Superparamagnetic nanoparticles as versatile carriers a enzymes

Journal of Molecular Catalysis B: Enzymatic 85-86, 71-92 DOI: 10.1016/j.molcatb.2012.08.010

Citation Report

#	ARTICLE	IF	CITATIONS
1	Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. Journal of Molecular Catalysis B: Enzymatic, 2013, 95, 41-47.	1.8	34
2	NADH oxidation in a microreactor catalysed by ADH immobilised on <i>γ</i> -Fe ₂ O ₃ nanoparticles. Green Processing and Synthesis, 2013, 2, 569-578.	1.3	11
3	Investigating the Influence of the Interface in Thiol-Functionalized Silver–Gold Nanoshells over Lipase Activity. Langmuir, 2013, 29, 15974-15980.	1.6	11
4	Green chemistry in Brazil. Pure and Applied Chemistry, 2013, 85, 1643-1653.	0.9	18
5	Immobilization of amyloglucosidase from SSF of Aspergillus niger by crosslinked enzyme aggregate onto magnetic nanoparticles using minimum amount of carrier and characterizations. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 30-36.	1.8	31
6	Developing nanotechnological strategies for green industrial processes. Pure and Applied Chemistry, 2013, 85, 1655-1669.	0.9	12
7	Rapid screening and analysis of alcohol dehydrogenase binders from <i>Glycyrrhiza uralensis</i> root extract using functionalized magnetic nanoparticles coupled with HPLCâ^MS/MS. Canadian Journal of Chemistry, 2013, 91, 1147-1154.	0.6	12
8	Flavoprotein oxidases: classification and applications. Applied Microbiology and Biotechnology, 2013, 97, 5177-5188.	1.7	123
9	Immobilised enzymes in biorenewables production. Chemical Society Reviews, 2013, 42, 6491.	18.7	232
10	Production of partially phosphorylated myo-inositol phosphates using phytases immobilised on magnetic nanoparticles. Bioresource Technology, 2013, 142, 375-383.	4.8	27
11	Immobilization and Characterization of a Thermostable Lipase. Marine Biotechnology, 2013, 15, 659-667.	1.1	13
12	Chemical approaches for the construction of multi-enzyme reaction systems. Current Opinion in Structural Biology, 2013, 23, 613-621.	2.6	104
13	Characterization of lactase-conjugated magnetic nanoparticles. Process Biochemistry, 2013, 48, 656-662.	1.8	31
14	SPE and purification of DNA using magnetic particles. Journal of Separation Science, 2013, 36, 2472-2485.	1.3	42
15	Functionalized superparamagnetic nanoparticles as versatile carriers for targeted antioxidant enzyme therapy. , 2013, , .		0
16	Magnetic Cross-Linked Enzyme Aggregates (mCLEAs) of Candida antarctica Lipase: An Efficient and Stable Biocatalyst for Biodiesel Synthesis. PLoS ONE, 2014, 9, e115202.	1.1	70
17	A review: applications of iron nanomaterials in bioremediation and in detection of pesticide contamination. International Journal of Nanoparticles, 2014, 7, 73.	0.1	11
18	Immobilization of Mucor miehei esterase on core-shell magnetic beads via adsorption and covalent binding: Application in esters synthesis. Fibers and Polymers, 2014, 15, 2051-2060.	1.1	10

