 313-338.		8
463	EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. ELife, 2017, 6, .	2.8	44
464	Noncoding RNA and Cardiomyocyte Proliferation. Stem Cells International, 2017, 2017, 1-6.	1.2	6
465	Is biological repair of Heart on the Horizon?. Pakistan Journal of Medical Sciences, 2017, 33, 1042-1046.	0.3	3
466	The Erythropoietin System Protects the Heart Upon Injury by Cardiac Progenitor Cell Activation. Vitamins and Hormones, 2017, 105, 233-248.	0.7	3
467	Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Research and Therapy, 2017, 8, 185.	2.4	31
468	Pathophysiology and therapeutic potential of cardiac fibrosis. Inflammation and Regeneration, 2017, 37, 13.	1.5	52
469	Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis. Scientific Reports, 2017, 7, 1407.	1.6	29
470	Ascending Aortic Constriction Promotes Cardiomyocyte Proliferation in Neonatal Rats. International Heart Journal, 2017, 58, 264-270.	0.5	6
471	Cardiovascular Stem Cell Niche. , 2017, , 93-109.		1
472	Bioinformatics analysis of key genes and signaling pathways associated with myocardial infarction following telomerase activation. Molecular Medicine Reports, 2017, 16, 2915-2924.	1.1	2
473	Cardiac progenitor cells application in cardiovascular disease. Journal of Cardiovascular and Thoracic Research, 2017, 9, 127-132.	0.3	41
474	Comparative regenerative mechanisms across different mammalian tissues. Npj Regenerative Medicine, 2018, 3, 6.	2.5	157
475	Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nature Communications, 2018, 9, 754.	5.8	94
476	SDF 1-alpha Attenuates Myocardial Injury Without Altering the Direct Contribution of Circulating Cells. Journal of Cardiovascular Translational Research, 2018, 11, 274-284.	1.1	18
477	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	0
478	Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Developmental Cell, 2018, 44, 433-446.e7.	3.1	203

#	Article	IF	CITATIONS
479	A Role for Ploidy in Heart Regeneration. Developmental Cell, 2018, 44, 403-404.	3.1	5
480	Does a Newly Characterized Cell From the Bone Marrow Repair the Heart After Acute Myocardial Infarction?. Circulation Research, 2018, 122, 1036-1038.	2.0	2
481	Human ISL1+ Ventricular Progenitors Self-Assemble into an InÂVivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Molecular Therapy, 2018, 26, 1644-1659.	3.7	38
482	Mechanisms of Cardiac Repair and Regeneration. Circulation Research, 2018, 122, 1151-1163.	2.0	136
483	Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death and Differentiation, 2018, 25, 471-476.	5.0	56
484	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation, 2018, 137, 2152-2165.	1.6	67
485	Cellular Dedifferentiation and Regenerative Medicine. , 2018, , .		0
486	MicroRNA Protocols. Methods in Molecular Biology, 2018, , .	0.4	4
487	Neonatal Rat Cardiomyocytes Isolation, Culture, and Determination of MicroRNAs' Effects in Proliferation. Methods in Molecular Biology, 2018, 1733, 203-213.	0.4	11
488	Combining cell and gene therapy to advance cardiac regeneration. Expert Opinion on Biological Therapy, 2018, 18, 409-423.	1.4	22
489	TLR3 Mediates Repair and Regeneration of Damaged Neonatal Heart through Glycolysis Dependent YAP1 Regulated miR-152 Expression. Cell Death and Differentiation, 2018, 25, 966-982.	5.0	70
490	Insulin-Like Growth Factor 1 in the Cardiovascular System. Reviews of Physiology, Biochemistry and Pharmacology, 2018, 175, 1-45.	0.9	19
491	Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes. Cardiovascular Research, 2018, 114, 103-122.	1.8	27
492	Structure and function of the Nppa–Nppb cluster locus during heart development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1435-1444.	2.4	91
493	Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. Journal of Molecular Endocrinology, 2018, 61, R61-R73.	1.1	50
494	Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature Communications, 2018, 9, 1659.	5.8	134
495	Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation, 2018, 138, 793-805.	1.6	163
496	Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovascular Research, 2018, 114, 1642-1655.	1.8	65

ARTICLE IF CITATIONS Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis. 497 1.8 12 Cardiovascular Research, 2018, 114, 1098-1114. Cardiac stem cell aging and heart failure. Pharmacological Research, 2018, 127, 26-32. 3.1 The use and abuse of Cre/Lox recombination to identify adult cardiomyocyte renewal rate and origin. 499 3.122 Pharmacological Research, 2018, 127, 116-128. Chasing c-Kit through the heart: Taking a broader view. Pharmacological Research, 2018, 127, 110-115. 500 The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. 501 3.1 89 Pharmacological Research, 2018, 127, 129-140. NanoSIMS for biological applications: Current practices and analyses. Biointerphases, 2018, 13, 03B301. 0.6 Heart regeneration and the cardiomyocyte cell cycle. Pflugers Archiv European Journal of Physiology, 503 1.3 39 2018, 470, 241-248. Sustained cardiac programming by shortâ€ŧerm juvenile exercise training in male rats. Journal of Physiology, 2018, 596, 163-180. 504 1.3 Two mechanisms of cardiac stem cell-mediated cardiomyogenesis in the adult mammalian heart 505 0.8 5 include formation of colonies and cell-in-cell structures. Oncotarget, 2018, 9, 34159-34175. DNA Synthesis Is Activated in Mosquitoes and Human Monocytes During the Induction of Innate 2.2 Immune Memory. Frontiers in Immunology, 2018, 9, 2834. Heart regeneration after myocardial infarction: the role of microRNAs. Non-coding RNA Investigation, 507 0.6 0 0, 2, 26-26. Senescent cells: a therapeutic target for cardiovascular disease. Journal of Clinical Investigation, 508 138 2018, 128, 1217-1228. Myocardial Repair., 2018, , 425-439. 509 0 OBSOLETE: Zebrafish., 2018, , . 511 OBSOLETE: Myocardial Repair., 2018,,. 0 Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Frontiers in Cell 1.8 and Developmental Biology, 2018, 6, 139. Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated 513 1.333 Communication. Frontiers in Physiology, 2018, 9, 1497. Discovery of a Small Molecule to Increase Cardiomyocytes and Protect the Heart After Ischemic 514 Injury. JACC Basic To Translational Science, 2018, 3, 639-653.

#	Article	IF	Citations
515	Drugging the Hippo (Pathway). JACC Basic To Translational Science, 2018, 3, 654-656.	1.9	2
516	Heart Regeneration in the Mexican Cavefish. Cell Reports, 2018, 25, 1997-2007.e7.	2.9	81
517	Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. Npj Regenerative Medicine, 2018, 3, 21.	2.5	27
518	Fate Mapping of Sca1 + Cardiac Progenitor Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2967-2969.	1.6	42
519	Adult Cardiac Stem Cell Concept and the Process of Science. Circulation, 2018, 138, 2940-2942.	1.6	20
520	Endothelial Contributions to Zebrafish Heart Regeneration. Journal of Cardiovascular Development and Disease, 2018, 5, 56.	0.8	17
521	Profiling proliferative cells and their progeny in damaged murine hearts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12245-E12254.	3.3	154
523	Zebrafish. , 2018, , 759-770.		0
524	Autophagy in Health and Disease. Pancreatic Islet Biology, 2018, , .	0.1	1
525	Recovery of failing hearts by mechanical unloading: Pathophysiologic insights and clinical relevance. American Heart Journal, 2018, 206, 30-50.	1.2	18
526	Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nature Reviews Cardiology, 2018, 15, 685-704.	6.1	173
527	Autophagic Regulation of Cardiomyocyte Survival and Heart Regeneration. Pancreatic Islet Biology, 2018, , 101-118.	0.1	0
528	Evaluation of the cardioprotective potential of extracellular vesicles – a systematic review and meta-analysis. Scientific Reports, 2018, 8, 15702.	1.6	29
529	Inhibition of cyclin-dependent kinase 2 protects against doxorubicin-induced cardiomyocyte apoptosis and cardiomyopathy. Journal of Biological Chemistry, 2018, 293, 19672-19685.	1.6	37
530	Cardiac regeneration following cryoinjury in the adult zebrafish targets a maturation-specific biomechanical remodeling program. Scientific Reports, 2018, 8, 15661.	1.6	16
531	Distinguishing Cardiomyocyte Division From Binucleation. Circulation Research, 2018, 123, 1012-1014.	2.0	12
532	Molecular Atlas of Postnatal Mouse Heart Development. Journal of the American Heart Association, 2018, 7, e010378.	1.6	65
533	Single Cell Gene Expression to Understand the Dynamic Architecture of the Heart. Frontiers in Cardiovascular Medicine, 2018, 5, 167.	1.1	16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
534	Cardiac Glucolipotoxicity and Cardiovascular Outcomes. Medicina (Lithuania), 2018, 54	, 70.	0.8	7
536	A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Communications, 2018, 9, 4237.	Nature	5.8	57
537	Midbody Positioning and Distance Between Daughter Nuclei Enable Unequivocal Identi Cardiomyocyte Cell Division in Mice. Circulation Research, 2018, 123, 1039-1052.	ication of	2.0	82
538	Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approa Look Into the Future. Frontiers in Cardiovascular Medicine, 2018, 5, 109.	ches and a	1.1	7
539	Constitutive cardiomyocyte proliferation in the leopard gecko (<i>Eublepharis maculari Journal of Morphology, 2018, 279, 1355-1367.</i>	us).	0.6	14
540	Reviews of Physiology, Biochemistry and Pharmacology, Vol. 175. Reviews of Physiology and Pharmacology, 2018, , .	y, Biochemistry	0.9	1
541	p53 and Vascular Dysfunction: MicroRNA in Endothelial Cells. , 2018, , .			1
542	Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Current Drug Targets, 2 241-254.	2018, 20,	1.0	7
543	Discovery of the Phenomenon of Intracellular Development of Cardiac Stem Cell: A New Understanding of Biology and Behavior of Tissue-Specific Stem Cells. , 2018, , .	[,] Step in		0
544	Repressive histone methylation regulates cardiac myocyte cell cycle exit. Journal of Mole Cellular Cardiology, 2018, 121, 1-12.	ecular and	0.9	23
545	The epicardium as a hub for heart regeneration. Nature Reviews Cardiology, 2018, 15, 6	31-647.	6.1	159
546	Induction of the mitochondrial NDUFA4L2 protein by HIF-1a regulates heart regeneration the survival of cardiac stem cell. Biochemical and Biophysical Research Communications 2226-2233.	n by promoting s, 2018, 503,	1.0	10
547	The Amniotic Fluid Stem Cell Secretome. , 2018, , 21-37.			0
548	Cardiac Stem Cells: A Plethora of Potential Therapies for Myocardial Regeneration With 2018, , 135-171.	in Reach. ,		1
549	Development, Proliferation, and Growth of the Mammalian Heart. Molecular Therapy, 20 1599-1609.)18, 26,	3.7	76
550	Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat myocardial infarction. PLoS ONE, 2018, 13, e0197566.	model of	1.1	32
551	Beating the odds: programming proliferation in the mammalian heart. Genome Medicin	e, 2018, 10, 36.	3.6	2
552	Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quan Combinatorial Omics Approach. Frontiers in Physiology, 2018, 9, 365.	titative	1.3	34

