MYC2: The Master in Action

Molecular Plant 6, 686-703 DOI: 10.1093/mp/sss128

Citation Report

#	Article	IF	CITATIONS
1	NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biology, 2013, 13, 73.	1.6	41
2	Z-Box Binding Transcription Factors (ZBFs): A New Class of Transcription Factors in Arabidopsis Seedling Development. Molecular Plant, 2013, 6, 1758-1768.	3.9	29
3	Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology, 2013, 13, 229.	1.6	233
4	A novel role of <scp>PR</scp> 2 in abscisic acid (<scp>ABA</scp>) mediated, pathogenâ€induced callose deposition in <i>Arabidopsis thaliana</i> . New Phytologist, 2013, 200, 1187-1199.	3.5	129
5	Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 2013, 32, 815-827.	2.8	136
6	Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. International Journal of Molecular Sciences, 2013, 14, 5842-5878.	1.8	278
7	Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111, 1021-1058.	1.4	2,006
8	MYC2 differentially regulates GATA-box conaining promoters during seedling development in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e25679.	1.2	13
9	Negative Feedback Control of Jasmonate Signaling by an Alternative Splice Variant of JAZ10 Â Â Â. Plant Physiology, 2013, 162, 1006-1017.	2.3	120
10	The <i>HERBIVORE ELICITOR-REGULATED1</i> Gene Enhances Abscisic Acid Levels and Defenses against Herbivores in <i>Nicotiana attenuata</i> Plants. Plant Physiology, 2013, 162, 2106-2124.	2.3	72
11	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 2013, 4, 235.	1.7	48
12	Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science, 2013, 4, 539.	1.7	144
13	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	1.7	110
14	<i>Arabidopsis</i> Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior Â. Plant Cell, 2013, 25, 3117-3132.	3.1	453
15	Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. Journal of Experimental Botany, 2014, 65, 4305-4315.	2.4	113
17	Plant hemoglobin participation in cell fate determination. Plant Signaling and Behavior, 2014, 9, e29485.	1.2	6
18	TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis. Journal of Experimental Botany, 2014, 65, 275-286.	2.4	22
19	Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. The Enzymes, 2014, 35, 1-25.	0.7	6

#	Article		CITATIONS
20	Bridging physiological and evolutionary timeâ€scales in a gene regulatory network. New Phytologist, 2014, 203, 685-696.	3.5	15
21	Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. Plant Cell, 2014, 26, 4991-5008.	3.1	224
22	Inverse modulation of the energy sensor <scp>Snf</scp> 1â€related protein kinase 1 on hypoxia adaptation and salt stress tolerance in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2014, 37, 2303-2312.	2.8	49
23	Different gene-specific mechanisms determine the â€~revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Research, 2014, 42, 5556-5566.	6.5	72
24	Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Frontiers in Plant Science, 2014, 5, 611.	1.7	184
25	Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk. Plant Molecular Biology, 2014, 86, 409-424.	2.0	11
26	Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana. Plant Cell Reports, 2014, 33, 849-860.	2.8	21
27	LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biology, 2014, 14, 38.	1.6	29
28	Jasmonates in Plant Growth and Stress Responses. , 2014, , 221-263.		6
29	Life and death under salt stress: same players, different timing?. Journal of Experimental Botany, 2014, 65, 2963-2979.	2.4	240
30	Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. Plant Cell Reports, 2014, 33, 707-718.	2.8	15
31	Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 2014, 7, 1267-1287.	3.9	1,206
32	Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant Journal, 2014, 78, 372-384.	2.8	105
33	Jasmonic acid regulates spikelet development in rice. Nature Communications, 2014, 5, 3476.	5.8	229
34	Molecular interaction of jasmonate and phytochrome A signalling. Journal of Experimental Botany, 2014, 65, 2847-2857.	2.4	32
35	Action of jasmonates in plant stress responses and development — Applied aspects. Biotechnology Advances, 2014, 32, 31-39.	6.0	260
36	DELLA proteins modulate <i>Arabidopsis</i> defences induced in response to caterpillar herbivory. Journal of Experimental Botany, 2014, 65, 571-583.	2.4	42
37	Jasmonate signaling and crosstalk with gibberellin and ethylene. Current Opinion in Plant Biology, 2014, 21, 112-119.	3.5	191

#	Article	IF	CITATIONS
38	Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. Journal of Experimental Botany, 2014, 65, 5743-5748.	2.4	71
39	Intrinsic Disorder in Plant Proteins and Phytopathogenic Bacterial Effectors. Chemical Reviews, 2014, 114, 6912-6932.	23.0	39
40	Connecting Growth and Defense: The Emerging Roles of Brassinosteroids and Gibberellins in Plant Innate Immunity. Molecular Plant, 2014, 7, 943-959.	3.9	235
41	Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 2014, 40, 657-675.	0.9	246
42	Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell, 2014, 26, 2285-2309.	3.1	410
43	Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 1105-1117.	3.1	171
44	Predisposition in Plant Disease: Exploiting the Nexus in Abiotic and Biotic Stress Perception and Response. Annual Review of Phytopathology, 2014, 52, 517-549.	3.5	188
45	<i>Streptomyces</i> -Induced Resistance Against Oak Powdery Mildew Involves Host Plant Responses in Defense, Photosynthesis, and Secondary Metabolism Pathways. Molecular Plant-Microbe Interactions, 2014, 27, 891-900.	1.4	101
46	Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 263-279.	3.1	309
47	Resistance against <i><scp>B</scp>otrytis cinerea</i> in smooth leaf pruning wounds of tomato does not depend on major disease signalling pathways. Plant Pathology, 2014, 63, 165-173.	1.2	6
48	An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Scientific Reports, 2015, 5, 17587.	1.6	67
49	Jasmonic acid promotes degreening via <scp>MYC</scp> 2/3/4―and <scp>ANAC</scp> 019/055/072â€mediated regulation of major chlorophyll catabolic genes. Plant Journal, 2015, 84, 597-610.	2.8	219
50	Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnology for Biofuels, 2015, 8, 200.	6.2	112
51	Change of a conserved amino acid in the <scp>MYC</scp> 2 and <scp>MYC</scp> 3 transcription factors leads to release of <scp>JAZ</scp> repression and increased activity. New Phytologist, 2015, 206, 1229-1237.	3.5	75
52	Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens <i>Botrytis cinerea</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2015, 83, 1019-1033.	2.8	44
53	The maize transcription factor <i><scp>EREB</scp>58</i> mediates the jasmonateâ€induced production of sesquiterpene volatiles. Plant Journal, 2015, 84, 296-308.	2.8	62
54	The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization. PLoS ONE, 2015, 10, e0126558.	1.1	11
55	Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genetics, 2015, 11, e1005300.	1.5	106

#	Article	IF	CITATIONS
56	In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia. PLoS ONE, 2015, 10, e0130425.	1.1	39
57	Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis). PLoS ONE, 2015, 10, e0143261.	1.1	15
58	Circadian regulation of abiotic stress tolerance in plants. Frontiers in Plant Science, 2015, 6, 648.	1.7	168
59	Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science, 2015, 6, 895.	1.7	316
60	Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. Frontiers in Plant Science, 2015, 6, 1077.	1.7	221
61	Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes. Molecular Plant-Microbe Interactions, 2015, 28, 1049-1058.	1.4	221
62	A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics, 2015, 16, 837.	1.2	41
63	Tomato Whole Genome Transcriptional Response to <i>Tetranychus urticae</i> Identifies Divergence of Spider Mite-Induced Responses Between Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 343-361.	1.4	90
64	Susceptibility to <i>Verticillium longisporum</i> is linked to monoterpene production by <scp>TPS</scp> 23/27 in Arabidopsis. Plant Journal, 2015, 81, 572-585.	2.8	19
65	Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance. Plant Physiology, 2015, 167, 1100-1116.	2.3	104
66	Regulation of MYB and bHLH Transcription Factors: A Glance at the Protein Level. Molecular Plant, 2015, 8, 378-388.	3.9	141
67	Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20, 219-229.	4.3	691
68	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	3.5	401
69	Roles of jasmonate signalling in plant inflorescence and flower development. Current Opinion in Plant Biology, 2015, 27, 44-51.	3.5	135
70	How Jasmonates Earned their Laurels: Past and Present. Journal of Plant Growth Regulation, 2015, 34, 761-794.	2.8	78
71	JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Science Bulletin, 2015, 60, 1062-1072.	4.3	77
72	PLANT U-BOX PROTEIN10 Regulates MYC2 Stability in Arabidopsis. Plant Cell, 2015, 27, 2016-2031.	3.1	93
73	The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in <i>Catharanthus roseus</i> . Proceedings of the National Academy of Sciences of the United States of America. 2015. 112. 8130-8135.	3.3	176

#	Article	IF	CITATIONS
74	The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. Molecular Plant, 2015, 8, 1201-1212.	3.9	62
75	How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 2015, 6, 170.	1.7	400
76	Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00619.	3.1	177
77	Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature, 2015, 525, 269-273.	13.7	248
78	SHW1 Interacts with HY5 and COP1, and Promotes COP1-mediated Degradation of HY5 During Arabidopsis Seedling Development. Plant Physiology, 2015, 169, pp.01184.2015.	2.3	25
79	Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses. Plant and Cell Physiology, 2015, 56, pcv132.	1.5	6
80	Overexpression of <i>gibberellin 20-oxidase1</i> from <i>Pinus densiflora</i> results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiology, 2015, 35, tpv099.	1.4	27
81	A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells. Journal of Plant Physiology, 2015, 185, 57-64.	1.6	17
82	Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. Plant Signaling and Behavior, 2015, 10, e1078953.	1.2	35
83	Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant and Cell Physiology, 2015, 56, 98-106.	1.5	55
84	A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: Application to Arabidopsis. Journal of Theoretical Biology, 2015, 364, 364-376.	0.8	17
85	Jasmonate Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 123-194.	0.5	4
86	Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology and Technology, 2015, 100, 8-15.	2.9	47
87	Gibberellin Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 383-401.	0.5	2
88	Successful Technologies and Approaches Used to Develop and Manage Resistance against Crop Diseases and Pests. , 2016, , 43-66.		14
89	Organically Grown Soybean Production in the USA: Constraints and Management of Pathogens and Insect Pests. Agronomy, 2016, 6, 16.	1.3	39
90	The Ubiquitin System and Jasmonate Signaling. Plants, 2016, 5, 6.	1.6	43
91	Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings. PLoS ONE, 2016, 11, e0166493.	1.1	14