#	Article	IF	CITATIONS
19	Oriented covalent immobilization of esterase BioH on hydrophilicâ€modified Fe ₃ O ₄ nanoparticles. Biotechnology and Applied Biochemistry, 2014, 61, 603-610.	1.4	7
20	Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3′-sialyllactose production. Enzyme and Microbial Technology, 2014, 55, 85-93.	1.6	25
21	Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess and Biosystems Engineering, 2014, 37, 585-591.	1.7	21
22	Activity and stability of urease entrapped in thermosensitive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel. Bioprocess and Biosystems Engineering, 2014, 37, 235-243.	1.7	16
23	Enzymatic biosensors based on the use of metal oxide nanoparticles. Mikrochimica Acta, 2014, 181, 1-22.	2.5	110
24	Immobilization of urease on magnetic nanoparticles coated by polysiloxane layers bearing thiol- or thiol- and alkyl-functions. Journal of Materials Chemistry B, 2014, 2, 2694-2702.	2.9	29
25	Fixation of laccase enzyme into polypyrrole, assisted by chemical interaction with modified magnetite nanoparticles: A facile route to synthesize stable electroactive bionanocomposite catalysts. Electrochimica Acta, 2014, 122, 282-288.	2.6	12
26	Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 56-67.	1.8	241
27	Ferrofluids: Synthetic Strategies, Stabilization, Physicochemical Features, Characterization, and Applications. ChemPlusChem, 2014, 79, 1382-1420.	1.3	83
28	Energy barrier distributions for magnetic nanoparticles with competing cubic and uniaxial anisotropies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3366-3371.	0.9	14
29	Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	6
30	Surface-Initiated Ring-Opening Polymerization of Poly(2-methyl-2-oxazoline) from Poly(bromoethyl) Tj ETQq1 1 0 α-Amylase by Adsorption and Cross-Linking. Industrial & Engineering Chemistry Research, 2014, 53, 14263-14271	.784314 r 1.8	gBT /Overloo 8
31	Magnetic Polymeric Beads Functionalized with Different Mixed-Mode Ligands for Reversible Immobilization of Trypsin. Industrial & Engineering Chemistry Research, 2014, 53, 132-140.	1.8	32
32	Sensors and biosensors based on magnetic nanoparticles. TrAC - Trends in Analytical Chemistry, 2014, 62, 28-36.	5.8	401
33	Magnetic cross-linked laccase aggregates — Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Science of the Total Environment, 2014, 487, 830-839.	3.9	137
34	Nanostructured tin dioxide – a promising multipurpose support material for catalytic and biocatalytic applications. Chemical Engineering Journal, 2014, 252, 55-63.	6.6	8
35	Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chemical Reviews, 2014, 114, 6949-6985.	23.0	693
36	Facile preparation of magnetically functionalized graphite nanosheets for porcine pancreatic lipase immobilization. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	104

	CITATION	REPORT	
#	Article	IF	CITATIONS
37	Immobilization of Horseradish Peroxidase on NH2-Modified Magnetic Fe3O4/SiO2 Particles and Its Application in Removal of 2,4-Dichlorophenol. Molecules, 2014, 19, 15768-15782.	1.7	102
38	Heterofunctional Magnetic Metalâ€Chelateâ€Epoxy Supports for the Purification and Covalent Immobilization of Benzoylformate Decarboxylase From <i>Pseudomonas Putida</i> and Its Carboligation Reactivity. Chirality, 2015, 27, 635-642.	1.3	9
39	Immobilization of catalase onto hydrophilic mesoporous poly(ethyleneâ€ <i>co</i> â€vinyl alcohol) monoliths. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
40	Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Transactions, 2015, 44, 13845-13852.	1.6	141
41	In-situ measurement of nanoparticle quantity in microchambers. , 2015, , .		0
42	Encapsulation of Pd(II) into superparamagnetic nanoparticles grafted with EDTA and their catalytic activity towards reduction of nitroarenes and Suzuki–Miyaura coupling. Applied Organometallic Chemistry, 2015, 29, 187-194.	1.7	26
43	Biocatalysis and biotransformation in Brazil: An overview. Biotechnology Advances, 2015, 33, 481-510.	6.0	34
44	Nanodevices for the immobilization of therapeutic enzymes. Critical Reviews in Biotechnology, 2015, 36, 1-18.	5.1	54
45	Association of Pseudomonas putida formaldehyde dehydrogenase with superparamagnetic nanoparticles: an effective way of improving the enzyme stability, performance and recycling. New Journal of Chemistry, 2015, 39, 2162-2167.	1.4	6
46	An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. Journal of Molecular Catalysis B: Enzymatic, 2015, 120, 119-126.	1.8	23
47	Nanoscale tuning of enzyme localization for enhanced reactor performance in a novel magnetic-responsive biocatalytic membrane reactor. Journal of Membrane Science, 2015, 487, 209-220.	4.1	33
48	A green route for the synthesis of a bitter-taste dipeptide combining biocatalysis, heterogeneous metal catalysis and magnetic nanoparticles. RSC Advances, 2015, 5, 36449-36455.	1.7	9
49	Expression, purification and immobilization of recombinant AiiA enzyme onto magnetic nanoparticles. Protein Expression and Purification, 2015, 113, 56-62.	0.6	17
50	Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation. , 2015, , 137-166.		5
51	Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability. Green Chemistry, 2015, 17, 2027-2041.	4.6	23
52	Application of trypsin Fe 3 O 4 @SiO 2 core/shell nanoparticles for protein digestion. Process Biochemistry, 2015, 50, 2088-2098.	1.8	14
53	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
54	Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Applied Microbiology and Biotechnology, 2015, 99, 1249-1259.	1.7	36

