Satellite Cells and the Muscle Stem Cell Niche

Physiological Reviews 93, 23-67 DOI: 10.1152/physrev.00043.2011

Citation Report

#	Article	IF	CITATIONS
1	Live cell imaging reveals marked variability in myoblast proliferation and fate. Skeletal Muscle, 2013, 3, 10.	1.9	7
2	Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology, 2013, 14, 273-292.	2.0	92
3	Musculoskeletal ageing and primary prevention. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2013, 27, 673-688.	1.4	28
4	Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS Journal, 2013, 280, 4051-4062.	2.2	120
5	Sca1-Derived Cells Are a Source of Myocardial Renewal in the Murine Adult Heart. Stem Cell Reports, 2013, 1, 397-410.	2.3	140
6	Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. American Journal of Physiology - Cell Physiology, 2013, 305, C241-C252.	2.1	233
7	Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology - Cell Physiology, 2013, 305, C1098-C1113.	2.1	145
8	Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. Journal of Cell Science, 2013, 126, 5610-25.	1.2	76
9	Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends in Molecular Medicine, 2013, 19, 546-554.	3.5	22
10	Interleukinâ€6 myokine signaling in skeletal muscle: a doubleâ€edged sword?. FEBS Journal, 2013, 280, 4131-4148.	2.2	550
11	Role of satellite cells in muscle growth and maintenance of muscle mass. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, S12-S18.	1.1	121
12	Proinflammatory Cytokine Tumor Necrosis Factor (TNF)-like Weak Inducer of Apoptosis (TWEAK) Suppresses Satellite Cell Self-renewal through Inversely Modulating Notch and NF-κB Signaling Pathways. Journal of Biological Chemistry, 2013, 288, 35159-35169.	1.6	36
13	Nuclear positioning in muscle development and disease. Frontiers in Physiology, 2013, 4, 363.	1.3	207
14	Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Frontiers in Physiology, 2013, 4, 338.	1.3	45
15	Nanotechnology in the regulation of stem cell behavior. Science and Technology of Advanced Materials, 2013, 14, 054401.	2.8	27
16	Unacylated Ghrelin Promotes Skeletal Muscle Regeneration Following Hindlimb Ischemia via SODâ€2–Mediated miRâ€221/222 Expression. Journal of the American Heart Association, 2013, 2, e000376.	1.6	78
17	Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16474-16479.	3.3	447
18	Do Telomeres Adapt to Physiological Stress? Exploring the Effect of Exercise on Telomere Length and Telomere-Related Proteins. BioMed Research International, 2013, 2013, 1-15.	0.9	67

#	Article	IF	CITATIONS
19	Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration. FEBS Journal, 2013, 280, 4004-4013.	2.2	69
20	<i>Ex vivo</i> bupivacaine treatment results in increased adipogenesis of skeletal muscle cells in the rat. Animal Science Journal, 2013, 84, 757-763.	0.6	6
21	Gene Networks during Skeletal Myogenesis. ISRN Developmental Biology, 2013, 2013, 1-8.	1.4	15
22	Human and Mouse Skeletal Muscle Stem Cells: Convergent and Divergent Mechanisms of Myogenesis. PLoS ONE, 2014, 9, e90398.	1.1	65
23	Pro-Inflammatory Mediation of Myoblast Proliferation. PLoS ONE, 2014, 9, e92363.	1.1	82
25	Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Frontiers in Physiology, 2014, 5, 99.	1.3	153
26	Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 2014, 6, 245.	1.7	105
27	The extraocular muscle stem cell niche is resistant to ageing and disease. Frontiers in Aging Neuroscience, 2014, 6, 328.	1.7	28
28	Unacylated Ghrelin (UnAG): A New Treatment Option for Peripheral Arterial Disease?. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	1
29	Human satellite cells have regenerative capacity and are genetically manipulable. Journal of Clinical Investigation, 2014, 124, 4257-4265.	3.9	71
30	The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc–dependent mechanism. Molecular Biology of the Cell, 2014, 25, 3765-3778.	0.9	30
31	Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5508-5513.	3.3	206
32	Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle, 2014, 13, 3183-3190.	1.3	54
33	The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation, 2014, 88, 117-123.	1.0	12
34	Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Frontiers in Physiology, 2014, 5, 354.	1.3	43
35	Cellular Players in Skeletal Muscle Regeneration. BioMed Research International, 2014, 2014, 1-21.	0.9	114
36	Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Frontiers in Physiology, 2014, 5, 148.	1.3	21
37	Chronic binge alcohol consumption alters myogenic gene expression and reduces in vitro myogenic differentiation potential of myoblasts from rhesus macaques. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 2014, 306, R837-R844	0.9	29

ARTICLE IF CITATIONS # Satellite cell activity is differentially affected by contraction mode in human muscle following a 38 1.3 65 work-matched bout of exercise. Frontiers in Physiology, 2014, 5, 485. Fas-Associated Protein with Death Domain Regulates Notch Signaling during Muscle Regeneration. 1.3 Cells Tissues Organs, 2014, 200, 253-264. Extracellular matrilin-2 deposition controls the myogenic program timing during muscle 40 1.2 19 regeneration. Journal of Cell Science, 2014, 127, 3240-56. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUMâ€"Role of satellite cells in anabolic steroid-induced 0.2 muscle growth in feedlot steers1,2. Journal of Animal Science, 2014, 92, 30-38. Absence of Hyperplasia in <i>Gasp-1</i>Overexpressing Mice is Dependent on Myostatin 42 1.1 12 Up-Regulation. Cellular Physiology and Biochemistry, 2014, 34, 1241-1259. CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury. Stem Cells, 2014, 32, 1564-1577. 1.4 Myostatin Regulates Tissue Potency and Cardiac Calcium-Handling Proteins. Endocrinology, 2014, 155, 44 1.4 15 1771-1785. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their 0.3 committed progeny. Stem Cell Research, 2014, 13, 492-507. Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic 3.1 46 47 Cell Populations. Developmental Cell, 2014, 31, 654-667. Stem Cells and Regenerative Medicine in Domestic and Companion Animals: A Multispecies Perspective. Reproduction in Domestic Animals, 2014, 49, 2-10. Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a 48 5.8 36 signalling. Nature Communications, 2014, 5, 4063. Role of the TWEAK-Fn14-cIAP1-NF-Î^oB Signaling Axis in the Regulation of Myogenesis and Muscle 49 2.2 44 Homeostasis. Frontiers in Immunology, 2014, 5, 34. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cellular and 50 2.4 54 Molecular Life Sciences, 2014, 71, 1917-1925. RAGE signaling deficiency in rhabdomyosarcoma cells causes upregulation of PAX7 and uncontrolled proliferation. Journal of Cell Science, 2014, 127, 1699-1711. 1.2 The role of satellite cells in muscle hypertrophy. Journal of Muscle Research and Cell Motility, 2014, 52 0.9 61 35, 3-10. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature, 2014, 506, 316-321. 785 Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in 54 1.2 41 skeletal muscle cells. Experimental Cell Research, 2014, 323, 297-313. Murine Muscle Engineered from Dermal Precursors: An <i>In Vitro</i> Model for Skeletal Muscle 1.1 Generation, Degeneration, and Fatty Infiltration. Tissue Engineering - Part C: Methods, 2014, 20, 28-41.

	CITATION RI	PORT	
# 56	ARTICLE Rejuvenating aged muscle stem cells. Nature Medicine, 2014, 20, 234-235.	IF 15.2	Citations
57	An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Science Translational Medicine, 2014, 6, 234ra58.	5.8	384
58	Thyroid hormones and skeletal muscle—new insights and potential implications. Nature Reviews Endocrinology, 2014, 10, 206-214.	4.3	256
59	An Essential Role of Small Ubiquitin-like Modifier (SUMO)-specific Protease 2 in Myostatin Expression and Myogenesis. Journal of Biological Chemistry, 2014, 289, 3288-3293.	1.6	31
60	Oestrogenâ€dependent satellite cell activation and proliferation following a running exercise occurs via the <scp>PI</scp> 3K signalling pathway and not <scp>IGF</scp> â€1. Acta Physiologica, 2014, 212, 75-85.	1.8	31
61	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
62	Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. European Spine Journal, 2014, 23, 2462-2472.	1.0	22
63	Comparative assessment of different approaches for obtaining terminally differentiated cell lines. Cell and Tissue Biology, 2014, 8, 321-329.	0.2	2
64	Myomaker is essential for muscle regeneration. Genes and Development, 2014, 28, 1641-1646.	2.7	141
65	Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?. Regenerative Medicine, 2014, 9, 513-534.	0.8	16
66	Influencing the secretion of myogenic factors from mesenchymal stem cells. Stem Cell Research and Therapy, 2014, 5, 96.	2.4	2
67	Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. Journal of Endocrinology, 2014, 221, R13-R29.	1.2	97
68	Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO Journal, 2014, 33, 2782-2797.	3.5	235
69	Inflamm-aging: STAT3 Signaling Pushes Muscle Stem Cells off Balance. Cell Stem Cell, 2014, 15, 401-402.	5.2	22
70	Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4109-4114.	3.3	162
71	Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle1. Journal of Animal Science, 2014, 92, 3284-3290.	0.2	11
72	The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age, 2014, 36, 9699.	3.0	87
73	Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids, 2014, 46, 2503-2516.	1.2	58

#	Article	IF	CITATIONS
74	Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science, 2014, 345, 1184-1188.	6.0	595
75	Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. Journal of Applied Physiology, 2014, 117, 898-909.	1.2	55
76	How the ribosome hands the A-site tRNA to the P site during EF-G–catalyzed translocation. Science, 2014, 345, 1188-1191.	6.0	157
77	Incidence and severity of myofiber branching with regeneration and aging. Skeletal Muscle, 2014, 4, 9.	1.9	56
78	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	2.5	218
79	Skeletal muscle satellite cells: Mediators of muscle growth during development and implications for developmental disorders. Muscle and Nerve, 2014, 50, 723-732.	1.0	65
80	Roles for Hedgehog signaling in adult organ homeostasis and repair. Development (Cambridge), 2014, 141, 3445-3457.	1.2	328
81	Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regenerative Medicine, 2014, 9, 89-100.	0.8	87
82	Intraurethral Injection of Autologous Minced Skeletal Muscle: A Simple Surgical Treatment for Stress Urinary Incontinence. Journal of Urology, 2014, 192, 850-855.	0.2	50
83	Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an $\hat{1}\pm7$ nicotinic receptor in a murine hindlimb ischemia model. Translational Research, 2014, 164, 32-45.	2.2	9
84	Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Experimental Cell Research, 2014, 324, 105-114.	1.2	30
85	The TWEAK-Fn14 pathway: A potent regulator of skeletal muscle biology in health and disease. Cytokine and Growth Factor Reviews, 2014, 25, 215-225.	3.2	49
86	Physiology and metabolism of tissue-engineered skeletal muscle. Experimental Biology and Medicine, 2014, 239, 1203-1214.	1.1	47
87	Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. Journal of Cell Biology, 2014, 205, 97-111.	2.3	132
88	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	2.7	132
89	A metabolic link to skeletal muscle wasting and regeneration. Frontiers in Physiology, 2014, 5, 32.	1.3	86
90	Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis. Neuromuscular Disorders, 2015, 25, 873-887.	0.3	3
91	Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Reports, 2015, 16, 1037-1050.	2.0	37

#		IF	CITATIONS
92	Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle. Journal of Visualized Experiments, 2015, , 52049.	0.2	28
93	Craniofacial Muscle Development. Current Topics in Developmental Biology, 2015, 115, 3-30.	1.0	30
94	Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Skeletal Muscle, 2015, 6, 3.	1.9	5
95	INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. Journal of Animal Science, 2015, 93, 457-481.	0.2	26
96	Satellite Cells and Skeletal Muscle Regeneration. , 2015, 5, 1027-1059.		489
97	Noncoding <scp>RNA</scp> control of cellular senescence. Wiley Interdisciplinary Reviews RNA, 2015, 6, 615-629.	3.2	71
98	Pax7-Positive Cells/Satellite Cells in Human Extraocular Muscles. , 2015, 56, 6132.		11
99	Effects of Pax3 and Pax7 expression on muscle mass in the Pekin duck (Anas platyrhynchos domestica). Genetics and Molecular Research, 2015, 14, 11495-11504.	0.3	6
100	The role of microRNAs in skeletal muscle health and disease. Frontiers in Bioscience - Landmark, 2015, 20, 37-77.	3.0	56
101	Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Frontiers in Aging Neuroscience, 2015, 7, 85.	1.7	43
102	Muscle wasting in myotonic dystrophies: a model of premature aging. Frontiers in Aging Neuroscience, 2015, 7, 125.	1.7	72
103	Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model. PLoS ONE, 2015, 10, e0127561.	1.1	27
104	Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity. PLoS ONE, 2015, 10, e0136217.	1.1	117
105	Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathogens, 2015, 11, e1005347.	2.1	45
106	Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. ELife, 2015, 4, .	2.8	103
107	Property of a Natural Dipeptide Inherent to Traditional Antioxidant, Anti-Aging Biological Activities: Balancing and a Hormonally Correct Agent, Novel Patented Oral Therapy Dosage Formulation for Mobility, Skeletal Muscle Power and Functional Performance, Hypothalamic-Pituitary- Brain Relationship in Health. Aging and Stress Studies. Recent Patents on Drug Delivery and Formulation.	2.1	5
108	2015, 9, 1-64. Satellite Cells: Regenerative Mechanisms and Applicability in Muscular Dystrophy. Stem Cells International, 2015, 2015, 1-12.	1.2	12
109	Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators of Inflammation, 2015, 2015, 1-14.	1.4	197

ATION REI

#	Article	IF	CITATIONS
110	Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients. Stem Cells International, 2015, 2015, 1-11.	1.2	21
111	Aging of Skeletal Muscle Fibers. Annals of Rehabilitation Medicine, 2015, 39, 155.	0.6	215
112	Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nature Communications, 2015, 6, 7140.	5.8	98
113	Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nature Protocols, 2015, 10, 941-958.	5.5	98
114	Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling. Molecular Therapy, 2015, 23, 1003-1021.	3.7	33
115	The Effects of Organophosphates in the Early Stages of Human Muscle Regeneration. , 2015, , 751-759.		2
116	The Avian Embryo as a Model System for Skeletal Myogenesis. Results and Problems in Cell Differentiation, 2015, 56, 99-122.	0.2	18
117	How Do Skeletal Muscles Die? An Overview. Advances in Experimental Medicine and Biology, 2015, 861, 99-111.	0.8	11
118	Adult Skeletal Muscle Stem Cells. Results and Problems in Cell Differentiation, 2015, 56, 191-213.	0.2	57
119	Regulation of Skeletal Muscle Development and Disease by microRNAs. Results and Problems in Cell Differentiation, 2015, 56, 165-190.	0.2	15
120	A <i>Pitx2</i> -MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate. Molecular and Cellular Biology, 2015, 35, 2892-2909.	1.1	48
121	Life-Long Transgene Expression in Skeletal Muscle Without Transduction of Satellite Cells Following Embryonic Myogenic Progenitor Transduction by Lentivirus Administered in Utero. Stem Cells and Development, 2015, 24, 1878-1887.	1.1	1
122	TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nature Communications, 2015, 6, 10123.	5.8	56
123	Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell, 2015, 17, 651-662.	5.2	252
124	Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology, 2015, 30, 417-427.	1.6	83
125	The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility, 2015, 36, 377-393.	0.9	210
126	Prospective heterotopic ossification progenitors in adult human skeletal muscle. Bone, 2015, 71, 164-170.	1.4	36
127	Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease. Annual Review of Biomedical Engineering, 2015, 17, 217-242.	5.7	43

#	Article	IF	CITATIONS
128	Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. Journal of Applied Physiology, 2015, 119, 1053-1063.	1.2	26
129	Stem cell activation in skeletal muscle regeneration. Cellular and Molecular Life Sciences, 2015, 72, 1663-1677.	2.4	114
130	Muscle Biopsy for Diagnosis of Neuromuscular and Metabolic Diseases. , 2015, , 46-65.		0
131	The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell Stem Cell, 2015, 16, 171-183.	5.2	439
132	Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells. Physiological Genomics, 2015, 47, 45-57.	1.0	16
133	Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib. Cell Reports, 2015, 10, 1135-1148.	2.9	58
134	Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development (Cambridge), 2015, 142, 1242-53.	1.2	83
135	MicroRNAs in Skeletal Muscle Differentiation. , 2015, , 419-446.		1
136	Increased microenvironment stiffness in damaged myofibers promotes myogenic progenitor cell proliferation. Skeletal Muscle, 2016, 5, 5.	1.9	46
137	External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Advanced Drug Delivery Reviews, 2015, 82-83, 168-175.	6.6	33
138	Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cellular and Molecular Life Sciences, 2015, 72, 2135-2156.	2.4	53
139	Protective effect of ATP on skeletal muscle satellite cells damaged by H2O2. Journal of Huazhong University of Science and Technology [Medical Sciences], 2015, 35, 76-81.	1.0	2
140	Muscle satellite cells increase during hibernation in ground squirrels. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 189, 55-61.	0.7	10
141	The central role of muscle stem cells in regenerative failure with aging. Nature Medicine, 2015, 21, 854-862.	15.2	340
142	InÂvitro myogenesis induced by human recombinant elastin-like proteins. Biomaterials, 2015, 67, 240-253.	5.7	13
143	Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015, 25, 2-15.	4.1	178
145	Muscle progenitor cell regenerative capacity in the torn rotator cuff. Journal of Orthopaedic Research, 2015, 33, 421-429.	1.2	27
146	Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation. Canadian Journal of Physiology and Pharmacology, 2015, 93, 945-951.	0.7	11

#	Article	IF	CITATIONS
147	Heat‣tress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle and Nerve, 2015, 52, 1047-1056.	1.0	9
148	Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice. Stem Cell Research and Therapy, 2015, 6, 61.	2.4	20
149	Cell Therapy for Stress Urinary Incontinence. Tissue Engineering - Part B: Reviews, 2015, 21, 365-376.	2.5	40
150	Muscle Dysfunction in Patients with Lung Diseases. A Growing Epidemic. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 616-619.	2.5	32
151	Expanding roles for AMPK in skeletal muscle plasticity. Trends in Endocrinology and Metabolism, 2015, 26, 275-286.	3.1	111
152	Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology and Metabolism, 2015, 26, 287-296.	3.1	131
153	Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nature Communications, 2015, 6, 8528.	5.8	58
154	A Disintegrin and Metalloprotease 10 (ADAM10) Is Indispensable for Maintenance of the Muscle Satellite Cell Pool. Journal of Biological Chemistry, 2015, 290, 28456-28464.	1.6	18
156	Muscle fragments on a scaffold in rats: a potential regenerative strategy in urogynecology. International Urogynecology Journal, 2015, 26, 1843-1851.	0.7	9
157	Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death and Disease, 2015, 6, e1830-e1830.	2.7	112
158	Moving and positioning the nucleus in skeletal muscle $\hat{a} \in$ "one step at a time. Nucleus, 2015, 6, 373-381.	0.6	93
159	Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles. Stem Cell Reports, 2015, 5, 419-434.	2.3	109
160	Protein Modifications in Pathogenic Dysregulation of Signaling. , 2015, , .		0
161	Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5246-52.	3.3	68
162	Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Reviews and Reports, 2015, 11, 866-884.	5.6	35
163	APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. Journal of Cell Biology, 2015, 210, 717-726.	2.3	48
164	Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone, 2015, 80, 2-13.	1.4	93
165	Membrane fusion in muscle development and repair. Seminars in Cell and Developmental Biology, 2015, 45, 48-56.	2.3	44