#	Article	IF	CITATIONS
553	Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nature Reviews Cardiology, 2018, 15, 523-542.	6.1	103
554	Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiological Reviews, 2018, 98, 419-475.	13.1	120
555	Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells International, 2018, 2018, 1-13.	1.2	23
556	Epigenetic regulation of cardiac cell cycle Re-entry and proliferation. Journal of Molecular and Cellular Cardiology, 2018, 121, 297-299.	0.9	2
557	HIF1 mediates a switch in pyruvate kinase isoforms after myocardial infarction. Physiological Genomics, 2018, 50, 479-494.	1.0	53
558	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
559	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.	2.0	53
560	Enhancement Strategies for Cardiac Regenerative Cell Therapy. Circulation Research, 2018, 123, 177-187.	2.0	23
561	Genetic Lineage Tracing of Sca-1 ⁺ Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation, 2018, 138, 2931-2939.	1.6	83
562	Polyploidy in tissue homeostasis and regeneration. Development (Cambridge), 2018, 145, .	1.2	127
563	Early Regenerative Capacity in the Porcine Heart. Circulation, 2018, 138, 2798-2808.	1.6	192
564	The Biological Role of Nestin(+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Frontiers in Cell and Developmental Biology, 2018, 6, 15.	1.8	23
565	Stem Cell Therapy in Heart Diseases – Cell Types, Mechanisms and Improvement Strategies. Cellular Physiology and Biochemistry, 2018, 48, 2607-2655.	1.1	159
566	Chemical modulation of cell fates: in situ regeneration. Science China Life Sciences, 2018, 61, 1137-1150.	2.3	7
567	Melanophore multinucleation pathways in zebrafish. Development Growth and Differentiation, 2018, 60, 454-459.	0.6	7
568	Characterization of Recombinant Adeno-Associated Viral Transduction and Safety Profiles in Cardiomyocytes. Cellular Physiology and Biochemistry, 2018, 48, 1894-1900.	1.1	11
569	Identification of a multipotent Twist2-expressing cell population in the adult heart. Proceedings of the United States of America, 2018, 115, E8430-E8439.	3.3	16
570	Cardiomyocyte Proliferation for Therapeutic Regeneration. Current Cardiology Reports, 2018, 20, 63.	1.3	35

	CITATION	Report	
#	ARTICLE Suppression of Pro-fibrotic Signaling Potentiates Factor-mediated Reprogramming of Mouse	IF 0.2	Citations
572	Embryonic Fibroblasts into Induced Cardiomyocytes. Journal of Visualized Experiments, 2018, , . Exercise-Based Cardiovascular Therapeutics: From Cellular to Molecular Mechanisms. , 2018, , 87-97.		1
573	Tissue repair and regeneration with endogenous stem cells. Nature Reviews Materials, 2018, 3, 174-193.	23.3	168
574	Cardiac Stem Cells. , 2019, , 247-272.		2
575	Coronary no-reflow in the modern era: a review of advances in diagnostic techniques and contemporary management. Expert Review of Cardiovascular Therapy, 2019, 17, 605-623.	0.6	9
576	MicroRNA let-7-TGFBR3 signalling regulates cardiomyocyte apoptosis after infarction. EBioMedicine, 2019, 46, 236-247.	2.7	30
577	The effects of Tel2 on cardiomyocyte survival. Life Sciences, 2019, 232, 116665.	2.0	1
578	Biological explorations with nanoscale secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 2019, 34, 1534-1545.	1.6	28
579	The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells, 2019, 8, 701.	1.8	70
580	PDGFR-Î ² Signaling Regulates Cardiomyocyte Proliferation and Myocardial Regeneration. Cell Reports, 2019, 28, 966-978.e4.	2.9	44
581	Toward Automatic Cardiomyocyte Clustering and Counting through Hesitant Fuzzy Sets. Applied Sciences (Switzerland), 2019, 9, 2875.	1.3	0
582	Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biology, 2019, 17, e3000335.	2.6	13
583	Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Reports, 2019, 28, 190-201.e3.	2.9	23
584	Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends in Endocrinology and Metabolism, 2019, 30, 557-567.	3.1	30
585	p38α MAPK inhibition translates to cell cycle re-entry of neonatal rat ventricular cardiomyocytes and de novo nestin expression in response to thrombin and after apex resection. Scientific Reports, 2019, 9, 8203.	1.6	5
586	Residual Diploidy in Polyploid Tissues: A Cellular State with Enhanced Proliferative Capacity for Tissue Regeneration?. Stem Cells and Development, 2019, 28, 1527-1539.	1.1	15
588	Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Science Translational Medicine, 2019, 11, .	5.8	73
589	Covering and Re-Covering the Heart: Development and Regeneration of the Epicardium. Journal of Cardiovascular Development and Disease, 2019, 6, 3.	0.8	10

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
590	Model systems for regeneration: zebrafish. Development (Cambridge), 2019, 146, .		1.2	139
591	Upregulation of Yy1 Suppresses Dilated Cardiomyopathy caused by Ttn insufficiency. Sc 2019, 9, 16330.	ientific Reports,	1.6	7
592	Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Foc Ischemia/Reperfusion Injury. Frontiers in Endocrinology, 2019, 10, 733.	us on Cardiac	1.5	33
593	Model organisms at the heart of regeneration. DMM Disease Models and Mechanisms, 2	.019, 12, .	1.2	22
594	Isolation of Cardiomyocytes Undergoing Mitosis With Complete Cytokinesis. Circulatior 2019, 125, 1070-1086.	ı Research,	2.0	14
595	Zebrafish as a Smart Model to Understand Regeneration After Heart Injury: How Fish Co Humans. Frontiers in Cardiovascular Medicine, 2019, 6, 107.	uld Help	1.1	43
596	Dual genetic approaches for deciphering cell fate plasticity in vivo: more than double. Cu Opinion in Cell Biology, 2019, 61, 101-109.	ırrent	2.6	18
597	Cell Cycle–Mediated Cardiac Regeneration in the Mouse Heart. Current Cardiology Re 131.	ports, 2019, 21,	1.3	10
598	Deciphering Metabolic Heterogeneity by Single-Cell Analysis. Analytical Chemistry, 2019	, 91, 13314-13323.	3.2	87
599	Endogenous Regeneration of the Mammalian Heart. , 2019, , 339-354.			2
600	Stimulating Cardiogenesis as a Treatment for Heart Failure. Circulation Research, 2019,	124, 1647-1657.	2.0	59
601	Disease-specific protein corona sensor arrays may have disease detection capacity. Nanc Horizons, 2019, 4, 1063-1076.	oscale	4.1	68
602	Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regenera Molecular and Cellular Proteomics, 2019, 18, 1745-1755.	tion.	2.5	51
603	Role of c-Kit in Myocardial Regeneration and Aging. Frontiers in Endocrinology, 2019, 10	, 371.	1.5	44
604	Alteration in ventricular pressure stimulates cardiac repair and remodeling. Journal of Mc and Cellular Cardiology, 2019, 133, 174-187.	vlecular	0.9	12
605	Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferencycling. Cell Discovery, 2019, 5, 30.	ntiation and	3.1	41
606	MicroRNA-302d promotes the proliferation of human pluripotent stem cell-derived cardi inhibiting <i>LATS2</i> in the Hippo pathway. Clinical Science, 2019, 133, 1387-1399.	omyocytes by	1.8	20
607	Advances in heart regeneration based on cardiomyocyte proliferation and regenerative p binucleated cardiomyocytes and polyploidization. Clinical Science, 2019, 133, 1229-125	otential of 3.	1.8	51

