Towards an exact description of electronic wavefunction

Nature 493, 365-370 DOI: 10.1038/nature11770

Citation Report

#	Article	IF	CITATIONS
3	Incrementally Corrected Periodic Local MP2 Calculations: I. The Cohesive Energy of Molecular Crystals. Journal of Chemical Theory and Computation, 2013, 9, 5590-5598.	5.3	45
4	Quantum Monte Carlo with coupled-cluster wave functions. Physical Review B, 2013, 88, .	3.2	24
5	Wave function methods for fractional electrons. Journal of Chemical Physics, 2013, 139, 074107.	3.0	19
6	Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions. Journal of Chemical Physics, 2013, 139, 084112.	3.0	62
7	Computing molecular correlation energies with guaranteed precision. Journal of Chemical Physics, 2013, 139, 114106.	3.0	31
8	Energy benchmarks for water clusters and ice structures from an embedded many-body expansion. Journal of Chemical Physics, 2013, 139, 114101.	3.0	60
9	Trustworthy predictions. Nature, 2013, 493, 314-315.	27.8	4
11	Many-Body Quantum Chemistry for the Electron Gas: Convergent Perturbative Theories. Physical Review Letters, 2013, 110, 226401.	7.8	69
12	Pseudopotentials for correlated electron systems. Journal of Chemical Physics, 2013, 139, 014101.	3.0	26
13	Stochastic determination of effective Hamiltonian for the full configuration interaction solution of quasi-degenerate electronic states. Journal of Chemical Physics, 2013, 138, 164126.	3.0	75
14	Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method. Journal of Chemical Physics, 2013, 139, 194101.	3.0	42
15	Interface dipoles of organic molecules on Ag(111) in hybrid density-functional theory. New Journal of Physics, 2013, 15, 123028.	2.9	58
16	Configuration-interaction Monte Carlo method and its application to the trapped unitary Fermi gas. Physical Review A, 2013, 88, .	2.5	14
17	Pressure dependent stability and structure of carbon dioxide—A density functional study including long-range corrections. Journal of Chemical Physics, 2013, 139, 174501.	3.0	18
18	Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2014, 141, 244117.	3.0	90
19	Local reduced-density-matrix-functional theory: Incorporating static correlation effects in Kohn-Sham equations. Physical Review A, 2014, 90, .	2.5	32
20	Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path for the optimization of low-energy many-body bases. Journal of Chemical Physics, 2014, 140, 074103.	3.0	2
21	Approaching an exact treatment of electronic correlations at solid surfaces: The binding energy of the lowest bound state of helium adsorbed on MgO(100). Physical Review B, 2014, 89, .	3.2	17

		CITATION REPORT		
#	Article		IF	CITATIONS
22	Density-matrix quantum Monte Carlo method. Physical Review B, 2014, 89, .		3.2	84
23	<i>Ab initio</i> Quantum MonteÂCarlo Calculations of Spin Superexchange in Cuprate Benchmarking Case of <mml:math inline"="" xmlns:mml="http://www.w3.org/1998/Math/MathM
display="><mml:mrow><mml:msub><mml:mrow><mml:mi>Ca</mml:mi>Physical Review X. 2014. 4</mml:mrow></mml:msub></mml:mrow></mml:math>	s: The L" :mrow> <mml:mrow><mm< td=""><td>ıl:mn>2<td>nml:mn></td></td></mm<></mml:mrow>	ıl:mn>2 <td>nml:mn></td>	nml:mn>
24	Sign problem in full configuration interaction quantum Monte Carlo: Linear and subline representation regimes for the exact wave function. Physical Review B, 2014, 90, .	zar	3.2	31
25	Range-Separated Brueckner Coupled Cluster Doubles Theory. Physical Review Letters,	2014, 112, 133002.	7.8	37
26	Successes and failures of Hubbard-corrected density functional theory: The case of Mg Journal of Chemical Physics, 2014, 141, 164706.	doped LiCoO2.	3.0	22
27	Coupled cluster channels in the homogeneous electron gas. Journal of Chemical Physic 124102.	rs, 2014, 140,	3.0	36
28	Linear-scaling and parallelisable algorithms for stochastic quantum chemistry. Molecul 2014, 112, 1855-1869.	ar Physics,	1.7	92
29	Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Mate Current Chemistry, 2014, 347, 99-135.	rials. Topics in	4.0	27
30	Cohesion energetics of carbon allotropes: Quantum Monte Carlo study. Journal of Che 2014, 140, 114702.	mical Physics,	3.0	166
31	Direct Quantitative Electrical Measurement of Many-Body Interactions in Exciton Com Quantum Dots. Physical Review Letters, 2014, 112, 046803.	plexes in InAs	7.8	16
32	On the mutual exclusion of variationality and size consistency. Theoretical Chemistry A 133, 1.	Accounts, 2014,	1.4	5
33	Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum co Applied Physics A: Materials Science and Processing, 2014, 115, 595-603.	mplex systems.	2.3	3
34	Study of van der Waals bonding and interactions in metal organic framework materials Physics Condensed Matter, 2014, 26, 133002.	s. Journal of	1.8	34
35	Spectroscopic accuracy directly from quantum chemistry: Application to ground and e beryllium dimer. Journal of Chemical Physics, 2014, 140, 104112.	xcited states of	3.0	75
36	Electron correlation in solids via density embedding theory. Journal of Chemical Physic 054113.	s, 2014, 141,	3.0	75
37	Periodic MP2, RPA, and Boundary Condition Assessment of Hydrogen Ordering in Ice X Physical Chemistry Letters, 2014, 5, 4122-4128.	V. Journal of	4.6	48
38	Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water. Jou American Chemical Society, 2014, 136, 17071-17077.	rnal of the	13.7	81
39	Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investi CrystEngComm, 2014, 16, 102-109.	gation.	2.6	23

#	Article	IF	CITATIONS
40	Symmetry Breaking and Broken Ergodicity in Full Configuration Interaction Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2014, 10, 1915-1922.	5.3	15
41	Embedded Correlated Wavefunction Schemes: Theory and Applications. Accounts of Chemical Research, 2014, 47, 2768-2775.	15.6	205
42	Benchmarking dispersion and geometrical counterpoise corrections for costâ€effective largeâ€scale DFT calculations of water adsorption on graphene. Journal of Computational Chemistry, 2014, 35, 1789-1800.	3.3	24
43	Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science, 2014, 345, 640-643.	12.6	230
44	Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 2014, 90, .	2.5	199
45	First Multireference Correlation Treatment of Bulk Metals. Journal of Chemical Theory and Computation, 2014, 10, 1698-1706.	5.3	30
46	Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. Journal of Physical Chemistry Letters, 2014, 5, 849-855.	4.6	159
47	Hybrid functionals applied to perovskites. Journal of Physics Condensed Matter, 2014, 26, 253202.	1.8	81
48	Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory. Physical Review Letters, 2014, 112, .	7.8	53
49	Importance of a Nonlocal Description of Electron–Electron Interactions in Modeling the Dissociative Adsorption of H ₂ on Cu(100). Journal of Physical Chemistry C, 2014, 118, 5374-5382.	3.1	19
50	Challenges in the theoretical description of nanoparticle reactivity: Nano zeroâ€valent iron. International Journal of Quantum Chemistry, 2014, 114, 987-992.	2.0	14
51	Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions. Journal of Chemical Theory and Computation, 2014, 10, 3417-3422.	5.3	67
52	Quantum Monte Carlo methods. , 0, , 319-363.		0
53	Excited states from quantum Monte Carlo in the basis of Slater determinants. Journal of Chemical Physics, 2014, 141, 194104.	3.0	14
54	Quantum Monte Carlo with non-local chiral interactions. Journal of Physics: Conference Series, 2014, 527, 012003.	0.4	1
55	From Atomistic Surface Chemistry to Nanocrystals of Functional Chalcogenides. Angewandte Chemie - International Edition, 2015, 54, 15334-15340.	13.8	20
56	Understanding Magnetic Exchange in Molecule-Based Magnets from an Electronic Structure Point of View. , 2015, , 203-246.		0
57	Improved description of metal oxide stability: Beyond the random phase approximation with renormalized kernels. Physical Review B, 2015, 92, .	3.2	17