#	Article	IF	CITATIONS
92	How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Frontiers in Plant Science, 2016, 7, 170.	1.7	94
93	Transcriptome Analysis of Gerbera hybrida Including in silico Confirmation of Defense Genes Found. Frontiers in Plant Science, 2016, 7, 247.	1.7	23
94	The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids. Frontiers in Plant Science, 2016, 7, 1177.	1.7	8
95	Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. Frontiers in Plant Science, 2016, 7, 1757.	1.7	67
96	Physiological impacts of ABA–JA interactions under water-limitation. Plant Molecular Biology, 2016, 91, 641-650.	2.0	152
97	Dynamic metabolic and transcriptomic profiling of methyl jasmonateâ€treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in <i>Isatis indigotica</i> Fort. Plant Biotechnology Journal, 2016, 14, 2217-2227.	4.1	51
98	The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry, 2016, 108, 24-31.	2.8	99
99	An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 2016, 6, 28941.	1.6	155
100	Role and functioning of bHLH transcription factors in jasmonate signalling. Journal of Experimental Botany, 2017, 68, erw440.	2.4	156
101	Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. Journal of Experimental Botany, 2017, 68, erw443.	2.4	357
102	SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Scientific Reports, 2016, 6, 22852.	1.6	129
103	Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Scientific Reports, 2016, 6, 23632.	1.6	82
104	Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. Journal of Experimental Botany, 2016, 67, 2231-2246.	2.4	43
105	Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Plant and Cell Physiology, 2016, 57, 1779-1790.	1.5	42
106	Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves. Plant Signaling and Behavior, 2016, 11, e1184808.	1.2	22
107	Overexpression of <i>OsMYC2</i> Results in the Up-Regulation of Early JA-Rresponsive Genes and Bacterial Blight Resistance in Rice. Plant and Cell Physiology, 2016, 57, 1814-1827.	1.5	84
108	Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Molecular Biology, 2016, 91, 673-689.	2.0	155
109	Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant and Cell Physiology, 2016, 57, 961-975.	1.5	112

		KLFORT	
#	Article	IF	CITATIONS
110	Authentication of different accessions of Simmondsia chinensis (Link) Schneider (Jojoba) by DNA fingerprinting and chromatography of its oil. Industrial Crops and Products, 2016, 94, 376-384.	2.5	9
111	Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in coldâ€shock response in wheat. Plant Science, 2016, 253, 86-97.	1.7	21
112	Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 2016, 57, 2564-2575.	1.5	33
113	Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2016, 129, 2019-2042.	1.8	135
114	Plant Molecular Adaptations and Strategies Under Drought Stress. , 2016, , 91-122.		12
115	The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. Journal of Experimental Botany, 2016, 67, 6215-6252.	2.4	206
116	Memory responses of jasmonic acidâ€associated Arabidopsis genes to a repeated dehydration stress. Plant, Cell and Environment, 2016, 39, 2515-2529.	2.8	55
117	Reaction kinetics of the jasmonate-isoleucine complex formation during wound-induced plant defense responses: A model-based re-analysis of published data. Journal of Plant Physiology, 2016, 206, 103-113.	1.6	0
118	Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of Chemical Ecology, 2016, 42, 1212-1225.	0.9	118
120	The jasmonateâ€responsive Aa <scp>MYC</scp> 2 transcription factor positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2016, 210, 1269-1281.	3.5	230
121	Differential Impact of Acclimation and Acute Water Deprivation in the Expression of Key Transcription Factors in Soybean Roots. Plant Molecular Biology Reporter, 2016, 34, 1167-1180.	1.0	3
122	Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiology, 2016, 172, pp.00725.2016.	2.3	54
123	Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics and Chromatin, 2016, 9, 8.	1.8	53
124	Sweet potato <scp>NAC</scp> transcription factor, lb <scp>NAC</scp> 1, upregulates <i>sporamin</i> gene expression by binding the <scp>SWRE</scp> motif against mechanical wounding and herbivore attack. Plant Journal, 2016, 86, 234-248.	2.8	51
125	Organ-specific regulation of growth-defense tradeoffs by plants. Current Opinion in Plant Biology, 2016, 29, 129-137.	3.5	62
126	Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. Journal of Biotechnology, 2016, 220, 66-77.	1.9	46
127	The Layers of Plant Responses to Insect Herbivores. Annual Review of Entomology, 2016, 61, 373-394.	5.7	287
128	On a Fitzhugh–Nagumo type model for the pulse-like jasmonate defense response in plants. Mathematical Biosciences, 2016, 273, 80-90.	0.9	5

#	Article	IF	CITATIONS
129	Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge. BMC Plant Biology, 2016, 16, 47.	1.6	30
130	<scp>SlDREB2</scp> , a tomato dehydrationâ€responsive elementâ€binding 2 transcription factor, mediates salt stress tolerance in tomato and <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2016, 39, 62-79.	2.8	85
131	The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Physiology, 2016, 170, 194-210.	2.3	152
132	Molecular Manipulation of Transcription Factors, the Master Regulators of PAMP-Triggered Signaling Systems. Signaling and Communication in Plants, 2016, , 255-358.	0.5	3
133	Genome-wide transcriptomic profiles reveal multiple regulatory responses of poplar to Lonsdalea quercina infection. Trees - Structure and Function, 2016, 30, 1389-1402.	0.9	7
134	Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. Journal of Experimental Botany, 2016, 67, 2519-2532.	2.4	154
135	Jasmonate signaling in plant stress responses and development – active and inactive compounds. New Biotechnology, 2016, 33, 604-613.	2.4	177
136	JAZ7 negatively regulates dark-induced leaf senescence in <i>Arabidopsis</i> . Journal of Experimental Botany, 2016, 67, 751-762.	2.4	113
137	The link between flowering time and stress tolerance. Journal of Experimental Botany, 2016, 67, 47-60.	2.4	342
138	Transcript profiling analysis reveals crucial genes regulating main metabolism during adventitious root formation in cuttings of Morus alba L Plant Growth Regulation, 2016, 79, 251-262.	1.8	11
139	Transcriptome-wide analysis of basic helix-loop-helix transcription factors in Isatis indigotica and their methyl jasmonate responsive expression profiling. Gene, 2016, 576, 150-159.	1.0	13
140	General Aspects of Plant Transcription Factor Families. , 2016, , 35-56.		26
141	Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Scientific Reports, 2017, 7, 40216.	1.6	101
142	An incoherent feedâ€forward loop mediates robustness and tunability in a plant immune network. EMBO Reports, 2017, 18, 464-476.	2.0	51
143	OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Scientific Reports, 2017, 7, 40175.	1.6	55
144	Enhancing gene regulatory network inference through data integration with markov random fields. Scientific Reports, 2017, 7, 41174.	1.6	33
145	Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress. Scientific Reports, 2017, 7, 41700.	1.6	22
146	Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis. Plant Physiology, 2017, 173, 1864-1880.	2.3	98

#	Article	IF	CITATIONS
147	Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host and Microbe, 2017, 21, 156-168.	5.1	115
148	Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1. Plant and Cell Physiology, 2017, 58, 1075-1089.	1.5	30
149	Identification of OsMYC2-regulated senescence-associated genes in rice. Planta, 2017, 245, 1241-1246.	1.6	47
150	Jasmonic acid signalling and the plant holobiont. Current Opinion in Microbiology, 2017, 37, 42-47.	2.3	61

Plant signals during beetle (<i>Scolytus multistriatus</i>) feeding in American elm (<i>Ulmus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582

152	The jasmonic acidâ€signalling and abscisic acidâ€signalling pathways cross talk during one, but not repeated, dehydration stress: a nonâ€specific â€~panicky' or a meaningful response?. Plant, Cell and Environment, 2017, 40, 1704-1710.	2.8	23
153	Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA. Cell Reports, 2017, 19, 1334-1342.	2.9	49
154	Jasmonate suppresses seedling soil emergence in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2017, 12, e1330239.	1.2	3
155	The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. Plant Cell, 2017, 29, 1406-1424.	3.1	80
156	The Jasmonate-Activated Transcription Factor MdMYC2 Regulates <i>ETHYLENE RESPONSE FACTOR</i> and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening. Plant Cell, 2017, 29, 1316-1334.	3.1	202
157	Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. Journal of Experimental Botany, 2017, 68, 3287-3301.	2.4	159
158	Jasmonate inhibits <scp>COP</scp> 1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant Journal, 2017, 90, 1144-1155.	2.8	46
161	OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochemical and Biophysical Research Communications, 2017, 486, 796-803.	1.0	28
162	Physiological, Metabolic, and Molecular Responses of Plants to Abiotic Stress. , 2017, , 1-35.		18
163	Conventional and unconventional ubiquitination in plant immunity. Molecular Plant Pathology, 2017, 18, 1313-1330.	2.0	96
164	Mechanisms and strategies of plant defense against <i>Botrytis cinerea</i> . Critical Reviews in Biotechnology, 2017, 37, 262-274.	5.1	160
165	Transcription Factor AsMYC2 Controls the Jasmonate-Responsive Expression of ASS1 Regulating Sesquiterpene Biosynthesis in Aquilaria sinensis (Lour.) Gilg. Plant and Cell Physiology, 2017, 58, 1924-1933.	1.5	48
166	Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8930-E8939.	3.3	135