#	Article	IF	CITATIONS
608	MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature, 2019, 569, 418-422.	13.7	347
609	Regenerative Medicine and Biomarkers for Dilated Cardiomyopathy. , 2019, , 173-185.		2
610	Replication-Independent Histone Turnover Underlines the Epigenetic Homeostasis in Adult Heart. Circulation Research, 2019, 125, 198-208.	2.0	8
612	Tbx6 induces cardiomyocyte proliferation in postnatal and adult mouse hearts. Biochemical and Biophysical Research Communications, 2019, 513, 1041-1047.	1.0	8
613	Inhibition of let-7c Regulates Cardiac Regeneration after Cryoinjury in Adult Zebrafish. Journal of Cardiovascular Development and Disease, 2019, 6, 16.	0.8	5
614	Tollâ€like receptors in the functional orientation of cardiac progenitor cells. Journal of Cellular Physiology, 2019, 234, 19451-19463.	2.0	1
615	STAT3 Phosphorylation Mediating DMSO's Function on Fetal Cardiomyocyte Proliferation with Developmental Changes. International Heart Journal, 2019, 60, 392-399.	0.5	2
616	On Zebrafish Disease Models and Matters of the Heart. Biomedicines, 2019, 7, 15.	1.4	42
617	Rat Left Ventricular Cardiomyocytes Characterization in the Process of Postinfarction Myocardial Remodeling. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 730-736.	1.1	0
618	Age-related oxidative stress confines damage-responsive Bmi1+ cells to perivascular regions in the murine adult heart. Redox Biology, 2019, 22, 101156.	3.9	6
619	Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease. Basic Research in Cardiology, 2019, 114, 16.	2.5	34
620	The biochemical and electrophysiological profiles of amniotic fluid-derived stem cells following Wnt signaling modulation cardiac differentiation. Cell Death Discovery, 2019, 5, 59.	2.0	9
621	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circulation Research, 2019, 124, 938-951.	2.0	28
622	Definition of a cell surface signature for human cardiac progenitor cells after comprehensive comparative transcriptomic and proteomic characterization. Scientific Reports, 2019, 9, 4647.	1.6	17
623	Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32.	1.1	43
624	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	0.8	57
625	Extracellular Vesicles Released by Allogeneic Human Cardiac Stem/Progenitor Cells as Part of Their Therapeutic Benefit. Stem Cells Translational Medicine, 2019, 8, 911-924.	1.6	12
626	Surviving Acute Organ Failure: Cell Polyploidization and Progenitor Proliferation. Trends in Molecular Medicine, 2019, 25, 366-381.	3.5	64

#	Article	IF	CITATIONS
627	Recovery of the Xenopus laevis heart from ROSâ€induced stress utilizes conserved pathways of cardiac regeneration. Development Growth and Differentiation, 2019, 61, 212-227.	0.6	3
628	CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem Cells, 2019, 37, 958-972.	1.4	11
629	High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPÎ ² in rats after myocardial infarction. Life Sciences, 2019, 221, 319-326.	2.0	21
630	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	3.5	307
631	Molecular switch model for cardiomyocyte proliferation. Cell Regeneration, 2019, 8, 12-20.	1.1	41
632	Regenerating the field of cardiovascular cell therapy. Nature Biotechnology, 2019, 37, 232-237.	9.4	140
633	Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circulation Research, 2019, 124, 1184-1197.	2.0	32
634	Function Follows Form ― A Review of Cardiac Cell Therapy ―. Circulation Journal, 2019, 83, 2399-2412.	0.7	40
635	Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. Journal of Cardiovascular Medicine, 2019, 20, 640-649.	0.6	21
636	The regulation and function of the Hippo pathway in heart regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e335.	5.9	25
637	Immune responses in cardiac repair and regeneration: a comparative point of view. Cellular and Molecular Life Sciences, 2019, 76, 1365-1380.	2.4	96
638	Chemical and Topographical Singleâ€Cell Imaging by Nearâ€Field Desorption Mass Spectrometry. Angewandte Chemie, 2019, 131, 4589-4594.	1.6	12
639	KIT as a therapeutic target for non-oncological diseases. , 2019, 197, 11-37.		14
640	High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. Journal of Molecular and Cellular Cardiology, 2019, 127, 204-214.	0.9	20
641	Chemical and Topographical Singleâ€Cell Imaging by Nearâ€Field Desorption Mass Spectrometry. Angewandte Chemie - International Edition, 2019, 58, 4541-4546.	7.2	62
642	Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). Journal of Molecular and Cellular Cardiology, 2019, 127, 154-164.	0.9	53
643	Bmiâ€1 highâ€expressing cells enrich cardiac stem/progenitor cells and respond to heart injury. Journal of Cellular and Molecular Medicine, 2019, 23, 104-111.	1.6	5
644	Implications of scar structure and mechanics for post-infarction cardiac repair and regeneration. Experimental Cell Research, 2019, 376, 98-103.	1.2	12

ARTICLE IF CITATIONS # IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. American 645 1.5 37 Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H24-H34. Diverse relaxation rates exist among rat cardiomyocytes isolated from a single myocardial region. 646 1.3 Journal of Physiology, 2019, 597, 711-722. Cardiomyocyte proliferation, a target for cardiac regeneration. Biochimica Et Biophysica Acta -647 1.9 19 Molecular Cell Research, 2020, 1867, 118461. Oxygen as a key regulator of cardiomyocyte proliferation: New results about cell culture 648 1.9 conditions!. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118460. Molecular mechanisms of heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 649 2.3 28 20-28. Zebrafish heart regeneration: Factors that stimulate cardiomyocyte proliferation. Seminars in Cell 2.3 and Developmental Biology, 2020, 100, 3-10. Cardiomyocyte Polyploidy and Implications for Heart Regeneration. Annual Review of Physiology, 651 5.6 61 2020, 82, 45-61. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Seminars in Cell and 2.3 34 Developmental Biology, 2020, 100, 11-19. 653 Cellular Basis for Myocardial Regeneration and Repair., 2020, , 43-61.e3. 1 654 Stem Cell-Based and Gene Therapies in Heart Failure., 2020, , 599-607.e3. Paeonol Reverses Adriamycin Induced Cardiac Pathological Remodeling through Notch1 Signaling Reactivation in H9c2 Cells and Adult Zebrafish Heart. Chemical Research in Toxicology, 2020, 33, 655 12 1.7 312-323. Cardiomyocyte nuclearity and ploidy: when is double trouble?. Journal of Muscle Research and Cell 656 0.9 Motility, 2020, 41, 329-340. Thyroid Hormone Signalling: From the Dawn of Life to the Bedside. Journal of Molecular Evolution, 657 0.8 26 2020, 88, 88-103. Turning regenerative technologies into treatment to repair myocardial injuries. Journal of Cellular and Molecular Medicine, 2020, 24, 2704-2716. 1.6 29 Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair., 2020, 205, 659 23 107415. Heart regeneration in mouse and human: a bioengineering perspective. Current Opinion in Physiology, 2020, 14, 56-63. Clinical Trials of Limbal Stem Cell Deficiency Treated with Oral Mucosal Epithelial Cells. 661 1.8 18 International Journal of Molecular Sciences, 2020, 21, 411. Toward the Goal of Human Heart Regeneration. Cell Stem Cell, 2020, 26, 7-16. 5.2 114

#	Article	IF	CITATIONS
663	Cardiac tissue engineering therapeutic products to enhance myocardial contractility. Journal of Muscle Research and Cell Motility, 2020, 41, 363-373.	0.9	7
664	Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 29-51.	2.3	38
665	Lack of macroscopically evident cardiac regeneration or spontaneous functional recovery in infarcted neonatal pigs. Hellenic Journal of Cardiology, 2020, 61, 219-221.	0.4	1
666	Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS Journal, 2020, 287, 417-438.	2.2	40
667	Cardiac regeneration as an environmental adaptation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118623.	1.9	11
668	Dioxin Disrupts Dynamic DNA Methylation Patterns in Genes That Govern Cardiomyocyte Maturation. Toxicological Sciences, 2020, 178, 325-337.	1.4	7
669	An Aurora Kinase B–Based Mouse System to Efficiently Identify and Analyze Proliferating Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 570252.	1.8	6
670	Zebrafish cardiac regeneration—looking beyond cardiomyocytes to a complex microenvironment. Histochemistry and Cell Biology, 2020, 154, 533-548.	0.8	15
671	Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clinical Therapeutics, 2020, 42, 1857-1879.	1.1	7
672	Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation. Circulation, 2020, 142, 275-291.	1.6	88
673	The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart. Biomolecules, 2020, 10, 1024.	1.8	21
674	Cardiomyocyte renewal in the failing heart: lessons from the neonate?. Biophysical Reviews, 2020, 12, 785-787.	1.5	3
675	Ccn2a/Ctgfa is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish. Development (Cambridge), 2021, 148, .	1.2	14
676	Telomeres and telomerase in risk assessment of cardiovascular diseases. Experimental Cell Research, 2020, 397, 112361.	1.2	17
677	Cardiac Regeneration After Myocardial Infarction: an Approachable Goal. Current Cardiology Reports, 2020, 22, 122.	1.3	28
678	Novel Secondary Ion Mass Spectrometry Methods for the Examination of Metabolic Effects at the Cellular and Subcellular Levels. Frontiers in Behavioral Neuroscience, 2020, 14, 124.	1.0	22
679	Metabolic Analysis at the Nanoscale with Multiâ€isotope Imaging Mass Spectrometry (MIMS). Current Protocols in Cell Biology, 2020, 88, e111.	2.3	6
680	Resident macrophages as potential therapeutic targets for cardiac ageing and injury. Clinical and Translational Immunology, 2020, 9, e1167.	1.7	10

