A vast, thin plane of corotating dwarf galaxies orbiting t

Nature 493, 62-65 DOI: 10.1038/nature11717

Citation Report

#	Article	IF	CITATIONS
1	Tracking our neighbours' past. Nature, 2013, 504, 226-227.	13.7	0
2	Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astronomy Reviews, 2013, 57, 52-79.	5.2	84
3	Galactic Archaeology: The dwarfs that survived and perished. New Astronomy Reviews, 2013, 57, 100-121.	5.2	81
4	REVIEW OF ASYMMETRIC DARK MATTER. International Journal of Modern Physics A, 2013, 28, 1330028.	0.5	390
5	Dwarf galaxy planes: the discovery of symmetric structures in the Local Group. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1928-1957.	1.6	132
6	The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2116-2131.	1.6	140
7	LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3Ï€ PAN-STARRS1 SURVEY. Astrophysical Journal, 2013, 772, 15.	1.6	81
8	Andromeda's extended disk of dwarfs. Nature, 2013, 493, 31-32.	13.7	12
9	Thin disk of co-rotating dwarfs: A fingerprint of dissipative (mirror) dark matter?. Physics of the Dark Universe, 2013, 2, 163-165.	1.8	25
10	A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31. Astrophysical Journal Letters, 2013, 770, L17.	3.0	16
11	A new perspective on MOND. Canadian Journal of Physics, 2013, 91, 668-675.	0.4	3
12	THE PANDAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION. Astrophysical Journal, 2013, 776, 80.	1.6	83
13	The formation of Local Group planes of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2096-2119.	1.6	67
14	Structure finding in cosmological simulations: the state of affairs. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1618-1658.	1.6	138
15	On the spin bias of satellite galaxies in the local group-like environment. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 022-022.	1.9	3
16	Dwarf galaxies orbit Andromeda in a surprisingly thin plane. Physics Today, 2013, 66, 12-14.	0.3	0
17	A link between feedback outflows and satellite galaxy suppression. Monthly Notices of the Royal Astronomical Society, 2013, 433, 324-331.	1.6	5
18	Triaxial cosmological haloes and the disc of satellites. Monthly Notices of the Royal Astronomical Society, 2013, 435, 928-933.	1.6	25

ATION RED

#	Article	IF	CITATIONS
19	The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3543-3549.	1.6	99
20	LUMINOUS SATELLITES VERSUS DARK SUBHALOS: CLUSTERING IN THE MILKY WAY. Astrophysical Journal, 2013, 772, 109.	1.6	4
21	THE NEXT GENERATION VIRGO CLUSTER SURVEY. IV. NGC 4216: A BOMBARDED SPIRAL IN THE VIRGO CLUSTER. Astrophysical Journal, 2013, 767, 133.	1.6	42
22	A KINEMATIC STUDY OF THE ANDROMEDA DWARF SPHEROIDAL SYSTEM. Astrophysical Journal, 2013, 768, 172.	1.6	157
23	EVIDENCE FOR AN INTERACTION IN THE NEAREST STARBURSTING DWARF IRREGULAR GALAXY IC 10. Astrophysical Journal Letters, 2013, 779, L15.	3.0	36
24	CONFRONTING MODELS OF DWARF GALAXY QUENCHING WITH OBSERVATIONS OF THE LOCAL GROUP. Astrophysical Journal, 2013, 773, 17.	1.6	18
25	ANDROMEDA DWARFS IN LIGHT OF MODIFIED NEWTONIAN DYNAMICS. Astrophysical Journal, 2013, 766, 22.	1.6	79
26	KINEMATICS OF OUTER HALO GLOBULAR CLUSTERS IN M31. Astrophysical Journal Letters, 2013, 768, L33.	3.0	39
27	CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP. Astronomical Journal, 2013, 146, 126.	1.9	133
28	Distortion of infall regions in redshift space-I. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1989-2007.	1.6	6
29	THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES. Astrophysical Journal, 2013, 766, 120.	1.6	123
30	ANDROMEDA DWARFS IN LIGHT OF MOND. II. TESTING PRIOR PREDICTIONS. Astrophysical Journal, 2013, 775, 139.	1.6	88
31	Galaxy pairs in the Local Group. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L73-L77.	1.2	24
32	PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA. Astrophysical Journal Letters, 2013, 779, L10.	3.0	42
33	Challenges for \hat{b} CDM and MOND. Journal of Physics: Conference Series, 2013, 437, 012001.	0.3	19
34	Local Group timing in Milgromian dynamics. Astronomy and Astrophysics, 2013, 557, L3.	2.1	61
35	ã,¢ãf³ãf‰ãfãf¡ãf€éŠ€æ²³ã§è¦<ããkã£ãŸä,œ€èºãªå¹³é¢. Nature Digest, 2013, 10, 28-29.	0.0	0
36	Galaxy alignment on large and small scales. Proceedings of the International Astronomical Union, 2014, 11, 448-451.	0.0	0

#	Article	IF	Citations
37	ON ASYMMETRIC DISTRIBUTIONS OF SATELLITE GALAXIES. Astrophysical Journal Letters, 2014, 793, L42.	3.0	10
38	THE H I CHRONICLES OF LITTLE THINGS BCDs II: THE ORIGIN OF IC 10's H I STRUCTURE. Astronomical Journal, 2014, 148, 130.	1.9	29
39	CO-ORBITING PLANES OF SUB-HALOS ARE SIMILARLY UNLIKELY AROUND PAIRED AND ISOLATED HOSTS. Astrophysical Journal Letters, 2014, 789, L24.	3.0	34
40	Cold stream stability during minor mergers. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L85-L89.	1.2	3
41	Reproducing properties of MW dSphs as descendants of DM-free TDGs. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2419-2433.	1.6	62
42	N-body simulations of the Carina dSph in MOND. Monthly Notices of the Royal Astronomical Society, 2014, 440, 746-761.	1.6	19
43	The [Â/Fe] ratios of very metal-poor stars within the integrated galactic initial mass function theory. Monthly Notices of the Royal Astronomical Society, 2014, 437, 994-1008.	1.6	12
44	Chemo-dynamical evolution of tidal dwarf galaxies. I. Method and IMF dependence. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3980-3993.	1.6	40
45	STREGA: STRucture and Evolution of the GAlaxy – I. Survey overview and first resultsâ~ Monthly Notices of the Royal Astronomical Society, 2014, 444, 3809-3828.	1.6	15
46	Binary satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1225-1232.	1.6	10
47	A comparison of the distribution of satellite galaxies around Andromeda and the results of ΛCDM simulations. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2916-2923.	1.6	41
48	A Council of Giants. Monthly Notices of the Royal Astronomical Society, 2014, 440, 405-426.	1.6	28
49	A census of the expected properties of classical Milky Way dwarfs in Milgromian dynamics. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2497-2507.	1.6	24
50	The SLUGGS Survey: new evidence for a tidal interaction between the early-type galaxies NGCÂ4365 and NGCÂ4342. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2420-2431.	1.6	40
51	Kinematics and simulations of the stellar stream in the halo of the Umbrella Galaxy. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3544-3564.	1.6	53
52	Identification of old tidal dwarfs near early-type galaxies from deep imaging and H i observations. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1458-1469.	1.6	82
53	A SURVEY OF SATELLITE GALAXIES AROUND NGC 4258. Astrophysical Journal, 2014, 788, 146.	1.6	22
54	FAINT DWARFS IN NEARBY GROUPS. Astrophysical Journal, 2014, 788, 188.	1.6	8