#	Article	IF	CITATIONS
167	Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Annals of Botany, 2017, 120, 551-562.	1.4	33
168	<i>Botrytis cinerea</i> B05.10 promotes disease development in <i>Arabidopsis</i> by suppressing WRKY33â€mediated host immunity. Plant, Cell and Environment, 2017, 40, 2189-2206.	2.8	60
169	MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. Plant Cell, 2017, 29, 1883-1906.	3.1	263
170	Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling. Journal of Biosciences, 2017, 42, 501-508.	0.5	9
171	Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7205-E7214.	3.3	55
172	Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 2017, 55, 401-425.	3.5	423
173	Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by <i>Arabidopsis</i> immunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7456-7461.	3.3	110
174	Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. Journal of Plant Physiology, 2017, 216, 188-196.	1.6	6
175	Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal <i>Medicago truncatula</i> . Plant Physiology, 2017, 175, 392-411.	2.3	81
176	Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia, 2017, 183, 107-120.	0.9	14
177	PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 204-220.	2.8	128
178	Comparison of phytohormone biosynthesis and signal transduction pathways in developing and abortive hazelnut ovules. Plant Growth Regulation, 2017, 81, 147-157.	1.8	23
179	<i>Arabidopsis thaliana</i> root colonization by the nematophagous fungus <i>Pochonia chlamydosporia</i> is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytologist, 2017, 213, 351-364.	3.5	57
180	The JASMONATE ZIM-Domain Gene Family Mediates JA Signaling and Stress Response in Cotton. Plant and Cell Physiology, 2017, 58, 2139-2154.	1.5	70
181	Diverse contributions of <scp>MYC</scp> 2 and <scp>EIN</scp> 3 in the regulation of Arabidopsis jasmonateâ€responsive gene expression. Plant Direct, 2017, 1, e00015.	0.8	8
182	Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. Frontiers in Plant Science, 2016, 7, 1953.	1.7	35
183	Transcriptome Analysis of Secondary Metabolism Pathway, Transcription Factors, and Transporters in Response to Methyl Jasmonate in Lycoris aurea. Frontiers in Plant Science, 2016, 7, 1971.	1.7	55
184	Jasmonate-Sensitivity-Assisted Screening and Characterization of Nicotine Synthetic Mutants from Activation-Tagged Population of Tobacco (Nicotiana tabacum L.). Frontiers in Plant Science, 2017, 8, 157.	1.7	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
185	Abscisic Acid as Pathogen Effector and Immune Regulator. Frontiers in Plant Science, 2	2017, 8, 587.	1.7	145
186	The Multitalented MEDIATOR25. Frontiers in Plant Science, 2017, 8, 999.		1.7	29
187	Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltion Frontiers in Plant Science, 2017, 8, 1804.	rrhiza.	1.7	83
188	Jasmonates. , 2017, , 243-272.			15
189	Comparative Transcriptome Analysis of Male and Female Conelets and Development o Markers in Pinus bungeana, an Endemic Conifer in China. Genes, 2017, 8, 393.	f Microsatellite	1.0	18
190	Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root. Curre 2017, 19, 4-11.	ent Genomics,	0.7	8
191	Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in tri synthesis in birch. BMC Plant Biology, 2017, 17, 214.	iterpenoid	1.6	40
192	Perspectives of Use of Transcription Factors for Improving Resistance of Wheat Produc to Abiotic Stresses by Transgenic Technologies. Russian Journal of Genetics, 2018, 54,	ttive Varieties 27-35.	0.2	5
193	Comparative transcriptomic analysis of the roots of intercropped peanut and maize re insights into peanut iron nutrition. Plant Physiology and Biochemistry, 2018, 127, 516	veals novel -524.	2.8	17
194	Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmona novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiology and Biology of Plants, 2018, 24, 349-358.	te provides 1 Molecular	1.4	20
195	Two Abscisic Acid-Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthe <i>Arabidopsis thaliana</i> . Plant Cell, 2018, 30, 1006-1022.	sis in	3.1	94
196	Combinatorial Transcriptional Control of Plant Specialized Metabolism. Trends in Plant 23, 324-336.	Science, 2018,	4.3	75
197	Effects of overexpression of jasmonic acid biosynthesis genes on nicotine accumulatio Plant Direct, 2018, 2, e00036.	n in tobacco.	0.8	11
198	Redox and the circadian clock in plant immunity: A balancing act. Free Radical Biology 2018, 119, 56-61.	and Medicine,	1.3	60
199	Wheat Resistances to Fusarium Root Rot and Head Blight Are Both Associated with De and Jasmonate-Related Gene Expression. Phytopathology, 2018, 108, 602-616.	oxynivalenol-	1.1	26
200	Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Pro National Academy of Sciences of the United States of America, 2018, 115, 210-215.	oceedings of the	3.3	71
201	Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana. Plant and Ce 2018, 59, 8-16.	Around the Il Physiology,	1.5	153
202	Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involve Glucosinolate Biosynthesis. Plant Cell, 2018, 30, 178-195.	ed in Aliphatic	3.1	40

#	Article	IF	CITATIONS
203	ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. Journal of Experimental Botany, 2018, 69, 497-510.	2.4	51
204	Modularity in Jasmonate Signaling for Multistress Resilience. Annual Review of Plant Biology, 2018, 69, 387-415.	8.6	446
205	Identification and characterization of sex related genes in Actinidia arguta by suppression subtractive hybridization. Scientia Horticulturae, 2018, 233, 256-263.	1.7	4
206	The Oxylipin Pathways: Biochemistry and Function. Annual Review of Plant Biology, 2018, 69, 363-386.	8.6	372
207	<i>SIMYC2</i> Involved in Methyl Jasmonate-Induced Tomato Fruit Chilling Tolerance. Journal of Agricultural and Food Chemistry, 2018, 66, 3110-3117.	2.4	57
208	The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. Plant Biotechnology Journal, 2018, 16, 72-85.	4.1	87
209	ChJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Molecular Plant Pathology, 2018, 19, 896-908.	2.0	68
210	A network of jasmonateâ€responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . New Phytologist, 2018, 217, 1566-1581.	3.5	81
211	Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals. Plant Signaling and Behavior, 2018, 13, e1403709.	1.2	8
212	Formation of α- and β-Cembratriene-Diols in Tobacco (Nicotiana tabacum L.) Is Regulated by Jasmonate-Signaling Components via Manipulating Multiple Cembranoid Synthetic Genes. Molecules, 2018, 23, 2511.	1.7	13
213	Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS ONE, 2018, 13, e0206103.	1.1	13
214	Infestation by Myzus persicae Increases Susceptibility of Brassica napus cv. "Canard―to Rhizoctonia solani AG 2-1. Frontiers in Plant Science, 2018, 9, 1903.	1.7	2
215	Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biology, 2018, 18, 377.	1.6	30
216	A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS ONE, 2018, 13, e0201270.	1.1	30
217	FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Current Biology, 2018, 28, 3316-3324.e6.	1.8	154
218	Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the <i>NST1</i> -Directed Transcriptional Network in Arabidopsis. Plant Cell, 2018, 30, 2512-2528.	3.1	59
219	Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. Plant Physiology, 2018, 178, 1720-1732.	2.3	24
220	JAZ repressors of metabolic defense promote growth and reproductive fitness in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10768-E10777.	3.3	172

#	Article	IF	Citations
221	Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum. BMC Genomics, 2018, 19, 774.	1.2	40
222	Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses. Frontiers in Plant Science, 2018, 9, 1209.	1.7	41
223	Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Scientific Reports, 2018, 8, 13575.	1.6	14
224	An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering, 2018, 48, 150-162.	3.6	70
225	Identification and characterization of MYC transcription factors in Taxus sp Gene, 2018, 675, 1-8.	1.0	37
226	Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany, 2018, 69, 4267-4281.	2.4	43
227	Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 2018, 11, 1166-1183.	3.9	134
228	Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves. Frontiers in Plant Science, 2018, 9, 277.	1.7	25
229	Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. Frontiers in Plant Science, 2018, 9, 626.	1.7	26
230	TcMYC2a, a Basic Helix–Loop–Helix Transcription Factor, Transduces JA-Signals and Regulates Taxol Biosynthesis in Taxus chinensis. Frontiers in Plant Science, 2018, 9, 863.	1.7	43
231	Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genetics and Molecular Biology, 2018, 41, 624-637.	0.6	75
232	RNA-sequencing Analysis Identifies Genes Associated with Chilling-mediated Endodormancy Release in Apple. Journal of the American Society for Horticultural Science, 2018, 143, 194-206.	0.5	21
233	Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity. Molecular Plant, 2018, 11, 1053-1066.	3.9	111
234	The Regulation of Sporopollenin Biosynthesis Genes for Rapid Pollen Wall Formation. Plant Physiology, 2018, 178, 283-294.	2.3	106
235	Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB PLANTS, 2018, 10, ply031.	1.2	16
236	Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13, e0200566.	1.1	53
237	Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors. Scientific Reports, 2018, 8, 11009.	1.6	47
238	Structural Biology of Jasmonic Acid Metabolism and Responses in Plants. , 2018, , 67-82.		3

#	Article	IF	CITATIONS
239	Review: Endoplasmic Reticulum-Associated Degradation (ERAD)-Dependent Control of (Tri)terpenoid Metabolism in Plants. Planta Medica, 2018, 84, 874-880.	0.7	10
240	Plant-biotic interactions under elevated CO2: A molecular perspective. Environmental and Experimental Botany, 2018, 153, 249-261.	2.0	30
241	Trehalose phosphate synthase 5â€dependent trehalose metabolism modulates basal defense responses in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2019, 61, 509-527.	4.1	26
242	Gb <scp>SOBIR</scp> 1 confers <i>Verticillium</i> wilt resistance by phosphorylating the transcriptional factor Gbb <scp>HLH</scp> 171 in <i>Gossypium barbadense</i> . Plant Biotechnology Journal, 2019, 17, 152-163.	4.1	33
243	Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in <i>Marchantia polymorpha</i> . Plant Cell, 2019, 31, 2491-2509.	3.1	73
244	Characteristics and Expression Pattern of MYC Genes in Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Plants, 2019, 8, 274.	1.6	25
245	Plant Specialized Metabolism Regulated by Jasmonate Signaling. Plant and Cell Physiology, 2019, 60, 2638-2647.	1.5	54
246	PLANT U-BOX PROTEIN 10 negatively regulates abscisic acid response in Arabidopsis. Applied Biological Chemistry, 2019, 62, .	0.7	10
248	OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice, 2019, 12, 9.	1.7	23
249	Cell wall composition and transcriptomics in stem tissues of stinging nettle (<i>Urtica dioica</i> L.): Spotlight on a neglected fibre crop. Plant Direct, 2019, 3, e00151.	0.8	28
250	LEUNIG_HOMOLOG Mediates MYC2-Dependent Transcriptional Activation in Cooperation with the Coactivators HAC1 and MED25. Plant Cell, 2019, 31, 2187-2205.	3.1	51
251	Transcriptomics profile reveals the temporal molecular events triggered by cut-wounding in stem-ends of cut —Tiber' lily flowers. Postharvest Biology and Technology, 2019, 156, 110950.	2.9	4
252	Genome-Wide Identification and Characterization of JAZ Protein Family in Two Petunia Progenitors. Plants, 2019, 8, 203.	1.6	8
253	Multifaceted involvement of abscisic acid in plant interactions with pathogenic and mutualistic microbes. Advances in Botanical Research, 2019, , 219-253.	0.5	3
254	Identification of Jasmonic Acid Biosynthetic Genes in Sweet Cherry and Expression Analysis in Four Ancient Varieties from Tuscany. International Journal of Molecular Sciences, 2019, 20, 3569.	1.8	6
255	Phytohormones Regulating the Master Regulators of CBF Dependent Cold Stress Signaling Pathway. Sustainable Development and Biodiversity, 2019, , 249-264.	1.4	1
256	The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. Journal of Experimental Botany, 2019, 70, 5471-5486.	2.4	88
257	Genome-Wide Identification of Direct Targets of the TTG1–bHLH–MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana. International Journal of Molecular Sciences, 2019, 20, 5014.	1.8	25