Article	IF	CITATIONS

#

Dispersion effects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>SiO </mml:mi> <mml:mn>2 </mml:mn3.2/mml:mzub> </mm An <i>ab initio </i> study. Physical Review B, 2015, 92, . 58

59	Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians. Physical Review Letters, 2015, 114, 226401.	7.8	44
60	Efficient Explicitly Correlated Many-Electron Perturbation Theory for Solids: Application to the Schottky Defect in MgO. Physical Review Letters, 2015, 115, 066402.	7.8	43
61	Finite-size scaling with modified boundary conditions. Physical Review B, 2015, 91, .	3.2	24
62	Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. Journal of Chemical Physics, 2015, 143, 102806.	3.0	46
63	Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states. Journal of Chemical Physics, 2015, 143, 102815.	3.0	67
64	A coupled cluster and MÃ,ller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal. Journal of Chemical Physics, 2015, 143, 102817.	3.0	32
65	Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. Journal of Chemical Physics, 2015, 143, 064710.	3.0	80
66	A study of potential energy curves from the model space quantum Monte Carlo method. Journal of Chemical Physics, 2015, 143, 214107.	3.0	20
67	Range-separated double-hybrid density-functional theory applied to periodic systems. Journal of Chemical Physics, 2015, 143, 102811.	3.0	21
68	Observations on variational and projector Monte Carlo methods. Journal of Chemical Physics, 2015, 143, 164105.	3.0	23
69	High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane. Journal of Chemical Physics, 2015, 143, 104704.	3.0	13
70	An excited-state approach within full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2015, 143, 134117.	3.0	77
71	Singles correlation energy contributions in solids. Journal of Chemical Physics, 2015, 143, 102816.	3.0	39
72	Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces. Journal of Chemical Physics, 2015, 143, 102601.	3.0	10
73	Turning reduced density matrix theory into a practical tool for studying the Mott transition. New Journal of Physics, 2015, 17, 111001.	2.9	6
74	Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate. AIP Conference Proceedings, 2015, , .	0.4	0
75	The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function. Journal of Chemical Physics, 2015, 142, 094119.	3.0	8

#	Article	IF	CITATIONS
76	Periodic local MP2 method employing orbital specific virtuals. Journal of Chemical Physics, 2015, 143, 102805.	3.0	43
78	Can model Hamiltonians describe the electron–electron interaction inπ-conjugated systems?: PAH and graphene. Journal of Physics Condensed Matter, 2015, 27, 463001.	1.8	10
79	Density functional theory: Its origins, rise to prominence, and future. Reviews of Modern Physics, 2015, 87, 897-923.	45.6	962
80	Second-order MÃ,ller–Plesset perturbation theory for the transcorrelated Hamiltonian applied to solid-state calculations. Chemical Physics Letters, 2015, 621, 177-183.	2.6	18
81	Insights into the structure of many-electron wave functions of Mott-insulating antiferromagnets: The three-band Hubbard model in full configuration interaction quantum Monte Carlo. Physical Review B, 2015, 91, .	3.2	14
82	Accurate <i>AbÂlnitio</i> Calculation of Ionization Potentials of the First-Row Transition Metals with the Configuration-Interaction Quantum MonteÂCarlo Technique. Physical Review Letters, 2015, 114, 033001.	7.8	42
83	Pressure in electronically excited warm dense metals. Contributions To Plasma Physics, 2015, 55, 164-171.	1.1	14
84	Clock quantum Monte Carlo technique: An imaginary-time method for real-time quantum dynamics. Physical Review A, 2015, 91, .	2.5	14
85	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	13.7	271
86	The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coordination Chemistry Reviews, 2015, 300, 142-163.	18.8	36
87	Many-body formalism for fermions: Enforcing the Pauli principle on paper. Physical Review A, 2015, 92, .	2.5	5
88	Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo. Journal of Chemical Physics, 2015, 142, 164705.	3.0	55
89	Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene. Journal of Chemical Physics, 2015, 143, 102804.	3.0	34
90	Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia. Springer Series in Surface Sciences, 2015, , 149-190.	0.3	10
91	Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels. Journal of Chemical Physics, 2015, 143, 102802.	3.0	56
92	Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO,) Tj ETQq1	1 0.78431 0.3	l4 ₇ rgBT /Ove
93	Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3 <i>d</i> Transition Metals?. Journal of Chemical Theory and Computation, 2015, 11, 2036-2052.	5.3	109
94	Free-complement local-SchrĶdinger-equation method for solving the SchrĶdinger equation of atoms and molecules: Basic theories and features. Journal of Chemical Physics, 2015, 142, 084117.	3.0	20

#	Article	IF	CITATIONS
95	Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application. Journal of Chemical Physics, 2015, 142, 184107.	3.0	83
96	Krylov-Projected Quantum MonteÂCarlo Method. Physical Review Letters, 2015, 115, 050603.	7.8	53
97	Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order MÃ,ller-Plesset calculations. Journal of Chemical Physics, 2015, 143, 102812.	3.0	14
98	Stochastic Multiconfigurational Self-Consistent Field Theory. Journal of Chemical Theory and Computation, 2015, 11, 5316-5325.	5.3	86
99	Size-dependent properties of transition metal clusters: from molecules to crystals and surfaces – computational studies with the program ParaGauss. Physical Chemistry Chemical Physics, 2015, 17, 28463-28483.	2.8	16
100	Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems. Journal of Chemical Physics, 2015, 143, 102807.	3.0	26
101	Many-body dispersion effects in the binding of adsorbates on metal surfaces. Journal of Chemical Physics, 2015, 143, 102808.	3.0	69
102	Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2015, 143, 054108.	3.0	24
103	Warm dense gold: effective ion–ion interaction and ionisation. Molecular Physics, 0, , 1-10.	1.7	7
104	Tensor network states with three-site correlators. New Journal of Physics, 2016, 18, 113001.	2.9	3
105	Clustered Low-Rank Tensor Format: Introduction and Application to Fast Construction of Hartree–Fock Exchange. Journal of Chemical Theory and Computation, 2016, 12, 5868-5880.	5.3	20
106	Description of quasiparticle and satellite properties via cumulant expansions of the retarded one-particle Green's function. Physical Review B, 2016, 94, .	3.2	8
107	From plane waves to local Gaussians for the simulation of correlated periodic systems. Journal of Chemical Physics, 2016, 145, 084111.	3.0	56
108	Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy. Journal of Chemical Physics, 2016, 144, 161106.	3.0	196
109	Developments in stochastic coupled cluster theory: The initiator approximation and application to the uniform electron gas. Journal of Chemical Physics, 2016, 144, 084108.	3.0	40
110	A deterministic alternative to the full configuration interaction quantum Monte Carlo method. Journal of Chemical Physics, 2016, 145, 044112.	3.0	218
111	Domain overlap matrices from plane-wave-based methods of electronic structure calculation. Journal of Chemical Physics, 2016, 145, 154107.	3.0	20
112	Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2016, 144, 094110.	3.0	12