#	Article	IF	CITATIONS
55	THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION. Astrophysical Journal Letters, 2014, 791, L33.	3.0	33
56	THE PROLATE DARK MATTER HALO OF THE ANDROMEDA GALAXY. Astrophysical Journal, 2014, 789, 62.	1.6	12
57	COMPARING M31 AND MILKY WAY SATELLITES: THE EXTENDED STAR FORMATION HISTORIES OF ANDROMEDA II AND ANDROMEDA XVI. Astrophysical Journal, 2014, 789, 24.	1.6	35
58	SPECTROSCOPY OF THE THREE DISTANT ANDROMEDAN SATELLITES CASSIOPEIA III, LACERTA I, AND PERSEUS I. Astrophysical Journal Letters, 2014, 793, L14.	3.0	36
59	HUNTING A WANDERING SUPERMASSIVE BLACK HOLE IN THE M31 HALO HERMITAGE. Astrophysical Journal, 2014, 783, 87.	1.6	14
60	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I. <i>HUBBLE SPACE TELESCOPE</i> /WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS. Astrophysical Journal, 2014, 789, 147.	1.6	362
61	A THOUSAND SHADOWS OF ANDROMEDA: ROTATING PLANES OF SATELLITES IN THE MILLENNIUM-II COSMOLOGICAL SIMULATION. Astrophysical Journal Letters, 2014, 784, L6.	3.0	91
62	A single-merger scenario for the formation of the giant stream and the warp of M31. Monthly Notices of the Royal Astronomical Society, 2014, 442, 160-175.	1.6	36
63	Major substructure in the M31 outer halo: the South-West Cloudâ~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 3362-3372.	1.6	22
64	A neutrino model fit to the CMB power spectrum. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2836-2841.	1.6	Ο
65	Mirror dark matter: Cosmology, galaxy structure and direct detection. International Journal of Modern Physics A, 2014, 29, 1430013.	0.5	156
66	THE VAST POLAR STRUCTURE OF THE MILKY WAY ATTAINS NEW MEMBERS. Astrophysical Journal, 2014, 790, 74.	1.6	41
67	Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2362-2380.	1.6	135
68	The outer halo globular cluster system of M31 – II. Kinematics. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2929-2950.	1.6	78
69	Is the universe simpler than \hat{b} CDM?. Contemporary Physics, 2014, 55, 198-211.	0.8	16
70	A dynamical model of the local cosmic expansion. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2204-2222.	1.6	77
71	Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe. Nature, 2014, 511, 563-566.	13.7	84
72	Cosmological Simulations of Multicomponent Cold Dark Matter. Physical Review Letters, 2014, 113, 071303.	2.9	27

#	Article	IF	CITATIONS
73	THE LARGE-SCALE STRUCTURE OF THE HALO OF THE ANDROMEDA GALAXY. I. GLOBAL STELLAR DENSITY, MORPHOLOGY AND METALLICITY PROPERTIES. Astrophysical Journal, 2014, 780, 128.	1.6	197
74	<i>Planck</i> confirmation of the disk and halo rotation of M 31. Astronomy and Astrophysics, 2014, 565, L3.	2.1	20
75	Giant monopoles as a dark matter candidate. Journal of Physics: Conference Series, 2014, 496, 012023.	0.3	3
76	Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures. Monthly Notices of the Royal Astronomical Society, 2014, 440, 908-919.	1.6	47
77	Galaxy Mass Assembly with VLT & amp; HST and lessons for E-ELT/MOSAIC. Proceedings of the International Astronomical Union, 2014, 10, 273-280.	0.0	0
78	Discovery of new dwarf galaxies around NGC4631 with Subaru/Hyper Suprime-Cam. Proceedings of the International Astronomical Union, 2015, 11, 350-351.	0.0	0
79	Stellar halos and the link to galaxy formation. Proceedings of the International Astronomical Union, 2015, 11, 228-234.	0.0	0
80	A new spin on discs of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2576-2587.	1.6	42
81	Planes of satellite galaxies: when exceptions are the rule. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3838-3852.	1.6	79
82	Internal alignments of red versus blue discs in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4094-4110.	1.6	24
83	Theory of dark matter superfluidity. Physical Review D, 2015, 92, .	1.6	186
84	EVIDENCE FOR EARLY FILAMENTARY ACCRETION FROM THE ANDROMEDA GALAXY'S THIN PLANE OF SATELLITES. Astrophysical Journal, 2015, 809, 49.	1.6	37
85	THE DISTRIBUTION OF GALAXIES' GRAVITATIONAL FIELD STEMMING FROM THEIR TIDAL INTERACTION. Astrophysical Journal, 2015, 810, 167.	1.6	5
86	THE ACCRETION OF DARK MATTER SUBHALOS WITHIN THE COSMIC WEB: PRIMORDIAL ANISOTROPIC DISTRIBUTION AND ITS UNIVERSALITY. Astrophysical Journal, 2015, 813, 6.	1.6	38
87	TWO PLANES OF SATELLITES IN THE CENTAURUS A GROUP. Astrophysical Journal Letters, 2015, 802, L25.	3.0	104
88	New low surface brightness dwarf galaxies detected around nearby spirals. Astrophysical Bulletin, 2015, 70, 379-391.	0.3	38
89	Violent relaxation of ellipsoidal clouds. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2634-2643.	1.6	14
90	Inflow velocities of cold flows streaming into massive galaxies at high redshifts. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3359-3370.	1.6	42