ARTICLE IF CITATIONS # Advances and emerging research trends for modulation of centelloside biosynthesis in Centella 258 2.5 24 asiatica (L.) Urban- A review. Industrial Crops and Products, 2019, 141, 111768. Protein partners of plant ubiquitin-specific proteases (UBPs). Plant Physiology and Biochemistry, 2019, 259 2.8 145, 227-236. Identification of Jasmonateâ€Mediated Physiological and Molecular Characteristics Correlated with 263 0.8 1 the Brown Spot Resistance of Tobacco. Crop Science, 2019, 59, 2141-2152. Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS ONE, 2019, 14, e0224296. 264 A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States 265 3.3 95 of America, 2019, 116, 23345-23356. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 143, 2.8 329-339. Molecular characterisation of nerol dehydrogenase gene (<i>PmNeDH</i>) from <i>Persicaria 267 1.0 3 minor </i> in response to stress-related phytohormones. Journal of Plant Interactions, 2019, 14, 424-431. RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in 268 1.2 response to insect herbivory. BMC Genomics, 2019, 20, 673. The Polycomb protein <scp>LHP</scp>1 regulates <i>Arabidopsis thaliana</i> stress responses 269 through the repression of the <scp>MYC</scp>2â€dependent branch of immunity. Plant Journal, 2019, 2.8 52 100, 1118-1131. 270 Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. Rice, 2019, 12, 25. 1.7 Jasmonate-Inducible R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis and Stamen 271 2.4 51 Development in <i>Capsicum</i>. Journal of Agricultural and Food Chemistry, 2019, 67, 10891-10903. Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion 3.5 in Plant Biology, 2019, 52, 124-130. In vitro differentiation of tracheary elements is induced by suppression of Arabidopsis phytoglobins. 273 2.8 3 Plant Physiology and Biochemistry, 2019, 135, 141-148. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in 274 29 defense transcriptome activation. Plant Molecular Biology, 2019, 99, 299-316. Role of jasmonate signaling pathway in resistance to dehydration stress in Arabidopsis. Acta 275 1.0 11 Physiologiae Plantarum, 2019, 41, 1. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLoS Pathogens, 2019, 15, e1007897. MED25 connects enhancer–promoter looping and MYC2-dependent activation of jasmonate signalling. 277 4.7 82 Nature Plants, 2019, 5, 616-625. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proceedings of the 278 3.3 National Academy of Sciences of the United States of America, 2019, 116, 10568-10575.

#	Article	IF	CITATIONS
279	The plant Mediator complex and its role in jasmonate signaling. Journal of Experimental Botany, 2019, 70, 3415-3424.	2.4	55
280	Transcriptome Sequencing Reveals Regulatory Mechanisms of Taxol Synthesis in <i>Taxus wallichiana</i> var. <i>Mairei</i> . International Journal of Genomics, 2019, 2019, 1-14.	0.8	16
281	A gammaâ€ŧhionin protein from apple, MdD1, is required for defence against <i>S</i> â€RNaseâ€induced inhibition of pollen tube prior to self/nonâ€self recognition. Plant Biotechnology Journal, 2019, 17, 2184-2198.	4.1	18
282	Damage-Associated Molecular Pattern-Triggered Immunity in Plants. Frontiers in Plant Science, 2019, 10, 646.	1.7	185
283	Modulation of plant innate immune signaling by small peptides. Current Opinion in Plant Biology, 2019, 51, 22-28.	3.5	48
284	Sodium chloride primes JA-independent defense against Spodoptera litura (Fabricius) larvae in Arabidopsis thaliana. Plant Signaling and Behavior, 2019, 14, 1607466.	1.2	4
285	Insights from the Echinacea purpurea (L.) Moench transcriptome: Global reprogramming of gene expression patterns towards activation of secondary metabolism pathways. Industrial Crops and Products, 2019, 132, 365-376.	2.5	9
286	Identification of the grape basic helix–loop–helix transcription factor family and characterization of expression patterns in response to different stresses. Plant Growth Regulation, 2019, 88, 19-39.	1.8	15
287	The non-DNA binding bHLH transcription factor Paclobutrazol Resistances are involved in the regulation of ABA and salt responses in Arabidopsis. Plant Physiology and Biochemistry, 2019, 139, 239-245.	2.8	41
288	Neonicotinoid Insecticides Alter the Transcriptome of Soybean and Decrease Plant Resistance. International Journal of Molecular Sciences, 2019, 20, 783.	1.8	20
289	Role of Methyl Jasmonates in Salt Stress Tolerance in Crop Plants. , 2019, , 371-384.		12
290	Hd3a and OsFD1 negatively regulate rice resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Biochemical and Biophysical Research Communications, 2019, 513, 775-780.	1.0	10
291	Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathogens, 2019, 15, e1007607.	2.1	63
292	NAC transcription factors in plant immunity. Phytopathology Research, 2019, 1, .	0.9	121
293	An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature Communications, 2019, 10, 772.	5.8	103
294	An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against <i>Tetranychus urticae</i> . Plant Physiology, 2019, 179, 1298-1314.	2.3	38
295	Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study. Rice, 2019, 12, 69.	1.7	31
296	Comparative gene expression profile analysis of ovules provides insights into Jatropha curcas L. ovule development. Scientific Reports, 2019, 9, 15973.	1.6	13

#	Article	IF	CITATIONS
297	Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation With Rhizobium etli. Frontiers in Plant Science, 2019, 10, 1317.	1.7	22
298	Inhibitory effect of proteinaceous seed extract of three Iranian wheat cultivars on <i>Eurygaster integriceps</i> (Sunn pest) digestive enzymes. Archives of Phytopathology and Plant Protection, 2019, 52, 1177-1192.	0.6	0
299	MYC2 regulates <i>ARR16</i> , a component of cytokinin signaling pathways, in Arabidopsis seedling development. Plant Direct, 2019, 3, e00177.	0.8	17
300	Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Scientific Reports, 2019, 9, 19120.	1.6	37
301	Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE, 2019, 14, e0226116.	1.1	20
302	Reconstitution of the Jasmonate Signaling Pathway in Plant Protoplasts. Cells, 2019, 8, 1532.	1.8	12
303	Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, Cell and Environment, 2019, 42, 1205-1221.	2.8	47
304	Effects of harvest time on chilling tolerance and the transcriptome of 'Wonderful' pomegranate fruit. Postharvest Biology and Technology, 2019, 147, 10-19.	2.9	22
305	ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant Molecular Biology, 2019, 99, 161-174.	2.0	27
306	Diversity among Pomegranate Varieties in Chilling Tolerance and Transcriptome Responses to Cold Storage. Journal of Agricultural and Food Chemistry, 2019, 67, 760-771.	2.4	14
307	Transcriptome-based mining and expression profiling of Pythium responsive transcription factors in Zingiber sp Functional and Integrative Genomics, 2019, 19, 249-264.	1.4	9
308	MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. Plant Cell, 2019, 31, 106-127.	3.1	173
309	Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 2019, 161, 98-106.	2.0	302
310	Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiology and Molecular Biology of Plants, 2019, 25, 113-121.	1.4	14
311	Defenceâ€related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant, Cell and Environment, 2019, 42, 983-997.	2.8	53
312	Effects of exogenous salicylic acid on the resistance response of wild soybean plants (<i>Glycine) Tj ETQq1 1 0.78 84-93.</i>	4314 rgB ⁻ 0.8	Г /Overlock 4
313	A role for Arabidopsis growth-regulating factors 1 and 3 in growth–stress antagonism. Journal of Experimental Botany, 2020, 71, 1402-1417.	2.4	32
314	A Jasmonate-Activated MYC2–Dof2.1–MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis. Plant Cell, 2020, 32, 242-262.	3.1	79

#	Article	IF	CITATIONS
315	Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71, 2172-2185.	2.4	46
316	Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids. Plants, 2020, 9, 82.	1.6	8
317	Mediator Subunit MED25 Couples Alternative Splicing of <i>JAZ</i> Genes with Fine-Tuning of Jasmonate Signaling. Plant Cell, 2020, 32, 429-448.	3.1	64
318	Transfecting Taxus ï;½â€‰media Protoplasts to Study Transcription Factors BIS2 and TSAR2 as Activators of Taxane-Related Genes. Plant and Cell Physiology, 2020, 61, 576-583.	f 1.5	7
319	ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Reports, 2020, 39, 273-288.	2.8	23
320	Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen effector candidates. Genomics, 2020, 112, 2130-2145.	1.3	13
321	SIMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chemistry, 2020, 310, 125901.	4.2	51
322	Proteome analysis and differential expression by JA driven elicitation in Andrographis paniculata (Burm. f.) Wall. ex Nees using Q-TOF–LC–MS/MS. Plant Cell, Tissue and Organ Culture, 2020, 140, 489-504.	1.2	9
323	The JAâ€pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant Journal, 2020, 102, 138-152.	2.8	47
324	A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS Journal, 2020, 287, 2560-2576.	2.2	102
325	Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 2020, 62, 563-580.	4.1	292
326	MYC2, MYC3, and MYC4 function additively in woundingâ€induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology, 2020, 62, 1159-1175.	4.1	60
327	Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. Plant Cell, 2020, 32, 3846-3865.	3.1	78
328	Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112, 5157-5169.	1.3	13
329	CRISPR/Cas9 targeted mutagenesis of SILBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science, 2020, 301, 110683.	1.7	82
330	Functional polymorphism among members of abscisic acid receptor family (ZmPYL) in maize. Journal of Integrative Agriculture, 2020, 19, 2165-2176.	1.7	4
331	Transcriptional and physiological analyses of reduced density in apple provide insight into the regulation involved in photosynthesis. PLoS ONE, 2020, 15, e0239737.	1.1	4
332	Early Molecular Responses of Tomato to Combined Moderate Water Stress and Tomato Red Spider Mite Tetranychus evansi Attack. Plants, 2020, 9, 1131.	1.6	4