#	Article	IF	CITATIONS
55	Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application. Materials Chemistry and Physics, 2015, 149-150, 77-86.	2.0	75
56	Magnetic separation of nanobiostructured systems for innovation of biocatalytic processes in food industry. , 2016, , 67-96.		1
57	Microfluidic Multiple Chamber Chip Reactor Filled with Enzyme-Coated Magnetic Nanoparticles. , 2016, , .		1
58	Confining a biocatalyst for highly efficient and selective synthesis of carboxamide derivatives under continuous-flow conditions. Journal of Flow Chemistry, 2016, 6, 67-72.	1.2	7
59	β-Galactosidase Langmuir Monolayer at Air/X-gal Subphase Interface. Journal of Physical Chemistry B, 2016, 120, 12279-12286.	1.2	13
60	Immobilisation of glycosidases from commercial preparation on magnetic beads. Part 1. Characterisation of immobilised glycosidases with a particular emphasis on β-glucosidase. Journal of Molecular Catalysis B: Enzymatic, 2016, 123, 23-28.	1.8	8
61	Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Applied Biochemistry and Biotechnology, 2016, 180, 558-575.	1.4	22
62	Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Advances, 2016, 6, 43989-44012.	1.7	192
63	USPIO assisting degradation of MXC by host/guest-type immobilized laccase in AOT reverse micelle system. Environmental Science and Pollution Research, 2016, 23, 13342-13354.	2.7	10
64	Lignocellulosic bioma ss : Biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences, 2016, 16, 1-16.	2.0	171
65	Biolubricant production from castor oil in a magnetically stabilized fluidized bed reactor using lipase immobilized on Fe3O4 nanoparticles. Industrial Crops and Products, 2016, 94, 544-556.	2.5	65
66	Silanized maghemite for cross-linked enzyme aggregates of recombinant xylanase from Trichoderma reesei. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 65-76.	1.8	22
67	Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S25-S33.	1.8	18
68	Pectinases immobilization on magnetic nanoparticles and their anti-fouling performance in a biocatalytic membrane reactor. RSC Advances, 2016, 6, 98737-98747.	1.7	29
69	Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances, 2016, 6, 104675-104692.	1.7	267
70	Simultaneous single-step immobilization of Candida antarctica lipase B and incorporation of magnetic nanoparticles on poly(urea-urethane) nanoparticles by interfacial miniemulsion polymerization. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 31-35.	1.8	14
71	High efficient chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic nanoparticles. Biochemical Engineering Journal, 2016, 105, 406-411.	1.8	25
72	Fullerene C ₆₀ functionalized γ-Fe ₂ O ₃ magnetic nanoparticle: Synthesis, characterization, and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 298-304.	1.9	17

#	Article	IF	Citations
73	Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis. RSC Advances, 2016, 6, 12977-12992.	1.7	7
74	Î ³ -Fe 2 O 3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application. Journal of Magnetism and Magnetic Materials, 2016, 401, 949-955.	1.0	36
75	Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme and Microbial Technology, 2016, 83, 78-87.	1.6	108
76	Improved performance of immobilized laccase on amine-functioned magnetic Fe 3 O 4 nanoparticles modified with polyethylenimine. Chemical Engineering Journal, 2016, 295, 201-206.	6.6	127
77	Bimetallic Nanoshells as Platforms for Metallo―and Biometallo atalytic Applications. ChemCatChem, 2016, 8, 171-179.	1.8	19
78	A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor. Bioprocess and Biosystems Engineering, 2016, 39, 871-881.	1.7	18
79	Transformable nanostructures of cholesteryl-containing rhomboidal metallacycles through hierarchical self-assembly. Organic Chemistry Frontiers, 2016, 3, 579-587.	2.3	23
80	Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. Journal of Industrial and Engineering Chemistry, 2016, 35, 224-230.	2.9	26
81	Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean Journal of Chemical Engineering, 2016, 33, 216-222.	1.2	48
82	Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents. Journal of Magnetism and Magnetic Materials, 2016, 397, 28-32.	1.0	22
83	Biocompatible SPIONs with Superoxid Dismutase/Catalase Immobilized for Cardiovascular Applications. IFMBE Proceedings, 2016, , 323-326.	0.2	6
84	In-situ measurement of magnetic nanoparticle quantity in a microfluidic device. Microsystem Technologies, 2017, 23, 3979-3990.	1.2	17
85	Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-l³-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil. Food Chemistry, 2017, 227, 397-403.	4.2	151
86	Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosensors and Bioelectronics, 2017, 91, 504-514.	5.3	328
87	Evaluation of immobilized hFMO3 on magnetic nanoparticles by capillary zone electrophoresis. Bioanalysis, 2017, 9, 289-296.	0.6	6
88	<scp>l</scp> -aspartate oxidase magnetic nanoparticles: synthesis, characterization and <scp>l</scp> -aspartate bioconversion. RSC Advances, 2017, 7, 21136-21143.	1.7	5
89	A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu 2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 2017, 182, 122-128.	4.2	97
90	Laccase immobilized on magnetic nanoparticles by dopamine polymerization for 4-chlorophenol removal. Green Energy and Environment, 2017, 2, 393-400.	4.7	33