#	Article	IF	CITATIONS
91	The mass–metallicity relation of tidal dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2367-2372.	1.6	19
92	The alignment of satellite galaxies and cosmic filaments: observations and simulations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2727-2738.	1.6	67
93	Planes of satellite galaxies and the cosmic web. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1052-1059.	1.6	88
94	The new Milky Way satellites: alignment with the VPOS and predictions for proper motions and velocity dispersions. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1047-1061.	1.6	68
95	Dissipative dark matter and the Andromeda plane of satellites. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 057-057.	1.9	29
96	New dwarf galaxy candidates in the Centaurus group. Astronomy and Astrophysics, 2015, 583, A79.	2.1	54
97	THE MAGELLANIC STREAM SYSTEM. I. RAM-PRESSURE TAILS AND THE RELICS OF THE COLLISION BETWEEN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2015, 813, 110.	1.6	70
98	EVOLUTION OF A DWARF SATELLITE GALAXY EMBEDDED IN A SCALAR FIELD DARK MATTER HALO. Astrophysical Journal, 2015, 810, 99.	1.6	18
99	The orthogonally aligned dark halo of an edge-on lensing galaxy in the Hubble Frontier Fields: a challenge for modified gravity. Monthly Notices of the Royal Astronomical Society, 2015, 449, 588-596.	1.6	6
100	The intrinsic ellipticity of dwarf spheroidal galaxies: constraints from the Andromeda system. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1409-1419.	1.6	17
101	Distribution of streaming rates into high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 637-648.	1.6	23
102	Galaxy interactions in the Hickson Compact Group 88. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3222-3228.	1.6	2
103	Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1305-1316.	1.6	124
104	ON THE PERSISTENCE OF TWO SMALL-SCALE PROBLEMS IN $\hat{\mathbf{b}}$ CDM. Astrophysical Journal, 2015, 815, 19.	1.6	76
105	COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE. Astrophysical Journal Letters, 2015, 799, L13.	3.0	41
106	Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation. Canadian Journal of Physics, 2015, 93, 169-202.	0.4	131
107	Dissipative hidden sector dark matter. Physical Review D, 2015, 91, .	1.6	208
108	GALAXY GROUPS. Astronomical Journal, 2015, 149, 54.	1.9	78

#	Article	IF	CITATIONS
109	VAST PLANES OF SATELLITES IN A HIGH-RESOLUTION SIMULATION OF THE LOCAL GROUP: COMPARISON TO ANDROMEDA. Astrophysical Journal, 2015, 800, 34.	1.6	44
110	Phantom of RAMSES (POR): A new Milgromian dynamics <i>N</i> -body code. Canadian Journal of Physics, 2015, 93, 232-241.	0.4	64
111	Hidden from view: coupled dark sector physics and small scales. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1341-1352.	1.6	8
112	Alternative to particle dark matter. Physical Review D, 2015, 91, .	1.6	68
113	HIDING IN PLAIN SIGHT: AN ABUNDANCE OF COMPACT MASSIVE SPHEROIDS IN THE LOCAL UNIVERSE. Astrophysical Journal, 2015, 804, 32.	1.6	71
114	Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Surveya~ Monthly Notices of the Royal Astronomical Society, 2015, 448, 1314-1334.	1.6	31
115	EPPUR SI MUOVE: POSITIONAL AND KINEMATIC CORRELATIONS OF SATELLITE PAIRS IN THE LOW <i>Z</i> VINIVERSE. Astrophysical Journal, 2015, 805, 67.	1.6	35
116	BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS. Astrophysical Journal, 2015, 805, 130.	1.6	437
117	THE STRUCTURE AND DARK HALO CORE PROPERTIES OF DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2015, 808, 158.	1.6	56
118	STELLAR SUBSTRUCTURES AROUND THE HERCULES DWARF SPHEROIDAL GALAXY. Astrophysical Journal, 2015, 804, 134.	1.6	40
119	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. III. CHARACTERIZING QUENCHING IN LOW-MASS GALAXIES. Astrophysical Journal, 2015, 804, 136.	1.6	84
120	A GLOBAL STAR-FORMING EPISODE IN M31 2–4 GYR AGO. Astrophysical Journal, 2015, 806, 48.	1.6	32
121	SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: INFALL HISTORIES, GROUP PREPROCESSING, AND REIONIZATION. Astrophysical Journal, 2015, 807, 49.	1.6	111
122	Galaxy Alignments: Observations and Impact on Cosmology. Space Science Reviews, 2015, 193, 139-211.	3.7	119
123	A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX. Astrophysical Journal, 2015, 806, 230.	1.6	10
124	Chemodynamical evolution of tidal dwarf galaxies – II. The long-term evolution and influence of a tidal field. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2512-2525.	1.6	36
125	RAyMOND: an N-body and hydrodynamics code for MOND. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1060-1070.	1.6	38
126	Are rotating planes of satellite galaxies ubiquitous?. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3840-3848.	1.6	32

#	Article	IF	Citations
127	VARIABLE STARS AND STELLAR POPULATIONS IN ANDROMEDA XXI. II. ANOTHER MERGED GALAXY SATELLITE OF M31?. Astrophysical Journal, 2015, 806, 200.	1.6	14
128	THE STAR CLUSTER SYSTEM IN THE LOCAL GROUP STARBURST GALAXY IC 10. Astrophysical Journal, 2015, 804, 123.	1.6	17
129	Effects of lens motion and uneven magnification on image spectra. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3155-3168.	1.6	7
130	Galactic tides and the shape and orientation of dwarf galaxy satellites. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1112-1125.	1.6	32
131	Lessons from the Local Group. , 2015, , .		3
132	VARIABLE STARS AND STELLAR POPULATIONS IN ANDROMEDA XXV. III. A CENTRAL CLUSTER OR THE GALAXY NUCLEUS?*. Astrophysical Journal, 2016, 829, 26.	1.6	28
133	Testing the two planes of satellites in the Centaurus group. Astronomy and Astrophysics, 2016, 595, A119.	2.1	47
134	The kinematics of globular clusters systems in the outer halos of the Aquarius simulations. Astronomy and Astrophysics, 2016, 592, A55.	2.1	5
135	SPECTROSCOPIC CONFIRMATION OF THE DWARF SPHEROIDAL GALAXY d0994+71 AS A MEMBER OF THE M81 GROUP OF GALAXIES. Astrophysical Journal Letters, 2016, 830, L21.	3.0	8
136	Thin Planes of Satellites in $\hat{\rm b}$ CDM are not kinematically coherent. Proceedings of the International Astronomical Union, 2016, 11, 40-41.	0.0	0
137	The dynamics of Andromeda's dwarf galaxies and stellar streams. Proceedings of the International Astronomical Union, 2016, 11, 16-18.	0.0	0
138	A Study on the Spatial Distribution of Satellite Galaxies within Dark Matter Halos in an N-body Numerical Simulation. Chinese Astronomy and Astrophysics, 2016, 40, 483-493.	0.1	0
139	THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. II. DETAILED PROPERTIES OF 23 M31 DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2016, 833, 167.	1.6	102
140	Sedna and the cloud of comets surrounding the solar system in Milgromian dynamics. Astronomy and Astrophysics, 2016, 589, A63.	2.1	11
141	Dark matter superfluidity and galactic dynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 753, 639-643.	1.5	73
142	The alignment of SDSS satellites with the VPOS: effects of the survey footprint shape. Monthly Notices of the Royal Astronomical Society, 2016, 456, 448-458.	1.6	29
143	Dynamical history of the Local Group in $\hat{\mathfrak{h}}$ CDM. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2237-2261.	1.6	18
144	Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253, Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L103-L107.	1.2	13