		CITATION REPORT		
#	Article		IF	Citations
166	Membrane Injury and Repair in the Muscular Dystrophies. Neuroscientist, 2015, 21, 65	3-668.	2.6	40
167	Induction of functional tissue-engineered skeletal muscle constructs by defined electri stimulation. Scientific Reports, 2014, 4, 4781.	cal	1.6	95
168	High-Content Phenotypic Screening and Triaging Strategy to Identify Small Molecules Oligodendrocyte Progenitor Cell Differentiation. Journal of Biomolecular Screening, 20 382-390.	Driving 15, 20,	2.6	16
169	Coaxing stem cells for skeletal muscle repair. Advanced Drug Delivery Reviews, 2015, 8	34, 198-207.	6.6	37
170	Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myoge Experimental Cell Research, 2015, 331, 292-308.	nesis.	1.2	15
171	Biomaterial-based delivery for skeletal muscle repair. Advanced Drug Delivery Reviews,	2015, 84, 188-197.	6.6	105
172	Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. Neuromuscular Diseases, 2016, 3, 29-48.	Journal of	1.1	43
173	Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct- repair of a murine model of volumetric muscle loss injury. International Journal of Nanc 2016, 11, 1461.	mediated medicine,	3.3	31
174	Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: <i>in Vivo, in Vitro Silico </i> Studies. International Journal of Medical Sciences, 2016, 13, 206-219.	and <i> in</i>	1.1	17
175	Morphological and morphometric analysis of skeletal muscle between male and female Colossoma macropomum (Characiformes: Serrasalmidae). Neotropical Ichthyology, 20	young adult 16, 14, .	0.5	2
176	Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunctic Journal of Andrology, 2016, 18, 10.	n. Asian	0.8	24
177	Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Internatior 1-14.	al, 2016, 2016,	1.2	33
178	Cellular and Molecular Mechanisms of Protein Synthesis Among Tissues. , 2016, , 39-4	7.		1
179	The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differe the Prevention of Replicative Senescence of Myoblasts. PLoS ONE, 2016, 11, e014926	ntiation in 5.	1.1	28
180	Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells E Snake Venom. PLoS ONE, 2016, 11, e0152890.	xposed to	1.1	22
181	High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Sclerosis Patients. Frontiers in Physiology, 2016, 7, 193.	Cells in Multiple	1.3	12
182	The Importance of Extracellular Matrix in Skeletal Muscle Development and Function. ,	0, , .		17
183	Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in My Journal of Cellular Physiology, 2016, 231, 2275-2285.	bblast Fusion.	2.0	12

#	Article	IF	CITATIONS
184	Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. Journal of Molecular Medicine, 2016, 94, 853-866.	1.7	53
185	Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Molecular Aspects of Medicine, 2016, 50, 1-32.	2.7	120
186	Satellite cell response to erythropoietin treatment and endurance training in healthy young men. Journal of Physiology, 2016, 594, 727-743.	1.3	21
187	Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2254-2264.	1.8	9
188	Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skeletal Muscle, 2016, 6, 35.	1.9	67
189	The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death. American Journal of Physiology - Cell Physiology, 2016, 311, C607-C615.	2.1	20
190	The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Experimental and Molecular Medicine, 2016, 48, e278-e278.	3.2	8
192	Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review. Injury, 2016, 47, S3-S15.	0.7	21
193	Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Scientific Reports, 2016, 6, 22288.	1.6	75
194	Chronic Hyperinsulinemia Increases Myoblast Proliferation in Fetal Sheep Skeletal Muscle. Endocrinology, 2016, 157, 2447-2460.	1.4	16
195	The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. , 2016, , 794-806.		1
196	Muscle fiber type diversification during exercise and regeneration. Free Radical Biology and Medicine, 2016, 98, 56-67.	1.3	134
197	Regenerative function of immune system: Modulation of muscle stem cells. Ageing Research Reviews, 2016, 27, 67-76.	5.0	69
198	Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2. Biochemical and Biophysical Research Communications, 2016, 474, 413-420.	1.0	5
199	Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting?. Cancer Chemotherapy and Pharmacology, 2016, 78, 673-683.	1.1	61
200	Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB Journal, 2016, 30, 2708-2719.	0.2	63
201	Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2016, 2, 69-84.	1.6	35
202	Satellite Cells in Muscular Dystrophy – Lost in Polarity. Trends in Molecular Medicine, 2016, 22, 479-496.	3.5	145

#	Article	IF	CITATIONS
203	NAD ⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352, 1436-1443.	6.0	907
204	β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Reports, 2016, 15, 1277-1290.	2.9	100
205	The emerging role of viral vectors as vehicles for DMD gene editing. Genome Medicine, 2016, 8, 59.	3.6	18
206	Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB Journal, 2016, 30, 3929-3941.	0.2	62
207	FACS Fractionation and Differentiation of Skeletal-Muscle Resident Multipotent Tie2+ Progenitors. Methods in Molecular Biology, 2016, 1460, 255-267.	0.4	12
208	Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiological Reports, 2016, 4, e12973.	0.7	25
209	Isolation and Culture of Muscle Stem Cells. Methods in Molecular Biology, 2016, 1480, 311-322.	0.4	7
210	Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash?. Journal of Orthopaedic and Sports Physical Therapy, 2016, 46, 862-873.	1.7	9
211	Cell Therapy for the Heart. Learning Materials in Biosciences, 2016, , 85-127.	0.2	0
213	Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. DMM Disease Models and Mechanisms, 2016, 9, 671-84.	1.2	45
214	Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, 2016, , .	0.4	3
215	Isolation, Culture, Functional Assays, and Immunofluorescence of Myofiber-Associated Satellite Cells. Methods in Molecular Biology, 2016, 1460, 141-162.	0.4	17
217	Treadmill running induces satellite cell activation in diabetic mice. Biochemistry and Biophysics Reports, 2016, 8, 6-13.	0.7	17
218	Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 547-554.	2.9	91
219	Toll-like receptor signalling in regenerative myogenesis: friend and foe. Journal of Pathology, 2016, 239, 125-128.	2.1	24
220	Basic fibroblast growth factor is proâ€adipogenic in rat skeletal muscle progenitor clone, <scp>2G11</scp> cells. Animal Science Journal, 2016, 87, 99-108.	0.6	9
221	Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study. Pediatric Surgery International, 2016, 32, 959-965.	0.6	8
222	Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. Journal of Applied Physiology, 2016, 121, 597-600.	1.2	6

#	Article	IF	CITATIONS
223	STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Reports, 2016, 16, 2102-2115.	2.9	50
224	Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood. Stem Cells, 2016, 34, 2930-2942.	1.4	142
225	Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. Advances in Experimental Medicine and Biology, 2016, 925, 57-73.	0.8	30
226	Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells. Cell Reports, 2016, 17, 2340-2353.	2.9	67
228	Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1 ^{cax/cax} mice. Open Biology, 2016, 6, 160211.	1.5	23
229	Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2093-2099.	0.6	20
230	Muscle injuries and strategies for improving their repair. Journal of Experimental Orthopaedics, 2016, 3, 15.	0.8	132
231	Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell, 2016, 19, 738-751.	5.2	105
232	The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nature Communications, 2016, 7, 13124.	5.8	62
233	Growth Factors for Skeletal Muscle Tissue Engineering. Cells Tissues Organs, 2016, 202, 169-179.	1.3	53
234	Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Scientific Reports, 2016, 6, 28829.	1.6	27
235	Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Scientific Reports, 2016, 6, 18525.	1.6	55
236	Induction of CCAAT/Enhancer-Binding Protein Î ² Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle. Stem Cells Translational Medicine, 2016, 5, 500-510.	1.6	11
237	Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discovery, 2016, 2, 16037.	3.1	26
238	Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skeletal Muscle, 2016, 6, 39.	1.9	28
239	Defined Micropatterning of ECM Protein Adhesive Sites on Alginate Microfibers for Engineering Highly Anisotropic Muscle Cell Bundles. Advanced Materials Technologies, 2016, 1, 1600003.	3.0	11
240	Striated muscle function, regeneration, and repair. Cellular and Molecular Life Sciences, 2016, 73, 4175-4202.	2.4	71
241	Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. SpringerPlus, 2016, 5, 619.	1.2	141

#	Article	IF	CITATIONS
242	An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nature Biotechnology, 2016, 34, 752-759.	9.4	165
243	Meeting the meat: delineating the molecular machinery of muscle development. Journal of Animal Science and Technology, 2016, 58, 18.	0.8	10
244	Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 2016, 352, 1443-1445.	6.0	697
245	Differential damage and repair responses of pubococcygeus and bulbospongiosus muscles in multiparous rabbits. Neurourology and Urodynamics, 2016, 35, 180-185.	0.8	10
246	Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation. Cell Reports, 2016, 16, 333-343.	2.9	44
247	Juvenile Dermatomyositis. , 2016, , 351-383.e18.		22
248	Biomechanical Origins of Muscle Stem Cell Signal Transduction. Journal of Molecular Biology, 2016, 428, 1441-1454.	2.0	22
249	Induction of Angiogenesis by a Type III Phosphodiesterase Inhibitor, Cilostazol, Through Activation of Peroxisome Proliferator-Activated Receptor-I ³ and cAMP Pathways in Vascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 545-552.	1.1	31
250	Molecular networks in skeletal muscle plasticity. Journal of Experimental Biology, 2016, 219, 205-213.	0.8	141
251	Impaired primary mouse myotube formation on crosslinked type I collagen films is enhanced by laminin and entactin. Acta Biomaterialia, 2016, 30, 265-276.	4.1	16
252	Unique features of myogenesis in Egyptian cobra (Naja haje) (Squamata: Serpentes: Elapidae). Protoplasma, 2016, 253, 625-633.	1.0	8
253	Skeletal muscle regeneration and impact of aging and nutrition. Ageing Research Reviews, 2016, 26, 22-36.	5.0	105
254	Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell, 2016, 18, 243-252.	5.2	185
255	Stem Cells and Aging. , 2016, , 776-784.		0
256	Toward Regenerative Medicine for Muscular Dystrophies. , 2016, , 103-122.		0
258	Activated Muscle Satellite Cells Chase Ghosts. Cell Stem Cell, 2016, 18, 160-162.	5.2	6
259	Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Medicine, 2016, 46, 783-792.	3.1	14
260	Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Current Topics in Developmental Biology, 2016, 116, 331-355.	1.0	18

#	Article	IF	CITATIONS
261	Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. New Biotechnology, 2016, 33, 514-523.	2.4	9
262	In Vivo evaluation of adipogenic induction in fibrous and honeycomb-structured atelocollagen scaffolds. Materials Science and Engineering C, 2016, 63, 125-130.	3.8	2
263	Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends in Cell Biology, 2016, 26, 434-444.	3.6	109
264	Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nature Reviews Molecular Cell Biology, 2016, 17, 267-279.	16.1	234
265	Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. Journal of Biological Chemistry, 2016, 291, 4308-4322.	1.6	42
266	Autophagy maintains stemness by preventing senescence. Nature, 2016, 529, 37-42.	13.7	1,013
267	Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle. ACS Chemical Biology, 2016, 11, 518-529.	1.6	16
268	Inflammation during skeletal muscle regeneration and tissue remodeling: application to exerciseâ€induced muscle damage management. Immunology and Cell Biology, 2016, 94, 140-145.	1.0	136
269	Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders. Journal of Molecular Neuroscience, 2016, 58, 388-393.	1.1	20
270	Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 82-91.	2.3	52
271	β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cellular and Molecular Life Sciences, 2016, 73, 617-635.	2.4	21
272	Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. International Journal of Legal Medicine, 2016, 130, 163-172.	1.2	30
273	Design, evaluation, and application of engineered skeletal muscle. Methods, 2016, 99, 81-90.	1.9	46
274	Effects of heat stimulation and <scp>l</scp> -ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1322-1331.	1.3	18
275	Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biology, 2017, 60-61, 96-109.	1.5	30
276	Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nature Communications, 2017, 8, 14328.	5.8	86
277	Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials, 2017, 123, 24-38.	5.7	15
278	Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia. Journal of Translational Medicine, 2017, 15, 34.	1.8	31

#	Article	IF	CITATIONS
279	The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. Journal of Biological Chemistry, 2017, 292, 5981-5991.	1.6	54
280	Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats. International Journal of Biochemistry and Cell Biology, 2017, 85, 135-148.	1.2	3
281	Twist of fate for skeletal muscle mesenchymal cells. Nature Cell Biology, 2017, 19, 153-154.	4.6	3
282	Regulation of skeletal muscle stem cells by fibroblast growth factors. Developmental Dynamics, 2017, 246, 359-367.	0.8	132
283	Muscle Stem Cells: A Model System for Adult Stem Cell Biology. Methods in Molecular Biology, 2017, 1556, 3-19.	0.4	6
284	Simultaneous Measurement of Mitochondrial and Glycolytic Activity in Quiescent Muscle Stem Cells. Methods in Molecular Biology, 2017, 1556, 245-253.	0.4	16
285	Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle. Methods in Molecular Biology, 2017, 1556, 129-147.	0.4	49
286	Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three-Dimensional Fibrin Gel. Stem Cells Translational Medicine, 2017, 6, 1412-1423.	1.6	7
287	Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Scientific Reports, 2017, 7, 41552.	1.6	29
288	The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology, 2017, 18, 549-559.	2.0	62
289	Complement C3 of the innate immune system secreted by muscle adipogenic cells promotes myogenic differentiation. Scientific Reports, 2017, 7, 171.	1.6	9
290	Functional Neuronal Differentiation of Injury-Induced Muscle-Derived Stem Cell-Like Cells with Therapeutic Implications. Scientific Reports, 2017, 7, 1177.	1.6	13
291	Proteostatic and Metabolic Control of Stemness. Cell Stem Cell, 2017, 20, 593-608.	5.2	101
292	Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2017, 292, 351-360.	1.6	25
293	Protein Reviews. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
294	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	3.5	95
295	The Satellite Cell Niche in Skeletal Muscle. , 2017, , 145-166.		2
296	Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Molecular and Cellular Endocrinology, 2017, 459, 79-83.	1.6	53

#	Article	IF	CITATIONS
297	A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Developmental Cell, 2017, 41, 382-391.e5.	3.1	48
298	Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Letters, 2017, 591, 3007-3021.	1.3	82
299	Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy. American Journal of Pathology, 2017, 187, 1814-1827.	1.9	33
300	The role of LMNA mutations in myogenic differentiation of C2C12 and primary satellite cells. Cell and Tissue Biology, 2017, 11, 213-219.	0.2	2
301	5. The skeletal muscle stem cells: biology and use in regenerative medicine. , 2017, , 111-128.		0
302	Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. American Journal of Physiology - Cell Physiology, 2017, 312, C724-C732.	2.1	60
303	Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nature Reviews Urology, 2017, 14, 373-385.	1.9	20
304	FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death and Disease, 2017, 8, e2702-e2702.	2.7	102
305	Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356, 323-327.	6.0	301
306	Dietary Regulation of Adult Stem Cells. Current Stem Cell Reports, 2017, 3, 1-8.	0.7	42
307	A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Scientific Reports, 2017, 7, 44133.	1.6	22
308	Redox Control of Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2017, 27, 276-310.	2.5	124
309	Data-Modeling Identifies Conflicting Signaling Axes Governing Myoblast Proliferation and Differentiation Responses to Diverse Ligand Stimuli. Cellular and Molecular Bioengineering, 2017, 10, 433-450.	1.0	4
310	SOX7 Is Required for Muscle Satellite Cell Development and Maintenance. Stem Cell Reports, 2017, 9, 1139-1151.	2.3	4
311	Dynamic Expression and the Role of BDNF in Exercise-induced Skeletal Muscle Regeneration. International Journal of Sports Medicine, 2017, 38, 959-966.	0.8	41
312	Preclinical and clinical advances in transposon-based gene therapy. Bioscience Reports, 2017, 37, .	1.1	68
313	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29
314	Skeletal Muscle Development. Methods in Molecular Biology, 2017, , .	0.4	3

#	Article	IF	Citations
	Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proceedings of		
315	the National Academy of Sciences of the United States of America, 2017, 114, E8996-E9005.	3.3	70
316	Microcontact-Printed Hydrogel Microwell Arrays for Clonal Muscle Stem Cell Cultures. Methods in Molecular Biology, 2017, 1668, 75-92.	0.4	4
317	Human Satellite Cell Isolation and Xenotransplantation. Methods in Molecular Biology, 2017, 1668, 105-123.	0.4	11
318	Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	18
319	Tethered Jagged-1 Synergizes with Culture Substrate Stiffness to Modulate Notch-Induced Myogenic Progenitor Differentiation. Cellular and Molecular Bioengineering, 2017, 10, 501-513.	1.0	23
320	Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nature Communications, 2017, 8, 669.	5.8	89
321	Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Scientific Reports, 2017, 7, 8097.	1.6	43
322	Myofilaments: Movers and Rulers of the Sarcomere. , 2017, 7, 675-692.		32
323	Nestin contributes to skeletal muscle homeostasis and regeneration. Journal of Cell Science, 2017, 130, 2833-2842.	1.2	20
324	Technical advantage of recombinant collagenase for isolation of muscle stem cells. Regenerative Therapy, 2017, 7, 1-7.	1.4	1
325	The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. Journal of Orthopaedic Research, 2018, 36, 546-556.	1.2	21
326	Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Scientific Reports, 2017, 7, 5916.	1.6	50
327	Enhanced Energetic State and Protection from Oxidative Stress in Human Myoblasts Overexpressing BMI1. Stem Cell Reports, 2017, 9, 528-542.	2.3	8
328	Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Molecular Therapy, 2017, 25, 2345-2359.	3.7	4
329	Muscle stem cell and physical activity: what point is the debate at?. Open Medicine (Poland), 2017, 12, 144-156.	0.6	6
330	Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathologica, 2017, 134, 869-888.	3.9	20
331	Ubiquitin C-Terminal Hydrolase L1 regulates myoblast proliferation and differentiation. Biochemical and Biophysical Research Communications, 2017, 492, 96-102.	1.0	21
332	Long Noncoding RNAs in Pluripotency of Stem Cells and Cell Fate Specification. Advances in Experimental Medicine and Biology, 2017, 1008, 223-252.	0.8	17

#	Article	IF	CITATIONS
333	The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells. Current Stem Cell Reports, 2017, 3, 192-201.	0.7	5
334	Importance and regulation of adult stem cell migration. Journal of Cellular and Molecular Medicine, 2018, 22, 746-754.	1.6	78
335	Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports, 2017, 9, 2018-2033.	2.3	171
337	Morphological and molecular comparisons between tibialis anterior muscle and levator veli palatini muscle: A preliminary study on their augmentation potential. Experimental and Therapeutic Medicine, 2017, 15, 247-253.	0.8	8
338	Transcriptional Profiling of Quiescent Muscle Stem Cells InÂVivo. Cell Reports, 2017, 21, 1994-2004.	2.9	165
339	Myogenic progenitor specification from pluripotent stem cells. Seminars in Cell and Developmental Biology, 2017, 72, 87-98.	2.3	28
340	MyD88 promotes myoblast fusion in a cell-autonomous manner. Nature Communications, 2017, 8, 1624.	5.8	46
341	Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Reports, 2017, 21, 2236-2250.	2.9	94
342	microRNAs in skeletal muscle development. Seminars in Cell and Developmental Biology, 2017, 72, 67-76.	2.3	78
343	Laminin mimetic peptide nanofibers regenerate acute muscle defect. Acta Biomaterialia, 2017, 60, 190-200.	4.1	28
344	Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics, 2017, 18, 352.	1.2	14
345	Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films. Stem Cell Research and Therapy, 2017, 8, 104.	2.4	22
346	Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food and Function, 2017, 8, 2394-2418.	2.1	57
347	Satellite cell-mediated breast muscle regeneration decreases with broiler size. Poultry Science, 2017, 96, 3457-3464.	1.5	37
348	Estrogen and Menopause: Muscle Damage, Repair and Function in Females. , 2017, , 71-85.		2
349	Does the grass snake (Natrix natrix) (Squamata: Serpentes: Natricinae) fit the amniotes-specific model of myogenesis?. Protoplasma, 2017, 254, 1507-1516.	1.0	7
350	Selective recruitment of non-classical monocytes promotes skeletal muscle repair. Biomaterials, 2017, 117, 32-43.	5.7	51
351	Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells. Journal of Orthopaedic Research, 2017, 35, 1816-1823.	1.2	4