#	Article	IF	CITATIONS
113	Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2016, 145, 054117.	3.0	20
114	Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. Journal of Chemical Physics, 2016, 144, 204120.	3.0	191
115	Communication: Finite size correction in periodic coupled cluster theory calculations of solids. Journal of Chemical Physics, 2016, 145, 141102.	3.0	47
116	Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems. Journal of Chemical Physics, 2016, 144, 014101.	3.0	0
117	Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel. Journal of Chemical Physics, 2016, 145, 104105.	3.0	18
118	Perspective: Kohn-Sham density functional theory descending a staircase. Journal of Chemical Physics, 2016, 145, 130901.	3.0	243
119	Putting David Craig's Legacy to Work in Nanotechnology and Biotechnology. Australian Journal of Chemistry, 2016, 69, 1331.	0.9	2
120	Photoemission spectra from reduced density matrices: The band gap in strongly correlated systems. Physical Review B, 2016, 94, .	3.2	20
121	Iterative diagonalization of the non-Hermitian transcorrelated Hamiltonian using a plane-wave basis set: Application to sp-electron systems with deep core states. Journal of Chemical Physics, 2016, 144, 104109.	3.0	13
122	Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction. Journal of Chemical Physics, 2016, 144, 094112.	3.0	26
123	Quasi-degenerate perturbation theory using matrix product states. Journal of Chemical Physics, 2016, 144, 034103.	3.0	41
124	LCAO-based theoretical study of PbTiO3 crystal to search for parity and time reversal violating interaction in solids. Journal of Chemical Physics, 2016, 145, 054115.	3.0	26
125	Evidence for stable square ice from quantum Monte Carlo. Physical Review B, 2016, 94, .	3.2	46
126	Hybrid Density Functionals Applied to Complex Solid Catalysts: Successes, Limitations, and Prospects. Catalysis Letters, 2016, 146, 861-885.	2.6	31
127	CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages. Journal of Physical Chemistry C, 2016, 120, 12637-12653.	3.1	12
128	Is the error on first-principles volume predictions absolute or relative?. Computational Materials Science, 2016, 117, 390-396.	3.0	15
129	Thermodynamics of gas adsorption in <scp>MOF</scp> s using <i>Ab Initio</i> calculations. International Journal of Quantum Chemistry, 2016, 116, 569-572.	2.0	9
130	Noncovalent Interactions by Quantum Monte Carlo. Chemical Reviews, 2016, 116, 5188-5215.	47.7	114

#	Article	IF	CITATIONS
131	Structural and Electronic Effects on the Properties of Fe ₂ (dobdc) upon Oxidation with N ₂ O. Inorganic Chemistry, 2016, 55, 4924-4934.	4.0	15
132	Towards J/mol Accuracy for the Cohesive Energy of Solid Argon. Angewandte Chemie - International Edition, 2016, 55, 12200-12205.	13.8	32
133	Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas. Physical Review Letters, 2016, 117, 115701.	7.8	88
134	Surface Adsorption Energetics Studied with "Gold Standard―Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO ₂ (110). Journal of Physical Chemistry Letters, 2016, 7, 4207-4212.	4.6	86
135	Configuration Interaction Monte Carlo with Coupled Clusters Wave Functions. Advances in Quantum Chemistry, 2016, 73, 315-332.	0.8	1
136	Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. Journal of Chemical Theory and Computation, 2016, 12, 3674-3680.	5.3	294
137	Fragment-Based Direct-Local-Ring-Coupled-Cluster Doubles Treatment Embedded in the Periodic Hartree–Fock Solution. Journal of Chemical Theory and Computation, 2016, 12, 5145-5156.	5.3	19
138	Computational Screening of All Stoichiometric Inorganic Materials. CheM, 2016, 1, 617-627.	11.7	115
139	Many-body formalism for fermions: Testing the enforcement of the Pauli principle. Physical Review A, 2016, 93, .	2.5	5
140	Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step. Physical Review B, 2016, 93, .	3.2	54
141	Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction. Physical Review E, 2016, 93, 043321.	2.1	2
142	Benchmarking the pseudopotential and fixed-node approximations in diffusion Monte Carlo calculations of molecules and solids. Physical Review B, 2016, 93, .	3.2	23
143	A many-electron perturbation theory study of the hexagonal boron nitride bilayer system*. European Physical Journal B, 2016, 89, 1.	1.5	11
144	Toward Accurate Adsorption Energetics on Clay Surfaces. Journal of Physical Chemistry C, 2016, 120, 26402-26413.	3.1	30
145	Hochgenaue Berechnung der Kohäonsenergie von festem Argon mit Abweichungen im J/molâ€Bereich. Angewandte Chemie, 2016, 128, 12387-12392.	2.0	4
146	Generalization of Dielectric-Dependent Hybrid Functionals to Finite Systems. Physical Review X, 2016, 6,	8.9	49
147	Communication: Convergence of many-body wave-function expansions using a plane-wave basis in the thermodynamic limit. Journal of Chemical Physics, 2016, 145, 031104.	3.0	16
148	Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. Journal of Chemical Theory and Computation, 2016, 12, 3340-3352.	5.3	85

		CITATION REPORT		
#	Article		IF	CITATIONS
149	Computational materials design of crystalline solids. Chemical Society Reviews, 2016,	45, 6138-6146.	38.1	105
150	Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chemical I 116, 5567-5613.	Reviews, 2016,	47.7	294
151	Wavefunction-based electronic-structure calculations for solids. Nature Physics, 2016,	, 12, 106-107.	16.7	10
152	Modeling quantum nuclei with perturbed path integral molecular dynamics. Chemical 1368-1372.	Science, 2016, 7,	7.4	31
153	Modelling of graphene functionalization. Physical Chemistry Chemical Physics, 2016, 2	18, 6351-6372.	2.8	190
154	Combining Internally Contracted States and Matrix Product States To Perform Multire Perturbation Theory. Journal of Chemical Theory and Computation, 2017, 13, 488-498	ference ·	5.3	55
155	Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Boo Function Theory. Physical Review Letters, 2017, 118, 026402.	ły Wave	7.8	17
156	Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Erro Performance Tests. Journal of Chemical Theory and Computation, 2017, 13, 1081-109	r Sources and 3.	5.3	16
157	Quantum-Matter Heterostructures. Annual Review of Condensed Matter Physics, 2013	7, 8, 145-164.	14.5	54
158	Stochastic multi-reference perturbation theory with application to the linearized coup method. Journal of Chemical Physics, 2017, 146, 044107.	ed cluster	3.0	35
159	Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: E Based Implementation and Application to Oligoacenes. Journal of Chemical Theory and 2017, 13, 602-615.	llock-Tensor Computation,	5.3	54
160	Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of So of Chemical Theory and Computation, 2017, 13, 1209-1218.	olids. Journal	5.3	171
161	Competition of van der Waals and chemical forces on gold–sulfur surfaces and nand Nature Reviews Chemistry, 2017, 1, .	oparticles.	30.2	95
162	Quantum Monte Carlo Calculations on a Benchmark Molecule–Metal Surface React H ₂ + Cu(111). Journal of Chemical Theory and Computation, 2017, 13, 3	on: 208-3219.	5.3	35
163	Dealing with the exponential wall in electronic structure calculations. Journal of Chemi 2017, 146, 194107.	cal Physics,	3.0	15
164	Reliable computational design of biological-inorganic materials to the large nanometer Interface-FF. Molecular Simulation, 2017, 43, 1394-1405.	scale using	2.0	34
165	A comparison between quantum chemistry and quantum Monte Carlo techniques for of water on the (001) LiH surface. Journal of Chemical Physics, 2017, 146, 204108.	the adsorption	3.0	35
166	Embedded and DFT Calculations on the Crystal Structures of Small Alkanes, Notably P Growth and Design, 2017, 17, 1636-1646.	ropane. Crystal	3.0	18