#	Article	IF	CITATIONS
333	New tools for characterizing early brown stem rot disease resistance signaling in soybean. Plant Genome, 2020, 13, e20037.	1.6	7
334	Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis. Plant Science, 2020, 299, 110604.	1.7	58
335	Mediator subunit MED25: at the nexus of jasmonate signaling. Current Opinion in Plant Biology, 2020, 57, 78-86.	3.5	39
336	MYC2-Activated <i>TRICHOME BIREFRINGENCE-LIKE37</i> Acetylates Cell Walls and Enhances Herbivore Resistance. Plant Physiology, 2020, 184, 1083-1096.	2.3	15
337	Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. Frontiers in Plant Science, 2020, 11, 559070.	1.7	16
338	The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest. Frontiers in Plant Science, 2020, 11, 525102.	1.7	12
339	SmMYC2b Enhances Tanshinone Accumulation in Salvia miltiorrhiza by Activating Pathway Genes and Promoting Lateral Root Development. Frontiers in Plant Science, 2020, 11, 559438.	1.7	6
340	Transcriptome Analysis of Different Tissues Reveals Key Genes Associated With Galanthamine Biosynthesis in Lycoris longituba. Frontiers in Plant Science, 2020, 11, 519752.	1.7	13
341	The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Scientific Reports, 2020, 10, 14918.	1.6	20
342	Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC Plant Biology, 2020, 20, 548.	1.6	18
343	Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. International Journal of Molecular Sciences, 2020, 21, 7966.	1.8	5
344	The Z-box binding factors (ZBFs): emerging new facets in Arabidopsis seedling development. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 611-622.	0.9	1
345	Aspergillus alliaceus infection fatally shifts Orobanche hormones and phenolic metabolism. Brazilian Journal of Microbiology, 2020, 51, 883-892.	0.8	5
346	Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190406.	1.8	35
347	CRISPR/Cas9-Mediated <i>SIMYC2</i> Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to <i>Botrytis cinerea</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 5529-5538.	2.4	46
348	Regulatory role of circadian clocks in plant responses to abiotic stress. , 2020, , 811-823.		0
349	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	6.5	44
350	Regulatory Potential of bHLH-Type Transcription Factors on the Road to Rubber Biosynthesis in Hevea brasiliensis. Plants, 2020, 9, 674.	1.6	4

#	Article	IF	CITATIONS
351	Jasmonate Signaling Enhances RNA Silencing and Antiviral Defense in Rice. Cell Host and Microbe, 2020, 28, 89-103.e8.	5.1	107
352	Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annual Review of Cell and Developmental Biology, 2020, 36, 291-313.	4.0	33
353	A bHLH transcription activator regulates defense signaling by nucleo ytosolic trafficking in rice. Journal of Integrative Plant Biology, 2020, 62, 1552-1573.	4.1	37
354	Slower development of lower canopy beans produces better coffee. Journal of Experimental Botany, 2020, 71, 4201-4214.	2.4	10
355	Integration of Jasmonic Acid and Ethylene Into Auxin Signaling in Root Development. Frontiers in Plant Science, 2020, 11, 271.	1.7	56
356	RNA sequencing-based transcriptome analysis of kiwifruit infected by Botrytis cinerea. Physiological and Molecular Plant Pathology, 2020, 111, 101514.	1.3	18
357	The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. Agronomy, 2020, 10, 788.	1.3	113
358	The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality. Journal of Experimental Botany, 2020, 71, 5129-5147.	2.4	11
359	Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. International Journal of Molecular Sciences, 2020, 21, 4335.	1.8	20
360	The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell, 2020, 32, 2806-2822.	3.1	64
361	PuHox52â€mediated hierarchical multilayered gene regulatory network promotes adventitious root formation in <i>Populus ussuriensis</i> . New Phytologist, 2020, 228, 1369-1385.	3.5	33
362	Comprehensive temporal reprogramming ensures dynamicity of transcriptomic profile for adaptive response in Taxus contorta. Molecular Genetics and Genomics, 2020, 295, 1401-1414.	1.0	8
363	Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. International Journal of Molecular Sciences, 2020, 21, 1446.	1.8	309
364	Plant physiological and molecular mechanisms in cross-regulation of biotic-abiotic stress responses. , 2020, , 21-34.		3
365	Generation of fruit postharvest gene datasets and a novel motif analysis tool for functional studies: uncovering links between peach fruit heat treatment and cold storage responses. Planta, 2020, 251, 53.	1.6	3
366	Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development. Plant Cell, 2020, 32, 1049-1062.	3.1	75
367	Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Critical Reviews in Biotechnology, 2020, 40, 320-340.	5.1	38
368	Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses, 2020, 12, 148.	1.5	40

#	Article	IF	CITATIONS
369	Jasmonate is required for the response to osmotic stress in rice. Environmental and Experimental Botany, 2020, 175, 104047.	2.0	27
370	Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. Plants, 2020, 9, 495.	1.6	48
371	Thrips as the Transmission Bottleneck for Mixed Infection of Two Orthotospoviruses. Plants, 2020, 9, 509.	1.6	7
372	A transcriptional regulatory network of Rsv3-mediated extreme resistance against Soybean mosaic virus. PLoS ONE, 2020, 15, e0231658.	1.1	8
373	A Seed-Specific Regulator of Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Cell, 2020, 32, 2020-2042.	3.1	30
374	Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis of Specialized Metabolites in Plants. Plant Physiology, 2020, 182, 840-856.	2.3	54
375	Transcriptional Factors Regulate Plant Stress Responses Through Mediating Secondary Metabolism. Genes, 2020, 11, 346.	1.0	138
376	Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant Journal, 2021, 105, 459-476.	2.8	186
377	Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Journal of Experimental Botany, 2021, 72, 459-475.	2.4	28
378	Comparative transcriptomics reveals hidden issues in the plant response to arthropod herbivores. Journal of Integrative Plant Biology, 2021, 63, 312-326.	4.1	19
379	Apple <scp>BT2</scp> protein negatively regulates jasmonic acidâ€triggered leaf senescence by modulating the stability of <scp>MYC2</scp> and <scp>JAZ2</scp> . Plant, Cell and Environment, 2021, 44, 216-233.	2.8	30
380	The gene <i>NtMYC2a</i> acts as a â€~master switch' in the regulation of JAâ€induced nicotine accumulation in tobacco. Plant Biology, 2021, 23, 317-326.	1.8	11
381	SIMYB14 promotes flavonoids accumulation and confers higher tolerance to 2,4,6-trichlorophenol in tomato. Plant Science, 2021, 303, 110796.	1.7	18
382	Multiple levels of crosstalk in hormone networks regulating plant defense. Plant Journal, 2021, 105, 489-504.	2.8	175
383	Insect eggâ€induced physiological changes and transcriptional reprogramming leading to gall formation. Plant, Cell and Environment, 2021, 44, 535-547.	2.8	9
384	The JAâ€responsive MYC2â€ <i>BADH</i> â€ <i>like</i> transcriptional regulatory module in <i>Poncirus trifoliata</i> contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytologist, 2021, 229, 2730-2750.	3.5	50
385	Jasmonate: A Versatile Messenger in Plants. Signaling and Communication in Plants, 2021, , 129-158.	0.5	1
386	Apple Autotetraploids with Enhanced Resistance to Apple Scab (Venturia inaequalis) Due to Genome Duplication-Phenotypic and Genetic Evaluation. International Journal of Molecular Sciences, 2021, 22, 527	1.8	14

#	Article	IF	CITATIONS
387	Circadian regulation of abiotic stress tolerance in legumes. , 2021, , 105-136.		0
388	RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS. Frontiers of Agricultural Science and Engineering, 2021, .	0.9	2
389	All together now: regulation of the iron deficiency response. Journal of Experimental Botany, 2021, 72, 2045-2055.	2.4	81
390	Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiology, 2021, 185, 1182-1197.	2.3	32
391	Evolution of A bHLH Interaction Motif. International Journal of Molecular Sciences, 2021, 22, 447.	1.8	5
392	Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. Functional Plant Biology, 2021, 48, 1087-1099.	1.1	2
393	<i>BHLH IRIDOID SYNTHESIS 3</i> is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . Plant Direct, 2021, 5, e00305.	0.8	25
394	Dynamic Chromatin State Profiling Reveals Regulatory Principle of Pluripotency During Shoot Regeneration. SSRN Electronic Journal, 0, , .	0.4	1
395	Transcription Factor: A Powerful Tool to Regulate Biosynthesis of Active Ingredients in Salvia miltiorrhiza. Frontiers in Plant Science, 2021, 12, 622011.	1.7	9
396	Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 2021, 22, 2914.	1.8	52
397	Cloning and functional analysis of the promoterof the sesquiterpene synthase gene ASS1 in Aquilaria sinensis. Biologia Plantarum, 0, 65, 60-67.	1.9	2
398	Genome-wide identification of the GATA gene family in potato (Solanum tuberosum L.) and expression analysis. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 37-48.	0.9	8
399	A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
400	Light-Mediated Regulation of Leaf Senescence. International Journal of Molecular Sciences, 2021, 22, 3291.	1.8	21
401	Structural and functional organization of the MYC transcriptional factors in Camellia sinensis. Planta, 2021, 253, 93.	1.6	8
402	MYC2 Transcription Factors TwMYC2a and TwMYC2b Negatively Regulate Triptolide Biosynthesis in Tripterygium wilfordii Hairy Roots. Plants, 2021, 10, 679.	1.6	11
403	Molecular Cloning and Functional Analysis of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase from Santalum album. Genes, 2021, 12, 626.	1.0	12
404	Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. Frontiers in Plant Science, 2021, 12, 665842.	1.7	17