#	Article	IF	CITATIONS
352	Aging, metabolism and stem cells: Spotlight on muscle stem cells. Molecular and Cellular Endocrinology, 2017, 445, 109-117.	1.6	33
353	Regenerative medicine provides alternative strategies for the treatment of anal incontinence. International Urogynecology Journal, 2017, 28, 341-350.	0.7	17
354	Early Growth Response 3 (Egr3) Contributes a Maintenance of C2C12 Myoblast Proliferation. Journal of Cellular Physiology, 2017, 232, 1114-1122.	2.0	22
355	In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Annals of Biomedical Engineering, 2017, 45, 747-760.	1.3	27
356	Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: In vitro and in vivo evaluations. Journal of Orthopaedic Research, 2017, 35, 1806-1815.	1.2	15
357	Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation. Poultry Science, 2017, 96, 1015-1027.	1.5	17
358	Disruption of mitochondrial quality control in peripheral artery disease: New therapeutic opportunities. Pharmacological Research, 2017, 115, 96-106.	3.1	13
359	Postnatal Hyperplasic Effects of ActRIIB Blockade in a Severely Dystrophic Muscle. Journal of Cellular Physiology, 2017, 232, 1774-1793.	2.0	4
360	Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells EnhanceÂEndogenous Repair of InjuredÂPorcine Skeletal Muscle. JACC Basic To Translational Science, 2017, 2, 717-736.	1.9	4
361	Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Seminars in Cell and Developmental Biology, 2017, 72, 45-55.	2.3	69
363	Treatment of Vesicovaginal Fistulas With Autologous Cell Injections—A Randomized Study in an Animal Model. Technology in Cancer Research and Treatment, 2017, 16, 793-800.	0.8	1
364	MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Frontiers in Physiology, 2017, 8, 383.	1.3	45
365	The Role of Inflammation in Age-Related Sarcopenia. Frontiers in Physiology, 2017, 8, 1045.	1.3	362
366	Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients, 2017, 9, 208.	1.7	168
367	Myogenesis Muscle Growth and Structure. , 2017, , 29-49.		0
368	Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-17.	1.9	22
369	The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. ELife, 2017, 6, .	2.8	63
370	The Role of COUP-TFII in Striated Muscle Development and Disease. Current Topics in Developmental Biology, 2017, 125, 375-403.	1.0	5

	CHAHON		
#	Article	IF	CITATIONS
371	Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. ELife, 2017, 6, .	2.8	118
372	Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. Journal of Biomedical Science, 2017, 24, 42.	2.6	21
373	HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skeletal Muscle, 2017, 7, 20.	1.9	40
374	Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Scientific Reports, 2017, 7, 8593.	1.6	30
375	Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget, 2017, 8, 43192-43200.	0.8	9
376	Rejuvenating stem cells to restore muscle regeneration in aging. F1000Research, 2017, 6, 76.	0.8	25
377	Is Insulin Resistance Work Related?. , 0, , .		0
378	Integrin α7: a major driver and therapeutic target for glioblastoma malignancy. Stem Cell Investigation, 2017, 4, 97-97.	1.3	4
379	Ontogenesis of Striated Muscle. , 2017, , 1430-1450.e4.		0
380	Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-coding RNA Investigation, 2017, 1, 24-24.	0.6	17
381	Isolation, Culturing, and Differentiation of Primary Myoblasts from Skeletal Muscle of Adult Mice. Bio-protocol, 2017, 7, .	0.2	60
382	Muscle Biology of Contractures in Children with Cerebral Palsy. , 2018, , 143-153.		4
383	Inhibition of ADAM10 in satellite cells accelerates muscle regeneration following muscle injury. Journal of Orthopaedic Research, 2018, 36, 2259-2265.	1.2	5
384	Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nature Communications, 2018, 9, 800.	5.8	94
385	Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?. FEBS Journal, 2018, 285, 1973-1984.	2.2	106
386	Analysis of Muscle Stem Cell Fate Through Modulation of AMPK Activity. Methods in Molecular Biology, 2018, 1732, 539-549.	0.4	2
387	Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration. Stem Cell Reports, 2018, 10, 956-969.	2.3	104
388	miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Scientific Reports, 2018, 8, 3909.	1.6	42

#	Article	IF	CITATIONS
389	Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Antioxidants and Redox Signaling, 2018, 29, 128-148.	2.5	29
390	Protein <i>O</i> -Glucosyltransferase 1 Expression Influences Formation of Differentiated Myotubes in C2C12 Cell Line. DNA and Cell Biology, 2018, 37, 359-372.	0.9	7
391	Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nature Communications, 2018, 9, 1531.	5.8	73
392	Long-term selection of chickens for body weight alters muscle satellite cell behaviors. Poultry Science, 2018, 97, 2557-2567.	1.5	15
393	A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. Journal of Molecular Cell Biology, 2018, 10, 102-117.	1.5	56
394	Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Veterinary Surgery, 2018, 47, 524-535.	0.5	32
395	PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells. Stem Cell Reports, 2018, 10, 1398-1411.	2.3	22
396	Platelet biology in regenerative medicine of skeletal muscle. Acta Physiologica, 2018, 223, e13071.	1.8	47
397	Impact of blood flowâ€restricted bodyweight exercise on skeletal muscle adaptations. Clinical Physiology and Functional Imaging, 2018, 38, 965-975.	0.5	26
398	Regulation of fibrosis in muscular dystrophy. Matrix Biology, 2018, 68-69, 602-615.	1.5	87
399	Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2 axis. Cellular Signalling, 2018, 45, 110-121.	1.7	25
400	Stem cells and heterotopic ossification: Lessons from animal models. Bone, 2018, 109, 178-186.	1.4	60
401	Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation. RNA Biology, 2018, 15, 404-412.	1.5	18
402	Cell sorting of various cell types from mouse and human skeletal muscle. Methods, 2018, 134-135, 50-55.	1.9	15
403	ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nature Cell Biology, 2018, 20, 46-57.	4.6	151
404	AMPKα1-LDHA, a new metabolic pathway, regulating stem cell fate. Cell Cycle, 2018, 17, 403-404.	1.3	0
405	"Known Unknowns― Current Questions in Muscle Satellite Cell Biology. Current Topics in Developmental Biology, 2018, 126, 205-233.	1.0	33
406	The influence of capillarization on satellite cell pool expansion and activation following exerciseâ€induced muscle damage in healthy young men. Journal of Physiology, 2018, 596, 1063-1078.	1.3	50

#	Article	IF	CITATIONS
407	Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. American Journal of Pathology, 2018, 188, 491-506.	1.9	32
408	Identification of satellite cells from anole lizard skeletal muscle and demonstration of expanded musculoskeletal potential. Developmental Biology, 2018, 433, 344-356.	0.9	14
409	Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. BMC Genomics, 2018, 19, 109.	1.2	17
410	A need for NAD+ in muscle development, homeostasis, and aging. Skeletal Muscle, 2018, 8, 9.	1.9	50
411	Unhealthy Stem Cells: When Health Conditions Upset Stem Cell Properties. Cellular Physiology and Biochemistry, 2018, 46, 1999-2016.	1.1	32
412	Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science and Technology, 2018, 78, 155-166.	7.8	396
413	In Vitro Tissueâ€Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Advanced Healthcare Materials, 2018, 7, e1701498.	3.9	84
414	Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function. Biomedicine and Pharmacotherapy, 2018, 103, 463-472.	2.5	14
415	Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 341-354.	1.0	53
416	p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO Journal, 2018, 37, .	3.5	33
417	Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i> . Development (Cambridge), 2018, 145, .	1.2	53
418	Isolation and Characterization of Human Myoblast Culture In Vitro for Technologies of Cell and Gene Therapy of Skeletal Muscle Pathologies. Bulletin of Experimental Biology and Medicine, 2018, 164, 536-542.	0.3	7
419	Muscle Changes at the Cellular-Fiber Level in Cerebral Palsy. , 2018, , 1-12.		2
420	Stem Cells for Skeletal Muscle Tissue Engineering. Tissue Engineering - Part B: Reviews, 2018, 24, 373-391.	2.5	64
421	Regeneration of diaphragm with bio-3D cellular patch. Biomaterials, 2018, 167, 1-14.	5.7	41
422	Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029785.	2.9	236
423	Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. Journal of Cellular Physiology, 2018, 233, 67-78.	2.0	135
424	Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyteâ€like cells. FASEB Journal, 2018, 32, 768-781.	0.2	41

#	Article	IF	CITATIONS
425	Effect of polyphenols from coffee and grape on gene expression in myoblasts. Mechanisms of Ageing and Development, 2018, 172, 115-122.	2.2	10
426	Cardiac Cell Culture Technologies. , 2018, , .		2
427	Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
428	Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annual Review of Biomedical Engineering, 2018, 20, 21-47.	5.7	108
429	Muscle Stem Cells Exhibit Distinct Clonal Dynamics in Response to Tissue Repair and Homeostatic Aging. Cell Stem Cell, 2018, 22, 119-127.e3.	5.2	68
430	NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Research, 2018, 26, 55-66.	0.3	24
431	Protein arginine methyltransferase expression and activity during myogenesis. Bioscience Reports, 2018, 38, .	1.1	15
432	Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. Journal of Cellular Physiology, 2018, 233, 4360-4372.	2.0	38
433	Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells, 2018, 36, 278-285.	1.4	76
434	Targeting myomiRs by tocotrienol-rich fraction to promote myoblast differentiation. Genes and Nutrition, 2018, 13, 31.	1.2	6
435	Program and Book of the 15th Interuniversity Institute of Myology Meeting - Assisi (Italy), 2018. European Journal of Translational Myology, 2018, 28, 7927.	0.8	2
436	Gene Expression Patterns Analysis in the Supraspinatus Muscle after a Rotator Cuff Tear in a Mouse Model. BioMed Research International, 2018, 2018, 1-18.	0.9	7
437	Intervertebral Disc-Derived Stem/Progenitor Cells as a Promising Cell Source for Intervertebral Disc Regeneration. Stem Cells International, 2018, 2018, 1-11.	1.2	42
438	Use of Zebrafish (Danio rerio) Embryos as a Model to Assess Effects of Mercury on Developing Skeletal Muscle: A Morphometric and Immunohistochemical Study. International Journal of Morphology, 2018, 36, 901-908.	0.1	0
439	Automated muscle histopathology analysis using CellProfiler. Skeletal Muscle, 2018, 8, 32.	1.9	30
440	Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathologica Communications, 2018, 6, 119.	2.4	28
441	Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers. Journal of Animal Science and Biotechnology, 2018, 9, 82.	2.1	22
442	Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSμ. Skeletal Muscle, 2018, 8, 36.	1.9	7

#	Article	IF	CITATIONS
443	Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 536-556.	0.7	12
444	The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports, 2018, 11, 1523-1538.	2.3	54
445	Myofibers. Advances in Experimental Medicine and Biology, 2018, 1088, 23-46.	0.8	13
446	The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skeletal Muscle, 2018, 8, 37.	1.9	22
447	Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium. Cell Reports, 2018, 25, 3858-3868.e4.	2.9	56
448	Skeletal muscle stem cells in comfort and stress. Npj Regenerative Medicine, 2018, 3, 24.	2.5	82
449	Vitamin D Receptor in Muscle Atrophy of Elderly Patients: A Key Element of Osteoporosis-Sarcopenia Connection. , 2018, 9, 952.		34
450	Epigenetic Erosion in Adult Stem Cells: Drivers and Passengers of Aging. Cells, 2018, 7, 237.	1.8	15
451	Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells, 2018, 7, 148.	1.8	50
452	Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells. Methods in Molecular Biology, 2018, 2002, 121-128.	0.4	4
453	Induction of bone marrow-derived cells myogenic identity by theirÂinteractions with the satellite cell niche. Stem Cell Research and Therapy, 2018, 9, 258.	2.4	21
454	Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nature Biomedical Engineering, 2018, 2, 942-954.	11.6	105
455	Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Scientific Reports, 2018, 8, 13642.	1.6	22
456	Protein Expression Landscape Defines the Differentiation Potential Specificity of Adipogenic and Myogenic Precursors in the Skeletal Muscle. Journal of Proteome Research, 2018, 17, 3853-3865.	1.8	11
457	The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal. Scientific Reports, 2018, 8, 14649.	1.6	17
458	Recreating stem-cell niches using self-assembling biomaterials. , 2018, , 421-454.		1
459	Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Frontiers in Physiology, 2018, 9, 1277.	1.3	29
460	MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Frontiers in Genetics, 2018, 9, 548.	1.1	21

#	Article	IF	CITATIONS
461	HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Frontiers in Physiology, 2018, 9, 1387.	1.3	20
462	Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease. Cell Stem Cell, 2018, 23, 653-664.	5.2	175
463	The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Frontiers in Physiology, 2018, 9, 1130.	1.3	40
464	Royal Jelly Delays Motor Functional Impairment During Aging in Genetically Heterogeneous Male Mice. Nutrients, 2018, 10, 1191.	1.7	22
465	Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R90-R103.	0.9	26
466	Development and application of human skeletal muscle microphysiological systems. Lab on A Chip, 2018, 18, 3061-3073.	3.1	18
467	Notch signaling in the regulation of skeletal muscle stem cells. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 213-219.	0.2	2
468	Regenerative Medicine Applications of Mesenchymal Stem Cells. Advances in Experimental Medicine and Biology, 2018, 1089, 115-141.	0.8	34
469	Aggregate mesenchymal stem cell delivery ameliorates the regenerative niche for muscle repair. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1867-1876.	1.3	11
470	Group I Paks support muscle regeneration and counteract cancerâ€essociated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 727-746.	2.9	20
471	Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote inÂvivo skeletal muscle regeneration. Biomaterials, 2018, 175, 19-29.	5.7	63
472	Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scandinavian Journal of Rheumatology, 2018, 47, 400-409.	0.6	39
473	The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases. Cytokine and Growth Factor Reviews, 2018, 41, 1-9.	3.2	26
474	Bisphenol a and mesenchymal stem cells: Recent insights. Life Sciences, 2018, 206, 22-28.	2.0	9
475	Assessing Muscle Stem Cell Clonal Complexity During Aging. Methods in Molecular Biology, 2018, 2045, 1-11.	0.4	3
476	Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal. Endocrine, 2018, 62, 129-135.	1.1	24
477	Cellular and epigenetic drivers of stem cell ageing. Nature Reviews Molecular Cell Biology, 2018, 19, 594-610.	16.1	196
478	Glycerol-induced injury as a new model of muscle regeneration. Cell and Tissue Research, 2018, 374, 233-241.	1.5	26

#	Article	IF	CITATIONS
479	Skeletal Muscle. , 2018, , 281-298.		2
480	SOXF factors regulate murine satellite cell self-renewal and function through inhibition of \hat{l}^2 -catenin activity. ELife, 2018, 7, .	2.8	17
481	Wnt Signaling in Skeletal Muscle Development and Regeneration. Progress in Molecular Biology and Translational Science, 2018, 153, 157-179.	0.9	116
482	Rbfox Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis. Cell Reports, 2018, 24, 197-208.	2.9	36
483	Preclinical characterization of the JAK/STAT inhibitor SGI-1252 on skeletal muscle function, morphology, and satellite cell content. PLoS ONE, 2018, 13, e0198611.	1.1	7
484	Autophagy in Stem Cell Biology: A Perspective on Stem Cell Self-Renewal and Differentiation. Stem Cells International, 2018, 2018, 1-12.	1.2	54
485	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
486	Agent-based model illustrates the role of the microenvironment in regeneration in healthy and <i>mdx</i> skeletal muscle. Journal of Applied Physiology, 2018, 125, 1424-1439.	1.2	31
487	Do nonsteroidal anti-inflammatory drugs impair tissue healing?. JAAPA: Official Journal of the American Academy of Physician Assistants, 2018, 31, 1-5.	0.1	3
488	Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. CKJ: Clinical Kidney Journal, 2018, 11, 810-821.	1.4	13
489	Extracellular Guanosine 5′-Triphosphate Induces Human Muscle Satellite Cells to Release Exosomes Stuffed With Guanosine. Frontiers in Pharmacology, 2018, 9, 152.	1.6	21
490	Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury. Frontiers in Physiology, 2018, 9, 19.	1.3	16
491	Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Frontiers in Physiology, 2018, 9, 515.	1.3	11
492	Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma—A Broad Spectrum Analysis. Frontiers in Physiology, 2018, 9, 674.	1.3	20
493	Extracellular Vesicles Secreted by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. Cellular Physiology and Biochemistry, 2018, 47, 1181-1192.	1.1	50
494	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
495	STAT3 in Skeletal Muscle Function and Disorders. International Journal of Molecular Sciences, 2018, 19, 2265.	1.8	57
497	Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 69.	1.1	40

		CITATION REPORT		
#	Article		IF	CITATIONS
498	Shisa2 regulates the fusion of muscle progenitors. Stem Cell Research, 2018, 31, 31-42	L.	0.3	14
499	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.		2.0	53
500	Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cellsâ \in through Regulating the Cell Cycle. International Journal of Molecular Sciences, 2018, 1	[™] Proliferation 9, 271.	1.8	22
501	An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. International Journal of Molecular Sciences, 2018, 19,	1425.	1.8	53
502	Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Ch Materials, 2018, 11, 1116.	allenges.	1.3	103
503	A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regener Developmental Cell, 2018, 46, 135-143.	ation.	3.1	249
504	Neural and musculotendinous mechanisms underpinning age-related force reductions. Ageing and Development, 2018, 175, 17-23.	Mechanisms of	2.2	25
505	MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-defici Human Molecular Genetics, 2018, 27, 3449-3463.	ent mdx mice.	1.4	15
506	Muscle Stem Cells and Aging. Current Topics in Developmental Biology, 2018, 126, 29	9-322.	1.0	50
507	Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat cra muscle. Scientific Reports, 2018, 8, 10613.	niofacial	1.6	8
508	Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenito Reports, 2018, 10, 1505-1521.	rs. Stem Cell	2.3	74
509	Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult r rats. Biomedicine and Pharmacotherapy, 2018, 103, 1178-1186.	male albino	2.5	10
510	Decellularized Tissue for Muscle Regeneration. International Journal of Molecular Scien 2392.	ces, 2018, 19,	1.8	54
511	Vitamin D and Skeletal Muscle. , 2018, , 597-612.			3
512	Stem Cell Therapy in Heart Diseases – Cell Types, Mechanisms and Improvement Stra Physiology and Biochemistry, 2018, 48, 2607-2655.	itegies. Cellular	1.1	159
513	Partial Compared with Full Range of Motion Resistance Training for Muscle Hypertroph Review and an Identification of Potential Mechanisms. Journal of Strength and Conditio 2018, 32, 2652-2664.	y: A Brief oning Research,	1.0	12
514	A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of musc Skeletal Muscle, 2018, 8, 27.	le stem cells.	1.9	22
515	Visualization of PAX7 protein dynamics in muscle satellite cells in a YFP knock-in-mouse Muscle, 2018, 8, 26.	e line. Skeletal	1.9	25

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
516	Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metabolism, 2018, 28, 764-775.e5.	7.2	70
517	Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference. American Journal of Physiology - Cell Physiology, 2018, 315, C643-C652.	2.1	21
518	Gene Therapy in Skeletal Muscle Repair and Regeneration. , 2018, , 49-69.		0
519	The differential proliferation and differentiation ability of skeletal muscle satellite cell in Boer and Nanjiang brown goats. Small Ruminant Research, 2018, 169, 99-107.	0.6	19
520	New mechanisms driving muscle stem cell regenerative decline with aging. International Journal of Developmental Biology, 2018, 62, 583-590.	0.3	18
522	The Muscle Stem Cell Niche in Health and Disease. Current Topics in Developmental Biology, 2018, 126, 23-65.	1.0	76
523	Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research, 2018, 30, 122-129.	0.3	69
524	BGP-15 improves contractile function of regenerating soleus muscle. Journal of Muscle Research and Cell Motility, 2018, 39, 25-34.	0.9	12
525	Autophagy, Exercise, and Lifestyle Modification. , 2018, , 305-314.		0
526	Oxytocin is involved in steroid hormone–stimulated bovine satellite cell proliferation and differentiation inÂvitro. Domestic Animal Endocrinology, 2019, 66, 1-13.	0.8	6
527	The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2019, 30, 1553-1598.	2.5	82
528	Skeletal Muscle Stem Cells. , 2019, , 273-293.		3
529	Exerciseâ€induced muscle damage: What is it, what causes it and what are the nutritional solutions?. European Journal of Sport Science, 2019, 19, 71-85.	1.4	172
530	Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Current Osteoporosis Reports, 2019, 17, 235-249.	1.5	17
531	Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1462.	6.6	262
532	Chlorella vulgaris Modulates Genes and Muscle-Specific microRNAs Expression to Promote Myoblast Differentiation in Culture. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-16.	0.5	4
533	The redox-dependent regulation of satellite cells following aseptic muscle trauma (SpEED): study protocol for a randomized controlled trial. Trials, 2019, 20, 469.	0.7	2
534	miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skeletal Muscle, 2019, 9, 22.	1.9	16