#	Article	IF	CITATIONS
167	Introduction to the Variational Monte Carlo Method in Quantum Chemistry and Physics. Molecular Modeling and Simulation, 2017, , 285-313.	0.2	6
169	The physics of quantum materials. Nature Physics, 2017, 13, 1045-1055.	16.7	285
170	Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion. Journal of Chemical Physics, 2017, 147, 124105.	3.0	26
171	Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution. Journal of Chemical Physics, 2017, 146, 244105.	3.0	47
172	Embedding for bulk systems using localized atomic orbitals. Journal of Chemical Physics, 2017, 147, 034110.	3.0	17
173	Improving the Efficiency of Beyond-RPA Methods within the Dielectric Matrix Formulation: Algorithms and Applications to the A24 and S22 Test Sets. Journal of Chemical Theory and Computation, 2017, 13, 5432-5442.	5.3	16
174	A stochastic root finding approach: the homotopy analysis method applied to Dyson–Schwinger equations. New Journal of Physics, 2017, 19, 043005.	2.9	6
177	Embedded Cluster Model for Al ₂ O ₃ and AlPO ₄ Surfaces Using Point Charges and Periodic Electrostatic Potential. Journal of Physical Chemistry C, 2017, 121, 20242-20253.	3.1	7
178	Many-body formalism for fermions: The partition function. Physical Review A, 2017, 96, .	2.5	4
179	Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides. Physical Review B, 2017, 96, .	3.2	85
180	Projector Quantum MonteÂCarlo Method for Nonlinear Wave Functions. Physical Review Letters, 2017, 118, 176403.	7.8	25
181	Fast Randomized Iteration: Diffusion Monte Carlo through the Lens of Numerical Linear Algebra. SIAM Review, 2017, 59, 547-587.	9.5	19
182	A study of the dense uniform electron gas with high orders of coupled cluster. Journal of Chemical Physics, 2017, 147, 194105.	3.0	28
184	Near transferable phenomenological <i>n</i> -body potentials for noble metals. Journal of Physics Condensed Matter, 2017, 29, 355701.	1.8	2
185	Surface Adsorption. , 2017, , 387-416.		4
186	Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. Journal of Catalysis, 2018, 360, 168-174.	6.2	58
187	Combining the Transcorrelated Method with Full Configuration Interaction Quantum Monte Carlo: Application to the Homogeneous Electron Gas. Journal of Chemical Theory and Computation, 2018, 14, 1403-1411.	5.3	52
188	Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. Journal of Physical Chemistry A, 2018, 122, 2714-2722.	2.5	80

#	Article	IF	CITATIONS
189	Trendbericht Theoretische Chemie 2017: Quantenchemie für Funktionsmaterialien. Nachrichten Aus Der Chemie, 2018, 66, 316-319.	0.0	0
190	First-Principles Calculations of Point Defects for Quantum Technologies. Annual Review of Materials Research, 2018, 48, 1-26.	9.3	93
191	Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence. Physical Review B, 2018, 97, .	3.2	3
192	A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 2018, 18, 2759-2765.	9.1	207
193	Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes. Journal of Chemical Theory and Computation, 2018, 14, 2304-2311.	5.3	71
194	Computational Insights into the Reaction Mechanisms of Nickelâ€Catalyzed Hydrofunctionalizations and Nickelâ€Dependent Enzymes. Asian Journal of Organic Chemistry, 2018, 7, 522-536.	2.7	12
195	Benchmark Database of Transition Metal Surface and Adsorption Energies from Many-Body Perturbation Theory. Journal of Physical Chemistry C, 2018, 122, 4381-4390.	3.1	53
196	Electron–phonon coupling from finite differences. Journal of Physics Condensed Matter, 2018, 30, 083001.	1.8	58
197	Periodic and fragment models based on the local correlation approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1357.	14.6	36
198	Fast and accurate quantum Monte Carlo for molecular crystals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1724-1729.	7.1	69
199	The uniform electron gas at warm dense matter conditions. Physics Reports, 2018, 744, 1-86.	25.6	177
200	Divide–Expand–Consolidate Second-Order MÃ,ller–Plesset Theory with Periodic Boundary Conditions. Journal of Chemical Theory and Computation, 2018, 14, 2427-2438.	5.3	9
201	Efficient first-principles prediction of solid stability: Towards chemical accuracy. Npj Computational Materials, 2018, 4, .	8.7	157
202	Adsorption and diffusion of sulfur on the (111), (100), (110), and (211) surfaces of FCC metals: Density functional theory calculations. Journal of Chemical Physics, 2018, 149, 204701.	3.0	25
203	Open-shell coupled-cluster valence-bond theory augmented with an independent amplitude approximation for three-pair correlations: Application to a model oxygen-evolving complex and single molecular magnet. Journal of Chemical Physics, 2018, 149, 244121.	3.0	13
204	Reaction energetics of hydrogen on Si(100) surface: A periodic many-electron theory study. Journal of Chemical Physics, 2018, 149, 244105.	3.0	11
205	Fast semistochastic heat-bath configuration interaction. Journal of Chemical Physics, 2018, 149, 214110.	3.0	99
206	Auxiliary-field quantum Monte Carlo calculations of the structural properties of nickel oxide. Journal of Chemical Physics, 2018, 149, 164102.	3.0	24

CITATION REPORT ARTICLE IF CITATIONS Large scale parallelization in stochastic coupled cluster. Journal of Chemical Physics, 2018, 149, 3.0 15 204103. Accelerating the convergence of exact diagonalization with the transcorrelated method: Quantum 2.5 gas in one dimension with contact interactions. Physical Review A, 2018, 98, . Towards hybrid density functional calculations of molecular crystals via fragment-based methods. 3.0 13 Journal of Chemical Physics, 2018, 149, 124104. A Time-Dependent Formulation of Coupled-Cluster Theory for Many-Fermion Systems at Finite Temperature. Journal of Chemical Theory and Computation, 2018, 14, 5690-5700. A new generation of effective core potentials from correlated calculations: 2nd row elements. 3.0 42 Journal of Chemical Physics, 2018, 149, 104108. Temperature Dependence of Carbon Monoxide Adsorption on a High-Silica H-FER Zeolite. Journal of Physical Chemistry C, 2018, 122, 26088-26095. 3.1 Ab initio calculations of carbon and boron nitride allotropes and their structural phase transitions 3.2 28 using periodic coupled cluster theory. Physical Review B, 2018, 98, . A new generation of effective core potentials from correlated calculations: 3d transition metal 3.0 54 series. Journal of Chemical Physics, 2018, 149, 134108. Coupled Cluster and Quantum Chemistry Schemes for Solids., 2018, , 1-16. 0 Breaking the curse of dimension for the electronic SchrĶdinger equation with functional analysis. 2.5 Computational and Theoretical Chemistry, 2018, 1142, 66-77 Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit. Physical 8.9 80 Review X, 2018, 8, . Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm. 3.2 Physical Review B, 2018, 97, . Driven-dissipative quantum Monte Carlo method for open quantum systems. Physical Review A, 2018, 2.5 30 97,. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chemical 47.7 421 Reviews, 2018, 118, 7026-7068. Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties 5.3 9 and Electrical Response. Journal of Chemical Theory and Computation, 2018, 14, 3532-3546. Extracting Knowledge from Data through Catalysis Informatics. ACS Catalysis, 2018, 8, 7403-7429. 11.2 179 Band structures in coupled-cluster singles-and-doubles Green's function (GFCCSD). Journal of 3.020

224Communication: An efficient and accurate perturbative correction to initiator full configuration
interaction quantum Monte Carlo. Journal of Chemical Physics, 2018, 148, 221101.3.035

#

207

208

209

211

213

214

215

217

219

221

223

Chemical Physics, 2018, 148, 204109.

#	Article	IF	CITATIONS
225	Time Propagation and Spectroscopy of Fermionic Systems Using a Stochastic Technique. Physical Review Letters, 2018, 121, 056401.	7.8	14
226	From Real Materials to Model Hamiltonians With Density Matrix Downfolding. Frontiers in Physics, 2018, 6, .	2.1	19
227	Multireference Approaches for Excited States of Molecules. Chemical Reviews, 2018, 118, 7293-7361.	47.7	287
228	Quasiparticle energy spectra of isolated atoms from coupled-cluster singles and doubles (CCSD): Comparison with exact CI calculations. Journal of Chemical Physics, 2018, 149, 034106.	3.0	11
229	Toward a predictive theory of correlated materials. Science, 2018, 361, 348-354.	12.6	45
230	On the Relation between Equation-of-Motion Coupled-Cluster Theory and the <i>GW</i> Approximation. Journal of Chemical Theory and Computation, 2018, 14, 4224-4236.	5.3	58
232	Density functional embedding for periodic and nonperiodic diffusion Monte Carlo calculations. Physical Review B, 2018, 98, .	3.2	9
233	Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime. Journal of Chemical Theory and Computation, 2018, 14, 5180-5191.	5.3	45
234	Ab initio computations of molecular systems by the auxiliaryâ€field quantum Monte Carlo method. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1364.	14.6	96
235	Extension of the Configuration Interaction Monte Carlo Method to Atoms and Molecules. Advances in Quantum Chemistry, 2018, 76, 241-253.	0.8	1
236	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	2.8	236
237	Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime. Journal of Chemical Theory and Computation, 2019, 15, 4873-4884.	5.3	38
238	Electron Density Studies in Materials Research. Chemistry - A European Journal, 2019, 25, 15010-15029.	3.3	26
239	Deuterium Hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory. Physical Review B, 2019, 100, .	3.2	7
240	Massive-Parallel Implementation of the Resolution-of-Identity Coupled-Cluster Approaches in the Numeric Atom-Centered Orbital Framework for Molecular Systems. Journal of Chemical Theory and Computation, 2019, 15, 4721-4734.	5.3	22
241	Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorganic Chemistry, 2019, 58, 9303-9315.	4.0	58
242	Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms. Journal of Chemical Physics, 2019, 151, 014107.	3.0	57
243	Multireference Stochastic Coupled Cluster. Journal of Chemical Theory and Computation, 2019, 15, 6625-6635.	5.3	10