~		<u> </u>	
		IV F D(DDT
\sim	IIAI	IVE F	

#	Article	IF	CITATIONS
681	Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Frontiers in Cell and Developmental Biology, 2020, 8, 738.	1.8	13
682	Personalized wholeâ€body models integrate metabolism, physiology, and the gut microbiome. Molecular Systems Biology, 2020, 16, e8982.	3.2	122
683	Embryonic ECM Protein SLIT2 and NPNT Promote Postnatal Cardiomyocyte Cytokinesis. Circulation Research, 2020, 127, 908-910.	2.0	1
684	LPA ₃ -mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics, 2020, 10, 10892-10907.	4.6	17
685	Cardiac Progenitor Cells. Advances in Experimental Medicine and Biology, 2020, 1312, 51-73.	0.8	3
686	Site-Specific <i>N</i> -Glycoproteomic Analysis Reveals Upregulated Sialylation and Core Fucosylation during Transient Regeneration Loss in Neonatal Mouse Hearts. Journal of Proteome Research, 2020, 19, 3191-3200.	1.8	11
687	Induction of Proteasome Subunit Low Molecular Weight Protein (LMP)-2 Is Required to Induce Active Remodeling in Adult Rat Ventricular Cardiomyocytes. Medical Sciences (Basel, Switzerland), 2020, 8, 21.	1.3	3
688	Multiaxial Lenticular Stress-Strain Relationship of Native Myocardium is Preserved by Infarct-Induced Natural Heart Regeneration in Neonatal Mice. Scientific Reports, 2020, 10, 7319.	1.6	6
689	Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death and Disease, 2020, 11, 354.	2.7	95
690	Young at Heart: Combining Strategies to Rejuvenate Endogenous Mechanisms of Cardiac Repair. Frontiers in Bioengineering and Biotechnology, 2020, 8, 447.	2.0	17
691	Dexamethasone inhibits regeneration and causes ventricular aneurysm in the neonatal porcine heart after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2020, 144, 15-23.	0.9	9
692	Role of Mononuclear Cardiomyocytes in Cardiac Turnover and Regeneration. Current Cardiology Reports, 2020, 22, 39.	1.3	13
693	Yes-associated protein and transcriptional coactivator with PDZ-binding motif as new targets in cardiovascular diseases. Pharmacological Research, 2020, 159, 105009.	3.1	32
694	Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells, 2020, 9, 1391.	1.8	17
695	Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circulation Research, 2020, 127, 896-907.	2.0	37
696	miR-25 Promotes Cardiomyocyte Proliferation by Targeting FBXW7. Molecular Therapy - Nucleic Acids, 2020, 19, 1299-1308.	2.3	21
697	How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BioMed Research International, 2020, 2020, 1-9.	0.9	8
698	Direct Comparison of Mononucleated and Binucleated Cardiomyocytes Reveals Molecular Mechanisms Underlying Distinct Proliferative Competencies. Cell Reports, 2020, 30, 3105-3116.e4.	2.9	41

#	Article	IF	Citations
699	Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells, 2020, 9, 724.	1.8	18
700	Biodegradable Nanofibrous Temperatureâ€Responsive Gelling Microspheres for Heart Regeneration. Advanced Functional Materials, 2020, 30, 2000776.	7.8	34
701	Research progress on myocardial regeneration: what is new?. Chinese Medical Journal, 2020, , 716-723.	0.9	5
702	Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 2020, 8, 83.	2.0	136
703	Coronary Artery Disease: Therapeutics and Drug Discovery. Advances in Experimental Medicine and Biology, 2020, , .	0.8	4
704	An overview of the myocardial regeneration potential of cardiac c-Kit ⁺ progenitor cells via PI3K and MAPK signaling pathways. Future Cardiology, 2020, 16, 199-209.	0.5	7
705	Biomatrices for Heart Regeneration and Cardiac Tissue Modelling In Vitro. Advances in Experimental Medicine and Biology, 2020, 1298, 43-77.	0.8	1
706	Microâ€Lensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angewandte Chemie - International Edition, 2020, 59, 17864-17871.	7.2	52
707	Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomaterialia, 2020, 113, 380-392.	4.1	31
708	Developmental and cardiac toxicities of propofol in zebrafish larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 237, 108838.	1.3	5
709	3D Nanoscale Chemical Imaging of Core–Shell Microspheres via Microlensed Fiber Laser Desorption Postionization Mass Spectrometry. Analytical Chemistry, 2020, 92, 9916-9921.	3.2	9
711	Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. Learning Materials in Biosciences, 2020, , 187-211.	0.2	3
712	Micro‣ensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angewandte Chemie, 2020, 132, 18020-18027.	1.6	10
713	<i>Abcg2</i> â€expressing side population cells contribute to cardiomyocyte renewal through fusion. FASEB Journal, 2020, 34, 5642-5657.	0.2	9
714	Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway. Circulation, 2020, 141, 1554-1569.	1.6	39
715	Polyploidy in Cardiomyocytes. Circulation Research, 2020, 126, 552-565.	2.0	120
716	Targeting Age-Related Pathways in Heart Failure. Circulation Research, 2020, 126, 533-551.	2.0	111
717	Reviewing the Limitations of Adult Mammalian Cardiac Regeneration: Noncoding RNAs as Regulators of Cardiomyogenesis. Biomolecules, 2020, 10, 262.	1.8	11

#	Article	IF	CITATIONS
718	Scar Formation with Decreased Cardiac Function Following Ischemia/Reperfusion Injury in 1 Month Old Swine. Journal of Cardiovascular Development and Disease, 2020, 7, 1.	0.8	12
719	Talkin' â€~bout regeneration: new advances in cardiac regeneration using the zebrafish. Current Opinion in Physiology, 2020, 14, 48-55.	0.9	2
720	Harnessing Cardiac Regeneration as a Potential Therapeutic Strategy for AL Cardiac Amyloidosis. Current Cardiology Reports, 2020, 22, 1.	1.3	53
721	Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 323.	2.0	13
722	Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development (Cambridge), 2020, 147, .	1.2	45
724	Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells, 2020, 9, 991.	1.8	178
725	A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature, 2020, 582, 271-276.	13.7	77
726	Cardiomyocyte Maturation. Circulation Research, 2020, 126, 1086-1106.	2.0	355
727	Soluble Alpha-Klotho Alleviates Cardiac Fibrosis without Altering Cardiomyocytes Renewal. International Journal of Molecular Sciences, 2020, 21, 2186.	1.8	11
728	Non-coding RNA therapeutics for cardiac regeneration. Cardiovascular Research, 2021, 117, 674-693.	1.8	56
729	Senescence in Post-Mitotic Cells: A Driver of Aging?. Antioxidants and Redox Signaling, 2021, 34, 308-323.	2.5	117
730	Loss of Endogenously Cycling Adult Cardiomyocytes Worsens Myocardial Function. Circulation Research, 2021, 128, 155-168.	2.0	17
731	Cardiomyocytes in congenital heart disease: Overcoming cytokinesis failure in tetralogy of Fallot. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1587-1590.	0.4	8
732	Going the Long Noncoding RNA Way Toward Cardiac Regeneration: Mapping Candidate Long Noncoding RNA Controllers of Regeneration. Canadian Journal of Cardiology, 2021, 37, 374-376.	0.8	2
733	Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. Journal of Molecular Cell Biology, 2021, 13, 41-58.	1.5	11
734	Cardiac Regeneration: New Hope for an Old Dream. Annual Review of Physiology, 2021, 83, 59-81.	5.6	28
735	Proximity to injury, but neither number of nuclei nor ploidy define pathological adaptation and plasticity in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 152, 95-104.	0.9	13
736	Effect of cellular and ECM aging on human iPSC-derived cardiomyocyte performance, maturity and senescence. Biomaterials, 2021, 268, 120554.	5.7	44

#	Article	IF	CITATIONS
737	Recapturing embryonic potential in the adult epicardium: Prospects for cardiac repair. Stem Cells Translational Medicine, 2021, 10, 511-521.	1.6	12
738	CRISPR/Cas9-edited triple-fusion reporter gene imaging of dynamics and function of transplanted human urinary-induced pluripotent stem cell-derived cardiomyocytes. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 708-720.	3.3	8
739	Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death and Differentiation, 2021, 28, 1398-1417.	5.0	27
740	A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Reviews and Reports, 2021, 17, 748-776.	1.7	13
741	Translation of <i>Tudor-SN</i> , a novel terminal oligo-pyrimidine (TOP) mRNA, is regulated by the mTORC1 pathway in cardiomyocytes. RNA Biology, 2021, 18, 900-913.	1.5	3
742	LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Research, 2021, 31, 450-462.	5.7	41
744	Hormonal control of cardiac regenerative potential. Endocrine Connections, 2021, 10, R25-R35.	0.8	8
745	Exosomes targeted towards applications in regenerative medicine. Nano Select, 2021, 2, 880-908.	1.9	12
746	Cardiac aging. , 2021, , 323-344.		0
747	Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals. Journal of the American Heart Association, 2021, 10, e017839.	1.6	26
748	Cardiomyocytes in the Mammalian Adult Heart. , 2021, , 63-72.		0
749	Histone modifications in cardiovascular disease initiation and progression. , 2021, , 77-112.		1
750	Single cell imaging reveals cisplatin regulating interactions between transcription (co)factors and DNA. Chemical Science, 2021, 12, 5419-5429.	3.7	14
751	DNA methylation in heart failure. , 2021, , 55-75.		0
752	NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover. BMC Molecular and Cell Biology, 2021, 22, 5.	1.0	9
754	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. Biology, 2021, 10, 172.	1.3	31
755	Cell type–specific microRNA therapies for myocardial infarction. Science Translational Medicine, 2021, 13, .	5.8	23
756	Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines, 2021, 9, 204.	1.4	13