#	Article	IF	CITATIONS
535	KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. IScience, 2019, 17, 334-346.	1.9	15
536	Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells. Aging Cell, 2019, 18, e12996.	3.0	35
537	Inhibition of ubiquitinâ€specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiological Reports, 2019, 7, e14193.	0.7	14
538	Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Frontiers in Immunology, 2019, 10, 1591.	2.2	73
539	Metabolic Reprogramming Promotes Myogenesis During Aging. Frontiers in Physiology, 2019, 10, 897.	1.3	19
540	Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Frontiers in Physiology, 2019, 10, 828.	1.3	45
541	Linear Space Requirements and Perch Use of Conventional Layer Hybrids and Dual-Purpose Hens in an Aviary System. Frontiers in Veterinary Science, 2019, 6, 231.	0.9	14
542	The role of the fibroblast growth factor family in boneâ€related diseases. Chemical Biology and Drug Design, 2019, 94, 1740-1749.	1.5	24
543	MicroRNAs (miRs) in Muscle Gene Therapy. , 2019, , 99-119.		0
544	Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. Scientific Reports, 2019, 9, 9551.	1.6	22
545	Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function. Molecular Medicine, 2019, 25, 31.	1.9	14
546	The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation. Frontiers in Cell and Developmental Biology, 2019, 7, 254.	1.8	23
547	Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. Journal of Cellular and Molecular Medicine, 2019, 23, 8392-8409.	1.6	8
548	Participation of Mesenchymal Stromal Cells in Muscle Tissue Regeneration. Biology Bulletin Reviews, 2019, 9, 393-402.	0.3	1
549	Analyzing Satellite Cell Function During Skeletal Muscle Regeneration by Cardiotoxin Injury and Injection of Self-delivering siRNA In Vivo. Journal of Visualized Experiments, 2019, , .	0.2	6
550	lnc9141-a and -b Play a Different Role in Bovine Myoblast Proliferation, Apoptosis, and Differentiation. Molecular Therapy - Nucleic Acids, 2019, 18, 554-566.	2.3	2
551	Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Scientific Reports, 2019, 9, 14515.	1.6	34
552	Sinensetin regulates age-related sarcopenia in cultured primary thigh and calf muscle cells. BMC Complementary and Alternative Medicine, 2019, 19, 287.	3.7	11

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
553	Dual function of <scp>VGLL</scp> 4 in muscle regeneration. EMBO Journal, 2019, 38, e101051.	3.5	34
554	R3hdml regulates satellite cell proliferation and differentiation. EMBO Reports, 2019, 20, e47957.	2.0	9
555	Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. International Journal of Molecular Sciences, 2019, 20, 5545.	1.8	32
556	Characterization of mesoangioblast cell fate and improved promyogenic potential of a satellite cell-like subpopulation upon transplantation in dystrophic murine muscles. Stem Cell Research, 2019, 41, 101619.	0.3	1
557	Cell Fusion: Merging Membranes and Making Muscle. Trends in Cell Biology, 2019, 29, 964-973.	3.6	91
558	Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation?. Biomolecules, 2019, 9, 642.	1.8	30
559	Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. International Journal of Molecular Sciences, 2019, 20, 5273.	1.8	54
560	Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods, 2019, 8, 521.	1.9	80
561	Adiponectin promotes muscle regeneration through binding to T-cadherin. Scientific Reports, 2019, 9, 16.	1.6	60
562	PFN2a Suppresses C2C12 Myogenic Development by Inhibiting Proliferation and Promoting Apoptosis via the p53 Pathway. Cells, 2019, 8, 959.	1.8	9
563	Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels. Acta Biomaterialia, 2019, 97, 296-309.	4.1	6
564	Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, 2019, , .	0.8	3
565	The genetic association with exercise-induced muscle damage and muscle injury risk. , 2019, , 375-407.		4
566	Ibuprofen inhibited migration of skeletal muscle cells in association with downregulation of p130cas and Crkll expressions. Skeletal Muscle, 2019, 9, 23.	1.9	10
567	Consistent expression pattern of myogenic regulatory factors in whole muscle and isolated human muscle satellite cells after eccentric contractions in humans. Journal of Applied Physiology, 2019, 127, 1419-1426.	1.2	13
568	MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nature Communications, 2019, 10, 4256.	5.8	31
569	Role and mechanism of catechin in skeletal muscle cell differentiation. Journal of Nutritional Biochemistry, 2019, 74, 108225.	1.9	16
570	Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Molecular and Cellular Biology, 2019, 39, .	1.1	12

	CHATION	ILPORT	
#	Article	IF	CITATIONS
571	The Skeletal Muscle as an Active Player Against Cancer Cachexia. Frontiers in Physiology, 2019, 10, 41.	1.3	48
572	NeuroMuscleDB: a Database of Genes Associated with Muscle Development, Neuromuscular Diseases, Ageing, and Neurodegeneration. Molecular Neurobiology, 2019, 56, 5835-5843.	1.9	13
573	Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. Skeletal Muscle, 2019, 9, 2.	1.9	51
574	A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicology and Applied Pharmacology, 2019, 378, 114625.	1.3	12
575	Scaffolds for esophageal tissue engineering. , 2019, , 565-592.		2
576	Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation. Toxicon, 2019, 167, 6-9.	0.8	3
579	Pericytes in Muscular Dystrophies. Advances in Experimental Medicine and Biology, 2019, 1147, 319-344.	0.8	8
580	Epigenetic Regulation of Muscle Stem Cells During Skeletal Muscle Regeneration and Disease. , 2019, , 309-332.		1
581	Tissue Engineering for Clean Meat Production. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	142
582	Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B. Nature Communications, 2019, 10, 2430.	5.8	103
583	Deiodinases and their intricate role inÂthyroid hormone homeostasis. Nature Reviews Endocrinology, 2019, 15, 479-488.	4.3	158
584	Overview of Cell Types Capable of Contributing to Skeletal Muscle Repair and Regeneration. , 2019, , 1-30.		0
585	Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 2019, 30, 1985-1999.	0.9	23
586	The transcription factor Slug represses p16Ink4a and regulates murine muscle stem cell aging. Nature Communications, 2019, 10, 2568.	5.8	38
587	Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. Metallomics, 2019, 11, 1140-1153.	1.0	17
588	Heparan Sulfate Mimetics Accelerate Postinjury Skeletal Muscle Regeneration. Tissue Engineering - Part A, 2019, 25, 1667-1676.	1.6	7
589	Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International, 2019, 2019, 1-19.	1.2	32
590	Stem Cells Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1123, 1-3.	0.8	15

#	Article	IF	CITATIONS
591	The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nature Communications, 2019, 10, 1796.	5.8	38
592	Satellite cells depletion in exercising human skeletal muscle is restored by ginseng component Rg1 supplementation. Journal of Functional Foods, 2019, 58, 27-33.	1.6	7
593	Nr4a1 as a myogenic factor is upregulated in satellite cells/myoblast under proliferation and differentiation state. Biochemical and Biophysical Research Communications, 2019, 513, 573-581.	1.0	11
594	Regenerative Cardiovascular Therapies: Stem Cells and Beyond. International Journal of Molecular Sciences, 2019, 20, 1420.	1.8	41
595	The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Research and Therapy, 2019, 10, 103.	2.4	38
596	High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Molecular Cell, 2019, 74, 609-621.e6.	4.5	271
597	Integrin-α7 signaling regulates connexin 43, M-cadherin, and myoblast fusion. American Journal of Physiology - Cell Physiology, 2019, 316, C876-C887.	2.1	25
598	Cell therapy to improve regeneration of skeletal muscle injuries. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 501-516.	2.9	99
599	Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomaterialia, 2019, 89, 104-114.	4.1	17
600	Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genomics, 2019, 20, 156.	1.2	18
601	The natural involution of the sheep proximal sesamoidean ligament is due to depletion of satellite cells and simultaneous proliferation of fibroblasts: Ultrastructural evidence. Research in Veterinary Science, 2019, 124, 106-111.	0.9	3
602	ZEB1 protects skeletal muscle from damage and is required for its regeneration. Nature Communications, 2019, 10, 1364.	5.8	40
603	Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Research and Therapy, 2019, 10, 80.	2.4	53
604	Role of PAX-7 as a tissue marker in mangled extremity: a pilot study. European Journal of Orthopaedic Surgery and Traumatology, 2019, 29, 1131-1140.	0.6	6
605	Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells, 2019, 8, 232.	1.8	49
606	Roles of the proteasome and inhibitor of DNA binding 1 protein in myoblast differentiation. FASEB Journal, 2019, 33, 7403-7416.	0.2	6
607	Genome-Wide Microarray Analysis Suggests Transcriptomic Response May Not Play a Major Role in High- to Low-Altitude Acclimation in Harvest Mouse (Micromys minutus). Animals, 2019, 9, 92.	1.0	0
608	Adult stem cells at work: regenerating skeletal muscle. Cellular and Molecular Life Sciences, 2019, 76, 2559-2570.	2.4	176

#	Article	IF	CITATIONS
609	Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscleâ€specific manner. Physiological Reports, 2019, 7, e14052.	0.7	11
610	<scp>iPSC</scp> s: A powerful tool for skeletal muscle tissue engineering. Journal of Cellular and Molecular Medicine, 2019, 23, 3784-3794.	1.6	44
611	Knockdown of CSRP3 inhibits differentiation of chicken satellite cells by promoting TGF-β/Smad3 signaling. Gene, 2019, 707, 36-43.	1.0	38
612	Pericytes in Skeletal Muscle. Advances in Experimental Medicine and Biology, 2019, 1122, 59-72.	0.8	5
613	Development, repair, and regeneration of the limb musculoskeletal system. Current Topics in Developmental Biology, 2019, 132, 451-486.	1.0	4
614	Influence of Platelet-Rich and Platelet-Poor Plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 2019, 20, 683.	1.8	54
615	Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies. Methods in Molecular Biology, 2019, 2045, 13-23.	0.4	2
616	Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model. Scientific Reports, 2019, 9, 1580.	1.6	17
617	Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Human Molecular Genetics, 2019, 28, 2120-2132.	1.4	14
618	Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4346-4351.	3.3	35
620	Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of PALLD. Frontiers in Genetics, 2019, 10, 1220.	1.1	7
621	Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. International Journal of Molecular Sciences, 2019, 20, 5760.	1.8	20
622	HEMA 3 Staining: A Simple Alternative for the Assessment of Myoblast Differentiation. Current Protocols in Stem Cell Biology, 2019, 51, e101.	3.0	9
623	Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Frontiers in Physiology, 2019, 10, 1324.	1.3	9
624	The panniculus carnosus muscle: A novel model of striated muscle regeneration that exhibits sex differences in the mdx mouse. Scientific Reports, 2019, 9, 15964.	1.6	12
625	Adult Muscle Stem Cells: Exploring the Links Between Systemic and Cellular Metabolism. Frontiers in Cell and Developmental Biology, 2019, 7, 312.	1.8	14
626	Depletion of branchedâ€chain aminotransferase 2 (BCAT2) enzyme impairs myoblast survival and myotube formation. Physiological Reports, 2019, 7, e14299.	0.7	8
627	Genome-Wide Analysis of Circular RNAs Mediated ceRNA Regulation in Porcine Embryonic Muscle Development. Frontiers in Cell and Developmental Biology, 2019, 7, 289.	1.8	40

#	Article	IF	CITATIONS
628	The Role of Muscle Stem Cells in Regeneration and Recovery after Denervation: A Review. Plastic and Reconstructive Surgery, 2019, 143, 779-788.	0.7	16
629	Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell, 2019, 25, 797-813.e9.	5.2	145
630	Immunohistochemical Localization of YAP and TAZ in Tongue Wound Healing. International Journal of Oral-Medical Sciences, 2019, 18, 74-85.	0.2	1
631	Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. Tissue Engineering - Part B: Reviews, 2019, 25, 30-45.	2.5	7
632	Stem cell niche: Dynamic neighbor of stem cells. European Journal of Cell Biology, 2019, 98, 65-73.	1.6	33
633	Biomaterial and stem cellâ€based strategies for skeletal muscle regeneration. Journal of Orthopaedic Research, 2019, 37, 1246-1262.	1.2	56
634	The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Engineering - Part A, 2019, 25, 1001-1012.	1.6	13
635	Skeletal muscle fibrosis: an overview. Cell and Tissue Research, 2019, 375, 575-588.	1.5	192
636	Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 2019, 99, 427-511.	13.1	767
637	A novel long non-coding RNA, IncKBTBD10, involved in bovine skeletal muscle myogenesis. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 25-35.	0.7	9
638	Lack of muscle mTOR kinase activity causes early onset myopathy and compromises wholeâ€body homeostasis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 35-53.	2.9	24
639	Muscle wasting in the presence of disease, why is it so variable?. Biological Reviews, 2019, 94, 1038-1055.	4.7	7
640	Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Research and Therapy, 2019, 10, 26.	2.4	52
641	Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Reports, 2019, 26, 689-701.e6.	2.9	22
642	Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 165-176.	2.9	22
643	Soluble Factors Released From Activated T Lymphocytes Regulate C2C12 Myoblast Proliferation and Cellular Signaling, but Effects Are Blunted in the Elderly. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1375-1385.	1.7	1
644	Nuclear localized Akt limits skeletal muscle derived fibrotic signaling. Biochemical and Biophysical Research Communications, 2019, 508, 838-843.	1.0	0
645	Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis. Journal of Molecular Cell Biology, 2019, 11, 53-66.	1.5	19

#	Article	IF	CITATIONS
646	Type 1 Muscle Fiber Hypertrophy after Blood Flow–restricted Training in Powerlifters. Medicine and Science in Sports and Exercise, 2019, 51, 288-298.	0.2	72
647	<scp>ER</scp> stress in skeletal muscle remodeling and myopathies. FEBS Journal, 2019, 286, 379-398.	2.2	96
648	Stem cell therapy in heart failure: Where do we stand today?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165489.	1.8	28
649	Circular RNAs in myogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194372.	0.9	53
650	Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. Journal of Nutrition, 2020, 150, 22-30.	1.3	2
651	Loss of CD36 protects against dietâ€induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiologica, 2020, 228, e13395.	1.8	20
652	Chlorella vulgaris modulates the expression of senescence-associated genes in replicative senescence of human diploid fibroblasts. Molecular Biology Reports, 2020, 47, 369-379.	1.0	4
653	P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathology, 2020, 30, 272-282.	2.1	29
654	Mitochondria and autophagy in adult stem cells: proliferate or differentiate. Journal of Muscle Research and Cell Motility, 2020, 41, 355-362.	0.9	10
655	Tendon tissue microdamage and the limits of intrinsic repair. Matrix Biology, 2020, 85-86, 68-79.	1.5	30
656	Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcified Tissue International, 2020, 106, 47-57.	1.5	31
657	Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death and Differentiation, 2020, 27, 949-965.	5.0	17
658	Cigarette Smoking Exacerbates Skeletal Muscle Injury without Compromising Its Regenerative Capacity. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 217-230.	1.4	45
659	Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connective Tissue Research, 2020, 61, 248-261.	1.1	10
660	Orofacial Muscles: Embryonic Development and Regeneration after Injury. Journal of Dental Research, 2020, 99, 125-132.	2.5	25
661	Paradoxical sleep deprivation induces differential biological response in rat masticatory muscles: Inflammation, autophagy and myogenesis. Journal of Oral Rehabilitation, 2020, 47, 289-300.	1.3	9
662	Mitochondrial-specific autophagy linked to mitochondrial dysfunction following traumatic freeze injury in mice. American Journal of Physiology - Cell Physiology, 2020, 318, C242-C252.	2.1	19
663	Spatial Modulation for Uplink Multi-User mmWave MIMO Systems With Hybrid Structure. IEEE Transactions on Communications, 2020, 68, 177-190.	4.9	8

#	Article	IF	CITATIONS
664	Vascularized and Innervated Skeletal Muscle Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e1900626.	3.9	91
665	Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. Journal of Neuroscience, 2020, 40, 22-36.	1.7	33
666	Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Research, 2020, 43, 101684.	0.3	9
667	Poor maternal nutrition during gestation in sheep alters prenatal muscle growth and development in offspring. Journal of Animal Science, 2020, 98, .	0.2	32
668	Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. FEBS Journal, 2020, 287, 406-416.	2.2	58
669	HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data. Journal of Computational Biology, 2020, 27, 1283-1294.	0.8	Ο
670	Age-related decrease in muscle satellite cells is accompanied with diminished expression of early growth response 3 in mice. Molecular Biology Reports, 2020, 47, 977-986.	1.0	4
671	Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism: Clinical and Experimental, 2020, 103, 154044.	1.5	19
672	Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell and Tissue Research, 2020, 380, 155-172.	1.5	4
673	Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158574.	1.2	5
674	Micronized sacchachitin promotes satellite cell proliferation through TAK1-JNK-AP-1 signaling pathway predominantly by TLR2 activation. Chinese Medicine, 2020, 15, 100.	1.6	4
675	Skeletal Muscle-Derived Human Mesenchymal Stem Cells: Influence of Different Culture Conditions on Proliferative and Myogenic Capabilities. Frontiers in Physiology, 2020, 11, 553198.	1.3	16
676	Bidirectional myofiber transition through altering the photobiomodulation condition. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112041.	1.7	2
677	Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering, 2020, 7, 107.	1.6	5
678	Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 7545.	1.8	5
679	Comparative Study on Bone Marrow-Versus Adipose-Derived Stem Cells on Regeneration and Re-Innervation of Skeletal Muscle Injury in Wistar Rats. Tissue Engineering and Regenerative Medicine, 2020, 17, 887-900.	1.6	11
680	Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Scientific Reports, 2020, 10, 16385.	1.6	40
681	Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation. Mechanisms of Ageing and Development, 2020, 192, 111362.	2.2	9

#	Article	IF	CITATIONS
682	MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death and Disease, 2020, 11, 545.	2.7	28
683	"The Social Network―and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells, 2020, 9, 1659.	1.8	27
684	Rotator cuff muscle stem cells: the double-edged sword in the skeletal muscle. Annals of Translational Medicine, 2020, 8, 717-717.	0.7	0
685	Effect of 20(S)-Hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken. Genes, 2020, 11, 1360.	1.0	9
686	miR-324-5p Inhibits C2C12 cell Differentiation and Promotes Intramuscular Lipid Deposition through IncDUM and PM20D1. Molecular Therapy - Nucleic Acids, 2020, 22, 722-732.	2.3	16
687	Radiation-Induced Damage to Prepubertal Pax7+ Skeletal Muscle Stem Cells Drives Lifelong Deficits in Myofiber Size and Nuclear Number. IScience, 2020, 23, 101760.	1.9	26
688	Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorganic Chemistry, 2020, 105, 104459.	2.0	16
689	Current Studies and Future Directions of Exercise Therapy for Muscle Atrophy Induced by Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 593429.	1.1	4
690	LncRNAs are regulated by chromatin states and affect the skeletal muscle cell differentiation. Cell Proliferation, 2020, 53, e12879.	2.4	12
691	Progressive Degenerative Myopathy and Myosteatosis in ASNSD1-Deficient Mice. Veterinary Pathology, 2020, 57, 723-735.	0.8	6
692	High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells, 2020, 9, 1723.	1.8	18
693	Advance in Drug Delivery for Ageing Skeletal Muscle. Frontiers in Pharmacology, 2020, 11, 1016.	1.6	9
694	The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature, 2020, 583, 760-767.	13.7	131
695	Dissecting Murine Muscle Stem Cell Aging through Regeneration Using Integrative Genomic Analysis. Cell Reports, 2020, 32, 107964.	2.9	49
696	Influence of Obesity on the Organization of the Extracellular Matrix and Satellite Cell Functions After Combined Muscle and Thorax Trauma in C57BL/6J Mice. Frontiers in Physiology, 2020, 11, 849.	1.3	3
697	Satellite cell selfâ€renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1661-1676.	2.9	31
698	Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2020, 4, 2731-2743.	3.2	7
699	Stem Cell-Based and Tissue Engineering Approaches for Skeletal Muscle Repair. , 2020, , 1-62.		3