#	Article	IF	Citations
244	Effects of different brain surveillance strategies on outcomes for patients with EGFR-mutant metastatic lung adenocarcinoma under targeted therapy. Lung Cancer, 2019, 138, 52-57.	2.0	3
245	Time-Dependent Coupled Cluster Theory on the Keldysh Contour for Nonequilibrium Systems. Journal of Chemical Theory and Computation, 2019, 15, 6137-6153.	5.3	15
246	Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory. Journal of Chemical Theory and Computation, 2019, 15, 6333-6342.	5.3	41
247	Duality of Ring and Ladder Diagrams and Its Importance for Many-Electron Perturbation Theories. Physical Review Letters, 2019, 123, 156401.	7.8	19
248	Fully Quantum Embedding with Density Functional Theory for Full Configuration Interaction Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2019, 15, 5332-5342.	5.3	13
249	Analytical Gradient Theory for Strongly Contracted (SC) and Partially Contracted (PC) N-Electron Valence State Perturbation Theory (NEVPT2). Journal of Chemical Theory and Computation, 2019, 15, 5417-5425.	5.3	18
250	Coupled Cluster as an Impurity Solver for Green's Function Embedding Methods. Journal of Chemical Theory and Computation, 2019, 15, 6010-6024.	5.3	34
251	Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites. ACS Omega, 2019, 4, 1838-1846.	3.5	17
252	The HANDE-QMC Project: Open-Source Stochastic Quantum Chemistry from the Ground State Up. Journal of Chemical Theory and Computation, 2019, 15, 1728-1742.	5.3	33
253	AbÂlnitio Lifetime and Concomitant Double-Excitation Character of Plasmons at Metallic Densities. Physical Review Letters, 2019, 122, 226402.	7.8	15
254	Coupled Cluster Theory in Materials Science. Frontiers in Materials, 2019, 6, .	2.4	74
255	Towards Oxide Electronics: a Roadmap. Applied Surface Science, 2019, 482, 1-93.	6.1	236
256	Active Space Selection Based on Natural Orbital Occupation Numbers from <i>n</i> -Electron Valence Perturbation Theory. Journal of Chemical Theory and Computation, 2019, 15, 3522-3536.	5.3	41
257	Coordinate Descent Full Configuration Interaction. Journal of Chemical Theory and Computation, 2019, 15, 3558-3569.	5.3	31
258	Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening. Computational Materials Science, 2019, 163, 108-116.	3.0	24
259	Benchmark of correlation matrix renormalization method in molecule calculations. Journal of Physics Condensed Matter, 2019, 31, 195902.	1.8	2
260	The quantum nature of hydrogen. International Reviews in Physical Chemistry, 2019, 38, 35-61.	2.3	18
261	Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New Journal of Physics 2019, 21, 013025	2.9	15

#	Article	IF	CITATIONS
262	Cluster-in-Molecule Local Correlation Approach for Periodic Systems. Journal of Chemical Theory and Computation, 2019, 15, 2933-2943.	5.3	14
263	Theoretical Surface Science Beyond Gradient-Corrected Density Functional Theory: Water at α-Al ₂ O ₃ (0001) as a Case Study. Journal of Physical Chemistry C, 2019, 123, 6675-6684.	3.1	15
264	The Basics of Electronic Structure Theory for Periodic Systems. Frontiers in Chemistry, 2019, 7, 106.	3.6	57
265	Computing accurate molecular properties in real space using multiresolution analysis. Advances in Quantum Chemistry, 2019, , 3-52.	0.8	1
266	Improvement of functionals in density functional theory by the inverse Kohn–Sham method and density functional perturbation theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 245003.	1.5	11
267	Efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations. Physical Review B, 2019, 100, .	3.2	16
268	Revised values for the X23 benchmark set of molecular crystals. Physical Chemistry Chemical Physics, 2019, 21, 24333-24344.	2.8	31
269	A comparative study using state-of-the-art electronic structure theories on solid hydrogen phases under high pressures. Npj Computational Materials, 2019, 5, .	8.7	16
270	Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo. Journal of Chemical Physics, 2019, 151, 224108.	3.0	56
271	Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. Physical Review E, 2019, 100, 043301.	2.1	20
272	Multireference configuration interaction and perturbation theory without reduced density matrices. Journal of Chemical Physics, 2019, 151, 211102.	3.0	16
273	Overcoming the Memory Bottleneck in Auxiliary Field Quantum Monte Carlo Simulations with Interpolative Separable Density Fitting. Journal of Chemical Theory and Computation, 2019, 15, 256-264.	5.3	38
274	Exciting Determinants in Quantum Monte Carlo: Loading the Dice with Fast, Low-Memory Weights. Journal of Chemical Theory and Computation, 2019, 15, 127-140.	5.3	24
275	Understanding non-covalent interactions in larger molecular complexes from first principles. Journal of Chemical Physics, 2019, 150, 010901.	3.0	56
276	The Crystal Structure of αâ€F ₂ : Solving a 50 Year Old Puzzle Computationally. Chemistry - A European Journal, 2019, 25, 3318-3324.	3.3	17
277	Clean and Convenient Tessellations for Number Counting Jastrow Factors. Journal of Chemical Theory and Computation, 2019, 15, 1102-1121.	5.3	4
278	Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. Journal of Physical Chemistry Letters, 2019, 10, 358-368.	4.6	90
279	Singleâ€reference coupled cluster methods for computing excitation energies in large molecules: The efficiency and accuracy of approximations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1445.	14.6	66

#	Article	IF	CITATIONS
280	The Full Configuration Interaction Quantum Monte Carlo Method through the Lens of Inexact Power Iteration. SIAM Journal of Scientific Computing, 2020, 42, B1-B29.	2.8	5
281	Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. Journal of Chemical Theory and Computation, 2020, 16, 6950-6967.	5.3	21
282	Richardson–Gaudin mean-field for strong correlation in quantum chemistry. Journal of Chemical Physics, 2020, 153, 104110.	3.0	27
283	Benchmarking an Embedded Adaptive Sampling Configuration Interaction Method for Surface Reactions: H ₂ Desorption from and CH ₄ Dissociation on Cu(111). Journal of Chemical Theory and Computation, 2020, 16, 7078-7088.	5.3	23
284	Simulating Periodic Systems on a Quantum Computer Using Molecular Orbitals. Journal of Chemical Theory and Computation, 2020, 16, 6904-6914.	5.3	27
285	Ground and excited state first-order properties in many-body expanded full configuration interaction theory. Journal of Chemical Physics, 2020, 153, 154107.	3.0	14
286	Systematic comparison and cross-validation of fixed-node diffusion Monte Carlo and phaseless auxiliary-field quantum Monte Carlo in solids. Physical Review B, 2020, 102, .	3.2	13
287	The Ground State Electronic Energy of Benzene. Journal of Physical Chemistry Letters, 2020, 11, 8922-8929.	4.6	90
288	Quantum simulations employing connected moments expansions. Journal of Chemical Physics, 2020, 153, 201102.	3.0	17
289	The color center singlet state of oxygen vacancies in TiO2. Journal of Chemical Physics, 2020, 153, 204704.	3.0	13
291	Improved Fast Randomized Iteration Approach to Full Configuration Interaction. Journal of Chemical Theory and Computation, 2020, 16, 5572-5585.	5.3	8
292	Improved stochastic multireference perturbation theory for correlated systems with large active spaces. Molecular Physics, 2020, 118, e1802072.	1.7	7
293	Efficient evaluation of exact exchange for periodic systems via concentric atomic density fitting. Journal of Chemical Physics, 2020, 153, 124116.	3.0	12
294	Optimal Orbital Selection for Full Configuration Interaction (OptOrbFCI): Pursuing the Basis Set Limit under a Budget. Journal of Chemical Theory and Computation, 2020, 16, 6207-6221.	5.3	8
295	General Correlated Geminal Ansatz for Electronic Structure Calculations: Exploiting Pfaffians in Place of Determinants. Journal of Chemical Theory and Computation, 2020, 16, 6114-6131.	5.3	11
296	Active space approaches combining coupled-cluster and perturbation theory for ground states and excited states. Molecular Physics, 2020, 118, e1808726.	1.7	9
297	Binding and excitations in SixHy molecular systems using quantum Monte Carlo. Journal of Chemical Physics, 2020, 153, 144303.	3.0	8
298	Bethe ansatz of electrons as a meanâ€field wavefunction for chemical systems. International Journal of Quantum Chemistry, 2020, 120, e26255.	2.0	7