#	Article	IF	CITATIONS
145	EVOLUTION OF DWARF SPHEROIDAL SATELLITES IN THE COMMON SURFACE-DENSITY DARK HALOS. Astrophysical Journal, 2016, 827, 105.	1.6	4
146	A Magellanic origin of the DES dwarfs. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2212-2233.	1.6	126
147	THE EVOLUTION OF GALAXY NUMBER DENSITY AT zÂ<Â8 AND ITS IMPLICATIONS. Astrophysical Journal, 2016, 830, 83.	1.6	131
148	The Milky Way and the Local Group. Astrophysics and Space Science Library, 2016, , 93-188.	1.0	0
149	Star formation triggered by galaxy interactions in modified gravity. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3637-3652.	1.6	38
150	The Magellanic Stream: Circumnavigating the Galaxy. Annual Review of Astronomy and Astrophysics, 2016, 54, 363-400.	8.1	122
151	Solving the small-scale structure puzzles with dissipative dark matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 013-013.	1.9	90
152	SENSITIVE 21 cm OBSERVATIONS OF NEUTRAL HYDROGEN IN THE LOCAL GROUP NEAR M31. Astrophysical Journal, 2016, 816, 81.	1.6	24
153	Is there substructure around M87?. Monthly Notices of the Royal Astronomical Society, 2016, 462, 298-306.	1.6	9
154	The potential role of NGC 205 in generating Andromeda's vast thin corotating plane of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3221-3242.	1.6	11
155	Extended stellar substructure surrounding the BoötesÂI dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3702-3713.	1.6	17
156	Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1865-1880.	1.6	21
157	Numerical simulations of Modified Newtonian Dynamics. Journal of Physics: Conference Series, 2016, 720, 012012.	0.3	1
158	Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1590-1604.	1.6	50
159	The connection between AGN-driven dusty outflows and the surrounding environment. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2864-2870.	1.6	15
160	The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2945-2961.	1.6	20
161	Simulated ĥCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4348-4365.	1.6	35
162	Alignments between galaxies, satellite systems and haloes. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3772-3783.	1.6	47

#	ARTICLE	IF	CITATIONS
163	NGCÂ147, NGCÂ185 and CassII: a genetic approach to orbital properties, star formation and tidal debris. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1654-1665.	1.6	10
164	Major substructure in the M31 Outer Halo: the East Cloud. Monthly Notices of the Royal Astronomical Society, 2016, 456, 405-416.	1.6	10
165	A FORMATION SCENARIO FOR THE DISK OF SATELLITES: ACCRETION OF SATELLITES DURING MERGERS. Astrophysical Journal, 2016, 818, 11.	1.6	21
166	The transverse velocity of the Andromeda system, derived from the M31 satellite population. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4432-4440.	1.6	31
167	The Copernicus Complexio: a high-resolution view of the small-scale Universe. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3492-3509.	1.6	84
168	FEELING THE PULL: A STUDY OF NATURAL GALACTIC ACCELEROMETERS. I. PHOTOMETRY OF THE DELICATE STELLAR STREAM OF THE PALOMAR 5 GLOBULAR CLUSTER*. Astrophysical Journal, 2016, 819, 1.	1.6	69
169	Constrained Local UniversE Simulations: a Local Group factory. Monthly Notices of the Royal Astronomical Society, 2016, 458, 900-911.	1.6	42
170	THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX. Astrophysical Journal, 2016, 817, 75.	1.6	20
171	Young tidal dwarf galaxies cannot be used to probe dark matter in galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L14-L18.	1.2	11
172	The ISLAndS Project. II. The Lifetime Star Formation Histories of Six Andromeda dSphs*. Astrophysical Journal, 2017, 837, 102.	1.6	65
173	The tangential velocity excess of the Milky Way satellites. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L41-L45.	1.2	27
174	Scalar field dark matter in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3135-3149.	1.6	19
175	On the stability of satellite planes – I. Effects of mass, velocity, halo shape and alignment. Monthly Notices of the Royal Astronomical Society, 2017, 465, 641-652.	1.6	27
176	Orbits of massive satellite galaxies – I. A close look at the Large Magellanic Cloud and a new orbital history for M33. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3825-3849.	1.6	83
177	The M 101 group complex: new dwarf galaxy candidates and spatial structure. Astronomy and Astrophysics, 2017, 602, A119.	2.1	69
178	The shapes and alignments of the satellites of the Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2670-2685.	1.6	12
179	The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs. Astrophysical Journal, 2017, 847, 4.	1.6	165
180	Cosmic voids in evolving dark sector cosmologies: the low-redshift universe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3381-3394.	1.6	12