#	Article	IF	CITATIONS
700	EphA7+ perivascular cells as myogenic and angiogenic precursors improving skeletal muscle regeneration in a muscular dystrophic mouse model. Stem Cell Research, 2020, 47, 101914.	0.3	9
701	The role of the stem cell epigenome in normal aging and rejuvenative therapy. Human Molecular Genetics, 2020, 29, R236-R247.	1.4	4
702	Dual effects of obesity on satellite cells and muscle regeneration. Physiological Reports, 2020, 8, e14511.	0.7	16
703	Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Frontiers in Cell and Developmental Biology, 2020, 8, 564581.	1.8	17
704	Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation. European Journal of Pharmacology, 2020, 888, 173470.	1.7	6
705	Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Frontiers in Physiology, 2020, 11, 566584.	1.3	16
706	Chromatin and transcriptome changes in human myoblasts show spatio-temporal correlations and demonstrate DPP4 inhibition in differentiated myotubes. Scientific Reports, 2020, 10, 14336.	1.6	3
707	Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Frontiers in Physiology, 2020, 11, 945.	1.3	13
708	MicroRNA-7 Targets the KLF4 Gene to Regulate the Proliferation and Differentiation of Chicken Primary Myoblasts. Frontiers in Genetics, 2020, 11, 842.	1.1	20
709	Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules, 2020, 10, 1339.	1.8	52
710	Stem Cell Aging and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1326, 11-37.	0.8	11
711	Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Research, 2020, 30, 1063-1077.	5.7	49
712	eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. International Journal of Molecular Sciences, 2020, 21, 5963.	1.8	11
713	Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle Rejuvenating Factors. Advanced Functional Materials, 2020, 30, 2002924.	7.8	5
714	Treatment with galectin-1 improves myogenic potential and membrane repair in dysferlin-deficient models. PLoS ONE, 2020, 15, e0238441.	1.1	12
715	A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Frontiers in Cell and Developmental Biology, 2020, 8, 793.	1.8	20
716	Pre-Clinical Cell Therapeutic Approaches for Repair of Volumetric Muscle Loss. Bioengineering, 2020, 7, 97.	1.6	21
717	Chemoradiation impairs myofiber hypertrophic growth in a pediatric tumor model. Scientific Reports, 2020, 10, 19501.	1.6	8

#	Article	IF	CITATIONS
718	Clobal DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Research and Therapy, 2020, 11, 536.	2.4	10
719	Clycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells, 2020, 9, 2646.	1.8	11
720	Cardiac Progenitor Cells. Advances in Experimental Medicine and Biology, 2020, 1312, 51-73.	0.8	3
721	Don't Lose Your Cool With Cryotherapy: The Application of Phase Change Material for Prolonged Cooling in Athletic Recovery and Beyond. Frontiers in Sports and Active Living, 2020, 2, 118.	0.9	12
722	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	3.3	90
723	Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle, 2020, 19, 3167-3181.	1.3	10
724	Satellite Cells in Skeletal Muscle of the Hibernating Dormouse, a Natural Model of Quiescence and Re-Activation: Focus on the Cell Nucleus. Cells, 2020, 9, 1050.	1.8	5
725	Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118742.	1.9	37
726	Styrene Oxide Caused Cell Cycle Arrest and Abolished Myogenic Differentiation of C2C12 Myoblasts. Journal of Toxicology, 2020, 2020, 1-11.	1.4	4
727	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	7.2	233
728	Laminin-111 protein therapy after disease onset slows muscle disease in a mouse model of laminin-α2 related congenital muscular dystrophy. Human Molecular Genetics, 2020, 29, 2162-2170.	1.4	4
729	Implications of Skeletal Muscle Extracellular Matrix Remodeling in Metabolic Disorders: Diabetes Perspective. International Journal of Molecular Sciences, 2020, 21, 3845.	1.8	24
730	Zingiber Officinale Roscoe Prevents Cellular Senescence of Myoblasts in Culture and Promotes Muscle Regeneration. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-13.	0.5	3
731	A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell, 2020, 27, 158-176.e10.	5.2	97
732	Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1–Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells, 2020, 9, 1199.	1.8	19
733	Satellite cells in ageing: use it or lose it. Open Biology, 2020, 10, 200048.	1.5	68
734	Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. Current Opinion in Biomedical Engineering, 2020, 16, 9-18.	1.8	22
735	Generation of myogenic progenitor cell-derived smooth muscle cells for sphincter regeneration. Stem Cell Research and Therapy, 2020, 11, 233.	2.4	15

#	Article	IF	CITATIONS
736	Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials, 2020, 255, 120207.	5.7	34
737	Intravital three-dimensional bioprinting. Nature Biomedical Engineering, 2020, 4, 901-915.	11.6	131
738	Pluripotent stem cell-derived skeletal muscle fibers preferentially express myosin heavy-chain isoforms associated with slow and oxidative muscles. Skeletal Muscle, 2020, 10, 17.	1.9	1
739	Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clinical Orthopaedics and Related Research, 2020, 478, 886-899.	0.7	13
740	Intracellular Role for the Matrix-Modifying Enzyme Lox in Regulating Transcription Factor Subcellular Localization and Activity in Muscle Regeneration. Developmental Cell, 2020, 53, 406-417.e5.	3.1	21
741	Dek Modulates Clobal Intron Retention during Muscle Stem Cells Quiescence Exit. Developmental Cell, 2020, 53, 661-676.e6.	3.1	72
742	Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions. Molecular Biology of the Cell, 2020, 31, 1703-1713.	0.9	26
743	Tissue cross talks governing limb muscle development and regeneration. Seminars in Cell and Developmental Biology, 2020, 104, 14-30.	2.3	22
744	Differentiation proliferative capacity of skeletal muscle satellite cells from Dapulian and Landrace pigs. Italian Journal of Animal Science, 2020, 19, 574-585.	0.8	0
745	Notch Inhibition via GSI Treatment Elevates Protein Synthesis in C2C12 Myotubes. Biology, 2020, 9, 115.	1.3	3
746	Stem cells and heart tissue regeneration. , 2020, , 47-70.		1
747	Tenogenic Contribution to Skeletal Muscle Regeneration: The Secretome of Scleraxis Overexpressing Mesenchymal Stem Cells Enhances Myogenic Differentiation In Vitro. International Journal of Molecular Sciences, 2020, 21, 1965.	1.8	8
748	Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell Reports, 2020, 30, 3583-3595.e5.	2.9	227
749	Application of Bone Marrow–Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice. American Journal of Sports Medicine, 2020, 48, 1226-1235.	1.9	23
750	Skeletal Muscle Extracellular Matrix – What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Frontiers in Physiology, 2020, 11, 253.	1.3	214
751	Physical activity and exercise: Strategies to manage frailty. Redox Biology, 2020, 35, 101513.	3.9	235
752	Janus effect of glucocorticoids on differentiation of muscle fibro/adipogenic progenitors. Scientific Reports, 2020, 10, 5363.	1.6	18
753	Glycine Enhances Satellite Cell Proliferation, Cell Transplantation, and Oligonucleotide Efficacy in Dystrophic Muscle. Molecular Therapy, 2020, 28, 1339-1358.	3.7	25

#	Article	IF	CITATIONS
754	Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics. Frontiers in Molecular Neuroscience, 2020, 13, 1.	1.4	64
755	Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. Journal of Applied Physiology, 2020, 128, 795-804.	1.2	35
756	Structural and Functional Changes in the Coupling of Fascial Tissue, Skeletal Muscle, and Nerves During Aging. Frontiers in Physiology, 2020, 11, 592.	1.3	28
757	Mitochondrial Function in Muscle Stem Cell Fates. Frontiers in Cell and Developmental Biology, 2020, 8, 480.	1.8	55
758	Mathematical Model of Muscle Wasting in Cancer Cachexia. Journal of Clinical Medicine, 2020, 9, 2029.	1.0	8
759	Temporal Dynamics and Heterogeneity of Cell Populations during Skeletal Muscle Regeneration. IScience, 2020, 23, 100993.	1.9	151
760	Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Communications Biology, 2020, 3, 330.	2.0	39
761	SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development (Cambridge), 2020, 147, .	1.2	6
762	Unloading during skeletal muscle regeneration retards iNOS-expressing macrophage recruitment and perturbs satellite cell accumulation. Histochemistry and Cell Biology, 2020, 154, 355-367.	0.8	7
763	The effects of organophosphates in the early stages of human skeletal muscle regeneration. , 2020, , 829-841.		1
764	Hallmarks of frailty and osteosarcopenia in prematurely aged PolgA ^(D257A/D257A) mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1121-1140.	2.9	17
765	HSP70 drives myoblast fusion during C2C12 myogenic differentiation. Biology Open, 2020, 9, .	0.6	3
766	AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). International Journal of Molecular Sciences, 2020, 21, 955.	1.8	22
767	Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. Current Physical Medicine and Rehabilitation Reports, 2020, 8, 17-29.	0.3	0
768	Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skeletal Muscle, 2020, 10, 4.	1.9	32
769	Satellite cellâ€specific ablation of <i>Cdon</i> impairs integrin activation, FGF signalling, and muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1089-1103.	2.9	24
770	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 2020, 6, eaay6812.	4.7	114
771	From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Current Opinion in Cell Biology, 2020, 63, 88-101.	2.6	11

#	Article	IF	CITATIONS
772	Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. International Journal of Molecular Sciences, 2020, 21, 1092.	1.8	25
773	Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients, 2020, 12, 259.	1.7	50
774	Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells. Stem Cells and Development, 2020, 29, 336-352.	1.1	23
775	The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future?. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 348-365.	2.9	67
776	Human and mouse skeletal muscle stem and progenitor cells in health and disease. Seminars in Cell and Developmental Biology, 2020, 104, 93-104.	2.3	48
777	Lack of PKCÎ, Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. International Journal of Molecular Sciences, 2020, 21, 932.	1.8	13
778	Sarcopenia: Current treatments and new regenerative therapeutic approaches. Journal of Orthopaedic Translation, 2020, 23, 38-52.	1.9	58
779	Investigating the Effects of Fertilized Egg Yolk Extract on Myoblast Proliferation and Differentiation. Regenerative Engineering and Translational Medicine, 2020, 6, 125-137.	1.6	2
780	Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 2020, 1, 210-220.	6.2	191
781	Tumor Necrosis Factor Alpha Regulates Skeletal Myogenesis by Inhibiting SP1 Interaction with <i>cis</i> -Acting Regulatory Elements within the Fbxl2 Gene Promoter. Molecular and Cellular Biology, 2020, 40, .	1.1	6
782	Glucolipotoxicity: A Proposed Etiology for Wooden Breast and Related Myopathies in Commercial Broiler Chickens. Frontiers in Physiology, 2020, 11, 169.	1.3	39
783	Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells, 2020, 9, 1045.	1.8	15
784	MicroRNA regulatory networks in the pathogenesis of sarcopenia. Journal of Cellular and Molecular Medicine, 2020, 24, 4900-4912.	1.6	26
785	Induction of Myogenic Differentiation Improves Chemosensitivity of Chemoresistant Cells in Soft-Tissue Sarcoma Cell Lines. Sarcoma, 2020, 2020, 1-9.	0.7	6
786	Zebrafish models of sarcopenia. DMM Disease Models and Mechanisms, 2020, 13, dmm042689.	1.2	25
787	Nandrolone decanoate relieves joint pain in hypogonadal men: a novel prospective pilot study and review of the literature. Translational Andrology and Urology, 2020, 9, S186-S194.	0.6	1
788	Targeting PKCÎ, Promotes Satellite Cell Self-Renewal. International Journal of Molecular Sciences, 2020, 21, 2419.	1.8	6
789	Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Engineering - Part A, 2021, 27, 74-86.	1.6	20

#	Article	IF	CITATIONS
790	Rotator cuff tear degeneration and the role of fibroâ€adipogenic progenitors. Annals of the New York Academy of Sciences, 2021, 1490, 13-28.	1.8	18
791	Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. Journal of Cellular Physiology, 2021, 236, 3083-3098.	2.0	27
792	The microRNA miRâ€133b functions to slow Duchenne muscular dystrophy pathogenesis. Journal of Physiology, 2021, 599, 171-192.	1.3	15
793	Sensory nerves in the spotlight of the stem cell niche. Stem Cells Translational Medicine, 2021, 10, 346-356.	1.6	12
794	Muscle stem cell isolation and <i>in vitro</i> culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 429-457.	5.9	70
795	Motor function recovery: deciphering a regenerative niche at the neuromuscular synapse. Biological Reviews, 2021, 96, 752-766.	4.7	12
796	Effect of Photobiomodulation in Lipopolysaccharide-Treated Myoblasts. Photobiomodulation, Photomedicine, and Laser Surgery, 2021, 39, 30-37.	0.7	1
797	Elite swimmers possess shorter telomeres than recreationally active controls. Gene, 2021, 769, 145242.	1.0	5
798	Potential cross-talk between muscle and tendon in Duchenne muscular dystrophy. Connective Tissue Research, 2021, 62, 40-52.	1.1	5
799	Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxidants and Redox Signaling, 2021, 34, 1004-1024.	2.5	28
800	Modulation of Ki67 and myogenic regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic program of senescent human myoblasts. Archives of Medical Science, 2021, 17, 752-763.	0.4	5
801	Skeletal muscle cell aging and stem cells. , 2021, , 125-145.		6
802	Skeletal Muscle-Resident Pericyte Responses to Conditions of Use and Disuse. Pancreatic Islet Biology, 2021, , 203-217.	0.1	0
803	Hypercapnic Respiratory Failure-Driven Skeletal Muscle Dysfunction: It Is Time for Animal Model-Based Mechanistic Research. Advances in Experimental Medicine and Biology, 2021, 1303, 129-138.	0.8	0
804	Stem Cell-Based and Tissue Engineering Approaches for Skeletal Muscle Repair. Reference Series in Biomedical Engineering, 2021, , 429-488.	0.1	0
805	Suppression of MyoD induces spontaneous adipogenesis in skeletal muscle progenitor cell culture. Animal Science Journal, 2021, 92, e13573.	0.6	9
806	Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia. Experimental Physiology, 2021, 106, 700-713.	0.9	5
807	PDGFRα mediated survival of myofibroblasts inhibit satellite cell proliferation during aberrant regeneration of lacerated skeletal muscle. Scientific Reports, 2021, 11, 63.	1.6	10

#	Article	IF	CITATIONS
808	Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 629088.	2.0	8
809	MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. Journal of Animal Science and Biotechnology, 2021, 12, 16.	2.1	11
810	EphA7+ Multipotent and Their Roles in Multicellular Organisms. Pancreatic Islet Biology, 2021, , 189-201.	0.1	0
811	MicroRNA-124-3p affects myogenic differentiation of adipose-derived stem cells by targeting Caveolin-1 during pelvic floor dysfunction in Sprague Dawley rats. Annals of Translational Medicine, 2021, 9, 161-161.	0.7	5
812	Bioengineered <i>in vitro</i> skeletal muscles as new tools for muscular dystrophies preclinical studies. Journal of Tissue Engineering, 2021, 12, 204173142098133.	2.3	21
813	Delineating the relationship between immune system aging and myogenesis in muscle repair. Aging Cell, 2021, 20, e13312.	3.0	21
814	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
815	<i>Matricaria chamomilla</i> (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction. The American Journal of Chinese Medicine, 2021, 49, 1493-1514.	1.5	6
817	RIP-Seq of EZH2 Identifies TCONS-00036665 as a Regulator of Myogenesis in Pigs. Frontiers in Cell and Developmental Biology, 2020, 8, 618617.	1.8	6
818	Global transcriptomic analysis reveals Lnc-ADAMTS9 exerting an essential role in myogenesis through modulating the ERK signaling pathway. Journal of Animal Science and Biotechnology, 2021, 12, 4.	2.1	1
819	Commentary: Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Frontiers in Physiology, 2021, 12, 642366.	1.3	2
820	TGFÎ ² signaling curbs cell fusion and muscle regeneration. Nature Communications, 2021, 12, 750.	5.8	61
821	Skeletal Muscle in Cerebral Palsy: From Belly to Myofibril. Frontiers in Neurology, 2021, 12, 620852.	1.1	22
822	Roles of the synaptic molecules Hevin and SPARC in mouse neuromuscular junction development and repair. Neuroscience Letters, 2021, 746, 135663.	1.0	4
823	Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients, 2021, 13, 729.	1.7	18
824	Study on regulation of skeletal muscle characteristics by food components. Nihon Chikusan Gakkaiho, 2021, 92, 25-33.	0.0	0
825	Pluripotent stem cell-induced skeletal muscle progenitor cells with givinostat promote myoangiogenesis and restore dystrophin in injured Duchenne dystrophic muscle. Stem Cell Research and Therapy, 2021, 12, 131.	2.4	14
827	Characterisation of stemness and multipotency of ovine muscleâ€derived stem cells from various muscle sources. Journal of Anatomy, 2021, 239, 336-350.	0.9	2

ARTICLE IF CITATIONS # Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biology, 828 1.5 29 2021, 11, 200377. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB Journal, 2021, 35, e21378. 829 0.2 Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion 830 2.0 14 signals. Cell Death Discovery, 2021, 7, 35. Myogenic Differentiation of Stem Cells for Skeletal Muscle Regeneration. Stem Cells International, 1.2 24 2021, 2021, 1-10. IgLON5 Regulates the Adhesion and Differentiation of Myoblasts. Cells, 2021, 10, 417. 832 1.8 11 Considerations for Systemic Use of Gene Therapy. Molecular Therapy, 2021, 29, 422-423. 3.7 Gli1 Defines a Subset of Fibro-adipogenic Progenitors that Promote Skeletal Muscle Regeneration 834 3.1 20 With Less Fat Accumulation. Journal of Bone and Mineral Research, 2020, 36, 1159-1173. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ 4.7 63 mechanotransduction. Science Advances, 2021, 7, . Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. 837 1.8 5 International Journal of Molecular Sciences, 2021, 22, 2488. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life, 2021, 11, 250. 1.1 Prospect of early vascular tone and satellite cell modulations on white striping muscle myopathy. 839 1.5 10 Poultry Science, 2021, 100, 100945. 840 Skeletal Muscle Stem Cell Niche from Birth to Old Age., 0, , . Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ 841 11.6 23 or in vitro. Nature Biomedical Engineering, 2021, 5, 864-879. Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. International Journal of Molecular Sciences, 2021, 22, 2502. 842 1.8 Paxbp1 controls a key checkpoint for cell growth and survival during early activation of quiescent muscle satellite cells. Proceedings of the National Academy of Sciences of the United States of 843 3.3 11 America, 2021, 118, . The Role of Autophagy in Skeletal Muscle Diseases. Frontiers in Physiology, 2021, 12, 638983. 844 Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental 845 Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction. International Journal of Molecular 1.8 10 Sciences, 2021, 22, 3645. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. Npj 846 Regenerative Medicine, 2021, 6, 17.