#	Article	IF	CITATIONS
299	XO-PBC: An Accurate and Efficient Method for Molecular Crystals. Journal of Chemical Theory and Computation, 2020, 16, 4271-4285.	5.3	10
300	Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2020, 16, 4298-4314.	5.3	14
301	<scp>TurboRVB</scp> : A many-body toolkit for <i>ab initio</i> electronic simulations by quantum Monte Carlo. Journal of Chemical Physics, 2020, 152, 204121.	3.0	37
302	Accelerating Auxiliary-Field Quantum Monte Carlo Simulations of Solids with Graphical Processing Units. Journal of Chemical Theory and Computation, 2020, 16, 4286-4297.	5.3	18
303	Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method. Journal of Chemical Theory and Computation, 2020, 16, 2139-2159.	5.3	90
304	Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework. Journal of Chemical Physics, 2020, 152, 054101.	3.0	25
305	Excitons in Solids from Periodic Equation-of-Motion Coupled-Cluster Theory. Journal of Chemical Theory and Computation, 2020, 16, 3095-3103.	5.3	43
306	First-principles coupled cluster theory of the electronic spectrum of transition metal dichalcogenides. Physical Review B, 2020, 101, .	3.2	13
307	Using Density Matrix Quantum Monte Carlo for Calculating Exact-on-Average Energies for <i>ab Initio</i> Hamiltonians in a Finite Basis Set. Journal of Chemical Theory and Computation, 2020, 16, 1029-1038.	5.3	13
308	<i>Ab Initio</i> Linear and Pump–Probe Spectroscopy of Excitons in Molecular Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2241-2246.	4.6	4
309	The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. Journal of Chemical Physics, 2020, 152, 040903.	3.0	152
310	Accelerating Convergence in Fock Space Quantum Monte Carlo Methods. Journal of Chemical Theory and Computation, 2020, 16, 1503-1510.	5.3	7
311	Wave Function Perspective and Efficient Truncation of Renormalized Second-Order Perturbation Theory. Journal of Chemical Theory and Computation, 2020, 16, 1090-1104.	5.3	12
312	The uncertainty pyramid for electronic-structure methods. , 2020, , 41-76.		4
313	Speeding up <i>ab initio</i> diffusion Monte Carlo simulations by a smart lattice regularization. Physical Review B, 2020, 101, .	3.2	10
314	<i>CrystalGrower</i> : a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science, 2021, 12, 1126-1146.	7.4	18
315	Regional Embedding Enables High-Level Quantum Chemistry for Surface Science. Journal of Physical Chemistry Letters, 2021, 12, 1104-1109.	4.6	33
316	Accelerating convergence to the thermodynamic limit with twist angle selection applied to methods beyond many-body perturbation theory. Journal of Chemical Physics, 2021, 154, 024113.	3.0	4

#	Article	IF	CITATIONS
317	Second-Order Orbital Optimization with Large Active Spaces Using Adaptive Sampling Configuration Interaction (ASCI) and Its Application to Molecular Geometry Optimization. Journal of Chemical Theory and Computation, 2021, 17, 1522-1534.	5.3	15
318	Overcoming finite-size effects in electronic structure simulations at extreme conditions. Journal of Chemical Physics, 2021, 154, 144103.	3.0	24
319	Smooth potential-energy surfaces in fragmentation-based local correlation methods for periodic systems. Molecular Physics, 2021, 119, e1896046.	1.7	0
320	A first encounter with the Hartree-Fock self-consistent-field method. American Journal of Physics, 2021, 89, 426-436.	0.7	1
321	Power Laws Used to Extrapolate the Coupled Cluster Correlation Energy to the Thermodynamic Limit. Journal of Chemical Theory and Computation, 2021, 17, 2752-2758.	5.3	5
322	Doubly Hybrid Functionals Close to Chemical Accuracy for Both Finite and Extended Systems: Implementation and Test of XYG3 and XYGJ-OS. Jacs Au, 2021, 1, 543-549.	7.9	31
323	A full configuration interaction quantum Monte Carlo study of ScO, TiO, and VO molecules. Journal of Chemical Physics, 2021, 154, 164302.	3.0	11
324	Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. Journal of Chemical Physics, 2021, 154, 154104.	3.0	25
325	Solving quasiparticle band spectra of real solids using neural-network quantum states. Communications Physics, 2021, 4, .	5.3	19
326	Signatures of the BCS-BEC crossover in the yrast spectra of Fermi quantum rings. Physical Review Research, 2021, 3, .	3.6	5
327	Electronic-structure methods for materials design. Nature Materials, 2021, 20, 736-749.	27.5	96
328	Dynamical correlation energy of metals in large basis sets from downfolding and composite approaches. Journal of Chemical Physics, 2021, 154, 211105.	3.0	13
329	Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12, 3927.	12.8	57
330	High-Level ab Initio Predictions for the Ionization Energies, Bond Dissociation Energies, and Heats of Formation of Vanadium Methylidene, Vanadium Methyl Species, and Their Cations (VCH2/VCH2+,) Tj ETQq1 1 0.	78 243 14 rg	gBT /Overloc
331	Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order MÃller–Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2021, 17, 4733-4745.	5.3	6
332	Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions. Journal of Chemical Theory and Computation, 2021, 17, 4786-4798.	5.3	19
333	Towards efficient and accurate <i>ab initio</i> solutions to periodic systems via transcorrelation and coupled cluster theory. Physical Review Research, 2021, 3, .	3.6	16
334	Cerium Oxides without <i>U</i> : The Role of Many-Electron Correlation. Journal of Physical Chemistry Letters, 2021, 12, 6277-6283.	4.6	12