#	Article	IF	Citations
757	Use of stable isotope-tagged thymidine and multi-isotope imaging mass spectrometry (MIMS) for quantification of human cardiomyocyte division. Nature Protocols, 2021, 16, 1995-2022.	5.5	8
758	Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovascular Research, 2022, 118, 597-611.	1.8	41
759	A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals. Current Cardiology Reports, 2021, 23, 29.	1.3	7
760	Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. International Journal of Molecular Sciences, 2021, 22, 3288.	1.8	27
761	Increased transcript expression levels of DNA methyltransferases type 1 and 3A during cardiac muscle long-term cell culture. Medical Journal of Cell Biology (discontinued), 2021, 9, 27-32.	0.2	1
762	Protocatechuic aldehyde protects cardiomycoytes against ischemic injury via regulation of nuclear pyruvate kinase M2. Acta Pharmaceutica Sinica B, 2021, 11, 3553-3566.	5.7	15
763	The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 664527.	1.8	4
764	Implications of the Wilms' Tumor Suppressor Wt1 in Cardiomyocyte Differentiation. International Journal of Molecular Sciences, 2021, 22, 4346.	1.8	13
765	Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology, 2021, 162, .	1.4	10
766	Molecular regulation of myocardial proliferation and regeneration. Cell Regeneration, 2021, 10, 13.	1.1	13
767	The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Developmental Biology, 2021, 472, 30-37.	0.9	15
768	Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. Science China Life Sciences, 2021, 64, 1236-1280.	2.3	60
769	Cardiac regenerative capacity: an evolutionary afterthought?. Cellular and Molecular Life Sciences, 2021, 78, 5107-5122.	2.4	19
770	Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State—New Directions in Anti-Aging Regenerative Therapies. Cells, 2021, 10, 1343.	1.8	3
771	A Neonatal Mouse Model for Pressure Overload: Myocardial Response Corresponds to Severity. Frontiers in Cardiovascular Medicine, 2021, 8, 660246.	1.1	7
772	Nucleated red blood cells participate in myocardial regeneration in the toad <i>Bufo Gargarizan Gargarizan</i> . Experimental Biology and Medicine, 2021, 246, 1760-1775.	1.1	0
773	MiR-124 Regulates the Inflammation and Apoptosis in Myocardial Infarction Rats by Targeting STAT3. Cardiovascular Toxicology, 2021, 21, 710-720.	1.1	8
774	Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging. PLoS ONE, 2021, 16, e0240768.	1.1	10

#	Article	IF	CITATIONS
775	Genetic, epigenetic, and postâ€transcriptional basis of divergent tissue regenerative capacities among vertebrates. Genetics & Genomics Next, 2021, 2, e10042.	0.8	13
776	Altered Glycosylation in the Aging Heart. Frontiers in Molecular Biosciences, 2021, 8, 673044.	1.6	10
777	Transient reprogramming of postnatal cardiomyocytes to a dedifferentiated state. PLoS ONE, 2021, 16, e0251054.	1.1	4
778	Developmental and lifelong dioxin exposure induces measurable changes in cardiac structure and function in adulthood. Scientific Reports, 2021, 11, 10378.	1.6	0
779	Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration. Pediatric Cardiology, 2021, 42, 1554-1566.	0.6	1
780	Cell Cycle Withdrawal Limit the Regenerative Potential of Neonatal Cardiomyocytes. Cardiovascular Engineering and Technology, 2021, 12, 475-484.	0.7	3
781	Apex Resection in Zebrafish (Danio rerio) as a Model of Heart Regeneration: A Video-Assisted Guide. International Journal of Molecular Sciences, 2021, 22, 5865.	1.8	2
782	Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. Biomedical Materials (Bristol), 2021, 16, 045026.	1.7	7
783	Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Research, 2021, 29, 245-260.	1.0	24
785	Combining stem cells in myocardial infarction: The road to superior repair?. Medicinal Research Reviews, 2022, 42, 343-373.	5.0	23
786	Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Science Translational Medicine, 2021, 13, .	5.8	68
787	Innate Mechanisms of Heart Regeneration. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040766.	2.3	5
789	Every Beat You Take—The Wilms′ Tumor Suppressor WT1 and the Heart. International Journal of Molecular Sciences, 2021, 22, 7675.	1.8	9
790	Intracellular Development of Resident Cardiac Stem Cells: An Overlooked Phenomenon in Myocardial Self-Renewal and Regeneration. Life, 2021, 11, 723.	1.1	1
791	Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure. International Journal of Molecular Sciences, 2021, 22, 7720.	1.8	7
792	The role of the Hippo pathway in heart disease. FEBS Journal, 2022, 289, 5819-5833.	2.2	16
793	Polyploid cardiomyocytes: implications for heart regeneration. Development (Cambridge), 2021, 148, .	1.2	20
794	Application of genetic cell-lineage tracing technology to study cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2021, 156, 57-68.	0.9	3

#	Article	IF	CITATIONS
795	Long Noncoding RNA Cardiac Physiological Hypertrophy–Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation, 2021, 144, 303-317.	1.6	67
796	Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. International Journal of Molecular Sciences, 2021, 22, 7764.	1.8	18
797	Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging. Nature Communications, 2021, 12, 4628.	5.8	33
798	Cardiomyocyte heterogeneity during zebrafish development and regeneration. Developmental Biology, 2021, 476, 259-271.	0.9	6
799	A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 2021, 12, 4808.	5.8	13
800	Transcriptional regulatory elements of hif1α in a distal locus of islet1 in Xenopus laevis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 255, 110598.	0.7	0
802	Mitochondrial fatty acid utilization increases chromatin oxidative stress in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
803	Exercise-Induced Adult Cardiomyocyte Proliferation in Mammals. Frontiers in Physiology, 2021, 12, 729364.	1.3	2
804	Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Reviews and Reports, 2022, 18, 2104-2136.	1.7	6
806	Role of PTEN-less in cardiac injury, hypertrophy and regeneration. Cell Regeneration, 2021, 10, 25.	1.1	15
807	Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes, 2021, 12, 1485.	1.0	11
808	Live imaging of adult zebrafish cardiomyocyte proliferation <i>ex vivo</i> . Development (Cambridge), 2021, 148, .	1.2	5
809	Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 2021, 13, 1231-1247.	1.3	12
810	Sex and Regeneration. Biology, 2021, 10, 937.	1.3	2
812	Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells, 2021, 10, 2571.	1.8	8
813	Functional heart recovery in an adult mammal, the spiny mouse. International Journal of Cardiology, 2021, 338, 196-203.	0.8	19
815	HIF in the heart: development, metabolism, ischemia, and atherosclerosis. Journal of Clinical Investigation, 2021, 131, .	3.9	53
816	Probing β-Cell Biology in Space and Time. Diabetes, 2021, 70, 2163-2173.	0.3	3

#	Article	IF	CITATIONS
817	Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mechanisms of Ageing and Development, 2021, 198, 111540.	2.2	52
818	Hypoxic Stem Cell-Derived Extracellular Vesicles for Cardiac Repair in Preclinical Animal Models of Myocardial Infarction: A Meta-Analysis. Stem Cells and Development, 2021, 30, 891-907.	1.1	7
819	Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. Journal of Molecular and Cellular Cardiology, 2021, 159, 105-119.	0.9	16
820	Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nature Communications, 2021, 12, 5784.	5.8	33
821	RNA interference therapeutics for cardiac regeneration. Current Opinion in Genetics and Development, 2021, 70, 48-53.	1.5	5
822	Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Seminars in Cell and Developmental Biology, 2021, 118, 94-106.	2.3	19
823	IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity. Journal of Molecular and Cellular Cardiology, 2021, 161, 62-74.	0.9	9
824	Multiomics approach for mycotoxins toxicology. , 2021, , 69-95.		1
825	Cardiac Regeneration: New Insights Into the Frontier of Ischemic Heart Failure Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 637538.	2.0	14
826	Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair and Regeneration, 2021, 29, 211-224.	1.5	8
827	Differentiation of Stem Cells into Cardiomyocyte Lineage: In Vitro Cell Culture, In Vivo Transplantation in Animal Models. Pancreatic Islet Biology, 2021, , 103-121.	0.1	1
828	Cycling Cardiomyocytes. Circulation Research, 2021, 128, 169-171.	2.0	5
829	Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Reviews and Reports, 2021, 17, 685-693.	1.7	4
830	Epigenetic dysregulation in cardiovascular aging and disease. , 2021, 1, .		14
831	Cellular Basis for Tissue Regeneration: Cellular Dedifferentiation. , 2021, , 57-76.		0
832	Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Materials Advances, 2021, 2, 2231-2262.	2.6	25
833	Generating Primary Cultures of Murine Cardiac Myocytes and Cardiac Fibroblasts to Study Viral Myocarditis. Methods in Molecular Biology, 2015, 1299, 1-16.	0.4	7
834	Cellular Therapy for Ischemic Heart Disease: An Update. Advances in Experimental Medicine and Biology, 2019, 1201, 195-213.	0.8	18

ARTICLE IF CITATIONS Cardiovascular Disease and Aging., 2016, , 121-160. 835 10 Myocardial Tissue Engineering for Cardiac Repair. Stem Cells in Clinical Applications, 2017, , 153-164. 0.4 837 Progenitor Cells from the Adult Heart. Cardiac and Vascular Biology, 2017, , 19-39. 0.2 2 The Role of Redox Signalling in Cardiovascular Regeneration., 2019, , 19-37. 838 Derivation of proliferative islet1-positive cells during metamorphosis and wound response in 839 0.8 1 Xenopus. Histochemistry and Cell Biology, 2021, 155, 133-143. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nature Biomedical Engineering, 2017, 1, 983-992. 11.6 184 Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other 850 1.0 13 Pathways. Molecular Pharmacology, 2020, 97, 90-101. Bmi1-Progenitor Cell Ablation Impairs the Angiogenic Response to Myocardial Infarction. 1.1 Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2160-2173. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. 852 2.3 19 JCI Insight, 2019, 4, . Virgin birth: engineered heart muscle from parthenogenetic stem cells. Journal of Clinical Investigation, 2013, 123, 1010-1013. Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal 854 31 3.9 of Clinical Investigation, 2017, 127, 4285-4296. Redirecting cardiac growth mechanisms for therapeutic regeneration. Journal of Clinical Investigation, 2017, 127, 427-436. Does cardiac development provide heart research with novel therapeutic approaches?. F1000Research, 856 0.8 7 2018, 7, 1756. Functional Cardiomyocytes Derived from Isl1 Cardiac Progenitors via Bmp4 Stimulation. PLoS ONE, 1.1 2014, 9, e110752. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and 858 1.1 35 Remodeling after Chronic Pressure Overload in Mice. PLoS ONE, 2015, 10, e0131019. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals. 1.1 PLoS ONE, 2016, 11, e0151251. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial 860 1.1 18 Infarction. PLoS ONE, 2016, 11, e0156562. Evaluating Tissue-Specific Recombination in a Pdgfrî±-CreERT2 Transgenic Mouse Line. PLoS ONE, 2016, 11, 1.1 e0162858.