	CITATION	I REPORT	
#	Article	IF	Citations
181	DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. Astronomy and Astrophysics, 2017, 603, A18.	2.1	20
182	Is There a Disk of Satellites around the Milky Way?. Astrophysical Journal, 2017, 843, 62.	1.6	7
183	Small-Scale Challenges to the <i>ĥ</i> CDM Paradigm. Annual Review of Astronomy and Astrophysics, 2017, 55, 343-387.	8.1	921
184	The role of baryons in creating statistically significant planes of satellites around Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3119-3132.	1.6	35
185	Galactic googly: the rotation–metallicity bias in the inner stellar halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2959-2971.	1.6	18
186	The edge of galaxy formation $\hat{a} \in$ I. Formation and evolution of MW-satellite analogues before accretion. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2356-2366.	1.6	42
187	Topological Data Analysis for Scientific Visualization. Mathematics and Visualization, 2017, , .	0.4	16
188	Structural and Photometric Properties of the Andromeda Satellite Dwarf Galaxy Lacerta I from Deep Imaging with WIYN pODI. Astrophysical Journal, 2017, 836, 137.	1.6	4
189	A Rogues' Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches. Astrophysical Journal, 2017, 850, 16.	1.6	24
190	The Lopsidedness of Satellite Galaxy Systems in $\hat{ h}$ CDM Simulations. Astrophysical Journal, 2017, 850, 132.	1.6	24
191	Dark matter annihilation feedback in cosmological simulations – I: Code convergence and idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1214-1225.	1.6	6
192	Considerations on how to investigate planes of satellite galaxies. Astronomische Nachrichten, 2017, 338, 854-861.	0.6	16
193	Are over-massive haloes of ultra-diffuse galaxies consistent with extended MOND?. Astronomy and Astrophysics, 2017, 607, A109.	2.1	7
194	Dynamical History Of The Local Group In ͡bCDM slowromancapii@ â^' Including External Perturbers In 3D. Monthly Notices of the Royal Astronomical Society, 0, , stx151.	1.6	8
195	Sardinia Radio Telescope (SRT) observations of Local Group dwarf galaxies. Proceedings of the International Astronomical Union, 2017, 13, 109-112.	0.0	0
196	New low surface brightness dwarf galaxies in the Centaurus group. Astronomy and Astrophysics, 2017, 597, A7.	2.1	58
197	Deployment strategies of on-orbit service vehicles for multi-objective group and multiple spacecraft. International Journal of Engineering Systems Modelling and Simulation, 2017, 9, 96.	0.2	1
198	Small Scale Problems of the Î [,] CDM Model: A Short Review. Galaxies, 2017, 5, 17.	1.1	186

#	Article	IF	CITATIONS
199	Variable Stars and Stellar Populations in Andromeda XXVII. IV. An Off-centered, Disrupted Galaxy*. Astrophysical Journal, 2017, 851, 9.	1.6	6
200	The Relation Between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGCÂ4258. Astrophysical Journal, 2017, 835, 184.	1.6	10
201	Galaxy clusters in the context of superfluid dark matter. Astronomy and Astrophysics, 2017, 607, A108.	2.1	35
202	An LBT view of the Andromeda's satellite galaxies. EPJ Web of Conferences, 2017, 152, 01015.	0.1	0
203	Is The Vast Polar Structure Of Dwarf Galaxies A Serious Problem For ΛCDM?. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
204	Dissipative dark matter halos: The steady state solution. Physical Review D, 2018, 97, .	1.6	6
205	The multiplicity and anisotropy of galactic satellite accretion. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1796-1810.	1.6	51
206	The planes of satellite galaxies problem, suggested solutions, and open questions. Modern Physics Letters A, 2018, 33, 1830004.	0.5	96
207	Searches for new Milky Way satellites from the first two years of data of the Subaru/Hyper Suprime-Cam survey: Discovery of CetusÂIII. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	65
208	A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science, 2018, 359, 534-537.	6.0	127
209	Galaxy motions cause trouble for cosmology. Science, 2018, 359, 520-521.	6.0	1
210	Stellar Stream and Halo Structure in the Andromeda Galaxy from a Subaru/Hyper Suprime-Cam Survey [*] . Astrophysical Journal, 2018, 853, 29.	1.6	19
211	Tracing the cosmic web. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1195-1217.	1.6	187
212	TRGB Distances to Galaxies in Front of the Virgo Cluster. Astrophysical Journal, 2018, 858, 62.	1.6	16
213	Star clusters in evolving galaxies. New Astronomy Reviews, 2018, 81, 1-38.	5.2	41
214	The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841. Astrophysical Journal, 2018, 855, 78.	1.6	17
215	Hickson Compact Group 98: a Complex Merging Group with a Giant Tidal Tail and a Humongous Envelope. Monthly Notices of the Royal Astronomical Society, 2018, , .	1.6	1
216	Resolution of the small scale structure issues with dissipative dark matter from multiple standard model sectors. Physical Review D, 2018, 98, .	1.6	3

		Citation Repo	RT	
#	Article	IF	-	CITATIONS
217	Surrounding matter theory. EPJ Web of Conferences, 2018, 182, 03006.	0	.1	0
218	A New Reservoir of Dwarf Galaxy Candidates in the Centaurus A Group. Proceedings of the International Astronomical Union, 2018, 14, 353-356.	0	.0	0
219	A 2–3 billion year old major merger paradigm for the Andromeda galaxy and its outskirts. Month Notices of the Royal Astronomical Society, 2018, 475, 2754-2767.	у 1.	.6	82
220	A whirling plane of satellite galaxies around Centaurus A challenges CDM cosmology. Proceedings the International Astronomical Union, 2018, 14, 473-476.	of o	.0	0
221	Local Group Dwarf Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 29-37	. 0	.0	0
222	Faint satellite population of the NGC-3175 Group – a Local Group analogue. Monthly Notices of Royal Astronomical Society, 2018, 481, 1759-1773.	the 1.	.6	12
223	Understanding planes of satellites. Proceedings of the International Astronomical Union, 2018, 14, 477-480.	0	.0	0
224	A Collection of New Dwarf Galaxies in NGC 5128's Western Halo. Astrophysical Journal Letters 867, L15.	2018, 3.	.0	15
225	The Missing Satellite Problem Outside of the Local Group. I. Pilot Observation. Astrophysical Journa 2018, 865, 125.	l, 1.	.6	16
226	The Large-scale Structure of the Halo of the Andromeda Galaxy. II. Hierarchical Structure in the Pan-Andromeda Archaeological Survey. Astrophysical Journal, 2018, 868, 55.	1.	.6	113
227	<i>Gaia</i> DR2 proper motions of dwarf galaxies within 420 kpc. Astronomy and Astrophysics, 20 619, A103.	-18, 2.	.1	200
228	Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 548-567.	of 1.	.6	135
229	Spatial distribution of globular clusters in the Galaxy. Monthly Notices of the Royal Astronomical Society, 2018, 481, 918-929.	1.	.6	10
230	Caught in the rhythm. Astronomy and Astrophysics, 2018, 613, A4.	2.	.1	30
231	Pushing back the limits: detailed properties of dwarf galaxies in a ĥCDM universe. Astronomy and Astrophysics, 2018, 616, A96.	2.	.1	78
232	Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. Journal c Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	f	.9	53
233	MOND simulation suggests an origin for some peculiarities in the Local Group. Astronomy and Astrophysics, 2018, 614, A59.	2.	.1	53
234	The role of mergers in driving morphological transformation over cosmic time. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2266-2283.	1.	.6	83