#	Article	IF	Citations
91	Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel, 2017, 191, 463-471.	3.4	103
92	Immobilization of indigenous holocellulase on iron oxide (Fe 2 O 3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. International Journal of Biological Macromolecules, 2017, 96, 538-549.	3.6	39
93	Trapping magnetic nanoparticles for in-line capillary electrophoresis in a liquid based capillary coolant system. Talanta, 2017, 164, 148-153.	2.9	14
94	Investigation on the Immobilization of Carbonic Anhydrase and the Catalytic Absorption of Carbon Dioxide. Energy & Fuels, 2017, 31, 778-784.	2.5	20
95	Biodiesel production using biguanide-functionalized hydroxyapatite-encapsulated-Î ³ -Fe2O3 nanoparticles. Fuel, 2017, 210, 83-90.	3.4	71
96	Biosensors based on β-galactosidase enzyme: Recent advances and perspectives. Analytical Biochemistry, 2017, 535, 1-11.	1.1	49
97	Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess and Biosystems Engineering, 2017, 40, 9-22.	1.7	119
99	Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renewable Energy, 2018, 125, 675-681.	4.3	179
100	The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 4464-4480.	3.2	120
101	Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme. Monatshefte FÃ1⁄4r Chemie, 2018, 149, 1179-1188.	0.9	8
102	Immobilization of Candida rugosa lipase onto graphene oxide Fe 3 O 4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 2018, 159, 42-53.	4.4	261
103	An improved design to capture magnetic microparticles for capillary electrophoresis based immobilized microenzyme reactors. Electrophoresis, 2018, 39, 981-988.	1.3	14
104	Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. Molecular Catalysis, 2018, 453, 12-21.	1.0	25
105	Magnetic separation and high reusability of chloroperoxidase entrapped in multi polysaccharide micro-supports. Applied Catalysis A: General, 2018, 560, 94-102.	2.2	5
106	Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel, 2018, 220, 248-256.	3.4	209
107	Production of medium-chain structured lipids using dual acidic ionic liquids supported on Fe3O4@SiO2 composites as magnetically recyclable catalysts. LWT - Food Science and Technology, 2018, 93, 71-78.	2.5	22
108	Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans -free plastic fats. Food Chemistry, 2018, 257, 15-22.	4.2	122
109	Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations. Waste and Biomass Valorization, 2018, 9, 223-234.	1.8	14

# 110	ARTICLE Improved enzymatic performance of grapheneâ€immobilized βâ€glucosidase A in the presence of glucoseâ€6â€phosphate. Biotechnology and Applied Biochemistry, 2018, 65, 246-254.	IF 1.4	CITATIONS
111	Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 2018, 118, 801-838.	23.0	1,175
112	Preparation and characterization of Fe3O4-NH2@4-arm-PEG-NH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochemical Engineering Journal, 2018, 130, 90-98.	1.8	42
113	Functionalization of paramagnetic nanoparticles for protein immobilization and purification. Analytical Biochemistry, 2018, 540-541, 45-51.	1.1	21
114	Advances in Capillary Electrophoretically Mediated Microanalysis for Onâ€line Enzymatic and Derivatization Reactions. Electrophoresis, 2018, 39, 97-110.	1.3	36
115	Extruded Catalysts with Magnetic Properties for Biodiesel Production. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	14
116	Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. International Journal of Molecular Sciences, 2018, 19, 2896.	1.8	16
117	Influence of Glutaraldehyde Cross-Linking Modes on the Recyclability of Immobilized Lipase B from Candida antarctica for Transesterification of Soy Bean Oil. Molecules, 2018, 23, 2230.	1.7	32
118	Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules, 2018, 120, 2530-2544.	3.6	311
119	Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies. Environmental Science and Pollution Research, 2018, 25, 30863-30879.	2.7	53
120	Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochemistry, 2018, 71, 92-100.	1.8	110
121	Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme and Microbial Technology, 2018, 117, 45-55.	1.6	12
122	Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles. Biochemical Engineering Journal, 2018, 137, 108-115.	1.8	16
123	Nanomagnetic-Supported Catalysts. , 2018, , 333-371.		5
124	Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochemical Engineering Journal, 2018, 138, 141-155.	1.8	2
125	A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts, 2018, 8, 92.	1.6	626
126	Synthesis of butyl oleate catalyzed by cross-linked enzyme aggregates with magnetic nanoparticles in rotating magneto-micro-reactor. Journal of Biotechnology, 2018, 281, 123-129.	1.9	15
127	Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. Anais Da Academia Brasileira De Ciencias, 2018, 90, 593-606.	0.3	25