#	Article	IF	CITATIONS
862	Senescence as a novel mechanism involved in Î ² -adrenergic receptor mediated cardiac hypertrophy. PLoS ONE, 2017, 12, e0182668.	1.1	26
863	Cited4 is related to cardiogenic induction and maintenance of proliferation capacity of embryonic stem cell-derived cardiomyocytes during in vitro cardiogenesis. PLoS ONE, 2017, 12, e0183225.	1.1	6
864	Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS ONE, 2017, 12, e0189861.	1.1	28
865	MicroRNAs Inducing Proliferation of Quiescent Adult Cardiomyocytes. Cardiovascular Regenerative Medicine, 2015, 2, .	1.7	15
866	Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. Journal of Endocrinology, 2020, 245, 39-51.	1.2	25
867	Complete cardiac regeneration in a mouse model of myocardial infarction. Aging, 2012, 4, 966-977.	1.4	214
868	ANGPTL8 reverses established adriamycin cardiomyopathy by stimulating adult cardiac progenitor cells. Oncotarget, 2016, 7, 80391-80403.	0.8	15
869	Generation of induced cardiac progenitor cells <i>via</i> somatic reprogramming. Oncotarget, 2017, 8, 29442-29457.	0.8	11
870	Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. Journal of Stem Cell and Transplantation Biology, 2015, 01, .	0.2	17
871	Thyroid hormone receptor α1 as a novel therapeutic target for tissue repair. Annals of Translational Medicine, 2018, 6, 254-254.	0.7	23
872	Regenerative Approaches to Post-Myocardial Infarction Heart Failure. Current Pharmaceutical Design, 2014, 20, 1930-1940.	0.9	9
873	Evaluation of Gene and Cell-Based Therapies for Cardiac Regeneration. Current Stem Cell Research and Therapy, 2013, 8, 304-312.	0.6	9
874	The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration. Biomolecules, 2021, 11, 19.	1.8	14
875	Cardiac regeneration: current therapies-future concepts. Journal of Thoracic Disease, 2013, 5, 683-97.	0.6	85
876	Generation of new cardiomyocytes after injury: de novo formation from resident progenitors vs. replication of pre-existing cardiomyocytes. Annals of Translational Medicine, 2015, 3, S8.	0.7	8
877	A specified therapeutic window for neuregulin-1 to regenerate neonatal heart muscle. Annals of Translational Medicine, 2015, 3, 249.	0.7	4
878	On the Problem of Cardiogenic Differentiation: Extracellular Matrix as an Emerging Clue. International Journal of Cardiovascular Research, 2017, 06, .	0.1	1
879	Acute Myocardial Injury: A Perspective on Lethal Reperfusion Injury. Cardiovascular Pharmacology: Open Access, 2017, 06, .	0.1	2

#	ARTICLE Myocardial Infarction: Perspectives on Cardiac Regeneration and Cardiac Remote Conditioning	IF	CITATIONS
880	Interventions to Limit Cellular Injury. World Journal of Cardiovascular Diseases, 2020, 10, 188-207.	0.0	2
881	Contemporary perspective on endogenous myocardial regeneration. World Journal of Stem Cells, 2015, 7, 793.	1.3	14
882	New Trends in Heart Regeneration: A Review. Journal of Stem Cells and Regenerative Medicine, 2016, 12, 61-68.	2.2	16
883	Mesenchymal stem cells as the near future of cardiology medicine - truth or wish?. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2019, 163, 8-18.	0.2	8
884	The Effects of Exercise Training Intensity on the Expression of C/EBPβ and CITED4 in Rats with Myocardial Infarction. Asian Journal of Sports Medicine, 2018, 9, .	0.1	3
885	Immunogenicity in Stem Cell Therapy for Cardiac Regeneration. Acta Cardiologica Sinica, 2020, 36, 588-594.	0.1	4
886	Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. ELife, 2018, 7, .	2.8	53
887	Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. ELife, 2019, 8, .	2.8	162
888	LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics, 2021, 11, 9397-9414.	4.6	21
889	TT-10–loaded nanoparticles promote cardiomyocyte proliferation and cardiac repair in a mouse model of myocardial infarction. JCl Insight, 2021, 6, .	2.3	8
890	Metformin accelerates zebrafish heart regeneration by inducing autophagy. Npj Regenerative Medicine, 2021, 6, 62.	2.5	22
891	Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system. Experimental Cell Research, 2021, 408, 112880.	1.2	7
892	Heart cells coaxed to divide and conquer. Nature, 0, , .	13.7	0
893	Physiology of Ventilation. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 353-440.	0.1	0
894	Cardiovascular Physiology. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 157-352.	0.1	0
895	Anatomy of the Ventilatory Apparatus. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 73-155.	0.1	1
896	Anatomy of the Cardiovascular Apparatus. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2014, , 1-71.	0.1	0
898	Transdifferentiation during Heart Regeneration. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	0

#	Article	IF	CITATIONS
900	Understanding Tissue Repair Through the Activation of Endogenous Resident Stem Cells. Pancreatic Islet Biology, 2014, , 31-48.	0.1	0
902	The Human Organism. , 2015, , 1-10.		0
903	How the Human Body Works: From Quarks to Cells. Science and Fiction, 2016, , 1-39.	0.0	0
904	Stem Cell Secretome and Paracrine Activity. Pancreatic Islet Biology, 2016, , 123-141.	0.1	1
905	Signature of Responders—Lessons from Clinical Samples. , 2016, , 445-460.		0
906	Myocardial Pharmacoregeneration. , 2016, , 111-143.		0
907	Cardiac Regeneration in Zebrafish. , 2016, , 307-337.		0
908	Regenerative Mechanisms of the Adult Injured and Failing Heart. , 2017, , 377-400.		0
909	The Emerging Role of Cardiac Stem Cells in Cardiac Regeneration. Pancreatic Islet Biology, 2017, , 101-118.	0.1	0
910	Epicardial Progenitors in the Embryonic and Adult Heart. Cardiac and Vascular Biology, 2017, , 41-65.	0.2	0
911	Cardiac development: from current understanding to new regenerative concepts. Journal of Thoracic Disease, 2017, 9, S1-S4.	0.6	0
912	Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Global Cardiology Science & Practice, 2017, 2016, e201628.	0.3	1
914	Therapeutics of Stem Cell Treatment in Anti-Aging and Rejuvenation. Stem Cell Discovery, 2018, 08, 13-31.	0.5	0
915	Dedifferentiation and the Heart. , 2018, , 39-64.		0
922	Angiogenic properties of myocardial c-kit+ cells. Genes and Cells, 2018, 13, 82-88.	0.2	5
924	Ferroptosis in Cardiovascular Disease. , 2019, , 147-172.		0
928	Lost in the fire. Science, 2019, 364, 123-124.	6.0	3
933	Heart stem cells: fact or fantasy?. Russian Journal of Cardiology, 2019, , 84-90.	0.4	1

#	Article	IF	CITATIONS
934	Drug Discovery for Coronary Artery Disease. Advances in Experimental Medicine and Biology, 2020, 1177, 297-339.	0.8	6
935	The cardiac stem cell niche during aging. Advances in Stem Cells and Their Niches, 2020, , 197-242.	0.1	0
936	Precision Oncology vs Phenotypic Approaches in the Management of Cancer: A Case for the Postmitotic State. Human Perspectives in Health Sciences and Technology, 2020, , 169-201.	0.2	0
937	High-Fidelity Quantification of Cell Cycle Activity with Multi-Isotope Imaging Mass Spectrometry. Methods in Molecular Biology, 2021, 2158, 257-268.	0.4	2
938	Experimental Hypoxia as a Model for Cardiac Regeneration in Mice. Methods in Molecular Biology, 2021, 2158, 337-344.	0.4	1
939	Ex Vivo Techniques to Study Heart Regeneration in Zebrafish. Methods in Molecular Biology, 2021, 2158, 211-222.	0.4	0
940	Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. Journal of Biological Chemistry, 2021, 297, 101345.	1.6	19
941	Facile Fabrication of Three-Dimensional Hydrogel Film with Complex Tissue Morphology. Bioengineering, 2021, 8, 164.	1.6	1
942	Age‑related myocardial remodeling: myth or reality?. Vnitrni Lekarstvi, 2020, 66, 507-511.	0.1	1
944	The Role of Thyroid Hormone Receptor $\hat{l}\pm 1$ in Cardiac Repair. , 2020, , 163-170.		0
945	Innate Immune Signaling in Cardiac Homeostasis and Cardiac Injuries. , 2020, , 183-200.		0
946	Heart regeneration using somatic cells. , 2020, , 259-283.		0
947	Exercise promotes heart regeneration in aged rats by increasing regenerative factors in myocardial tissue. Physiology International, 2020, 107, 166-176.	0.8	2
948	Microenvironment Stiffness Amplifies Post-ischemia Heart Regeneration in Response to Exogenous Extracellular Matrix Proteins in Neonatal Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 773978.	1.1	3
949	Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. Molecular Biomedicine, 2021, 2, 34.	1.7	5
953	Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 425-443.	1.8	3
954	Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Current Topics in Medicinal Chemistry, 2020, 20, 2344-2361.	1.0	0
955	Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International Journal of Clinical and Experimental Pathology, 2014, 7, 663-9.	0.5	34