#	Article	IF	CITATIONS
235	The Future of Dwarf Galaxy Research: What Telescopes Will Discover. Proceedings of the International Astronomical Union, 2018, 14, 3-16.	0.0	1
236	Stability of satellite planes in M31 II: effects of the dark subhalo population. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2212-2221.	1.6	10
237	A plane of high-velocity galaxies across the Local Group. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4033-4054.	1.6	23
238	ZOMG - III. The effect of halo assembly on the satellite population. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2234-2250.	1.6	17
239	Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight) Tj ETQq0 0 0 rg 1447-1468.	3T /Overloo 1.6	2k 10 Tf 50 5 59
240	Cosmic flow around local massive galaxies. Astronomy and Astrophysics, 2018, 609, A11.	2.1	16
241	Evidence for non-axisymmetry in M 31 from wide-field kinematics of stars and gas. Astronomy and Astrophysics, 2018, 611, A38.	2.1	13
242	We are not the 99 percent: quantifying asphericity in the distribution of Local Group satellites. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5533-5546.	1.6	11
243	Impact of Distance Determinations on Galactic Structure. II. Old Tracers. Space Science Reviews, 2018, 214, 1.	3.7	9
244	The Leo-I group: new dwarf galaxy and ultra diffuse galaxy candidates. Astronomy and Astrophysics, 2018, 615, A105.	2.1	63
245	On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 973-993.	1.6	51
246	Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits. Planetary and Space Science, 2018, 152, 68-81.	0.9	23
247	The Next Generation Fornax Survey (NGFS). III. Revealing the Spatial Substructure of the Dwarf Galaxy Population Inside Half of Fornax's Virial Radius. Astrophysical Journal, 2018, 859, 52.	1.6	32
248	Probing satellite galaxies in the Local Group by using FAST. Research in Astronomy and Astrophysics, 2018, 18, 003.	0.7	6
249	Testing gravity with wide binary stars like α Centauri. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2660-2688.	1.6	50
250	Distances from the tip of the red giant branch to the dwarf galaxies dw1335-29 and dw1340-30 in the Centaurus group. Astronomy and Astrophysics, 2018, 615, A96.	2.1	28
251	Cosmic voids in evolving dark sector cosmologies: the high-redshift universe. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4861-4877.	1.6	10
252	Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies. Astrophysical Journal, 2018, 860, 76.	1.6	21

#	Article	IF	CITATIONS
253	Origin of the Local Group satellite planes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4768-4791.	1.6	30
254	Dwarf Galaxies in the Local Volume. Astrophysical Bulletin, 2019, 74, 111-127.	0.3	14
255	Fermi-LAT Observations of Î ³ -Ray Emission toward the Outer Halo of M31. Astrophysical Journal, 2019, 880, 95.	1.6	29
256	Galaxies lacking dark matter in the Illustris simulation. Astronomy and Astrophysics, 2019, 626, A47.	2.1	26
257	Using Surface Brightness Fluctuations to Study Nearby Satellite Galaxy Systems: Calibration and Methodology. Astrophysical Journal, 2019, 879, 13.	1.6	33
258	Evolution of galactic planes of satellites in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1166-1179.	1.6	36
259	The stellar halo of the Milky Way traced by blue horizontal-branch stars in the Subaru Hyper Suprime-Cam Survey. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	17
260	Unified superfluid dark sector. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 027-027.	1.9	36
261	The haloes and environments of nearby galaxies (HERON) – I. Imaging, sample characteristics, and envelope diameters. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1539-1569.	1.6	28
262	Comparing the Quenching Times of Faint M31 and Milky Way Satellite Galaxies. Astrophysical Journal Letters, 2019, 885, L8.	3.0	30
263	The orientation of planes of dwarf galaxies in the quasi-linear Universe. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3786-3792.	1.6	12
264	Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	44
265	A rogues gallery of Andromeda's dwarf galaxies – II. Precise distances to 17 faint satellites. Monthly Notices of the Royal Astronomical Society, 2019, 489, 763-770.	1.6	19
266	Proper motions of the satellites of M31. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3231-3237.	1.6	5
267	The origin of lopsided satellite galaxy distribution in galaxy pairs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3100-3108.	1.6	8
268	Effects of coplanar satellite bands on galactic disc evolution. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2969-2975.	1.6	1
269	NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1314-1341.	1.6	93
270	Do Halos that Form Early, Have High Concentration, Are Part of a Pair, or Contain a Central Galaxy Potential Host More Pronounced Planes of Satellite Galaxies?. Astrophysical Journal, 2019, 875, 105.	1.6	18

#	Article	IF	CITATIONS
271	The velocity anisotropy of the Milky Way satellite system. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2679-2694.	1.6	32
272	The Faint End of the Centaurus A Satellite Luminosity Function. Astrophysical Journal, 2019, 872, 80.	1.6	78
273	First Gaia Dynamics of the Andromeda System: DR2 Proper Motions, Orbits, and Rotation of M31 and M33. Astrophysical Journal, 2019, 872, 24.	1.6	77
274	The shape alignment of satellite galaxies in Local Group-like pairs from the SDSS. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4325-4336.	1.6	8
275	The dwarf galaxy satellite system of Centaurus A. Astronomy and Astrophysics, 2019, 629, A18.	2.1	60
276	Two major accretion epochs in M31 from two distinct populations of globular clusters. Nature, 2019, 574, 69-71.	13.7	28
277	The Number of Dwarf Satellites of Disk Galaxies versus their Bulge Mass in the Standard Model of Cosmology. Astrophysical Journal, 2019, 870, 50.	1.6	12
278	The Milky Way's disc of classical satellite galaxies in light of Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3042-3059.	1.6	74
279	Sardinia Radio Telescope observations of Local Group dwarf galaxies – I. The cases of NGC 6822, IC 16 and WLM. Monthly Notices of the Royal Astronomical Society, 2020, 492, 45-57.	13. 1.6	2
280	An updated detailed characterization of planes of satellites in the MW and M31. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3755-3774.	1.6	13
281	Constraints on the star formation histories of galaxies in the Local Cosmological Volume. Monthly Notices of the Royal Astronomical Society, 2020, 497, 37-43.	1.6	15
282	The KBC void and Hubble tension contradict ĥCDM on a Gpc scale â^ Milgromian dynamics as a possible solution. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2845-2883.	1.6	62
283	Dark Matters on the Scale of Galaxies. Universe, 2020, 6, 107.	0.9	62
284	The impact of filamentary accretion of subhaloes on the shape and orientation of haloes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 502-509.	1.6	12
285	Limit on the LMC mass from a census of its satellites. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2554-2563.	1.6	70
286	A recent major merger tale for the closest giant elliptical galaxy Centaurus A. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2766-2777.	1.6	24
287	The Formation of Exponential Disk Galaxies in MOND. Astrophysical Journal, 2020, 890, 173.	1.6	29
288	Orbital Evidences for Dark-matter-free Milky Way Dwarf Spheroidal Galaxies. Astrophysical Journal, 2020, 892, 3.	1.6	33