#	Article	IF	CITATIONS
128	Recent progress in magnetic nanoparticles: synthesis, properties, and applications. Nanotechnology, 2018, 29, 452001.	1.3	56
129	Nano-magnetic cross-linked enzyme aggregates of naringinase an efficient nanobiocatalyst for naringin hydrolysis. International Journal of Biological Macromolecules, 2018, 117, 134-143.	3.6	22
130	Immobilization of trypsin onto Fe3O4@SiO2 –NH2 and study of its activity and stability. Colloids and Surfaces B: Biointerfaces, 2018, 170, 553-562.	2.5	71
131	Immobilization of Lipase A from Candida antarctica onto Chitosan-Coated Magnetic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 4018.	1.8	86
132	Bio-Catalysis and Biomedical Perspectives of Magnetic Nanoparticles as Versatile Carriers. Magnetochemistry, 2019, 5, 42.	1.0	42
133	Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2019, 7, 103261.	3.3	121
134	Enzymatic Production of Biodiesel Using Immobilized Lipase on Core-Shell Structured Fe3O4@MIL-100(Fe) Composites. Catalysts, 2019, 9, 850.	1.6	52
135	Artificial Multienzyme Scaffolds: Pursuing <i>in Vitro</i> Substrate Channeling with an Overview of Current Progress. ACS Catalysis, 2019, 9, 10812-10869.	5.5	115
136	Interaction Between Cobalt Ferrite Nanoparticles and \$Aspergillus~niger\$ Spores. IEEE Transactions on Nanobioscience, 2019, 18, 542-548.	2.2	5
137	Enhanced activity of immobilized transglutaminase for cleaner production technologies. Journal of Cleaner Production, 2019, 240, 118218.	4.6	14
138	Immobilization of Alcohol Dehydrogenase on Titania Nanoparticles To Enhance Enzyme Stability and Remove Substrate Inhibition in the Reaction of Formaldehyde to Methanol. Industrial & Engineering Chemistry Research, 2019, 58, 9844-9854.	1.8	35
139	Functionalized Advanced Hybrid Materials for Biosensing Applications. , 2019, , 171-207.		12
140	Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 181, 470-479.	2.5	26
141	Effect of the Immobilization Strategy on the Efficiency and Recyclability of the Versatile Lipase from Ophiostoma piceae. Molecules, 2019, 24, 1313.	1.7	7
142	Magnetic properties of ZnxFe3â^'xO4 nanoparticles: A competition between the effects of size and Zn doping level. Journal of Magnetism and Magnetic Materials, 2019, 482, 206-218.	1.0	43
143	Enzyme-modified electrodes for biosensors and biofuel cells. Materials Horizons, 2019, 6, 1336-1358.	6.4	91
144	Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids, 2019, 51, 679-690.	1.2	9
145	Nanomaterials in the Development of Biosensor and Application in the Determination of Pollutants in Water. Nanotechnology in the Life Sciences, 2019, , 195-215.	0.4	2