#	Article	IF	CITATIONS
848	Nucleoproteinâ€enriched diet enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in unloaded rat muscles. Experimental Physiology, 2021, 106, 1587-1596.	0.9	2
849	Exercise Training-Induced Extracellular Matrix Protein Adaptation in Locomotor Muscles: A Systematic Review. Cells, 2021, 10, 1022.	1.8	15
850	Synergistic short-term and long-term effects of TGF-β1 and 3 on collagen production in differentiating myoblasts. Biochemical and Biophysical Research Communications, 2021, 547, 176-182.	1.0	11
851	Empowering Muscle Stem Cells for the Treatment of Duchenne Muscular Dystrophy. Cells Tissues Organs, 2022, 211, 641-654.	1.3	18
852	The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. Cell Regeneration, 2021, 10, 11.	1.1	20
853	Hair follicle stem cells as a skinâ€organizing signaling center during adult homeostasis. EMBO Journal, 2021, 40, e107135.	3.5	28
854	Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cellular and Molecular Life Sciences, 2021, 78, 4867-4891.	2.4	18
856	Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation. International Journal of Molecular Sciences, 2021, 22, 4499.	1.8	6
857	Modeling muscle regeneration in RNA toxicity mice. Human Molecular Genetics, 2021, 30, 1111-1130.	1.4	9
858	Insights into muscle stem cell dynamics during postnatal development. FEBS Journal, 2022, 289, 2710-2722.	2.2	26
859	Pathophysiology and Treatment Strategies of Acute Myopathy and Muscle Wasting after Sepsis. Journal of Clinical Medicine, 2021, 10, 1874.	1.0	11
860	Promoting endogenous repair of skeletal muscle using regenerative biomaterials. Journal of Biomedical Materials Research - Part A, 2021, 109, 2720-2739.	2.1	5
861	Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skeletal Muscle, 2021, 11, 14.	1.9	6
862	lcing after eccentric contraction-induced muscle damage perturbs the disappearance of necrotic muscle fibers and phenotypic dynamics of macrophages in mice. Journal of Applied Physiology, 2021, 130, 1410-1420.	1.2	18
863	Histone Acetyltransferases and Stem Cell Identity. Cancers, 2021, 13, 2407.	1.7	9
864	Maintenance of Skeletal Muscle to Counteract Sarcopenia in Patients with Advanced Chronic Kidney Disease and Especially Those Undergoing Hemodialysis. Nutrients, 2021, 13, 1538.	1.7	28
865	Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight, 2021, 6, .	2.3	17
866	Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 746-768.	2.9	70

#	Article	IF	CITATIONS
867	Current Strategies for the Regeneration of Skeletal Muscle Tissue. International Journal of Molecular Sciences, 2021, 22, 5929.	1.8	29
868	A novel IncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1â€RhoA/Rac1. Journal of Cellular and Molecular Medicine, 2021, 25, 5988-6005.	1.6	12
869	In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nature Communications, 2021, 12, 3094.	5.8	51
870	Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. American Journal of Physiology - Cell Physiology, 2021, 320, C1099-C1111.	2.1	6
871	Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Frontiers in Immunology, 2021, 12, 688106.	2.2	17
872	Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. Journal of Histochemistry and Cytochemistry, 2021, 69, 795-818.	1.3	28
873	Clutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Scientific Reports, 2021, 11, 13432.	1.6	5
874	Differential response of oxidative and glycolytic skeletal muscle fibers to mesterolone. Scientific Reports, 2021, 11, 12301.	1.6	3
875	p38 MAPKs — roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight, 2021, 6, .	2.3	35
877	Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Science Advances, 2021, 7, .	4.7	21
878	Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Frontiers in Physiology, 2021, 12, 682091.	1.3	9
879	Potential Alternatives to Conventional Cancer Therapeutic Approaches: The Way Forward. Current Pharmaceutical Biotechnology, 2021, 22, 1141-1148.	0.9	4
880	Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells. Cells, 2021, 10, 1649.	1.8	6
881	Does Obesity Affect the Severity of Exercise-Induced Muscle Injury?. Journal of Obesity and Metabolic Syndrome, 2021, 30, 132-140.	1.5	6
883	Exercise Is Key to Sustaining Metabolic Gains After Bariatric Surgery. Exercise and Sport Sciences Reviews, 2021, 49, 197-204.	1.6	8
884	Natural products and skeletal muscle health. Journal of Nutritional Biochemistry, 2021, 93, 108619.	1.9	10
886	Histological Analysis of Tibialis Anterior Muscle of DMDmdx4Cv Mice from 1 to 24 Months. Journal of Neuromuscular Diseases, 2021, 8, 513-524.	1.1	3
887	A cell surfaceâ€reducing microenvironment induces early osteogenic commitment. FEBS Letters, 2021, 595, 2147-2159.	1.3	2

#	Article	IF	CITATIONS
888	Tissue engineering to treat pelvic organ prolapse. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2118-2143.	1.9	5
889	The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exercise and Sport Sciences Reviews, 2021, 49, 284-290.	1.6	17
890	Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles. Frontiers in Physiology, 2021, 12, 690248.	1.3	9
891	Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophysical Journal, 2021, 120, 2665-2678.	0.2	13
892	Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. ELife, 2021, 10, .	2.8	20
893	Gene-Activated Hydrogels Based on Sodium Alginate for Reparative Myogenesis of Skeletal Muscle. Inorganic Materials: Applied Research, 2021, 12, 1026-1032.	0.1	2
894	Preliminary Investigation of In vitro, Bidirectional Vocal Fold Muscle-Mucosa Interactions. Annals of Otology, Rhinology and Laryngology, 2022, 131, 512-519.	0.6	2
895	Myosatellite Cells under Gravitational Unloading Conditions. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 852-861.	0.2	0
896	Low-Dose Acrolein, an Endogenous and Exogenous Toxic Molecule, Inhibits Glucose Transport via an Inhibition of Akt-Regulated GLUT4 Signaling in Skeletal Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 7228.	1.8	3
897	Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Frontiers in Veterinary Science, 2021, 8, 699081.	0.9	68
898	Study of the Expression and Function of Calcium-Sensing Receptor in Human Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 7282.	1.8	5
899	The Key Lnc (RNA)s in Cardiac and Skeletal Muscle Development, Regeneration, and Disease. Journal of Cardiovascular Development and Disease, 2021, 8, 84.	0.8	7
901	Hypoxia further exacerbates woody breast myopathy in broilers via alteration of satellite cell fate. Poultry Science, 2021, 100, 101167.	1.5	12
902	Maternal smoking during pregnancy aggravated muscle phenotype in FHL1 offspring mice similar to congenital clubfoot through P2RX7-mediated pyroptosis. Toxicology Letters, 2021, 345, 54-60.	0.4	7
903	Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. Journal of the International Society of Sports Nutrition, 2021, 18, 56.	1.7	6
904	Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules, 2021, 11, 1171.	1.8	10
905	Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock, 2022, 57, 15-23.	1.0	8
906	Adult stem cell niches for tissue homeostasis. Journal of Cellular Physiology, 2022, 237, 239-257.	2.0	51

#	Article	IF	CITATIONS
909	Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Genes and Development, 2021, 35, 1209-1228.	2.7	20
910	Transplantation of engineered exosomes derived from bone marrow mesenchymal stromal cells ameliorate diabetic peripheral neuropathy under electrical stimulation. Bioactive Materials, 2021, 6, 2231-2249.	8.6	36
912	Skeletal muscle progenitors are sensitive to collagen architectural features of fibril size and cross linking. American Journal of Physiology - Cell Physiology, 2021, 321, C330-C342.	2.1	17
913	Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials, 2021, 275, 120973.	5.7	18
914	Advanced Glycation End Products Are Retained in Decellularized Muscle Matrix Derived from Aged Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 8832.	1.8	8
916	Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production. International Journal of Molecular Sciences, 2021, 22, 8376.	1.8	14
917	Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells, 2021, 10, 2016.	1.8	8
918	Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. International Journal of Molecular Sciences, 2021, 22, 9470.	1.8	12
919	Administration of a selective retinoic acid receptor-Î ³ agonist improves neuromuscular strength in a rodent model of volumetric muscle loss. Journal of Experimental Orthopaedics, 2021, 8, 58.	0.8	2
920	Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells, 2021, 10, 2083.	1.8	17
921	Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand?. Cells, 2021, 10, 2086.	1.8	9
922	CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration. Stem Cell Reports, 2021, 16, 2089-2098.	2.3	10
923	AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Molecular Therapy - Methods and Clinical Development, 2021, 22, 222-236.	1.8	2
924	Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells, 2021, 10, 2512.	1.8	6
925	SDH Subunit C Regulates Muscle Oxygen Consumption and Fatigability in an Animal Model of Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 259-271.	1.4	9
926	Collagen-derived dipeptide Pro-Hyp administration accelerates muscle regenerative healing accompanied by less scarring after wounding on the abdominal wall in mice. Scientific Reports, 2021, 11, 18750.	1.6	10
927	Understanding skeletal muscle in cerebral palsy: a path to personalized medicine?. Developmental Medicine and Child Neurology, 2022, 64, 289-295.	1.1	5
928	Stretch-induced satellite cell deformation in contractured muscles in children with cerebral palsy. Journal of Biomechanics, 2021, 126, 110635.	0.9	3

#	Article	IF	CITATIONS
930	Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livestock Science, 2021, 251, 104659.	0.6	9
931	Emerging role of MyomiRs as biomarkers and therapeutic targets in skeletal muscle diseases. American Journal of Physiology - Cell Physiology, 2021, 321, C859-C875.	2.1	6
932	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Molecular Therapy - Methods and Clinical Development, 2021, 22, 122-132.	1.8	20
933	Muscle Regeneration and Function in Sports: A Focus on Vitamin D. Medicina (Lithuania), 2021, 57, 1015.	0.8	6
934	IRE1α regulates skeletal muscle regeneration through myostatin mRNA decay. Journal of Clinical Investigation, 2021, 131, .	3.9	22
936	Cell Types Used for Cultured Meat Production and the Importance of Myokines. Foods, 2021, 10, 2318.	1.9	19
937	Effects of hyperoxia and hypoxia on the proliferation of C2C12 myoblasts. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R572-R587.	0.9	5
938	Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials, 2021, 278, 121173.	5.7	31
939	Diagnostic Ultrasound Shows Reversal of Supraspinatus Muscle Atrophy Following Arthroscopic Rotator Cuff Repair. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 3039-3048.	1.3	5
940	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	1.2	11
941	Cortisol differentially affects the viability and myogenesis of mono- and co-cultured porcine gluteal muscles satellite cells and fibroblasts. Tissue and Cell, 2021, 73, 101615.	1.0	4
942	FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway. Molecular Therapy - Nucleic Acids, 2021, 26, 34-48.	2.3	30
943	Three-dimensional in vitro models of neuromuscular tissue. Neural Regeneration Research, 2022, 17, 759.	1.6	4
944	Elevated CO2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Frontiers in Physiology, 2020, 11, 630910.	1.3	11
945	Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clinical Epigenetics, 2021, 13, 13.	1.8	26
946	Tissues & Organs Biochemistry of Development: Striated Muscle. , 2021, , 422-433.		0
947	Regulation of muscle stem cell function. Vitamins and Hormones, 2021, 116, 295-311.	0.7	4
948	Flagging fusion: Phosphatidylserine signaling in cell–cell fusion. Journal of Biological Chemistry, 2021, 296, 100411.	1.6	54

#	Article	IF	Citations
949	Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells. Stem Cells, 2021, 39, 306-317.	1.4	5
950	Rejuvenating Stem Cells to Restore Muscle Regeneration in Aging. , 2019, , 311-324.		1
951	Skeletal Muscle Progenitor Cell Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1169, 179-193.	0.8	3
952	Muscle and Bone Biology – Similarities and Differences. , 2019, , 3-27.		2
953	Pituitary Stem Cells: Quest for Hidden Functions. Research and Perspectives in Endocrine Interactions, 2016, , 81-101.	0.2	8
954	Stem Cell Microenvironments and Beyond. Advances in Experimental Medicine and Biology, 2017, 1041, 1-3.	0.8	37
955	Plasticity of the Muscle Stem Cell Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1041, 141-169.	0.8	28
956	Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. American Journal of Pathology, 2020, 190, 2453-2463.	1.9	4
957	A Metabolic Roadmap for Somatic Stem Cell Fate. Cell Metabolism, 2020, 31, 1052-1067.	7.2	66
958	Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1G93A Mice Predates Disease Onset and Is A Promising Therapeutic Target. IScience, 2020, 23, 101087.	1.9	55
959	Bioprinting of 3D in vitro skeletal muscle models: A review. Materials and Design, 2020, 193, 108794.	3.3	57
960	The Circular RNA circHUWE1 Sponges the miR-29b-AKT3 Axis to Regulate Myoblast Development. Molecular Therapy - Nucleic Acids, 2020, 19, 1086-1097.	2.3	44
970	Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight, 2020, 5, .	2.3	22
971	Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight, 2020, 5, .	2.3	24
972	PAX7 expression defines germline stem cells in the adult testis. Journal of Clinical Investigation, 2014, 124, 3929-3944.	3.9	143
973	TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. Journal of Clinical Investigation, 2015, 126, 151-168.	3.9	57
974	COUP-TFII regulates satellite cell function and muscular dystrophy. Journal of Clinical Investigation, 2016, 126, 3929-3941.	3.9	28
975	The perivascular origin of pathological fibroblasts. Journal of Clinical Investigation, 2018, 128, 54-63.	3.9	123

#	Article	IF	CITATIONS
976	Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. Journal of Clinical Investigation, 2018, 128, 2339-2355.	3.9	52
977	Single-cell analyses uncover granularity of muscle stem cells. F1000Research, 2020, 9, 31.	0.8	10
978	Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice. PLoS Genetics, 2016, 12, e1006289.	1.5	37
979	The Acute Satellite Cell Response and Skeletal Muscle Hypertrophy following Resistance Training. PLoS ONE, 2014, 9, e109739.	1.1	115
980	Characterization of Discrete Subpopulations of Progenitor Cells in Traumatic Human Extremity Wounds. PLoS ONE, 2014, 9, e114318.	1.1	13
981	Circulating MicroRNA Profiling Reveals Specific Subsignatures in Response to a Maximal Incremental Exercise Test. Journal of Strength and Conditioning Research, 2021, 35, 287-291.	1.0	7
982	Biomimetic Scaffolds for Skeletal Muscle Regeneration. Discoveries, 2019, 7, e90.	1.5	17
983	Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Reports, 2020, 21, e49499.	2.0	40
984	Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Molecular Medicine, 2020, 12, e12357.	3.3	27
985	MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. International Journal of Stem Cells, 2019, 12, 360-366.	0.8	3
986	Influence of Adult Neural Crest-Derived Multipotent Stem Cells on Regeneration of Orbital Soft Tissue Content After Experimental Injury. Problems of Cryobiology and Cryomedicine, 2018, 28, 059-063.	0.3	3
987	Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy. Aging, 2016, 8, 620-635.	1.4	32
988	Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration. Aging, 2016, 8, 2062-2080.	1.4	16
989	Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget, 2017, 8, 83009-83021.	0.8	4
990	Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8, 113938-113956.	0.8	29
991	Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget, 2018, 9, 17220-17237.	0.8	42
992	Role of satellite cells in growth and regeneration of skeletal muscles. Medycyna Weterynaryjna, 2019, 75, 6349-2019.	0.0	1
993	An Overview About the Biology of Skeletal Muscle Satellite Cells. Current Genomics, 2019, 20, 24-37.	0.7	95

#	Article	IF	CITATIONS
994	Micronutrient Intake in the Etiology, Prevention and Treatment of Osteosarcopenic Obesity. Current Aging Science, 2016, 9, 260-278.	0.4	36
995	Isolation, Culture, and Differentiation of Primary Myoblasts Derived from Muscle Satellite Cells. Bio-protocol, 2020, 10, e3686.	0.2	13
996	Osteosarcopenic obesity, the coexistence of osteoporosis, sarcopenia and obesity and consequences in the quality of life in older adults ≥365 years-old in Greece. Journal of Frailty, Sarcopenia and Falls, 2019, 4, 91-101.	0.4	15
997	Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Science Alliance, 2019, 2, e201900437.	1.3	41
998	Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration. Cellular Physiology and Biochemistry, 2020, 54, 333-353.	1.1	24
999	Remodeling the Skeletal Muscle Extracellular Matrix in Older Age—Effects of Acute Exercise Stimuli on Gene Expression. International Journal of Molecular Sciences, 2020, 21, 7089.	1.8	14
1000	Myogenic Satellite Cells: Biological Milieu and Possible Clinical Applications. Pakistan Journal of Biological Sciences, 2016, 20, 1-11.	0.2	8
1001	Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. Journal of Regenerative Medicine, 2015, 03, .	0.1	15
1002	Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World Journal of Stem Cells, 2020, 12, 1553-1575.	1.3	8
1003	Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro. Food Science of Animal Resources, 2020, 40, 659-667.	1.7	16
1004	EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells. ELife, 2014, 3, .	2.8	51
1005	Stage-specific effects of Notch activation during skeletal myogenesis. ELife, 2016, 5, .	2.8	79
1006	Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. ELife, 2020, 9, .	2.8	33
1007	Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training. International Journal of Kinesiology and Sports Science, 2015, 3, .	0.4	2
1008	The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nature Communications, 2021, 12, 6013.	5.8	12
1009	Muscle Physiopathology in Parathyroid Hormone Disorders. Frontiers in Medicine, 2021, 8, 764346.	1.2	9
1010	Control of satellite cell function in muscle regeneration and its disruption in ageing. Nature Reviews Molecular Cell Biology, 2022, 23, 204-226.	16.1	137
1011	Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules, 2021, 11, 1504.	1.8	2

#	Article	IF	CITATIONS
1012	Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. International Journal of Molecular Sciences, 2021, 22, 10867.	1.8	23
1013	MEndR: An In Vitro Functional Assay to Predict In Vivo Muscle Stem Cellâ€Mediated Repair. Advanced Functional Materials, 2022, 32, 2106548.	7.8	15
1014	Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules, 2021, 11, 1547.	1.8	2
1015	Muscle Regeneration of the Tongue: A Review of Current Clinical and Regenerative Research Strategies. Tissue Engineering - Part B: Reviews, 2022, 28, 1022-1034.	2.5	2
1017	Recent Trends in Biofabrication Technologies for Studying Skeletal Muscle Tissue-Related Diseases. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782333.	2.0	9
1018	Synergistic stimulation of surface topography and biphasic electric current promotes muscle regeneration. Bioactive Materials, 2022, 11, 118-129.	8.6	5
1019	The Role of Satellite Cells in Skeletal Muscle Regeneration—The Effect of Exercise and Age. Biology, 2021, 10, 1056.	1.3	17
1020	A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1440-1455.	2.9	13
1022	Ontogenesis of Striated Muscle. , 2011, , 1924-1947.		4
1023	Illuminating regeneration: noninvasive imaging of disease progression in muscular dystrophy. Journal of Clinical Investigation, 2013, 123, 1931-1934.	3.9	0
1024	The current knowledge of immune privilege in stem cells. Journal of Transplantation & Stem Cell Biology, 2014, 1, .	0.1	0
1025	Neuromuscular Tissue Engineering. , 2014, , 1-24.		0
1027	Vitamin E Ameliorates Short-Term Exercise-Induced Damage in Kidney and Skeletal Muscle of Male Albino Rats. Bulletin of Egyptian Society for Physiological Sciences, 2014, 34, 326-344.	0.0	0
1028	Actin Filament Formation in Myofibrils and Cell Protrusions Regulated by Signal Transduction. , 2015, , 287-307.		0
1029	Emerging Engineering Strategies for Studying the Stem Cell Niche. Pancreatic Islet Biology, 2015, , 57-106.	0.1	0
1030	In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues. , 2015, , 15-39.		2
1034	Defining Skeletal Muscle Progenitors. , 2018, , 291-291.		0
1035	By using either endogenous or transplanted stem cells, which could you prefer for neural regeneration?. Neural Regeneration Research, 2018, 13, 1731.	1.6	2