#	Article	IF	CITATIONS
405	Trichoderma and the Plant Heritable Priming Responses. Journal of Fungi (Basel, Switzerland), 2021, 7, 318.	1.5	54
406	Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. Plants, 2021, 10, 756.	1.6	64
407	Role of jasmonic acid in plants: the molecular point of view. Plant Cell Reports, 2021, 40, 1471-1494.	2.8	135
408	SIMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit. Postharvest Biology and Technology, 2021, 174, 111443.	2.9	27
409	Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1–TRB1–MYB9 complex. Plant Journal, 2021, 106, 1414-1430.	2.8	49
410	Genome-Wide Identification and Expression Profiling of the bHLH Transcription Factor Gene Family in Saccharum spontaneum Under Bacterial Pathogen Stimuli. Tropical Plant Biology, 2021, 14, 283.	1.0	12
411	Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants. Current Pharmaceutical Biotechnology, 2021, 22, 848-866.	0.9	16
413	Integrated Signals of Jasmonates, Sugars, Cytokinins and Auxin Influence the Initial Growth of the Second Buds of Chrysanthemum after Decapitation. Biology, 2021, 10, 440.	1.3	10
415	Gene Expression Correlation Analysis Reveals MYC-NAC Regulatory Network in Cotton Pigment Gland Development. International Journal of Molecular Sciences, 2021, 22, 5007.	1.8	3
416	Transcriptomic and Anatomic Profiling Reveal Etiolation Promotes Adventitious Rooting by Exogenous Application of 1-Naphthalene Acetic Acid in Robinia pseudoacacia L Forests, 2021, 12, 789.	0.9	6
417	Ectopic expression of LhMYC2 increases susceptibility to Botrytis cinerea in Arabidopsis thaliana. Canadian Journal of Plant Science, 2021, 101, 328-340.	0.3	1
418	Targeted mutation of transcription factor genes alters metaxylem vessel size and number in rice roots. Plant Direct, 2021, 5, e00328.	0.8	4
419	Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. Journal of Experimental Botany, 2021, 72, 7163-7179.	2.4	10
420	Pars Pro Toto: Every Single Cell Matters. Frontiers in Plant Science, 2021, 12, 656825.	1.7	8
421	Differential Contributions of MYCs to Insect Defense Reveals Flavonoids Alleviating Growth Inhibition Caused by Wounding in Arabidopsis. Frontiers in Plant Science, 2021, 12, 700555.	1.7	13
422	A New Approach for Wounding Research: MYC2 Gene Expression and Protein Stability in Wounded Arabidopsis Protoplasts. Plants, 2021, 10, 1518.	1.6	5
423	Physiological and Molecular Responses of Six Apple Rootstocks to Osmotic Stress. International Journal of Molecular Sciences, 2021, 22, 8263.	1.8	6
424	A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nature Plants, 2021, 7, 1078-1092.	4.7	90

#	Article	IF	CITATIONS
425	Beyond the Usual Suspects: Physiological Roles of the Arabidopsis Amidase Signature (AS) Superfamily Members in Plant Growth Processes and Stress Responses. Biomolecules, 2021, 11, 1207.	1.8	5
426	<scp>OsPHR2</scp> modulates phosphate starvationâ€induced <scp>OsMYC2</scp> signalling and resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Plant, Cell and Environment, 2021, 44, 3432-3444.	2.8	19
427	Detecting drought regulators using stochastic inference in Bayesian networks. PLoS ONE, 2021, 16, e0255486.	1.1	5
429	RNA inhibition of the JAZ9 gene increases the production of resveratrol in grape cell cultures. Plant Cell, Tissue and Organ Culture, 0, , 1.	1.2	2
430	JA signal-mediated immunity of Dendrobium catenatum to necrotrophic Southern Blight pathogen. BMC Plant Biology, 2021, 21, 360.	1.6	9
431	Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiology, 2021, 187, 2419-2434.	2.3	20
432	De novo transcriptome analysis provides insights into formation of in vitro adventitious root from leaf explants of Arnebia euchroma. BMC Plant Biology, 2021, 21, 414.	1.6	9
434	A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in Arabidopsis. Metabolites, 2021, 11, 601.	1.3	13
435	Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. Plants, 2021, 10, 2061.	1.6	15
436	The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. Plant Molecular Biology, 2022, 109, 651-666.	2.0	19
437	Jasmonic Acid-Dependent MYC Transcription Factors Bind to a Tandem G-Box Motif in the YUCCA8 and YUCCA9 Promoters to Regulate Biotic Stress Responses. International Journal of Molecular Sciences, 2021, 22, 9768.	1.8	12
439	Effects of BrMYC2/3/4 on Plant Development, Glucosinolate Metabolism, and Sclerotinia sclerotiorum Resistance in Transgenic Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 707054.	1.7	6
440	Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum) Tj ETQq0 0	0 rgBT /Ov £0	verlock 10 Tf
441	The roles of SIMYC2 in regulating ascorbate-glutathione cycle mediated by methyl jasmonate in postharvest tomato fruits under cold stress. Scientia Horticulturae, 2021, 288, 110406.	1.7	20
442	<scp>MYC2</scp> influences salicylic acid biosynthesis and defense against bacterial pathogens in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2021, 173, 2248-2261.	2.6	27
443	Hormone mediated cell signaling in plants under changing environmental stress. Plant Gene, 2021, 28, 100335.	1.4	6
444	Protein Phosphorylation in Plant Cell Signaling. Methods in Molecular Biology, 2021, 2358, 45-71.	0.4	9
445	Making do: SULFUR DEFICIENCY INDUCED1 regulates seed sulfur content when sulfur is limiting. Plant Physiology, 2021, 187, 2344-2345.	2.3	2

#	Article	IF	CITATIONS
446	Amaranth Transcription Factors in Response to Biotic and Abiotic Stresses. Compendium of Plant Genomes, 2021, , 167-181.	0.3	3
448	An Overview of Salinity Tolerance Mechanism in Plants. Signaling and Communication in Plants, 2020, , 1-16.	0.5	14
449	Mitogen-Activated Protein Kinase Cascades in Plant Innate Immunity. Signaling and Communication in Plants, 2014, , 331-374.	0.5	2
454	Auxin, Abscisic Acid and Jasmonate Are the Central Players in Rice Sheath Rot Caused by Sarocladium oryzae and Pseudomonas fuscovaginae. Rice, 2020, 13, 78.	1.7	10
455	Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery. PLoS ONE, 2016, 11, e0147306.	1.1	67
456	Herbivore-induced chemical and molecular responses of the kelps Laminaria digitata and Lessonia spicata. PLoS ONE, 2017, 12, e0173315.	1.1	16
457	Anatomical and Gene Expression Analyses of Two Blueberry Genotypes Displaying Differential Fruit Detachment. Journal of the American Society for Horticultural Science, 2015, 140, 620-626.	0.5	9
459	The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 2013, 16, 69-80.	1.1	173
460	Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. ELife, 2015, 4, e07295.	2.8	232
461	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952.	0.9	19
461 463	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228.	0.9	19 22
461 463 464	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497.	0.9 1.7 2.0	19 22 62
461 463 464 465	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS ONE, 2021, 16, e0252001.	0.9 1.7 2.0 1.1	19 22 62 1
461 463 464 465	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS ONE, 2021, 16, e0252001. Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. Signaling and Communication in Plants, 2014, , 409-430.	0.9 1.7 2.0 1.1	19 22 62 1 2
461 463 464 465 466	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS ONE, 2021, 16, e0252001. Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. Signaling and Communication in Plants, 2014, , 409-430. ABA Regulation of Plant Response to Biotic Stresses. , 2014, , 409-429.	0.9 1.7 2.0 1.1 0.5	19 22 62 1 2 4
 461 463 464 465 466 467 468 	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS ONE, 2021, 16, e0252001. Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. Signaling and Communication in Plants, 2014, 409-430. ABA Regulation of Plant Response to Biotic Stresses. , 2014, , 409-429. Advances in Molecular Regulation of Artemisinin Biosynthesis. Botanical Research, 2016, 05, 113-123.	0.9 1.7 2.0 1.1 0.5	19 22 62 1 2 4 0
 461 463 464 465 466 467 468 469 	Master regulator genes and their impact on major diseases. PeerJ, 2020, 8, e9952. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. Frontiers in Plant Science, 2021, 12, 730228. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. Plant Molecular Biology, 2021, 107, 477-497. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS ONE, 2021, 16, e0252001. Ubiquitin-Proteasome System-Mediated Protein Degradation in Defense Signaling. Signaling and Communication in Plants, 2014, 409-430. ABA Regulation of Plant Response to Biotic Stresses. , 2014, , 409-429. Advances in Molecular Regulation of Artemisinin Biosynthesis. Botanical Research, 2016, 05, 113-123. Alkaloid biosynthesis and regulation in plants. , 2016, , 85-118.	0.9 1.7 2.0 1.1 0.5	19 22 62 1 2 4 0 0

#	Article	IF	CITATIONS
471	ldentification and characterization of the MYC2 gene in relation to leaf senescence response in hybrid poplar (<i>Populus alba</i> × <i>P. glandulosa</i>). Journal of Plant Biotechnology, 2017, 44, 409-415.	0.1	0
475	Biochemistry, Biosynthesis, and Medicinal Properties of Phenolic Acids in Salvia miltiorrhiza. Compendium of Plant Genomes, 2019, , 141-162.	0.3	1
476	Crystallization of a Complex Between MYC and Jas Motif. Methods in Molecular Biology, 2020, 2085, 133-144.	0.4	0
480	Differential Regulation of Drought Responses in Two Phaseolus vulgaris Genotypes. Plants, 2020, 9, 1815.	1.6	7
481	Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. International Journal of Molecular Sciences, 2020, 21, 9755.	1.8	14
482	Transcriptome-based discovery of genes and networks related to RSC3Q-mediated resistance to Soybean mosaic virus in soybean. Crop and Pasture Science, 2020, 71, 987.	0.7	5
483	Bioengineering and Molecular Manipulation of Jasmonate Signaling System to Activate Plant Immune System for Crop Disease Management. Signaling and Communication in Plants, 2020, , 223-248.	0.5	0
486	Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Current Genomics, 2020, 21, 491-503.	0.7	9
487	Characterization of the sugarcane MYC gene family and the negative regulatory role of ShMYC4 in response to pathogen stress. Industrial Crops and Products, 2022, 176, 114292.	2.5	10
488	<i>Pseudomonas syringae</i> activates <i>ZAT18</i> to inhibit salicylic acid accumulation by repressing <i>EDS1</i> transcription for bacterial infection. New Phytologist, 2022, 233, 1274-1288.	3.5	13
489	Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 813-828.	0.9	14
490	Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytologist, 2022, 233, 1220-1237.	3.5	21
493	Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize. Journal of Chemical Ecology, 2022, 48, 179-195.	0.9	5
494	Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. Plant, Cell and Environment, 2022, 45, 989-1010.	2.8	13
495	Phytohormone and transcriptome of pericarp reveals jasmonate and LcMYC2 are involved in neral and geranial biosynthesis in Litsea cubeba. Industrial Crops and Products, 2022, 177, 114423.	2.5	11
496	Genome-wide identification and expression analysis of the MYC transcription factor family and its response to sulfur stress in cabbage (Brassica oleracea L.). Gene, 2022, 814, 146116.	1.0	4
497	The High Concentrations of Abscisic, Jasmonic, and Salicylic Acids Produced Under Long Days Do Not Accelerate Flowering in <i>Chenopodium Ficifolium</i> 459. SSRN Electronic Journal, 0, , .	0.4	0
499	ERF4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 2022, 8, 689-699.	2.3	21