#	Article	IF	CITATIONS
146	New Features and Properties of Microbial Cellulases Required for Bioconversion of Agro-industrial Wastes. , 2019, , 535-550.		3
147	Food Enzymes and Nanotechnology. , 2019, , 769-784.		5
148	Use of α-amylase/silica particle suspensions to optimize cleaning in a simulated cleaning-in-place system. Journal of Food Engineering, 2019, 247, 64-73.	2.7	4
149	Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Materials Science and Engineering C, 2019, 96, 356-364.	3.8	61
150	Acetonitrile-assisted enzymatic digestion can facilitate the bottom-up identification of proteins of cancer origin. Analytical Biochemistry, 2019, 570, 1-4.	1.1	3
151	A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. Journal of Food Engineering, 2019, 246, 7-15.	2.7	28
152	Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. Electroanalysis, 2019, 31, 188-201.	1.5	124
153	Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arabian Journal of Chemistry, 2020, 13, 3026-3042.	2.3	75
154	Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. Journal of Hazardous Materials, 2020, 381, 120915.	6.5	52
155	Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel. Renewable Energy, 2020, 145, 1709-1719.	4.3	242
156	Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydrate Research, 2020, 488, 107904.	1.1	28
157	Langmuir Isotherms for Functionalized Superparamagnetic Nanoparticles with Cobalt(II) Ions Based on Zeta Potentials. ACS Applied Nano Materials, 2020, 3, 452-458.	2.4	5
158	Microbial production and biotechnological applications of α-galactosidase. International Journal of Biological Macromolecules, 2020, 150, 1294-1313.	3.6	59
159	Multiwalled carbon nanotubes bound beta-galactosidase: It's activity, stability and reusability. Methods in Enzymology, 2020, 630, 365-405.	0.4	4
160	An efficient decolorization of methyl orange dye by laccase from Marasmiellus palmivorus immobilized on chitosan-coated magnetic particles. Biocatalysis and Agricultural Biotechnology, 2020, 30, 101859.	1.5	11
161	Hydroxyapatite-CoFe ₂ O ₄ Magnetic Nanoparticle Composites for Industrial Enzyme Immobilization, Use, and Recovery. ACS Applied Nano Materials, 2020, 3, 12334-12345.	2.4	22
162	Magnetic nanobiocatalyst for extraction of bioactive ingredients: A novel approach. Trends in Food Science and Technology, 2020, 103, 225-238.	7.8	14
163	Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. Applied Sciences (Switzerland), 2020, 10, 5085.	1.3	41

#	Article	IF	CITATIONS
164	Magnetic polyelectrolyte-based composites with dual anticoagulant and thrombolytic properties: towards optimal composition. Journal of Sol-Gel Science and Technology, 2020, 95, 771-782.	1.1	7
165	Innovative hydrolysis of corn stover biowaste by modified magnetite laccase immobilized nanoparticles. Environmental Research, 2020, 188, 109829.	3.7	28
166	Alphaâ€amylase immobilized on polycaprolactoneâ€grafted magnetic nanoparticles: improving stability and reusability. Journal of Chemical Technology and Biotechnology, 2020, 95, 2243-2250.	1.6	13
167	Bacterial cellulose production from biodiesel–derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules, 2020, 153, 902-911.	3.6	35
168	Bonding and thermal stability of cysteine on single-crystalline iron oxide surfaces and Pt(111). Journal of Chemical Physics, 2020, 152, 064701.	1.2	3
169	Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Scientific Reports, 2020, 10, 2903.	1.6	62
170	Magnetic nanosensors and their potential applications. , 2020, , 143-155.		7
171	Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. International Journal of Biological Macromolecules, 2020, 152, 207-222.	3.6	226
172	Enzyme Immobilization on Maghemite Nanoparticles with Improved Catalytic Activity: An Electrochemical Study for Xanthine. Materials, 2020, 13, 1776.	1.3	6
173	Fe3O4@Si-MCM-41@EDTA@Ni: as a magnetically recyclable and efficient nano-catalyst in the one-pot clean production of 2â€arylâ€2,3â€dihydroquinazolinâ€4(1H)â€ones. Journal of Porous Materials, 2020, 27, 1087-1100.	1.3	6
174	Reduction of aflatoxin B1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chemistry, 2021, 343, 128521.	4.2	36
175	One pot clarification and debittering of grapefruit juice using co-immobilized enzymes@chitosanMNPs. International Journal of Biological Macromolecules, 2021, 167, 1297-1307.	3.6	22
176	Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications. International Journal of Biological Macromolecules, 2021, 166, 818-838.	3.6	32
177	Immobilized peptideâ€Nâ€glycosidase F onto magnetic nanoparticles: A biotechnological tool for protein deglycosylation under native conditions. Biotechnology and Applied Biochemistry, 2022, 69, 209-220.	1.4	1
178	A facile preparation of immobilized naringinase on polyethyleneimine-modified Fe ₃ O ₄ magnetic nanomaterials with high activity. RSC Advances, 2021, 11, 14568-14577.	1.7	10
179	A novel all-in-one strategy for purification and immobilization of β-1,3-xylanase directly from cell lysate as active and recyclable nanobiocatalyst. Microbial Cell Factories, 2021, 20, 37.	1.9	13
180	Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review. Energy Conversion and Management, 2021, 229, 113760.	4.4	85
181	The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. Micromachines, 2021, 12, 308.	1.4	38