#	Article	IF	CITATIONS
289	The Milky Way's stellar streams and globular clusters do not align in a Vast Polar Structure. Monthly Notices of the Royal Astronomical Society, 2020, 494, 983-1001.	1.6	27
290	KMTNet Nearby Galaxy Survey II. Searching for Dwarf Galaxies in Deep and Wide-field Images of the NGC 1291 System. Astrophysical Journal, 2020, 891, 18.	1.6	14
291	Hydrogen & hydrogen energy creating the universe: Spin-Top Theory. International Journal of Hydrogen Energy, 2020, 45, 6863-6873.	3.8	3
292	Modelling the Canes Venatici I dwarf spheroidal galaxy. Astronomy and Astrophysics, 2020, 633, A91.	2.1	1
293	A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1471-1490.	1.6	77
294	Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1. Astrophysical Journal, 2020, 893, 47.	1.6	110
295	Cosmological signatures of dark sector physics: the evolution of haloes and spin alignment. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2369-2382.	1.6	4
296	On the origin of the asymmetric dwarf galaxy distribution around andromeda. Monthly Notices of the Royal Astronomical Society, 2020, 492, 456-467.	1.6	5
297	Stability of multistate configurations of fuzzy dark matter. Astronomische Nachrichten, 2021, 342, 398-403.	0.6	5
298	Dark matter interpretation of the <i>Fermi</i> -LAT observations toward the outer halo of M31. Physical Review D, 2021, 103, .	1.6	20
299	A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1636-1645.	1.6	7
300	Observational insights on the origin of giant low surface brightness galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 830-849.	1.6	15
301	Barred spiral galaxies in modified gravity theories. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2833-2860.	1.6	22
302	On the absence of backsplash analogues to NGC 3109 in the ĥCDM framework. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6170-6186.	1.6	5
303	Flybys, Orbits, Splashback: Subhalos and the Importance of the Halo Boundary. Astrophysical Journal, 2021, 909, 112.	1.6	26
304	Scalar field dark matter as an alternative explanation for the anisotropic distribution of satellite galaxies. Physical Review D, 2021, 103, .	1.6	9
305	Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1379-1397.	1.6	40
306	Feyerabend's rule and dark matter. SynthÃ^se, 0, , 1.	0.6	3

#	Article	IF	CITATIONS
307	The Lopsided Distribution of Satellites of Isolated Central Galaxies. Astrophysical Journal, 2021, 914, 78.	1.6	5
308	A Corotating Group of Dwarf Galaxies around NGC 2750 as a Centaurus A Analog. Astrophysical Journal Letters, 2021, 917, L18.	3.0	7
309	The proper motion of Andromeda from Gaia EDR3: confirming a nearly radial orbit. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	17
310	Tracing satellite planes in the Sculptor group. Astronomy and Astrophysics, 2021, 652, A48.	2.1	21
311	Flattened structures of dwarf satellites around massive host galaxies in the MATLAS low-to-moderate density fields. Astronomy and Astrophysics, 2021, 654, A161.	2.1	13
312	MOND-like behavior in the Dirac–Milne universe. Astronomy and Astrophysics, 2021, 652, A91.	2.1	5
313	Resolved Dwarf Galaxy Searches within â^¼5 Mpc with the Vera Rubin Observatory and Subaru Hyper Suprime-Cam*. Astrophysical Journal, 2021, 918, 88.	1.6	30
314	Phase-Space Correlations among Systems of Satellite Galaxies. Galaxies, 2021, 9, 66.	1.1	16
315	Flattening of Dark Matter Cusps during Mergers: Model of M31. Astrophysical Journal, 2021, 919, 86.	1.6	4
316	The coherent motion of Cen A dwarf satellite galaxies remains a challenge for $\hat{\nu}CDM$ cosmology. Astronomy and Astrophysics, 2021, 645, L5.	2.1	34
317	Pisces VII: discovery of a possible satellite of Messier 33 in the DESI legacy imaging surveys. Monthly Notices of the Royal Astronomical Society, 2021, 509, 16-24.	1.6	14
318	The Wide Area VISTA Extra-Galactic Survey (WAVES). Thirty Years of Astronomical Discovery With UKIRT, 2016, , 205-214.	0.3	27
319	Substructure and Tidal Streams in the Andromeda Galaxy and its Satellites. Astrophysics and Space Science Library, 2016, , 191-217.	1.0	29
320	Dwarfs walking in a row. Astronomy and Astrophysics, 2013, 559, L11.	2.1	42
321	DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. Astronomy and Astrophysics, 2016, 588, A89.	2.1	75
322	The role of mergers and interactions in driving the evolution of dwarf galaxies over cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4937-4957.	1.6	36
324	THE LOPSIDED DISTRIBUTION OF SATELLITE GALAXIES. Astrophysical Journal, 2016, 830, 121.	1.6	25
325	The M101 Satellite Luminosity Function and the Halo–Halo Scatter among Local Volume Hosts. Astrophysical Journal, 2019, 885, 153.	1.6	64