#	Article	IF	CITATIONS
1037	Klf2 in Myeloid Lineage Cells Regulates the Innate Immune Response During Skeletal Muscle Injury and Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
1038	Isolation, cultivation and immunostaining of single myofibers: An improved approach to study the behavior of satellite cells. Journal of Biological Methods, 2018, 5, e87.	1.0	4
1040	Cellular function of satellite cells does not play a role in muscle weakness of adult Ts1Cje mice. Neuroscience Research Notes, 2018, 1, 3-10.	0.5	2
1043	Role of l-carnitine and oleate in myogenic differentiation: implications for myofiber regeneration. Journal of Exercise Nutrition & Biochemistry, 2018, 22, 36-42.	1.3	4
1044	Potential Regenerative Capacity of physiological serum, L-arginine and IGF-1 on Skeletal Muscle. SVU-International Journal of Veterinary Sciences, 2018, 1, 90-101.	0.0	0
1048	Muscle Fiber Regeneration in Long-Term Denervated Muscles: Basics and Clinical Perspectives. , 2019, , 301-309.		0
1049	Mesenchymal Stem Cells as Regulators of Bone, Muscle, and Fat Formation. , 2019, , 29-44.		1
1050	Treadmill Exercise Increases Muscle Satellite Cell Activation Independent of Oxygen Concentration in Rat. Exercise Science, 2019, 28, 22-30.	0.1	3
1053	La signalisation TGFβ contrÃ1e la fusion cellulaire et la régénération musculaire. Les Cahiers De Myologie, 2019, , 33-34.	0.0	0
1066	In focus in HCB. Histochemistry and Cell Biology, 2020, 154, 347-354.	0.8	0
1067	Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. American Journal of Sports Medicine, 2021, 49, 3970-3980.	1.9	6
1068	Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Developmental Cell, 2021, 56, 2952-2965.e9.	3.1	27
1069	Vitamin <scp>D</scp> and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus, 2021, 5, e10575.	1.3	11
1070	Is There a Histone Code for Cellular Quiescence?. Frontiers in Cell and Developmental Biology, 2021, 9, 739780.	1.8	13
1071	Advanced Glycation End-Products in Skeletal Muscle Aging. Bioengineering, 2021, 8, 168.	1.6	22
1072	Challenges in cell transplantation for muscular dystrophy. Experimental Cell Research, 2021, 409, 112908.	1.2	5
1075	Puromycinâ€sensitive aminopeptidase is required for C2C12 myoblast proliferation and differentiation. Journal of Cellular Physiology, 2021, 236, 5293-5305.	2.0	9
1076	NeuroHeal Improves Muscle Regeneration after Injury. Cells, 2021, 10, 22.	1.8	2

#	Article	IF	CITATIONS
1078	Overview of Cell Types Capable of Contributing to Skeletal Muscle Repair and Regeneration. , 2020, , 3-32.		0
1080	Mechano-Physiological Modeling to Probe the Role of Satellite Cells and Fibroblasts in Cerebral Palsy Muscle Degeneration. Lecture Notes in Computational Vision and Biomechanics, 2020, , 142-157.	0.5	0
1081	Basic Muscle Physiology in Relation to Hamstring Injury and Repair. , 2020, , 31-63.		1
1082	Muscle Changes at the Cellular-Fiber Level in Cerebral Palsy. , 2020, , 241-252.		0
1083	Erectile Dysfunctions. , 2020, , 75-88.		0
1084	Roles of satellite cells and/or myonuclei in the regulation of morphological properties of anti-gravitational skeletal muscle in response to mechanical stress. Uchu Seibutsu Kagaku, 2020, 34, 1-11.	1.0	1
1086	All for One and One for All: Regenerating Skeletal Muscle. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040824.	2.3	9
1087	Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. Frontiers in Animal Science, 2021, 2, .	0.8	6
1088	Generation of Skin Organoids: Potential Opportunities and Challenges. Frontiers in Cell and Developmental Biology, 2021, 9, 709824.	1.8	18
1089	Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Research, 2020, 69, 565-598.	0.4	17
1094	Alcoholic Myopathy: Pathophysiologic Mechanisms and Clinical Implications. Alcohol Research: Current Reviews, 2017, 38, 207-217.	1.9	21
1095	Comparing stemness gene expression between stem cell subpopulations from peripheral blood and adipose tissue. American Journal of Stem Cells, 2018, 7, 38-47.	0.4	7
1096	Unraveling the Paradoxical Action of Androgens on Muscle Stem Cells. Molecules and Cells, 2019, 42, 97-103.	1.0	2
1097	Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration. Stem Cells, 2021, 39, 737-749.	1.4	8
1098	Mature skeletal muscle—An overview. , 2022, , 1-33.		0
1099	Muscle injury and regeneration. , 2022, , 117-141.		0
1100	Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering. Advanced Materials, 2022, 34, e2105883.	11.1	53
1101	Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World Journal of Stem Cells, 2021, 13, 1762-1782.	1.3	14

#	Article	IF	CITATIONS
1102	Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World Journal of Stem Cells, 2021, 13, 1765-1785.	1.3	0
1103	Skeletal muscle wasting: the estrogen side of sexual dimorphism. American Journal of Physiology - Cell Physiology, 2022, 322, C24-C37.	2.1	14
1104	The IRE1/XBP1 signaling axis promotes skeletal muscle regeneration through a cell non-autonomous mechanism. ELife, 2021, 10, .	2.8	11
1105	Low-Dose Metformin as a Monotherapy Does Not Reduce Non-Small-Cell Lung Cancer Tumor Burden in Mice. Biomedicines, 2021, 9, 1685.	1.4	1
1106	Cell autonomous TGFβ signaling is essential for stem/progenitor cell recruitment into degenerative tendons. Stem Cell Reports, 2021, 16, 2942-2957.	2.3	6
1107	Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. Journal of Physiology, 2022, 600, 41-60.	1.3	7
1108	Regenerating Damaged Myocardium: A Review of Stem-Cell Therapies for Heart Failure. Cells, 2021, 10, 3125.	1.8	4
1109	Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. Nano Convergence, 2021, 8, 40.	6.3	18
1110	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 231-238.	1.6	10
1112	Redox Signaling and Stress in Inherited Myopathies. Antioxidants and Redox Signaling, 2022, 37, 301-323.	2.5	5
1113	Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro. Cell Biochemistry and Biophysics, 2022, 80, 161.	0.9	1
1114	The Emerging Role of Long Non-Coding RNAs in Development and Function of Gilthead Sea Bream (Sparus aurata) Fast Skeletal Muscle. Cells, 2022, 11, 428.	1.8	6
1115	Effect of niche components on masseter satellite cell differentiation on fibrin coatings. European Journal of Oral Sciences, 2022, 130, e12849.	0.7	1
1116	Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva. Npj Regenerative Medicine, 2022, 7, 5.	2.5	10
1117	The thymus regulates skeletal muscle regeneration by directly promoting satellite cell expansion. Journal of Biological Chemistry, 2022, 298, 101516.	1.6	6
1118	Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells, 2022, 11, 187.	1.8	16
1119	Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS Journal, 2022, , .	2.2	3
1120	Engineered clustered myoblast cell injection augments angiogenesis and muscle regeneration in peripheral artery disease. Molecular Therapy, 2022, , .	3.7	7

#	Article	IF	CITATIONS
1121	Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerospace Medicine and Human Performance, 2022, 93, 32-45.	0.2	5
1122	Reduced growth rate of aged muscle stem cells is associated with impaired mechanosensitivity. Aging, 2022, 14, 28-53.	1.4	8
1123	Key genes in the liver fibrosis process are mined based on single-cell transcriptomics. Biochemical and Biophysical Research Communications, 2022, 598, 131-137.	1.0	3
1124	Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 760260.	1.8	1
1125	The Potential Role of Insulin-Like Growth Factors in Myofascial Pain Syndrome. American Journal of Physical Medicine and Rehabilitation, 2022, Publish Ahead of Print, .	0.7	0
1126	Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Frontiers in Cell and Developmental Biology, 2021, 9, 793088.	1.8	19
1127	Total mRNA and primary human myoblasts' inÂvitro cell cycle progression distinguishes between clones. Biochimie, 2022, 196, 161-170.	1.3	1
1128	Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Frontiers in Neuroscience, 2022, 16, 815765.	1.4	7
1129	A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. International Journal of Molecular Sciences, 2022, 23, 1748.	1.8	7
1130	BMAL1 drives muscle repair through control of hypoxic NAD ⁺ regeneration in satellite cells. Genes and Development, 2022, 36, 149-166.	2.7	13
1131	The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Research and Therapy, 2022, 13, 56.	2.4	15
1132	Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 2022, 26, 155-169.	1.5	8
1133	Effect of uremic toxins on nutritional status. Journal of Renal Nutrition and Metabolism, 2021, 7, 48.	0.1	0
1134	Cellular senescence and other aging mechanisms in bone and muscle. , 2022, , 19-37.		0
1135	The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. Npj Regenerative Medicine, 2022, 7, 16.	2.5	32
1136	Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Science Alliance, 2022, 5, e202101192.	1.3	6
1137	Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue. International Journal of Stem Cells, 2022, , .	0.8	0
1138	Glutamine supplementation improves contractile function of regenerating soleus muscles from rats. Journal of Muscle Research and Cell Motility, 2022, 43, 87-97.	0.9	2

#	Article	IF	Citations
1139	Satellite Cells are Activated in a Rat Model of Radiation-Induced Muscle Fibrosis. Radiation Research, 2022, 197, .	0.7	1
1140	Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 2022, 9, 859930.	1.2	21
1141	Ageing and exerciseâ€induced motor unit remodelling. Journal of Physiology, 2022, 600, 1839-1849.	1.3	18
1142	Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. Journal of Agricultural and Food Chemistry, 2022, 70, 3745-3756.	2.4	2
1143	Nanomaterial for Skeletal Muscle Regeneration. Tissue Engineering and Regenerative Medicine, 2022, 19, 253-261.	1.6	6
1144	Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nature Communications, 2022, 13, 1439.	5.8	35
1145	A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy. Journal of Clinical Investigation, 2022, 132, 1-13.	3.9	31
1146	A Novel miRNA Y-56 Targeting IGF-1R Mediates the Proliferation of Porcine Skeletal Muscle Satellite Cells Through AKT and ERK Pathways. Frontiers in Veterinary Science, 2022, 9, 754435.	0.9	2
1147	Muscle Stem Cell Function Is Impaired in \hat{I}^22 -Adrenoceptor Knockout Mice. Stem Cell Reviews and Reports, 2022, 18, 2431-2443.	1.7	1
1148	Circ <i>RIMKLB</i> promotes myoblast proliferation and inhibits differentiation by sponging <i>miR-29c</i> to release <i>KCNJ12</i> . Epigenetics, 2022, 17, 1686-1700.	1.3	3
1150	State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. , 2022, 12, 3193-3279.		18
1151	Deaccelerated Myogenesis and Autophagy in Genetically Induced Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 623-637.	1.4	12
1153	Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials, 2022, 284, 121508.	5.7	8
1154	Neutrophil and natural killer cell imbalances prevent muscle stem cell–mediated regeneration following murine volumetric muscle loss. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111445119.	3.3	24
1155	Cross Talk proposal: Myonuclei are lost with ageing and atrophy. Journal of Physiology, 2022, 600, 2077-2080.	1.3	11
1156	Integrative molecular roadmap for direct conversion of fibroblasts into myocytes and myogenic progenitor cells. Science Advances, 2022, 8, eabj4928.	4.7	10
1157	miR-378-mediated glycolytic metabolism enriches the Pax7Hi subpopulation of satellite cells. Cell Regeneration, 2022, 11, 11.	1.1	1
1158	The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells, 2022, 11, 1233.	1.8	7

#	Article	IF	CITATIONS
1159	2D structured graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanoparticles for differentiation of mouse cells. Journal of Alloys and Compounds, 2022, 906, 164300.	2.8	6
1160	VEGFB Promotes Myoblasts Proliferation and Differentiation through VEGFR1-PI3K/Akt Signaling Pathway. International Journal of Molecular Sciences, 2021, 22, 13352.	1.8	25
1161	Application of Selected Biomaterials and Stem Cells in the Regeneration of Hard Dental Tissue in Paediatric Dentistry—Based on the Current Literature. Nanomaterials, 2021, 11, 3374.	1.9	2
1163	Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics, 2021, 22, 901.	1.2	6
1165	Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends in Biotechnology, 2022, 40, 721-734.	4.9	40
1166	Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2021, 9, 785712.	1.8	47
1167	Extracellular Matrix and the Production of Cultured Meat. Foods, 2021, 10, 3116.	1.9	16
1168	Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 4483.	1.8	4
1169	Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell, 2022, 57, 1053-1067.e5.	3.1	16
1170	Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Seminars in Cell and Developmental Biology, 2023, 138, 94-103.	2.3	6
1171	Estradiol deficiency reduces the satellite cell pool by impairing cell cycle progression. American Journal of Physiology - Cell Physiology, 2022, 322, C1123-C1137.	2.1	5
1225	Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Science Advances, 2022, 8, eabn0485.	4.7	44
1227	Quantification of Muscle Stem Cell Differentiation Using Live-Cell Imaging and Eccentricity Measures. Methods in Molecular Biology, 2022, 2429, 455-471.	0.4	1
1228	Research on Orientation of Basic Fibroblast Growth Factor with Magnetic Nanoparticles (MNPs) on Regeneration and Recovery of Rats' Dampened Skeletal Muscle and Expressed Level of Matrix Metalloproteinase. Journal of Biomedical Nanotechnology, 2022, 18, 557-564.	0.5	3
1229	Lack of muscle stem cell proliferation and myocellular hypertrophy in sIBM patients following blood-flow restricted resistance training. Neuromuscular Disorders, 2022, 32, 493-502.	0.3	4
1230	Functional Properties of Meat in Athletes' Performance and Recovery. International Journal of Environmental Research and Public Health, 2022, 19, 5145.	1.2	4
1231	Human derived tendon cells contribute to myotube formation in vitro. Experimental Cell Research, 2022, 417, 113164.	1.2	3
1232	Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives, Biomolecules, 2022, 12, 699	1.8	9

#	Article	IF	CITATIONS
1233	Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration. International Journal of Molecular Sciences, 2022, 23, 5108.	1.8	10
1234	Notch, Numb and Numbâ€ŀike responses to exerciseâ€induced muscle damage in human skeletal muscle. Experimental Physiology, 2022, 107, 800-806.	0.9	5
1235	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	5.8	22
1236	An Edible, Decellularized Plant Derived Cell Carrier for Lab Grown Meat. Applied Sciences (Switzerland), 2022, 12, 5155.	1.3	23
1237	A Pilot Study on Nitration/Dysfunction of NK1 Segment of Myogenic Stem Cell Activator HGF. SSRN Electronic Journal, 0, , .	0.4	0
1238	Skeletal Muscle Satellite Cells in Sickle Cell Disease Patients and Their Responses to a Moderate-intensity Endurance Exercise Training Program. Journal of Histochemistry and Cytochemistry, 2022, 70, 415-426.	1.3	0
1239	Cellular Aquaculture: Prospects and Challenges. Micromachines, 2022, 13, 828.	1.4	10
1240	The Hunt Is On! In Pursuit of the Ideal Stem Cell Population for Cartilage Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	6
1241	Efficient Isolation of Lymphocytes and Myogenic Cells from the Tissue of Muscle Regeneration. Cells, 2022, 11, 1754.	1.8	0
1242	Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 6047.	1.8	16
1243	The Effect of Voluntary Physical Activity in an Enriched Environment and Combined Exercise Training on the Satellite Cell Pool in Developing Rats. Frontiers in Physiology, 2022, 13, .	1.3	5
1245	Muscle satellite cells are impaired in type 2 diabetic mice by elevated extracellular adenosine. Cell Reports, 2022, 39, 110884.	2.9	6
1247	Administration of Oral Curcumin to Resistance Exercise after Immobilization Does Not Affect Skeletal Muscle Fiber Diameter in Rattus Norvegicus. Indonesian Journal of Physical Medicine and Rehabilitation, 2022, 11, 50-57.	0.1	0
1248	An injury-responsive Rac-to-Rho GTPase switch drives activation of muscle stem cells through rapid cytoskeletal remodeling. Cell Stem Cell, 2022, 29, 933-947.e6.	5.2	34
1249	Stem Cell Biology: Structure and Function – The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. , 2022, , .		0
1251	Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. International Journal of Molecular Sciences, 2022, 23, 6983.	1.8	9
1253	The State of the Art of Piezo1 Channels in Skeletal Muscle Regeneration. International Journal of Molecular Sciences, 2022, 23, 6616.	1.8	11
1255	Examining the lineage autonomous role of β3â€integrin in muscle regeneration. FASEB Journal, 2022, 36, .	0.2	2

#	Article	IF	CITATIONS
1256	Vitamin A supplementation downregulates ADH1C and ALDH1A1 mRNA expression in weaned beef calves. Animal Nutrition, 2022, 10, 372-381.	2.1	3
1257	Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes, 2022, 13, 1033.	1.0	8
1258	Novel insights into the interaction between <scp>N6â€methyladenosine</scp> methylation and noncoding <scp>RNAs</scp> in musculoskeletal disorders. Cell Proliferation, 2022, 55, .	2.4	20
1259	Effects of Hypoxia on Proliferation and Differentiation in Belgian Blue and Hanwoo Muscle Satellite Cells for the Development of Cultured Meat. Biomolecules, 2022, 12, 838.	1.8	8
1260	Ca ²⁺ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS Journal, 2022, 289, 6531-6542.	2.2	9
1261	A Tead1-Apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle. IScience, 2022, 25, 104589.	1.9	6
1263	Recapitulating human skeletal muscle in vitro. Advances in Stem Cells and Their Niches, 2022, , 179-207.	0.1	0
1264	Stem Cells and Aging. , 2022, , .		0
1265	Artificial meat production and future vision. Food and Health, 2022, 8, 260-272.	0.2	0
1266	Nelarabine-induced rhabdomyolysis in a patient with T-cell acute lymphoblastic leukemia: a case report. Journal of Pharmaceutical Health Care and Sciences, 2022, 8, .	0.4	2
1268	Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules, 2022, 12, 896.	1.8	1
1269	ls Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues?. Biology, 2022, 11, 1063.	1.3	7
1270	The Many Roles of Macrophages in Skeletal Muscle Injury and Repair. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	21
1271	The effect of disease-modifying anti-rheumatic drugs on skeletal muscle mass in rheumatoid arthritis patients: a systematic review with meta-analysis. Arthritis Research and Therapy, 2022, 24, .	1.6	9
1272	Slc2a6 regulates myoblast differentiation by targeting LDHB. Cell Communication and Signaling, 2022, 20, .	2.7	3
1273	Knockdown of VEGFB/VEGFR1 Signaling Promotes White Adipose Tissue Browning and Skeletal Muscle Development. International Journal of Molecular Sciences, 2022, 23, 7524.	1.8	3
1274	Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. International Journal of Molecular Sciences, 2022, 23, 7478.	1.8	2
1275	Triâ€culture of spatially organizing human skeletal muscle cells, endothelial cells, and fibroblasts enhances contractile force and vascular perfusion of skeletal muscle tissues. FASEB Journal, 2022, 36,	0.2	6

#	Article	IF	CITATIONS
1276	5′-CMP and 5′-UMP promote myogenic differentiation and mitochondrial biogenesis by activating myogenin and PGC-1α in a mouse myoblast C2C12Âcell line. Biochemistry and Biophysics Reports, 2022, 31, 101309.	0.7	4
1277	A pilot study on nitration/dysfunction of NK1 segment of myogenic stem cell activator HGF. Biochemistry and Biophysics Reports, 2022, 31, 101295.	0.7	1
1278	Tetrandrine Inhibits Skeletal Muscle Differentiation by Blocking Autophagic Flux. International Journal of Molecular Sciences, 2022, 23, 8148.	1.8	5
1280	Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration. Cell and Bioscience, 2022, 12, .	2.1	4
1281	The impact of local therapies for breast cancer on shoulder muscle health and function. Critical Reviews in Oncology/Hematology, 2022, 177, 103759.	2.0	4
1282	Ribonucleotide reductase M2B in the myofibers modulates stem cell fate in skeletal muscle. Npj Regenerative Medicine, 2022, 7, .	2.5	2
1283	Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice. Skeletal Muscle, 2022, 12, .	1.9	3
1284	TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken. Journal of Integrative Agriculture, 2023, 22, 853-863.	1.7	1
1285	Potential Satellite Cell-Linked Biomarkers in Aging Skeletal Muscle Tissue: Proteomics and Proteogenomics to Monitor Sarcopenia. Proteomes, 2022, 10, 29.	1.7	18
1286	Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading. International Journal of Molecular Sciences, 2022, 23, 9150.	1.8	5
1288	The role of the aging microenvironment on the fate of PDGFRÎ ² lineage cells in skeletal muscle repair. Stem Cell Research and Therapy, 2022, 13, .	2.4	3
1289	miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in in in injured Duchenne dystrophic muscle. Molecular Therapy - Nucleic Acids, 2022, 29, 769-786.	2.3	2
1290	Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
1291	Transcriptomics, regulatory syntax, and enhancer identification in mesoderm-induced ESCs at single-cell resolution. Cell Reports, 2022, 40, 111219.	2.9	8
1292	Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. Skeletal Muscle, 2022, 12, .	1.9	6
1293	Why breast muscle satellite cell heterogeneity is an issue of importance for the poultry industry: An opinion paper. Frontiers in Physiology, 0, 13, .	1.3	3
1294	Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. American Journal of Physiology - Cell Physiology, 2022, 323, C974-C989.	2.1	1
1295	A regenerative niche for stem cells. Science, 2022, 377, 578-579.	6.0	1