#	Article	IF	Citations
182	Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Advances in Colloid and Interface Science, 2021, 290, 102380.	7.0	32
183	Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites. Journal of Materials Science: Materials in Electronics, 2021, 32, 15754-15762.	1.1	10
185	Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives. Catalysis Letters, 2022, 152, 414-437.	1.4	2
187	Amylases from thermophilic bacteria: structure and function relationship. Critical Reviews in Biotechnology, 2022, 42, 325-341.	5.1	24
188	Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications. Magnetochemistry, 2021, 7, 133.	1.0	16
189	Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. Journal of Magnetism and Magnetic Materials, 2021, 538, 168300.	1.0	20
190	Insights on sustainable approaches for production and applications of value added products. Chemosphere, 2022, 286, 131623.	4.2	40
191	Magnetic nanoparticles. , 2021, , 197-236.		6
192	Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants. Environmental Science and Pollution Research, 2021, 28, 7599-7620.	2.7	17
193	Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International Journal of Molecular Sciences, 2021, 22, 990.	1.8	55
194	Facile Synthesis of <i>S</i> â€Substituted Lâ€Cysteines with Nanoâ€sized Immobilized <i>O</i> â€Acetylserine Sulfhydrylase. ChemCatChem, 2018, 10, 3671-3674.	1.8	7
195	Cross-linked Enzyme Aggregates: Current Developments and Applications. , 2019, , 83-112.		7
196	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
197	Enzymatic Conversion of First- and Second-Generation Sugars. , 2018, , 169-189.		8
198	Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry. Current Pharmaceutical Design, 2019, 25, 2661-2676.	0.9	16
199	Toxic Effects of Engineered Nanoparticles on Living Cells. Advances in Chemical and Materials Engineering Book Series, 0, , 35-68.	0.2	2
200	A Green Approach towards the Synthesis of Enantio Pure Diols Using Horse Radish Peroxidase Enzyme Immobilized on Magnetic Nanoparticles. Green and Sustainable Chemistry, 2014, 04, 15-19.	0.8	9
201	Hostâ€Guest Systems on the Surface of Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Utilizing Hamilton Receptors and Cyanurate Derivative Molecules. Chemistry - A European Journal, 2021, 27, 16429-16439.	1.7	3

#	Article	IF	CITATIONS
203	Contributions on Kinetic Resolution by Lipases on the Development of Organic Synthesis in Brazil. Current Organic Synthesis, 2015, 12, 696-713.	0.7	0
204	Toxic Effects of Engineered Nanoparticles on Living Cells. , 2017, , 1394-1427.		0
205	Use of Nanotechnology for Immobilization and Entrapment of Food Applicable Enzymes. Reference Series in Phytochemistry, 2018, , 1-25.	0.2	0
206	Moving into Nanotechnology Roles to Mimic and Boost Enzyme Activity. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 421-440.	0.3	1
207	Use of Nanotechnology for Immobilization and Entrapment of Food Applicable Enzymes. Reference Series in Phytochemistry, 2019, , 2037-2061.	0.2	2
208	Sustainable and Green Synthesis of Stanol Esters from Oil Wastes. Journal of Agricultural and Food Chemistry, 2021, 69, 286-293.	2.4	2
209	A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. Journal of Food Composition and Analysis, 2022, 105, 104261.	1.9	22
210	Novel Magnetic Beads with Improved Performance for Alzheimer's Disease Biomarker Detection. SSRN Electronic Journal, 0, , .	0.4	0
211	Biotechnological Applications of Fungal Enzymes with Special Reference to Bioremediation. Environmental Chemistry for A Sustainable World, 2020, , 221-247.	0.3	3
212	Immobilized Enzymes-Based Biosensing Cues for Strengthening Biocatalysis and Biorecognition. Catalysis Letters, 2022, 152, 2637-2649.	1.4	6
213	One-step purification of a recombinant beta-galactosidase using magnetic cellulose as a support: Rapid immobilization and high thermal stability. Bioresource Technology, 2022, 345, 126497.	4.8	16
214	Polymeric Magnetic Microparticles as Electrochemical Immunosensing Platforms. , 2020, 60, .		0
215	Enzyme immobilized nanomaterials. , 2022, , 17-65.		0
216	Applications of Metal and Metal Oxide-Based Nanomaterials in Medical and Biological Activities. Advances in Chemical and Materials Engineering Book Series, 2022, , 312-337.	0.2	0
217	Applications of immobilized lipases in enzymatic reactors: A review. Process Biochemistry, 2022, 114, 1-20.	1.8	71
218	Novel magnetic beads with improved performance for Alzheimer's disease biomarker detection. Microchemical Journal, 2022, 175, 107211.	2.3	6
219	Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers. Chemical Papers, 2022, 76, 4245-4260.	1.0	1
220	Droplet microfluidics for double lipase immobilisation using TiO2 and alginate microbeads. Journal of Industrial and Engineering Chemistry, 2022, 110, 576-586.	2.9	3