#	Article	IF	CITATIONS
500	Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Frontiers in Genetics, 2021, 12, 784883.	1.1	1
501	MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in <i>Lotus japonicus</i> . Journal of Experimental Botany, 2022, 73, 2650-2665.	2.4	12
502	Analyses of diverse low alkaloid tobacco germplasm identify naturally occurring nucleotide variability contributing to reduced leaf nicotine accumulation. Molecular Breeding, 2022, 42, 1.	1.0	2
504	Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 2022, 135, 367-387.	1.8	29
505	Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Developmental Cell, 2022, 57, 526-542.e7.	3.1	39
506	The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes, 2022, 58, 1-14.	0.7	3
507	Alternative splicing of CsJAZ1 negatively regulates flavanâ€3â€ol biosynthesis in tea plants. Plant Journal, 2022, 110, 243-261.	2.8	17
508	Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants, 2022, 11, 386.	1.6	115
509	Defense Strategies: The Role of Transcription Factors in Tomato–Pathogen Interaction. Biology, 2022, 11, 235.	1.3	24
510	The Caucasian Clover Gene TaMYC2 Responds to Abiotic Stress and Improves Tolerance by Increasing the Activity of Antioxidant Enzymes. Genes, 2022, 13, 329.	1.0	5
511	Study of natural diversity in response to a key pathogenicity regulator of <i>Ralstonia solanacearum</i> reveals new susceptibility genes in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2022, 23, 321-338.	2.0	19
512	Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. International Journal of Molecular Sciences, 2022, 23, 2332.	1.8	38
513	Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Plant Cell Reports, 2022, 41, 1243-1260.	2.8	12
515	Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. Horticulturae, 2022, 8, 241.	1.2	18
516	The jasmonateâ€induced bHLH gene <i>SIJIG</i> functions in terpene biosynthesis and resistance to insects and fungus. Journal of Integrative Plant Biology, 2022, 64, 1102-1115.	4.1	27
517	Genome-Wide Identification and Expression Analysis of MYC Transcription Factor Family Genes in Rubber Tree (Hevea brasiliensis Muell. Arg.). Forests, 2022, 13, 531.	0.9	4
518	Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines. PLoS ONE, 2022, 17, e0265447.	1.1	15
519	Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. International Journal of Molecular Sciences, 2022, 23, 3945.	1.8	42

#	Article	IF	CITATIONS
520	Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. Plants, 2022, 11, 1009.	1.6	10
521	Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth. Journal of Chemical Ecology, 2022, 48, 441-454.	0.9	6
522	AchMYC2 promotes JA-mediated suberin polyphenolic accumulation via the activation of phenylpropanoid metabolism-related genes in the wound healing of kiwifruit (Actinidia chinensis). Postharvest Biology and Technology, 2022, 188, 111896.	2.9	12
523	The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459. Plant Science, 2022, 320, 111279.	1.7	5
524	Arabidopsis CHROMATIN REMODELING 19 acts as a transcriptional repressor and contributes to plant pathogen resistance. Plant Cell, 2022, 34, 1100-1116.	3.1	13
525	Integrated view of plant metabolic defense with particular focus on chewing herbivores. Journal of Integrative Plant Biology, 2022, 64, 449-475.	4.1	18
527	bHLH Transcription Factor NtMYC2a Regulates Carbohydrate Metabolism during the Pollen Development of Tobacco (Nicotiana tabacum L. cv. TN90). Plants, 2022, 11, 17.	1.6	5
528	Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Reports, 2021, 37, 110125.	2.9	41
529	Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. Frontiers in Plant Science, 2021, 12, 767150.	1.7	30
585	The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2022, 34, 2892-2906.	3.1	8
586	The Multifaceted Roles of MYC2 in Plants: Toward Transcriptional Reprogramming and Stress Tolerance by Jasmonate Signaling. Frontiers in Plant Science, 2022, 13, 868874.	1.7	41
587	Jasmonate Hypersensitive 3 negatively regulates both jasmonate and ethylene-mediated responses in Arabidopsis. Journal of Experimental Botany, 2022, 73, 5067-5083.	2.4	3
588	Genome-wide investigation of bHLH genes and expression analysis under salt and hormonal treatments in Andrographis paniculata. Industrial Crops and Products, 2022, 183, 114928.	2.5	12
589	MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. Plant Physiology, 2022, 189, 2259-2280.	2.3	9
590	Genome-Wide Association Study of Resistance to Phytophthora capsici in the Pepper (Capsicum spp.) Collection. Frontiers in Plant Science, 2022, 13, .	1.7	12
591	Jasmonate signaling and remodeling of cell wall metabolism induced by boron deficiency in pea shoots. Environmental and Experimental Botany, 2022, 201, 104947.	2.0	14
593	Transcriptome analysis of Crimson seedless grapevine (Vitis vinifera L.) infected by grapevine berry inner necrosis virus. Current Research in Virological Science, 2022, 3, 100024.	1.8	3
594	<scp>TDTHub</scp> , a web server tool for the analysis of transcription factor binding sites in plants. Plant Journal, 2022, 111, 1203-1215.	2.8	5

#	Article	IF	CITATIONS
595	How do plants remember drought?. Planta, 2022, 256, .	1.6	27
596	Transcriptome Analysis Reveals the Regulatory Networks of Cytokinin in Promoting Floral Feminization in Castanea henryi. International Journal of Molecular Sciences, 2022, 23, 6389.	1.8	6
597	Metabolism and Regulation of Ascorbic Acid in Fruits. Plants, 2022, 11, 1602.	1.6	29
598	Transcriptome analysis reveals regulation mechanism of methyl jasmonate-induced terpenes biosynthesis in Curcuma wenyujin. PLoS ONE, 2022, 17, e0270309.	1.1	9
599	The UDP-glycosyltransferase MtUGT84A1 regulates anthocyanin accumulation and plant growth via JA signaling in Medicago truncatula. Environmental and Experimental Botany, 2022, 201, 104972.	2.0	7
600	N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Frontiers in Plant Science, 0, 13, .	1.7	11
601	ZmMYC7 directly regulates ZmERF147 to increase maize resistance to Fusarium graminearum. Crop Journal, 2023, 11, 79-88.	2.3	5
602	ArabidopsisÂERF012Âls a Versatile Regulator of Plant Growth, Development and Abiotic Stress Responses. International Journal of Molecular Sciences, 2022, 23, 6841.	1.8	4
603	Advances in understanding Norway spruce natural resistance to needle bladder rust infection: transcriptional and secondary metabolites profiling. BMC Genomics, 2022, 23, .	1.2	2
604	Transcriptomic Analysis of the CM-334/P. capsici/N. aberrans Pathosystem to Identify Components in Plant Resistance and Resistance-Breaking Responses. International Journal of Plant Biology, 2022, 13, 151-162.	1.1	0
605	The basic <scp>helix–loop–helix</scp> transcription factors <scp>MYC1</scp> and <scp>MYC2</scp> have a dual role in the regulation of constitutive and <scp>stressâ€inducible</scp> specialized metabolism in tomato. New Phytologist, 2022, 236, 911-928.	3.5	15
606	Transcriptomic Insight into Viviparous Growth in Water Lily. BioMed Research International, 2022, 2022, 1-18.	0.9	0
607	Overcoming Metabolic Constraints in the MEP-Pathway Enrich Salvia sclarea Hairy Roots in Therapeutic Abietane Diterpenes. Applied Sciences (Switzerland), 2022, 12, 7116.	1.3	1
608	Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Molecular Plant, 2022, 15, 1329-1346.	3.9	23
609	RNA-seq based analysis of transcriptomic changes associated with ABA-induced postharvest cold tolerance in zucchini fruit. Postharvest Biology and Technology, 2022, 192, 112023.	2.9	8
610	Functional pleiotropism, diversity, and redundancy of <i>Salvia miltiorrhiza</i> Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. Horticulture Research, 2022, 9, .	2.9	9
611	Motif models proposing independent and interdependent impacts of nucleotides are related to high and low affinity transcription factor binding sites in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	4
612	A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. Plant Communications, 2022, 3, 100416.	3.6	10