#	Article	IF	CITATIONS
956	Altered expression of and in a rat model of Adriamycin-induced chronic heart failure. American Journal of Cardiovascular Disease, 2017, 7, 57-63.	0.5	4
957	MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. American Journal of Translational Research (discontinued), 2017, 9, 3120-3137.	0.0	26
958	Clonal Analysis of the Neonatal Mouse Heart using Nearest Neighbor Modeling. Journal of Visualized Experiments, 2020, , .	0.2	0
959	Isolation of Cardiomyocytes from Fixed Hearts for Immunocytochemistry and Ploidy Analysis. Journal of Visualized Experiments, 2020, , .	0.2	1
960	State-Of-Play for Cellular Therapies in Cardiac Repair and Regeneration. Stem Cells, 2021, 39, 1579-1588.	1.4	11
961	Cardiomyogenic Differentiation Potential of Human Dilated Myocardium-Derived Mesenchymal Stem/Stromal Cells: The Impact of HDAC Inhibitor SAHA and Biomimetic Matrices. International Journal of Molecular Sciences, 2021, 22, 12702.	1.8	7
962	Highâ€Resolution Multiâ€Isotope Imaging Mass Spectrometry (MIMS) Imaging Applications in Stem Cell Biology. Current Protocols, 2021, 1, e290.	1.3	4
963	FGF10 promotes cardiac repair through a dual cellular mechanism increasing cardiomyocyte renewal and inhibiting fibrosis. Cardiovascular Research, 2022, 118, 2625-2637.	1.8	16
964	Heart stem cells: hope or myth?. Russian Journal of Cardiology, 2021, 26, 4749.	0.4	0
965	High-Throughput Screening Platform in Postnatal Heart Cells and Chemical Probe Toolbox to Assess Cardiomyocyte Proliferation. Journal of Medicinal Chemistry, 2022, 65, 1505-1524.	2.9	3
966	Natural cardiac regeneration conserves native biaxial left ventricular biomechanics after myocardial infarction in neonatal rats. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105074.	1.5	2
967	Clonal Analysis of the Neonatal Mouse Heart using Nearest Neighbor Modeling. Journal of Visualized Experiments, 2020, , .	0.2	2
968	Isolation of Cardiomyocytes from Fixed Hearts for Immunocytochemistry and Ploidy Analysis. Journal of Visualized Experiments, 2020, , .	0.2	3
969	Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2022, 9, 43.	0.8	5
970	A Cycle of Inflammatory Adipocyte Death and Regeneration in Murine Adipose Tissue. Diabetes, 2022, 71, 412-423.	0.3	4
972	Hippo-Yap/Taz signalling in zebrafish regeneration. Npj Regenerative Medicine, 2022, 7, 9.	2.5	11
973	Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Frontiers in Cardiovascular Medicine, 2021, 8, 783072.	1.1	1
974	Co-transplantation of Mesenchymal Stromal Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Cardiac Function After Myocardial Damage. Frontiers in Cardiovascular Medicine, 2021, 8, 794690.	1.1	6

#	Article	IF	CITATIONS
975	The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Frontiers in Cardiovascular Medicine, 2021, 8, 809580.	1.1	10
976	Amino acid primed mTOR activity is essential for heart regeneration. IScience, 2022, 25, 103574.	1.9	15
977	Targeting ACSL1 promotes cardiomyocyte proliferation and cardiac regeneration. Life Sciences, 2022, 294, 120371.	2.0	11
978	Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorganic and Medicinal Chemistry Letters, 2022, 61, 128601.	1.0	1
979	Thyroid hormone-dependent regulation of metabolism and heart regeneration. Journal of Endocrinology, 2022, 252, R71-R82.	1.2	11
980	Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochemical Society Transactions, 2022, , .	1.6	8
981	IncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 2022, 145, 1218-1233.	1.6	43
982	Ion Channels and Transporters in Muscle Cell Differentiation. International Journal of Molecular Sciences, 2021, 22, 13615.	1.8	9
983	Single cell metabolomics. , 2022, , 457-513.		0
984	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439.	3.1	28
984 985	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842.	3.1 7.3	28
984 985 986	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i>	3.1 7.3 1.2	28 11 14
984 985 986 987	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, . Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63.	3.1 7.3 1.2 0.8	28 11 14 6
984 985 986 987	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, . Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63. Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 2022, 23, 3220.	 3.1 7.3 1.2 0.8 1.8 	28 11 14 6 7
984 985 986 987 988	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, . Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63. Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 2022, 23, 3220. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78.	 3.1 7.3 1.2 0.8 1.8 7.1 	28 11 14 6 7
984 985 986 987 988 988	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, . Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63. Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 2022, 23, 3220. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78. In Vivo Methods to Monitor Cardiomyocyte Proliferation. Journal of Cardiovascular Development and Disease, 2022, 9, 73.	 3.1 7.3 1.2 0.8 1.8 7.1 0.8 	28 11 14 6 7 175 2
984 985 986 987 988 988 989	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS Nano, 2022, 16, 4831-4842. Reprogramming cellular identity <i>in vivo</i> Development (Cambridge), 2022, 149, . Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63. Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 2022, 23, 3220. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78. In Vivo Methods to Monitor Cardiomyocyte Proliferation. Journal of Cardiovascular Development and Disease, 2022, 9, 73. Loss of NPPAAS1 promotes heart regeneration by stabilizing SFPQ〓NONO heteromer-induced DNA repair. Basic Research in Cardiology, 2022, 117, 10.	 3.1 7.3 1.2 0.8 7.1 0.8 2.5 	28 11 14 6 7 175 2 12

#	Article	IF	CITATIONS
993	Therapeutic application of chick early amniotic fluid: effective rescue of acute myocardial ischemic injury by intravenous administration. Cell Regeneration, 2022, 11, 9.	1.1	3
994	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	1.5	21
995	A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell, 2022, 29, 545-558.e13.	5.2	32
996	Inhibition of the NOTCH1 Pathway in the Stressed Heart Limits Fibrosis and Promotes Recruitment of Non-Myocyte Cells into the Cardiomyocyte Fate. Journal of Cardiovascular Development and Disease, 2022, 9, 111.	0.8	3
997	Glucocorticoids rapidly promote YAP phosphorylation via the cAMP-PKA pathway to repress mouse cardiomyocyte proliferative potential. Molecular and Cellular Endocrinology, 2022, 548, 111615.	1.6	3
998	Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. International Journal of Molecular Sciences, 2021, 22, 13104.	1.8	16
999	A Bibliometric and Visualized Analysis of Cardiac Regeneration Over a 20-Year Period. Frontiers in Cardiovascular Medicine, 2021, 8, 789503.	1.1	8
1000	Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Advanced Biology, 2022, 6, 2101133.	1.4	0
1001	Current knowledge about cardiomyocytes maturation and endogenous myocardial regeneration. Background to apply this potential in humans with end-stage heart failure. Medical Journal of Cell Biology (discontinued), 2021, 9, 153-159.	0.2	0
1003	LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. Journal of Cellular and Molecular Medicine, 2022, 26, 2981-2994.	1.6	6
1034	The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants, 2022, 11, 882.	2.2	3
1035	FUCCI-Based Live Imaging Platform Reveals Cell Cycle Dynamics and Identifies Pro-proliferative Compounds in Human iPSC-Derived Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2022, 9, 840147.	1.1	6
1036	Cellular Heterogeneity of the Heart. Frontiers in Cardiovascular Medicine, 2022, 9, 868466.	1.1	7
1037	A Reliable Approach for Revealing Molecular Targets in Secondary Ion Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 4615.	1.8	2
1038	Clonal Tracing of Heart Regeneration. Journal of Cardiovascular Development and Disease, 2022, 9, 141.	0.8	0
1039	Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Research in Cardiology, 2022, 117, 26.	2.5	4
1040	Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nature Cell Biology, 2022, 24, 645-658.	4.6	12
1041	Pediatric Diastolic Heart Failure: Clinical Features Description of 421 Cases. Frontiers in Pediatrics, 2022, 10, 846408.	0.9	5