		CITATION REPORT		
#	Article		IF	CITATIONS
335	Future directions of chemical theory and computation. Pure and Applied Chemistry, 20	21, 93, 1423-1433.	1.9	3
336	Physics-Inspired Structural Representations for Molecules and Materials. Chemical Revi 9759-9815.	ews, 2021, 121,	47.7	247
337	Finite element method for atoms. Chemical Physics, 2021, 548, 111197.		1.9	0
338	Cluster many-body expansion: A many-body expansion of the electron correlation energe cluster mean field reference. Journal of Chemical Physics, 2021, 155, 054101.	gy about a	3.0	7
339	Computational Materials Insights Into Solid-State Multiqubit Systems. PRX Quantum, 2	2021, 2, .	9.2	3
340	Dimensionality reduction of the many-body problem using coupled-cluster subsystem f Classical and quantum computing perspective. Physical Review A, 2021, 104, .	low equations:	2.5	17
341	Binding energies of molecular solids from fragment and periodic approaches. Electronic	c Structure, 0,	2.8	5
342	The Sign Problem in Density Matrix Quantum Monte Carlo. Journal of Chemical Theory Computation, 2021, 17, 6036-6052.	and	5.3	5
343	DMRG on Top of Plane-Wave Kohn–Sham Orbitals: A Case Study of Defected Boron I Chemical Theory and Computation, 2021, 17, 1143-1154.	Nitride. Journal of	5.3	16
344	Coupled Cluster and Quantum Chemistry Schemes for Solids. , 2020, , 453-468.			1
345	Variational and Diffusion Monte Carlo Approaches to the Nuclear Few- and Many-Body Lecture Notes in Physics, 2017, , 401-476.	Problem.	0.7	2
346	The Shape of Full Configuration Interaction to Come. Journal of Physical Chemistry Lett 418-432.	ters, 2021, 12,	4.6	29
347	Computational Design of Photovoltaic Materials. , 2018, , 176-197.			1
348	Overcoming the difficulties of predicting conformational polymorph energetics in mole crystals <i>via</i> correlated wavefunction methods. Chemical Science, 2020, 11, 220	ecular 0-2214.	7.4	48
349	Linked coupled cluster Monte Carlo. Journal of Chemical Physics, 2016, 144, 044111.		3.0	27
350	Lattice energies of molecular solids from the random phase approximation with singles Journal of Chemical Physics, 2016, 145, 094506.	corrections.	3.0	26
351	Toward a systematic improvement of the fixed-node approximation in diffusion Monte solids $\hat{\epsilon}^{"}$ A case study in diamond. Journal of Chemical Physics, 2020, 153, 184111.	Carlo for	3.0	16
352	Accelerating the convergence of auxiliary-field quantum Monte Carlo in solids with opt Gaussian basis sets. Journal of Chemical Physics, 2020, 153, 194111.	imized	3.0	12

#	ARTICLE	IF	CITATIONS
353	Equation of state of atomic solid hydrogen by stochastic many-body wave function methods. Journal of Chemical Physics, 2020, 153, 204107.	3.0	5
354	Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems. Journal of Chemical Physics, 2020, 153, 184103.	3.0	9
355	Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration. Journal of Chemical Physics, 2020, 153, 234104.	3.0	23
356	The adaptive shift method in full configuration interaction quantum Monte Carlo: Development and applications. Journal of Chemical Physics, 2020, 153, 224115.	3.0	33
357	Diffusion Monte Carlo: A pathway towards an accurate theoretical description of manganese oxides. Physical Review Materials, 2018, 2, .	2.4	15
358	Bridging molecular dynamics and correlated wave-function methods for accurate finite-temperature properties. Physical Review Materials, 2019, 3, .	2.4	16
359	Eliminating the wave-function singularity for ultracold atoms by a similarity transformation. Physical Review Research, 2020, 2, .	3.6	15
360	Cumulant Structure Factors of Jellium. Journal of Modern Physics, 2014, 05, 725-742.	0.6	0
361	Exchange-Correlation Functionals. Springer Series in Solid-state Sciences, 2015, , 105-127.	0.3	0
362	Algoritmos para o método Monte Carlo quântico: o ajuste variacional. , 2018, , 64-97.		0
363	Benchmark study of Nagaoka ferromagnetism by spin-adapted full configuration interaction quantum Monte Carlo. Physical Review B, 2021, 104, .	3.2	6
364			
	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105.	3.0	1
365	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105. Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272.	3.0 10.8	1 9
365 366	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105.Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272.Variational quantum simulation for periodic materials. Physical Review Research, 2022, 4, .	3.0 10.8 3.6	1 9 15
365 366 367	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105.Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272.Variational quantum simulation for periodic materials. Physical Review Research, 2022, 4, .Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity. Condensed Matter, 2022, 7, 15.	3.0 10.8 3.6 1.8	1 9 15 5
365 366 367 368	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105. Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272. Variational quantum simulation for periodic materials. Physical Review Research, 2022, 4, . Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity. Condensed Matter, 2022, 7, 15. Coupled Cluster Downfolding Methods: the effect of double commutator terms on the accuracy of ground-state energies. Journal of Chemical Physics, 2022, 156, 094106.	3.0 10.8 3.6 1.8 3.0	1 9 15 5 9
365 366 367 368 369	Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method. Journal of Chemical Physics, 2022, 156, 044105.Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272.Variational quantum simulation for periodic materials. Physical Review Research, 2022, 4, .Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity. Condensed Matter, 2022, 7, 15.Coupled Cluster Downfolding Methods: the effect of double commutator terms on the accuracy of ground-state energies. Journal of Chemical Physics, 2022, 156, 094106.Assessing the Accuracy of Machine Learning Thermodynamic Perturbation Theory: Density Functional Theory and Beyond. Journal of Chemical Theory and Computation, 2022, 18, 1382-1394.	3.0 10.8 3.6 1.8 3.0 5.3	1 9 15 5 9

#	Article	IF	CITATIONS
371	Full configuration interaction quantum Monte Carlo treatment of fragments embedded in a periodic mean field. Journal of Chemical Physics, 2022, 156, 154107.	3.0	8
372	Systematic Improvability in Quantum Embedding for Real Materials. Physical Review X, 2022, 12, .	8.9	14
373	Emerging quantum computing algorithms for quantum chemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	41
374	A shortcut to the thermodynamic limit for quantum many-body calculations of metals. Nature Computational Science, 2021, 1, 801-808.	8.0	14
375	It's Complicated: On Relativistic Effects and Periodic Trends in the Melting and Boiling Points of the Group 11 Coinage Metals. Journal of the American Chemical Society, 2022, 144, 485-494.	13.7	6
376	Selected configuration interaction wave functions in phaseless auxiliary field quantum Monte Carlo. Journal of Chemical Physics, 2022, 156, 174111.	3.0	12
377	The binding of atomic hydrogen on graphene from density functional theory and diffusion Monte Carlo calculations. Journal of Chemical Physics, 2022, 156, 144702.	3.0	3
378	Machine learning for a finite size correction in periodic coupled cluster theory calculations. Journal of Chemical Physics, 2022, 156, .	3.0	4
379	Piecewise interaction picture density matrix quantum Monte Carlo. Journal of Chemical Physics, 2022, 156, 184107.	3.0	2
380	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	47.7	39
381	Coupled Cluster Downfolding Theory: towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science. Materials Theory, 2022, 6, .	4.3	11
382	Near-exact treatment of seniority-zero ground and excited states with a Richardson–Gaudin mean-field. Journal of Chemical Physics, 2022, 156, .	3.0	15
383	Density matrices of seniority-zero geminal wavefunctions. Journal of Chemical Physics, 2022, 156, .	3.0	7
384	Fixed-point quantum Monte Carlo method: A combination of density-matrix quantum Monte Carlo method and stochastic unravellings. Physical Review A, 2022, 105, .	2.5	1
385	An Introduction to High Performance Computing and Its Intersection with Advances in Modeling Rare Earth Elements and Actinides. ACS Symposium Series, 0, , 3-53.	0.5	3
386	Predicting the Materials Properties Using a 3D Graph Neural Network With Invariant Representation. IEEE Access, 2022, 10, 62440-62449.	4.2	6
387	Stochastic differential equationÂapproach to understanding the population control bias in full configuration interaction quantum Monte Carlo. Physical Review B, 2022, 105, .	3.2	3
388	BIGDML—Towards accurate quantum machine learning force fields for materials. Nature Communications, 2022, 13, .	12.8	29