		TION REPORT	
#	Article	IF	CITATIONS
1296	Inflammaging: The ground for sarcopenia?. Experimental Gerontology, 2022, 168, 111931.	1.2	24
1297	CELLULAR AND MOLECULAR MECHANISMS OF MUSCLE REGENERATION. Khyber Medical University Jour 2021, 13, 173-8.	nal, 0.1	1
1298	Role of miRNAs in muscle atrophy: the myotonic dystrophy paradigm. , 2022, , 331-362.		0
1299	Chronic Alcohol and Skeletal Muscle. , 2022, , 1-26.		0
1300	NF-kB Signaling in the Macroenvironment of Cancer Cachexia. , 2022, , 119-135.		0
1301	Structural Alterations in Muscle in Children with Spastic Cerebral Palsy. , 2022, , 63-80.		0
1302	Human Adipose-Derived Stromal Cells Delivered on Decellularized Muscle Improve Muscle Regeneration and Regulate RAGE and P38 MAPK. Bioengineering, 2022, 9, 426.	1.6	2
1303	Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients, 2022, 14, 3567.	1.7	14
1304	Modulating Myogenesis: An Optimized <i>In Vitro</i> Assay to Pharmacologically Influence Primary Myoblast Differentiation. Current Protocols, 2022, 2, .	1.3	1
1305	Evolution of a chordate-specific mechanism for myoblast fusion. Science Advances, 2022, 8, .	4.7	8
1306	Age-Associated Loss in Renal Nestin-Positive Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 11015.	1.8	2
1307	Macrophage-mediated PDCF Activation Correlates With Regenerative Outcomes Following Musculoskeletal Trauma. Annals of Surgery, 2023, 278, e349-e359.	2.1	1
1308	Effect of thermal manipulation during embryogenesis on gene expression of myogenic regulatory factors pre and post hatch in broilers. Indian Journal of Animal Sciences, 2022, 92, .	0.1	0
1312	CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells, 2022, 11, 2964.	1.8	8
1313	The chemokine receptor CXCR4 regulates satellite cell activation, early expansion, and self-renewal, in response to skeletal muscle injury. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
1314	Single nuclei transcriptomics of muscle reveals intra-muscular cell dynamics linked to dystrophin loss and rescue. Communications Biology, 2022, 5, .	2.0	15
1315	From Barbells to Brawns: The Physiology of Resistance Exercise and Skeletal Muscle Growth. The Korean Journal of Sports Medicine, 2022, 40, 151-169.	0.3	0
1316	Sox6 Differentially Regulates Inherited Myogenic Abilities and Muscle Fiber Types of Satellite Cells Derived from Fast- and Slow-Type Muscles. International Journal of Molecular Sciences, 2022, 23, 11327	. 1.8	3

#	Article	IF	Citations
1317	Regenerative Effect of Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Established Limb Ischemia. Circulation Journal, 2023, 87, 412-420.	0.7	2
1318	Icing after skeletal muscle injury decreases M1 macrophage accumulation and TNF-α expression during the early phase of muscle regeneration in rats. Histochemistry and Cell Biology, 2023, 159, 77-89.	0.8	4
1319	Restricted feeding regimens improve white striping associated muscular defects in broiler chickens. Animal Nutrition, 2022, , .	2.1	0
1321	Long noncoding RNA <i>lncMREF</i> promotes myogenic differentiation and muscle regeneration by interacting with the Smarca5/p300 complex. Nucleic Acids Research, 2022, 50, 10733-10755.	6.5	11
1322	Role of macrophages during skeletal muscle regeneration and hypertrophy—Implications for immunomodulatory strategies. Physiological Reports, 2022, 10, .	0.7	10
1323	Chronic Alcohol and Skeletal Muscle. , 2022, , 943-967.		0
1324	MYH1F promotes the proliferation and differentiation of chicken skeletal muscle satellite cells into myotubes. Animal Biotechnology, 2023, 34, 3074-3084.	0.7	2
1325	lgLON4 Regulates Myogenesis via Promoting Cell Adhesion and Maintaining Myotube Orientation. Cells, 2022, 11, 3265.	1.8	5
1326	Singleâ€use Technology for the Production of Cellular Agricultural Products: Where are We Today?. Chemie-Ingenieur-Technik, 2022, 94, 2018-2025.	0.4	4
1327	Transcriptome Response of Differentiating Muscle Satellite Cells to Thermal Challenge in Commercial Turkey. Genes, 2022, 13, 1857.	1.0	3
1328	Nobiletin Prevents D-Galactose-Induced C2C12 Cell Aging by Improving Mitochondrial Function. International Journal of Molecular Sciences, 2022, 23, 11963.	1.8	8
1329	Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells. Journal of Animal Science and Technology, 2022, 64, 1132-1143.	0.8	3
1330	Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 11784.	1.8	4
1331	Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle. Communications Biology, 2022, 5, .	2.0	11
1332	Role and Mechanism of Theaflavins in Regulating Skeletal Muscle Inflammation. Journal of Agricultural and Food Chemistry, 2022, 70, 13233-13250.	2.4	7
1333	Continuous Oral Administration of Sonicated P. gingivalis Delays Rat Skeletal Muscle Healing Post-Treadmill Training. International Journal of Environmental Research and Public Health, 2022, 19, 13046.	1.2	2
1335	Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Critical Reviews in Food Science and Nutrition, 2023, 63, 585-612.	5.4	10
1336	Glycogen Synthase Kinase 3β (GSK3β) Regulates Myogenic Differentiation in Skeletal Muscle Satellite Cells of Sheep. Animals, 2022, 12, 2789.	1.0	0

_			
C	TAT	REPO	NDT
	ITAL	NEPU	ノKI

#	Article	IF	CITATIONS
1337	The regenerative potential of Pax3/Pax7 on skeletal muscle injury. Journal of Genetic Engineering and Biotechnology, 2022, 20, 143.	1.5	0
1338	Embryonic Development and Histological Analysis of Skeletal Muscles of Tenuidactylus caspius (Eichwald, 1831) Lizards (Reptilia: Squamata). Journal of Zoological Systematics and Evolutionary Research, 2022, 2022, 1-5.	0.6	0
1339	Decrotonylation of AKT1 promotes AKT1 phosphorylation and activation during myogenic differentiation. Journal of Advanced Research, 2023, 50, 117-133.	4.4	3
1340	Screening of Food-Derived Plant Extracts to Promote Proliferation of Hanwoo Satellite Cells. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 1036-1047.	0.2	1
1341	Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients, 2022, 14, 4558.	1.7	3
1342	NRF2 Regulates Viability, Proliferation, Resistance to Oxidative Stress, and Differentiation of Murine Myoblasts and Muscle Satellite Cells. Cells, 2022, 11, 3321.	1.8	3
1343	A stem cell aging framework, from mechanisms to interventions. Cell Reports, 2022, 41, 111451.	2.9	26
1344	Recent advances in cellâ€based and cellâ€free therapeutic approaches for sarcopenia. FASEB Journal, 2022, 36, .	0.2	2
1345	Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s). Cancer Research, 2022, 82, 4497-4510.	0.4	14
1346	MSTN Regulatory Network in Mongolian Horse Muscle Satellite Cells Revealed with miRNA Interference Technologies. Genes, 2022, 13, 1836.	1.0	2
1347	The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194888.	0.9	4
1348	Ferroptosis and its role in skeletal muscle diseases. Frontiers in Molecular Biosciences, 0, 9, .	1.6	13
1349	Three-dimensional mapping reveals heterochronic development of the neuromuscular system in postnatal mouse skeletal muscles. Communications Biology, 2022, 5, .	2.0	3
1350	Autophagy in Stem Cell Maintenance and Differentiation. Pancreatic Islet Biology, 2023, , 35-58.	0.1	0
1351	Mechanisms of cooperative cell-cell interactions in skeletal muscle regeneration. Inflammation and Regeneration, 2022, 42, .	1.5	11
1353	Autophagy in Muscle Stem Cells. Pancreatic Islet Biology, 2023, , 137-167.	0.1	0
1354	RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells, 2022, 11, 3549.	1.8	2
1355	The mitochondrial Cu+ transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6

#	Article	IF	CITATIONS
1356	Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nature Communications, 2022, 13, .	5.8	6
1357	An efficient and economical way to obtain porcine muscle stem cells for cultured meat production. Food Research International, 2022, 162, 112206.	2.9	8
1358	iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals, 2022, 12, 3187.	1.0	1
1359	Inflammaging: Implications in Sarcopenia. International Journal of Molecular Sciences, 2022, 23, 15039.	1.8	33
1360	Naringenin Promotes Myotube Formation and Maturation for Cultured Meat Production. Foods, 2022, 11, 3755.	1.9	8
1362	Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	24
1363	Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. Bioengineering, 2022, 9, 744.	1.6	3
1364	Changes in microvascular perfusion of heart and skeletal muscle in sheep around the time of birth. Experimental Physiology, 2023, 108, 135-145.	0.9	1
1365	Transcriptomic Analysis of the Acute Skeletal Muscle Effects after Intramuscular DNA Electroporation Reveals Inflammatory Signaling. Vaccines, 2022, 10, 2037.	2.1	3
1366	The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Science Alliance, 2023, 6, e202201783.	1.3	10
1367	Validation of Kinetic Stem Cell (KSC) counting algorithms for rapid quantification of human hematopoietic stem cells. Journal of Stem Cell Therapy and Transplantation, 2022, 6, 029-037.	0.2	4
1368	Effects of the SLC38A2–mTOR Pathway Involved in Regulating the Different Compositions of Dietary Essential Amino Acids–Lysine and Methionine on Growth and Muscle Quality in Rabbits. Animals, 2022, 12, 3406.	1.0	1
1369	Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 16080.	1.8	7
1370	Challenging dogma about myonuclei behavior in skeletal muscle cells. Function, 0, , .	1.1	0
1371	Integrin α7 Mutations Are Associated With Adultâ€Onset Cardiac Dysfunction in Humans and Mice. Journal of the American Heart Association, 2022, 11, .	1.6	5
1372	Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals, 2022, 12, 3471.	1.0	7
1373	Comparison of growth performance and related gene expression of muscle and fat from Landrace, Yorkshire, and Duroc and Woori black pigs. Journal of Animal Science and Technology, 2023, 65, 160-174.	0.8	7
1375	The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. Journal of Animal Science and Technology, 2023, 65, 16-31.	0.8	7

#	Article	IF	CITATIONS
1376	Sex-based comparisons of muscle cellular adaptations after 10 weeks of progressive resistance training in middle-aged adults. Journal of Applied Physiology, 2023, 134, 116-129.	1.2	5
1377	Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opinion on Drug Discovery, 2023, 18, 47-63.	2.5	4
1378	Bioactive MXene Promoting Angiogenesis and Skeletal Muscle Regeneration through Regulating M2 Polarization and Oxidation Stress. Advanced Healthcare Materials, 2023, 12, .	3.9	12
1380	Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors. Npj Regenerative Medicine, 2023, 8, .	2.5	0
1381	Mechanical compression creates a quiescent muscle stem cell niche. Communications Biology, 2023, 6,	2.0	7
1383	Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. American Journal of Physiology - Cell Physiology, 2023, 324, C614-C631.	2.1	1
1384	Absolute scaling of single-cell transcriptomes identifies pervasive hypertranscription in adult stem and progenitor cells. Cell Reports, 2023, 42, 111978.	2.9	7
1385	Loss of CRY2 promotes regenerative myogenesis by enhancing PAX7 expression and satellite cell proliferation. MedComm, 2023, 4, .	3.1	1
1386	A comprehensive normative reference database of muscleÂmorphology in typically developing children aged 3–18 years—a crossâ€sectional ultrasound study. Journal of Anatomy, 2023, 242, 754-770.	0.9	3
1388	Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Antioxidants and Redox Signaling, 0, , .	2.5	1
1389	Melatonin: A potential adjuvant therapy for septic myopathy. Biomedicine and Pharmacotherapy, 2023, 158, 114209.	2.5	5
1390	Pituitary stem cells: what do we know?. , 2022, 2, 60-65.		0
1391	Effect of Chicken Serum and Horse Serum on Proliferation and Differentiation of Chicken Muscle Satellite Cells. Jawon Gwahak Yeongu, 2022, 4, 96-104.	0.1	0
1392	Κappa-Carrageenan Modified Polyurethane Foam Scaffolds for Skeletal Muscle Tissue Engineering. Journal of Polymers and the Environment, 2023, 31, 2653-2667.	2.4	0
1393	Tensile Loaded Tissue-Engineered Human Tendon Constructs Stimulate Myotube Formation. Tissue Engineering - Part A, 2023, 29, 292-305.	1.6	2
1394	A 1.1 Mb duplication CNV on chromosome 17 contributes to skeletal muscle development in Boer goats. Zoological Research, 2023, 44, 1-12.	0.9	2
1396	Stem Cell-Based Therapeutic Approaches in Genetic Diseases. Advances in Experimental Medicine and Biology, 2023, , .	0.8	0
1397	Visualization of RNA Transcripts in Muscle Stem Cells Using Single-Molecule Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2023, , 445-452.	0.4	Ο

#	Article	IF	CITATIONS
1398	Pathophysiological Aspects of Muscle Atrophy and Osteopenia Induced by Chronic Constriction Injury (CCI) of the Sciatic Nerve in Rats. International Journal of Molecular Sciences, 2023, 24, 3765.	1.8	1
1399	Angiogenesis precedes myogenesis during regeneration following biopsy injury of skeletal muscle. Skeletal Muscle, 2023, 13, .	1.9	6
1400	Temporal static and dynamic imaging of skeletal muscle in vivo. Experimental Cell Research, 2023, 424, 113484.	1.2	2
1401	The spatiotemporal matching pattern of Ezrin/Periaxin involved in myoblast differentiation and fusion and Charcot-Marie-Tooth disease-associated muscle atrophy. Journal of Translational Medicine, 2023, 21, .	1.8	1
1402	HuR Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating Myomaker mRNA Stability. International Journal of Molecular Sciences, 2023, 24, 6893.	1.8	1
1403	Estrogen-mediated oar-miR-485-5p targets PPP1R13B to regulate myoblast proliferation in sheep. International Journal of Biological Macromolecules, 2023, 236, 123987.	3.6	1
1404	Modulusâ€dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in threeâ€dimensional hydrogel cultures. Journal of Biomedical Materials Research - Part A, 2023, 111, 1441-1458.	2.1	0
1405	Single-cell RNA sequencing in skeletal muscle developmental biology. Biomedicine and Pharmacotherapy, 2023, 162, 114631.	2.5	1
1407	Bovine HOXA11 Gene Identified from RNA-Seq: mRNA Profile Analysis and Genetic Variation Detection Using ME Method and Their Associations with Carcass Traits. Cells, 2023, 12, 539.	1.8	0
1408	The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients, 2023, 15, 871.	1.7	12
1409	Culturing characteristics of Hanwoo myosatellite cells and C2C12 cells incubated at 37°C and 39°C for cultured meat. Journal of Animal Science and Technology, 2023, 65, 664-678.	0.8	5
1410	Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. , 2023, 243, 108357.		3
1411	Metformin regulates myoblast differentiation through an AMPK-dependent mechanism. PLoS ONE, 2023, 18, e0281718.	1.1	2
1413	Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation. International Journal of Legal Medicine, 2023, 137, 875-886.	1.2	1
1414	Multiscale 3D genome reorganization during skeletal muscle stem cell lineage progression and aging. Science Advances, 2023, 9, .	4.7	11
1415	Regenerative histogenesis in a skeletal muscle defect with local implantation of gene-activated hydrogel based on hyaluronic acid in the experiment. Genes and Cells, 2020, 15, 66-72.	0.2	2
1416	Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis. Development (Cambridge), 2023, 150, .	1.2	4
1418	Muscle stem cells contribute to longâ€ŧerm tissue repletion following surgical sepsis. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 1424-1440.	2.9	4

#	Article	IF	Citations
1419	Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflammation and Regeneration, 2023, 43, .	1.5	4
1421	A protocol for single nucleus RNA-seq from frozen skeletal muscle. Life Science Alliance, 2023, 6, e202201806.	1.3	1
1422	Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. BioEssays, 2023, 45, .	1.2	3
1423	Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. Biology, 2023, 12, 446.	1.3	1
1424	AMPK Phosphorylation Impacts Apoptosis in Differentiating Myoblasts Isolated from Atrophied Rat Soleus Muscle. Cells, 2023, 12, 920.	1.8	1
1425	Effect of Serum and Oxygen on the In Vitro Culture of Hanwoo Korean Native Cattle-Derived Skeletal Myogenic Cells Used in Cellular Agriculture. Foods, 2023, 12, 1384.	1.9	1
1426	Effect of heme oxygenase-1 on the differentiation of human myoblasts and the regeneration of murine skeletal muscles after acute and chronic injury. Pharmacological Reports, 2023, 75, 397-410.	1.5	1
1427	Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	4
1428	High Throughput Screening of Mitochondrial Bioenergetics in Myoblasts and Differentiated Myotubes. Methods in Molecular Biology, 2023, , 89-98.	0.4	1
1429	Cell-based meat: The molecular aspect. Frontiers in Food Science and Technology, 0, 3, .	1.2	1
1431	Transplantation-based screen identifies inducers of muscle progenitor cell engraftment across vertebrate species. Cell Reports, 2023, 42, 112365.	2.9	0
1432	Delayed skeletal muscle repair following inflammatory damage in simulated agent-based models of muscle regeneration. PLoS Computational Biology, 2023, 19, e1011042.	1.5	3
1434	Genome-wide analysis of circular RNA-mediated ceRNA regulation in porcine skeletal muscle development. BMC Genomics, 2023, 24, .	1.2	2
1448	MicroRNAs in Skeletal Muscle Differentiation. , 2015, , 341-368.		0
1456	Estrogen and Menopause: Muscle Maintenance, Repair, Function, and Health. , 2023, , 151-166.		0
1460	Co-culture approaches for cultivated meat production. , 2023, 1, 817-831.		3
1496	Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	1
1532	The roles of P-selectin in cancer cachexia. , 2023, 40, .		1

0

#	Article	IF	CITATIONS
1542	Vitamin D and skeletal muscle. , 2024, , 587-607.		0
1568	Fundamentals and mechanisms. , 2024, , 1-25.		0
1574	Cultivated meat: disruptive technology for sustainable meat production. , 2024, , 11-28.		0
1576	MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cellular and Molecular Life Sciences, 2024, 81, .	2.4	0
1585	Muscle stem cells as immunomodulator during regeneration. Current Topics in Developmental Biology, 2024, , 221-238.	1.0	0
1587	Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Current Topics in Developmental Biology, 2024, , 83-121.	1.0	0
1588	The satellite cell in skeletal muscle: A story of heterogeneity. Current Topics in Developmental Biology, 2024, , 15-51.	1.0	0
1589	Circadian Aspects of Skeletal Muscle Biology. , 2024, , 345-373.		0

1597 Age-related disease: Cardiovascular system. , 2024, , 35-52.