#	Article	IF	CITATIONS
613	Genome-wide analysis of basic helix–loop–helix genes in Dendrobium catenatum and functional characterization of DcMYC2 in jasmonate-mediated immunity to Sclerotium delphinii. Frontiers in Plant Science, 0, 13, .	1.7	4
614	Ambivalent response in pathogen defense: A double-edged sword?. Plant Communications, 2022, 3, 100415.	3.6	4
615	Exploiting breakdown in nonhost effector–target interactions to boost host disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
616	Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Frontiers in Plant Science, 0, 13, .	1.7	21
617	Morphological, Transcriptome, and Hormone Analysis of Dwarfism in Tetraploids of Populus alba × P. glandulosa. International Journal of Molecular Sciences, 2022, 23, 9762.	1.8	5
619	A highly accumulated secretory protein from cotton bollworm interacts with basic helix–loop–helix transcription factor <scp>s</scp> to dampen plant defense. New Phytologist, 2023, 237, 265-278.	3.5	12
620	Gene expression and genetic divergence in oak species highlight adaptive genes to soil water constraints. Plant Physiology, 0, , .	2.3	4
621	The Germinâ€like protein <scp>OsGER4</scp> is involved in promoting crown root development under exogenous jasmonic acid treatment in rice. Plant Journal, 2022, 112, 860-874.	2.8	6
622	A transcriptomic-guided strategy used in identification of a wheat rust pathogen target and modification of the target enhanced host resistance to rust pathogens. Frontiers in Plant Science, 0, 13, .	1.7	1
623	Interference between ER stress-related bZIP-type and jasmonate-inducible bHLH-type transcription factors in the regulation of triterpene saponin biosynthesis in Medicago truncatula. Frontiers in Plant Science, 0, 13, .	1.7	7
624	Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree (<i>Vernicia fordii</i>). PeerJ, 0, 10, e13981.	0.9	1
625	Peroxisome-Mediated Reactive Oxygen Species Signals Modulate Programmed Cell Death in Plants. International Journal of Molecular Sciences, 2022, 23, 10087.	1.8	6
626	Jasmonate-based warfare between the pathogenic intruder and host plant: who wins?. Journal of Experimental Botany, 2023, 74, 1244-1257.	2.4	8
627	Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 470-492.	1.6	10
628	Integrated metabolome and transcriptome analysis reveals salicylic acid and flavonoid pathways' key roles in cabbage's defense responses to Xanthomonas campestris pv. campestris. Frontiers in Plant Science, 0, 13, .	1.7	3
629	Multiâ€stress resilience in plants recovering from submergence. Plant Biotechnology Journal, 2023, 21, 466-481.	4.1	15
630	Peptide ligand-mediated trade-off between plant growth and stress response. Science, 2022, 378, 175-180.	6.0	32
631	Transcriptomic and proteomic profile approaches toward drought and salinity stresses. Biologia Plantarum, 0, 66, 255-271.	1.9	0

#	Article	IF	Citations
632	Transcriptome responses to salt stress in roots and leaves of Lilium pumilum. Scientia Horticulturae, 2023, 309, 111622.	1.7	5
633	Overexpression of SmMYC2 enhances salt resistance in Arabidopsis thaliana and Salvia miltiorrhiza hairy roots. Journal of Plant Physiology, 2023, 280, 153862.	1.6	6
634	Transcriptional regulation of drought stress stimulus: challenges and potential for crop improvement. , 2023, , 313-336.		0
635	Transcription factors and their role in leaf senescence. , 2023, , 93-138.		Ο
636	Impact of transcription factors in plant abiotic stress: a recent advancement for crop improvement. , 2023, , 271-286.		3
637	Plant transcription factors in light-regulated development and UV-B protection. , 2023, , 139-157.		0
639	Jasmonate-regulated root growth inhibition and root hair elongation. Journal of Experimental Botany, 2023, 74, 1176-1185.	2.4	15
640	ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. Journal of Integrative Plant Biology, 2023, 65, 1041-1058.	4.1	9
641	A hidden mutation in the seventh WD40-repeat of COP1 determines the early flowering trait in a set of <i>Arabidopsis myc</i> mutants. Plant Cell, 2023, 35, 345-350.	3.1	4
642	Transcriptome analysis revealed mechanisms involved in improved germination and growth of sugarcane by ultrasonic treatment. Industrial Crops and Products, 2023, 192, 116104.	2.5	6
643	Variations in oolong tea key characteristic floral aroma compound contents among tea (Camellia) Tj ETQq0 0 0 r 112201.	gBT /Over 2.9	ock 10 Tf 50 3
644	CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. Plant Cell, 2023, 35, 852-873.	3.1	5
645	The Combined Analysis of Transcriptome and Antioxidant Enzymes Revealed the Mechanism of EBL and ZnO NPs Enhancing Styrax tonkinensis Seed Abiotic Stress Resistance. Genes, 2022, 13, 2170.	1.0	4
646	Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. International Journal of Biological Macromolecules, 2023, 226, 1360-1373.	3.6	2
647	NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae. Frontiers in Plant Science, 0, 13, .	1.7	0
648	Jasmonic acid enhances osmotic stress responses by <scp>MYC2</scp> â€mediated inhibition of <i>protein phosphatase 2C1</i> and <i>response regulators 26</i> transcription factor in tomato. Plant Journal, 2023, 113, 546-561.	2.8	11
649	Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (<i>Citrus sinensis</i>). Plant Cell, 2023, 35, 1167-1185.	3.1	17
650	BTH-induced joint regulation of wound healing at the wounds of apple fruit by JA and its downstream transcription factors. Food Chemistry, 2023, 410, 135184.	4.2	3

#	Article	IF	CITATIONS
652	CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in <i>Arabidopsis</i> . Nucleic Acids Research, 2023, 51, 619-630.	6.5	2
653	A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea. Plant Physiology, 2023, 191, 1884-1912.	2.3	8
654	Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell, 2023, 35, 1110-1133.	3.1	26
655	The AP2/ERF transcription factor ORA59 regulates ethyleneâ€induced phytoalexin synthesis through modulation of an acyltransferase gene expression. Journal of Cellular Physiology, 0, , .	2.0	6
656	Transcriptomic analysis reveals the formation mechanism of anemone-type flower in chrysanthemum. BMC Genomics, 2022, 23, .	1.2	6
657	Genome-Wide Identification of SnRK1 Catalytic α Subunit and FLZ Proteins in Glycyrrhiza inflata Bat. Highlights Their Potential Roles in Licorice Growth and Abiotic Stress Responses. International Journal of Molecular Sciences, 2023, 24, 121.	1.8	7
658	Exploring the metabolic basis of growth/defense tradeâ€offs in complex environments with <i>Nicotiana attenuata</i> plants cosilenced in <i>NaMYC2a/b</i> expression. New Phytologist, 2023, 238, 349-366.	3.5	5
660	Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. Plant Science, 2023, 328, 111595.	1.7	5
661	<i>Trichoderma</i> root colonization in maize triggers epigenetic changes in genes related to the jasmonic and salicylic acid pathways that prime defenses against <i>Colletotrichum graminicola</i> leaf infection. Journal of Experimental Botany, 2023, 74, 2016-2028.	2.4	5
662	Arabidopsis β-amylase 3 affects cell wall architecture and resistance against Fusarium oxysporum. Physiological and Molecular Plant Pathology, 2023, 124, 101945.	1.3	0
663	Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance. Cells, 2023, 12, 149.	1.8	5
664	Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. Plant Physiology, 2023, 192, 154-169.	2.3	2
665	Identification of Differential-Expressed Genes in Banana-Biostimulant Interaction Using Suppression Subtractive Hybridization. Agronomy, 2023, 13, 415.	1.3	1
666	Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. Frontiers in Plant Science, 0, 14, .	1.7	8
668	Plant extracellular self-DNA inhibits growth and induces immunity via the jasmonate signaling pathway. Plant Physiology, 2023, 192, 2475-2491.	2.3	13
669	Comprehensive Analysis of BrHMPs Reveals Potential Roles in Abiotic Stress Tolerance and Pollen–Stigma Interaction in Brassica rapa. Cells, 2023, 12, 1096.	1.8	1
670	miR164–NAC21/22 module regulates the resistance of Malus hupehensis against Alternaria alternata by controlling jasmonic acid signaling. Plant Science, 2023, 330, 111635.	1.7	9
671	Interaction of methionine sulfoxide reductase B5 with SIMYC2 stimulates the transcription of MeJA-mediated autophagy-related genes in tomato fruit. Horticulture Research, 2023, 10, .	2.9	5

#	ARTICLE	IF	CITATIONS
673	Integrative mRNA and microRNA Analysis Exploring the Inducing Effect and Mechanism of Diallyl Trisulfide (DATS) on Potato against Late Blight. International Journal of Molecular Sciences, 2023, 24, 3474.	1.8	0
674	Plant Immunity: A Plastic System Operated Through Cell-Fate Transition. Journal of Plant Biology, 2023, 66, 193-206.	0.9	1
675	Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. International Journal of Molecular Sciences, 2023, 24, 3803.	1.8	4
676	Resequencing of durian genomes reveals large genetic variations among different cultivars. Frontiers in Plant Science, 0, 14, .	1.7	0
677	Cell Wall Integrity Signaling in Fruit Ripening. International Journal of Molecular Sciences, 2023, 24, 4054.	1.8	9
678	PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. Plant Cell, 2023, 35, 2132-2156.	3.1	17
679	Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. Frontiers in Plant Science, 0, 14, .	1.7	4
680	Genome-Wide Analysis and Expression of MYC Family Genes in Tomato and the Functional Identification of slmyc1 in Response to Salt and Drought Stress. Agronomy, 2023, 13, 757.	1.3	3
681	Emerging roles of inositol pyrophosphates in signaling plant phosphorus status and phytohormone signaling. Plant and Soil, O, , .	1.8	2
683	Molecular Characterization of Defense of <i>Brassica napus</i> (Oilseed Rape) to <i>Rhizoctonia solani</i> AG2-1 Confirmed by Functional Analysis in <i>Arabidopsis thaliana</i> . Phytopathology, 2023, 113, 1525-1536.	1.1	2
684	<i>Poaceae</i> â€specific βâ€1,3;1,4â€ <scp>d</scp> â€glucans link jasmonate signalling to <scp>OsLecRK1</scp> â€mediated defence response during riceâ€brown planthopper interactions. Plant Biotechnology Journal, 2023, 21, 1286-1300.	4.1	4
685	Transcriptomics Reveals the Molecular Basis for Methyl Jasmonate to Promote the Synthesis of Monoterpenoids in Schizonepeta tenuifolia Briq Current Issues in Molecular Biology, 2023, 45, 2738-2756.	1.0	1
686	Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells, 2023, 12, 1027.	1.8	7
687	Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. International Journal of Molecular Sciences, 2023, 24, 6435.	1.8	2
688	MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC Plant Biology, 2023, 23, .	1.6	1
689	Pseudomonas syringae Type III Secretion Protein HrpP Manipulates Plant Immunity To Promote Infection. Microbiology Spectrum, 0, , .	1.2	0
694	Roles of long non-coding RNAs in plant immunity. PLoS Pathogens, 2023, 19, e1011340.	2.1	7
754	Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Advances in Virus Research, 2024, , 77-212.	0.9	0

ARTICLE

IF CITATIONS