		CITATION REPORT		
#	Article		IF	CITATIONS
326	Local Group Analogs in \hat{b} CDM Cosmological Simulations. Astrophysical Journal, 2020, 890, 2	7.	1.6	7
327	Wide-field Survey of Dwarf Satellite Systems around 10 Hosts in the Local Volume. Astrophys Journal, 2020, 891, 144.	sical	1.6	62
328	Planes of Satellites around Simulated Disk Galaxies. I. Finding High-quality Planar Configuration from Positional Information and Their Comparison to MW/M31 Data. Astrophysical Journal, 2 71.	ons 020, 897,	1.6	11
329	Elemental Abundances in M31: [Fe/H] and $[\hat{I}\pm/Fe]$ in M31 Dwarf Galaxies Using Coadded Spe Astrophysical Journal, 2020, 895, 78.	ctra.	1.6	14
330	The Alignment of Satellite Systems with Cosmic Filaments in the SDSS DR12. Astrophysical Jo 2020, 900, 129.	ournal,	1.6	13
331	HST Proper Motions of NGC 147 and NGC 185: Orbital Histories and Tests of a Dynamically C Andromeda Satellite Plane. Astrophysical Journal, 2020, 901, 43.	loherent	1.6	30
332	Orbital Distribution of Infalling Satellite Halos across Cosmic Time. Astrophysical Journal, 202 177.	0, 905,	1.6	10
333	The Global Stability of M33 in MOND. Astrophysical Journal, 2020, 905, 135.		1.6	23
334	Lessons from the Local Group (and Beyond) on Dark Matter. , 2015, , 337-352.			1
337	The New Boundaries of the Galaxy Concept. Astrophysics and Space Science Library, 2016, ,	509-583.	1.0	0
339	Resolved Stellar Populations as Tracers of Outskirts. Astrophysics and Space Science Library, 31-75.	2017, ,	1.0	1
340	Impact of Distance Determinations on Galactic Structure. II. Old Tracers. Space Sciences Serie 2018, , 219-282.	es of ISSI,	0.0	0
341	Acausality in superfluid dark matter and MOND-like theories. Journal of Cosmology and Astro Physics, 2021, 2021, 015.	particle	1.9	5
342	The SIBELIUS Project: E Pluribus Unum. Monthly Notices of the Royal Astronomical Society, 2 1432-1446.	021, 509,	1.6	15
343	Are Disks of Satellites Comprised of Tidal Dwarf Galaxies?. Galaxies, 2021, 9, 100.		1.1	6
344	The Cen A galaxy group: Dynamical mass and missing baryons. Astronomy and Astrophysics, A57.	2022, 662,	2.1	9
345	lt's time for some plane speaking. Nature Astronomy, 2021, 5, 1185-1187.		4.2	19
346	Hubble Space Telescope Observations of NGC 253 Dwarf Satellites: Three Ultra-faint Dwarf G Astrophysical Journal, 2022, 926, 77.	alaxies*.	1.6	20

#	Article	IF	CITATIONS
347	Cold and hot gas distribution around the Milky-Way – M31 system in the HESTIA simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3717-3737.	1.6	9
348	3D hydrodynamic simulations for the formation of the Local Group satellite planes. Monthly Notices of the Royal Astronomical Society, 2022, 513, 129-158.	1.6	17
349	On the Co-orbitation of Satellite Galaxies along the Great Plane of Andromeda: NGC 147, NGC 185, and Expectations from Cosmological Simulations. Astrophysical Journal, 2021, 923, 42.	1.6	11
350	Planes of satellites are not a problem for (just) $\hat{ m b}$ CDM. Nature Astronomy, 2021, 5, 1188-1190.	4.2	7
351	Reproducing NGC 3109 association in numerical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1923-1933.	1.6	0
352	The Clustering of Orbital Poles Induced by the LMC: Hints for the Origin of Planes of Satellites. Astrophysical Journal, 2021, 923, 140.	1.6	17
353	Galactic Anomalies and Particle Dark Matter. Symmetry, 2022, 14, 812.	1.1	3
354	The spatial distribution of satellites in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 514, 390-402.	1.6	4
355	Relating the Diverse Merger Histories and Satellite Populations of Nearby Galaxies. Astrophysical Journal, 2022, 930, 69.	1.6	13
356	Sizing from the smallest scales: the mass of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4968-4982.	1.6	6
357	Searching Extra-tidal Features around the Globular Cluster Whiting 1. Astrophysical Journal, 2022, 930, 23.	1.6	1
358	Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nature Astronomy, 2022, 6, 897-910.	4.2	55
359	On the Effect of the Large Magellanic Cloud on the Orbital Poles of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 70.	1.6	9
360	The distribution and morphologies of Fornax Cluster dwarf galaxies suggest they lack dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2981-3013.	1.6	23
361	Possible formation mechanism of multistate gravitational atoms. Physical Review D, 2022, 105, .	1.6	2
362	From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity. Symmetry, 2022, 14, 1331.	1.1	50
363	The Exploration of Local VolumE Satellites (ELVES) Survey: A Nearly Volume-limited Sample of Nearby Dwarf Satellite Systems. Astrophysical Journal, 2022, 933, 47.	1.6	47
364	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">ĥ</mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246

#	Article	IF	CITATIONS
365	Shapes of Milky-Way-mass galaxies with self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2389-2405.	1.6	9
366	Dark sector domain walls could explain the observed planes of satellites. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 020.	1.9	1
367	The Missing Satellite Problem outside of the Local Group. II. Statistical Properties of Satellites of Milky Way–like Galaxies. Astrophysical Journal, 2022, 936, 38.	1.6	9
368	Ultrafaint Dwarf Galaxy Candidates in the M81 Group: Signatures of Group Accretion. Astrophysical Journal Letters, 2022, 937, L3.	3.0	6
369	The quantum character of the Scalar Field Dark Matter. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5247-5259.	1.6	3
370	The Hubble Space Telescope Survey of M31 Satellite Galaxies. I. RR Lyrae–based Distances and Refined 3D Geometric Structure. Astrophysical Journal, 2022, 938, 101.	1.6	17
371	Big Bang Bouncing Universes. , 0, , .		0
372	The unusual milky way-local sheet system: Implications for spin strength and alignment. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	1.2	3
373	Classifying the satellite plane membership of Centaurus A's dwarf galaxies using orbital alignment constraints. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6184-6198.	1.6	3
374	Planes of Satellites around Simulated Disk Galaxies. II. Time-persistent Planes of Kinematically Coherent Satellites in Ĵ›CDM. Astrophysical Journal, 2023, 942, 78.	1.6	2
375	Exploring the effects of primordial non-Gaussianity at galactic scales. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 024.	1.9	4
376	The volume density of giant low surface brightness galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 520, L85-L90.	1.2	5
377	New dwarf galaxy candidates in the sphere of influence of the Local Volume spiral galaxy NGC2683. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4009-4023.	1.6	2
378	The LMC impact on the kinematics of the Milky Way satellites: clues from the running solar apex. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3540-3552.	1.6	5
379	Planes of satellites no longer in tension with $\hat{ m b}$ CDM. Nature Astronomy, 2023, 7, 376-377.	4.2	0
380	LeMMINGs. VI. Connecting nuclear activity to bulge properties of active and inactive galaxies: radio scaling relations and galaxy environment. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1