#	Article	IF	CITATIONS
1042	The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. Journal of Molecular and Cellular Cardiology, 2022, 168, 98-106.	0.9	5
1043	Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Developmental Biology, 2022, 487, 57-66.	0.9	2
1044	Cytokine receptor gp130 promotes postnatal proliferation of cardiomyocytes required for the normal functional development of the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H103-H120.	1.5	3
1045	Endomitosis controls tissue-specific gene expression during development. PLoS Biology, 2022, 20, e3001597.	2.6	5
1046	Activation of Nkx2.5 transcriptional program is required for adult myocardial repair. Nature Communications, 2022, 13, .	5.8	7
1047	Desmin deficiency affects the microenvironment of the cardiac side population and Sca1+ stem cell population of the adult heart and impairs their cardiomyogenic commitment. Cell and Tissue Research, 2022, 389, 309-326.	1.5	4
1048	Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair. Journal of Molecular and Cellular Cardiology, 2022, 170, 15-21.	0.9	4
1049	The regenerative capacity of neonatal tissues. Development (Cambridge), 2022, 149, .	1.2	4
1050	Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clinical Science, 2022, 136, 911-934.	1.8	2
1051	Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. Journal of Proteome Research, 2022, 21, 1800-1807.	1.8	9
1052	Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology, 2022, 11, 880.	1.3	10
1053	100 plus years of stem cell research—20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267.	2.3	1
1054	Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. , 2022, 1, 617-633.		10
1055	Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharmaceutical Journal, 2022, 30, 1360-1371.	1.2	4
1056	Human intracardiac SSEA4+CD34 cells show features of cycling, immature cardiomyocytes and are distinct from Side Population and C-kit+CD45- cells. PLoS ONE, 2022, 17, e0269985.	1.1	2
1057	Ferroptosis and its role in cardiomyopathy. Biomedicine and Pharmacotherapy, 2022, 153, 113279.	2.5	32
1058	Basic pathobiology of cell-based therapies and cardiac regenerative medicine. , 2022, , 889-910.		0
1059	Pathophysiology of heart failure and an overview of therapies. , 2022, , 149-221.		1

#	Article	IF	CITATIONS
1060	Age-related cardiovascular changes and diseases. , 2022, , 85-121.		2
1061	Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules, 2022, 12, 896.	1.8	1
1062	<i>hapln1</i> Defines an Epicardial Cell Subpopulation Required for Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. Circulation, 2022, 146, 48-63.	1.6	23
1063	Transcriptomic Profile of Genes Regulating the Structural Organization of Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes, 2022, 13, 1205.	1.0	1
1065	DYRK1A: A promising protein kinase target for cardiomyocyte cycling and cardiac repair through epigenetic modifications. EBioMedicine, 2022, 82, 104168.	2.7	1
1066	Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine, 2022, 82, 104139.	2.7	17
1067	The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes. , 2022, 139, 213035.		10
1068	Keeping the beat against time: Mitochondrial fitness in the aging heart. Frontiers in Aging, 0, 3, .	1.2	4
1069	Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovascular Research, 0, , .	1.8	0
1070	Extracellular Vesicles for Regenerative Medicine Applications. Applied Sciences (Switzerland), 2022, 12, 7472.	1.3	7
1071	The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clinical Science, 2022, 136, 1179-1203.	1.8	7
1072	Wnt Signaling in Heart Development and Regeneration. Current Cardiology Reports, 2022, 24, 1425-1438.	1.3	23
1073	Restoration of Cardiomyogenesis in Aged Mouse Hearts by Voluntary Exercise. Circulation, 2022, 146, 412-426.	1.6	11
1074	Cardiac fibrosis in oncologic therapies. Current Opinion in Physiology, 2022, 29, 100575.	0.9	6
1075	Extracellular vesicles in cardiac repair and regeneration: Beyond stem-cell-based approaches. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
1076	Mending a broken heart—targeting cardiomyocyte regeneration: a literature review. Annals of Translational Medicine, 2022, .	0.7	0
1077	Cellular senescence and cardiovascular diseases: moving to the "heart―of the problem. Physiological Reviews, 2023, 103, 609-647.	13.1	26
1078	Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. Hearts, 2022, 3, 96-116.	0.4	1

#	Article	IF	CITATIONS
1079	Thymosin β4 and prothymosin α promote cardiac regeneration post-ischaemic injury in mice. Cardiovascular Research, 2023, 119, 802-812.	1.8	5
1080	Novel Insights into the Etiology, Genetics, and Embryology of Hypoplastic Left Heart Syndrome. World Journal for Pediatric & Congenital Heart Surgery, 2022, 13, 565-570.	0.3	2
1081	Mesenchymal Stem Cell-Derived Extracellular Vesicles for Therapeutic Use and in Bioengineering Applications. Cells, 2022, 11, 3366.	1.8	10
1083	RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation, 2023, 147, 324-337.	1.6	11
1084	Retinoic acid released from self-assembling peptide activates cardiomyocyte proliferation and enhances repair of infarcted myocardium. Experimental Cell Research, 2023, 422, 113440.	1.2	1
1085	Single-cell transcriptomic profiling reveals specific maturation signatures in human cardiomyocytes derived from LMNB2-inactivated induced pluripotent stem cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1086	Skeletal Muscle Nuclei in Mice are not Post-mitotic. Function, 2022, 4, .	1.1	16
1087	mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1088	Genome Editing and Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2023, , 37-52.	0.8	0
1089	Metabolic reprogramming and membrane glycan remodeling as potential drivers of zebrafish heart regeneration. Communications Biology, 2022, 5, .	2.0	6
1090	Cardiomyocyte maturation and its reversal during cardiac regeneration. Developmental Dynamics, 2024, 253, 8-27.	0.8	3
1091	Brain Natriuretic Peptide Protects Cardiomyocytes from Apoptosis and Stimulates Their Cell Cycle Re-Entry in Mouse Infarcted Hearts. Cells, 2023, 12, 7.	1.8	1
1092	Expression of stem cell niche related biomarkers at the base of the human tricuspid valve. Stem Cells and Development, 0, , .	1.1	0
1093	Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in pulmonary arterial hypertension. JCI Insight, 2023, 8, .	2.3	5
1094	Stem Cells and Therapies in Cardiac Regeneration. , 2023, , 127-141.		0
1095	Hippo signaling and histone methylation control cardiomyocyte cell cycle re-entry through distinct transcriptional pathways. PLoS ONE, 2023, 18, e0281610.	1.1	3
1096	Purkinje Cardiomyocytes of the Adult Ventricular Conduction System Are Highly Diploid but Not Uniquely Regenerative. Journal of Cardiovascular Development and Disease, 2023, 10, 161.	0.8	0
1097	Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung and Circulation, 2023, , .	0.2	1

#	Article	IF	CITATIONS
1098	Regulation of endogenous cardiomyocyte proliferation: The known unknowns. Journal of Molecular and Cellular Cardiology, 2023, 179, 80-89.	0.9	3
1099	Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
1100	The dynamic nature of exocytosis from large secretory vesicles. A view from electrochemistry and imaging. Cell Calcium, 2023, 110, 102699.	1.1	4
1101	Thymosin beta-4 denotes new directions towards developing prosperous anti-aging regenerative therapies. International Immunopharmacology, 2023, 116, 109741.	1.7	1
1102	Distinct protein kinase C isoforms drive the cell cycle re-entry of two separate populations of neonatal rat ventricular cardiomyocytes. American Journal of Physiology - Cell Physiology, 2023, 325, C406-C419.	2.1	2
1103	ER stress induces upregulation of transcription factor Tbx20 and downstream Bmp2 signaling to promote cardiomyocyte survival. Journal of Biological Chemistry, 2023, 299, 103031.	1.6	1
1104	Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
1105	Ploidy-stratified single cardiomyocyte transcriptomics map Zinc Finger E-Box Binding Homeobox 1 to underly cardiomyocyte proliferation before birth. Basic Research in Cardiology, 2023, 118, .	2.5	3
1106	Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart. Npj Regenerative Medicine, 2023, 8, .	2.5	0
1107	A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. Journal of Physiology, 2023, 601, 1319-1341.	1.3	10
1108	Cellular reprogramming of fibroblasts in heart regeneration. Journal of Molecular and Cellular Cardiology, 2023, 180, 84-93.	0.9	3
1109	Significance of Multinucleated Polyploidization of Tubular Epithelial Cells in Kidney Allografts. Nephron, 2023, 147, 28-34.	0.9	1
1110	Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes and Diseases, 2024, 11, 747-759.	1.5	1
1111	miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinformatics and Biology Insights, 2023, 17, 117793222311619.	1.0	0
1112	Electrophysiological Properties of Tetraploid Cardiomyocytes Derived from Murine Pluripotent Stem Cells Generated by Fusion of Adult Somatic Cells with Embryonic Stem Cells. International Journal of Molecular Sciences, 2023, 24, 6546.	1.8	1
1113	Large-scale microRNA functional high-throughput screening identifies miR-515-3p and miR-519e-3p as inducers of human cardiomyocyte proliferation. IScience, 2023, 26, 106593.	1.9	0
1115	Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction. Bioactive Materials, 2023, 27, 271-287.	8.6	4
1117	Hallmarks of cardiovascular ageing. Nature Reviews Cardiology, 2023, 20, 754-777.	6.1	28

		CITATION REPORT	
#	Article	IF	Citations
1131	miRNA in Cardiac Regeneration. , 2023, , 683-716.		0
1133	Cardiovascular Stem Cell Applications in Experimental Animal Models. , 2023, , 465-490		0

1133	Cardiovascular Stem Cell Applications in Experimental Animal Models. , 2023, , 465-490.		0
1135	"Heart Cells―Derived from Pluripotent Stem Cells and Therapeutic Applications. , 2023, , 97-117.		0
1136	Rejuvenation and Regenerative Potential of Heart Stem Cells. , 2023, , 129-153.		0
1137	Cardiac organoid: multiple construction approaches and potential applications. Journal of Materials Chemistry B, 0, , .	2.9	2
1156	Ferroptosis in Cardiovascular Disease. , 2023, , 149-193.		0
1157	Role of Extracellular Vesicles in Cardiac Regeneration. Physiology, 0, , .	4.0	0
1178	Stem Cell-Derived Extracellular Vesicles and Their Potential Role in Medical Applications. , 2024, , .		0