#	Article	IF	CITATIONS
221	Immobilization of horseradish peroxidase on lysine-functionalized gum Arabic-coated Fe ₃ O ₄ nanoparticles for cholesterol determination. Preparative Biochemistry and Biotechnology, 2022, 52, 737-747.	1.0	4
222	A Piezoelectric Immunosensor Based on Magnetic Carbon Nanocomposites for the Determination of Ciprofloxacin. Journal of Analytical Chemistry, 2022, 77, 458-465.	0.4	8
223	Recent progress in 0D optical nanoprobes for applications in the sensing of (bio)analytes with the prospect of global health monitoring and detailed mechanistic insights. Materials Advances, 2022, 3, 4421-4459.	2.6	29
224	Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. Environmental Research, 2022, 212, 113411.	3.7	54
226	Treatment of Wastewater, Phenols and Dyes Using Novel Magnetic Torus Microreactors and Laccase Immobilized on Magnetite Nanoparticles. Nanomaterials, 2022, 12, 1688.	1.9	8
227	APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions. Heliyon, 2022, 8, e09645.	1.4	4
228	Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Critical Reviews in Food Science and Nutrition, 2023, 63, 11351-11369.	5.4	10
229	Plasma polymerized functional supermagnetic Fe3O4 nanostructured templates for laccase immobilization: A robust catalytic system for bio-inspired dye degradation. Environmental Science and Pollution Research, 2022, 29, 82524-82540.	2.7	6
230	Immobilization of endoglucanase isolated from symbiotic bacterium Bacillus safensis CF99 on magnetic nanoparticles. Chemical Papers, 0, , .	1.0	0
231	Probing the interaction of superparamagnetic iron oxide nanoparticles with lipase and their interacting consequences at the molecular level. Toxicology Research, 2022, 11, 654-661.	0.9	1
233	Enzyme Immobilization and Its Application Strategies in Food Products. , 2022, , 411-438.		0
234	Applications of Nanotechnology in Biofuel Production. Clean Energy Production Technologies, 2022, , 297-332.	0.3	1
235	Fundamentals of Nanomaterials and Design Concepts for Sensing Devices. , 2022, , 23-49.		0
236	Nanotechnology and Food Grade Enzymes. , 2022, , 455-487.		0
237	Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry. Chemical Engineering Journal, 2023, 452, 139509.	6.6	18
238	ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL. Proceedings of the Shevchenko Scientific Society Series Đjhemical Sciences, 2022, 2022, 43-52.	0.2	0
239	A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts, 2022, 12, 1065.	1.6	8
240	Fe3O4@SiO2 nanocomposite immobilized with cellulase enzyme: Stability determination and biological activity. Chemical Physics Letters, 2023, 811, 140161.	1.2	11

#	Article	IF	CITATIONS
241	Cladosporium protease/doxorubicin decorated Fe3O4@SiO2 nanocomposite: An efficient nanoparticle for drug delivery and combating breast cancer. Journal of Drug Delivery Science and Technology, 2023, 80, 104144.	1.4	5
242	Nanomagnetic materials for environmental remediation. , 2023, , 537-553.		0
243	Nanomaterial-based multifunctional inks for the fabrication of printed biosensors. , 2023, , 521-560.		0
244	A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochemistry, 2023, 126, 272-291.	1.8	22
245	Progress on Lipase Immobilization Technology in Edible Oil and Fat Modifications. Food Reviews International, 2024, 40, 457-503.	4.3	4
252	Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophysical Reviews, 2023, 15, 1127-1158.	1.5	1
260	Remediation Strategies of Xenobiotics in Urban Soil and Water. , 2023, , 227-240.		0
261	Polymer–Magnet Nanosystems. Springer Proceedings in Physics, 2023, , 155-176.	0.1	0