#	Article	IF	CITATIONS
389	Finite-Size Error Cancellation in Diffusion Monte Carlo Calculations of Surface Chemistry. Journal of Physical Chemistry A, 2022, 126, 4636-4646.	2.5	4
390	Periodic Density Matrix Embedding for CO Adsorption on the MgO(001) Surface. Journal of Physical Chemistry Letters, 2022, 13, 7483-7489.	4.6	12
391	Ground-State Properties of Metallic Solids from Ab Initio Coupled-Cluster Theory. Journal of Physical Chemistry Letters, 2022, 13, 7497-7503.	4.6	11
392	Non-Dyson Algebraic Diagrammatic Construction Theory for Charged Excitations in Solids. Journal of Chemical Theory and Computation, 2022, 18, 5337-5348.	5.3	5
393	Integral-Direct Hartree–Fock and MÃ,ller–Plesset Perturbation Theory for Periodic Systems with Density Fitting: Application to the Benzene Crystal. Journal of Chemical Theory and Computation, 2022, 18, 5374-5381.	5.3	6
394	Pertubative corrections for Hartree-Fock-like algebraic Bethe ansatz analogue. Journal of Mathematical Chemistry, 0, , .	1.5	0
395	Quantum hardware calculations of periodic systems with partition-measurement symmetry verification: Simplified models of hydrogen chain and iron crystals. Physical Review Research, 2022, 4, .	3.6	10
396	Toward Computing Accurate Free Energies in Heterogeneous Catalysis: a Case Study for Adsorbed Isobutene in H-ZSM-5. ACS Physical Chemistry Au, 2022, 2, 399-406.	4.0	11
397	Direct local sampling method for solving the Schrödinger equation with the free complement - local Schrödinger equation theory. Chemical Physics Letters, 2022, 806, 140002.	2.6	4
398	A comparison between the one- and two-step spin–orbit coupling approaches based on the <i>ab initio</i> density matrix renormalization group. Journal of Chemical Physics, 2022, 157, .	3.0	9
399	Importance-sampling FCIQMC: Solving weak sign-problem systems. Journal of Chemical Physics, 2022, 157, .	3.0	2
400	Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2. Journal of Chemical Physics, 2022, 157, .	3.0	3
401	Full configuration interaction quantum Monte Carlo for coupled electron-boson systems and infinite spaces. Physical Review B, 2022, 106, .	3.2	1
402	Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. Journal of Chemical Theory and Computation, 0, , .	5.3	5
403	Constructing "Full-Frequency―Spectra via Moment Constraints for Coupled Cluster Green's Functions. Journal of Chemical Theory and Computation, 2022, 18, 6622-6636.	5.3	2
404	Approaching the basis-set limit of the dRPA correlation energy with explicitly correlated and projector augmented-wave methods. Journal of Chemical Physics, 0, , .	3.0	2
405	Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. Physical Review Letters, 2022, 129, .	7.8	25
406	Ab initio calculation of real solids via neural network ansatz. Nature Communications, 2022, 13,	12.8	11

#	Article	IF	CITATIONS
407	Mapping renormalized coupled cluster methods to quantum computers through a compact unitary representation of nonunitary operators. Physical Review Research, 2022, 4, .	3.6	4
408	Reduced density matrices/static correlation functions of Richardson–Gaudin states without rapidities. Journal of Chemical Physics, 2022, 157, 214104.	3.0	2
409	Sub-system self-consistency in coupled cluster theory. Journal of Chemical Physics, 2023, 158, .	3.0	3
410	Discriminating and understanding molecular crystal polymorphism. Journal of Computational Chemistry, 0, , .	3.3	0
411	Fock-Space Schrieffer–Wolff Transformation: Classically-Assisted Rank-Reduced Quantum Phase Estimation Algorithm. Applied Sciences (Switzerland), 2023, 13, 539.	2.5	1
412	Recent advances in the <i>ab initio</i> theory of solid-state defect qubits. Nanophotonics, 2023, 12, 359-397.	6.0	12
413	The Multistate Quantum Monte Carlo Algebraic Diagrammatic Construction Method. Journal of Physical Chemistry A, 2023, 127, 2161-2175.	2.5	2
414	Density Matrix Renormalization Group for Transcorrelated Hamiltonians: Ground and Excited States in Molecules. Journal of Chemical Theory and Computation, 2023, 19, 1734-1743.	5.3	7
415	How the Exchange Energy Can Affect the Power Laws Used to Extrapolate the Coupled Cluster Correlation Energy to the Thermodynamic Limit. Journal of Chemical Theory and Computation, 2023, 19, 1686-1697.	5.3	2
416	Systematically improvable mean-field variational ansatz for strongly correlated systems: Application to the Hubbard model. Physical Review B, 2023, 107, .	3.2	2
417	Assessment of random phase approximation and second-order MÃ,ller–Plesset perturbation theory for many-body interactions in solid ethane, ethylene, and acetylene. Journal of Chemical Physics, 2023, 158, .	3.0	2
418	Graphic Characterization and Clustering Configuration Descriptors of Determinant Space for Molecules. Journal of Chemical Theory and Computation, 2023, 19, 2282-2290.	5.3	1
419	Meta-GGA SCAN Functional in the Prediction of Ground State Properties of Magnetic Materials: Review of the Current State. Metals, 2023, 13, 728.	2.3	5
420	Effective Reconstruction of Expectation Values from Ab Initio Quantum Embedding. Journal of Chemical Theory and Computation, 2023, 19, 2769-2791.	5.3	3
421	Electronic specific heat capacities and entropies from density matrix quantum Monte Carlo using Gaussian process regression to find gradients of noisy data. Journal of Chemical Physics, 2023, 158, .	3.0	1
422	Unified analysis of finite-size error for periodic Hartree-Fock and second order MÃ,ller-Plesset perturbation theory. Mathematics of Computation, 2024, 93, 679-727.	2.1	2
423	The OpenMolcas <i>Web</i> : A Community-Driven Approach to Advancing Computational Chemistry. Journal of Chemical Theory and Computation, 2023, 19, 6933-6991.	5.3	43
424	Ab initio quantum simulation of strongly correlated materials with quantum embedding. Npj Computational Materials, 2023, 9, .	8.7	1

#	Article	IF	CITATIONS
425	Multiconfigurational nature of electron correlation within nitrogen vacancy centers in diamond. Physical Review B, 2023, 108, .	3.2	2
426	Phaseless auxiliary field quantum Monte Carlo with projector-augmented wave method for solids. Journal of Chemical Physics, 2023, 159, .	3.0	3
427	Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. Journal of Physical Chemistry A, 2023, 127, 6842-6856.	2.5	0
428	Physical insights from imaginary-time density–density correlation functions. Matter and Radiation at Extremes, 2023, 8, .	3.9	9
429	Calculating many excited states of the multidimensional time-independent SchrĶdinger equationÂusing a neural network. Physical Review A, 2023, 108, .	2.5	0
430	Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals. PRX Quantum, 2023, 4, .	9.2	4
431	Toward accurate modeling of structure and energetics of bulk hexagonal boron nitride. Journal of Computational Chemistry, 0, , .	3.3	0
432	Formation energies of silicon self-interstitials using periodic coupled cluster theory. Physical Review B, 2023, 108, .	3.2	1
433	Multi-body wave function of ground and low-lying excited states using unornamented deep neural networks. Physical Review Research, 2023, 5, .	3.6	0
434	Approximate Excited-State Geometry Optimization with the State-Averaged Adaptive Sampling Configuration Interaction Algorithm with Large Active Spaces. Journal of Chemical Theory and Computation, 2023, 19, 7260-7272.	5.3	0
435	Averting the Infrared Catastrophe in the Gold Standard of Quantum Chemistry. Physical Review Letters, 2023, 131, .	7.8	2
436	Cluster-in-Molecule Local Correlation Method for Dispersion Interactions in Large Systems and Periodic Systems. Accounts of Chemical Research, 2023, 56, 3462-3474.	15.6	0
437	Highly Accurate Electronic Structure of Metallic Solids from Coupled-Cluster Theory with Nonperturbative Triple Excitations. Physical Review Letters, 2023, 131, .	7.8	2
438	Electronic and Optical Properties of Transparent Conducting Perovskite SrNbO3: Ab Initio Study. Springer Proceedings in Materials, 2024, , 155-172.	0.3	0
439	Weighted Trace-Penalty Minimization for Full Configuration Interaction. SIAM Journal of Scientific Computing, 2024, 46, A179-A203.	2.8	0
440	Enhanced As-COF nanochannels as a high-capacity anode for K and Ca-ion batteries. Physical Chemistry Chemical Physics, 2024, 26, 6977-6983.	2.8	0