High-performance neuroprosthetic control by an indivi-

Lancet, The 381, 557-564 DOI: 10.1016/s0140-6736(12)61816-9

Citation Report

ARTICLE

A Table Model for Circuit Simulation., 1986,,. 8 1 Infrastructure for studying decision â€" Making processes. , 2010, , . Gene-Environment Interaction for Hypertension Among African American Women Across Generations. 3 1.0 30 Biological Research for Nursing, 2010, 12, 149-155. Sensors and Decoding for Intracortical Brain Computer Interfaces. Annual Review of Biomedical 4 Engineering, 2013, 15, 383-405. The utility of multichannel local field potentials for brain–machine interfaces. Journal of Neural 5 1.8 65 Engineering, 2013, 10, 046005. Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 2013, 74, 100-108. 2.8 754 Bonding Brains to Machines: Ethical Implications of Electroceuticals for the Human Brain. 7 1.7 24 Neuroethics, 2013, 6, 429-434. Thought-based interaction with the physical world. Trends in Cognitive Sciences, 2013, 17, 490-492. 4.0 Long term, stable brain machine interface performance using local field potentials and multiunit 9 1.8 167 spikes. Journal of Neural Engineering, 2013, 10, 056005. Neuroprosthetic control and tetraplegia – Authors'reply. Lancet, The, 2013, 381, 1900-1901. 6.3 A Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys. Science Translational 11 140 5.8Medicine, 2013, 5, 210ra154. Personalized Neuroprosthetics. Science Translational Medicine, 2013, 5, 210rv2. 5.8 141 Translating the Brain-Machine Interface. Science Translational Medicine, 2013, 5, 210ps17. 13 5.8 103 Measurement of Wireless Link for Brain–Machine Interface Systems Using Human-Head Equivalent Liquid. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1307-1310. 14 2.4 Brain-computer interface technologies: from signal to action. Reviews in the Neurosciences, 2013, 24, 15 1.4 169 537-52. Utilizing movement synergies to improve decoding performance for a brain machine interface. , 2013, 2013, 289-92. Resting state detection for gating movement of a neural prosthesis., 2013, , . 17 4 Generalized virtual fixtures for shared-control grasping in brain-machine interfaces. , 2013, 2013, 323-328.

#	Article	IF	CITATIONS
19	Experimental validation of imposed safety regions for neural controlled human patient self-feeding using the modular prosthetic limb. , 2013, , .		2
20	Augmenting neuroprosthetic hand control through evaluation of a bioacoustic interface. , 2013, , .		0
21	Structural analysis of explanted microelectrode arrays. , 2013, , .		20
22	Optimal feedback-controlled point process decoder for adaptation and assisted training in brain-machine interfaces. , 2013, , .		7
23	Mixing decoded cursor velocity and position from an offline Kalman filter improves cursor control in people with tetraplegia. , 2013, , .		8
24	Modeling and identification of the human arm stretch reflex using a realistic spiking neural network and musculoskeletal model. , 2013, , .		6
25	Observation-based calibration of brain-machine interfaces for grasping. , 2013, , .		3
26	Electromagnetic modelling and measurement of antennas for wireless brain-machine interface systems. , 2013, , .		5
28	Neuroprosthetic control and tetraplegia. Lancet, The, 2013, 381, 1900.	6.3	10
29	Facing the challenge: Bringing brain–computer interfaces to end-users. Artificial Intelligence in Medicine, 2013, 59, 55-60.	3.8	27
30	Achieving complex control of a neuroprosthetic arm. Nature Reviews Neurology, 2013, 9, 62-62.	4.9	7
31	Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuroscience, 2013, 36, 337-359.	5.0	633
32	Towards autonomous neuroprosthetic control using Hebbian reinforcement learning. Journal of Neural Engineering, 2013, 10, 066005.	1.8	34
33	The Convergence of Machine and Biological Intelligence. IEEE Intelligent Systems, 2013, 28, 28-43.	4.0	26
34	Noninvasive control of a robotic arm in multiple dimensions using scalp electroencephalogram. , 2013, , .		12
35	Advantages of closed-loop calibration in intracortical brain–computer interfaces for people with tetraplegia. Journal of Neural Engineering, 2013, 10, 046012.	1.8	83
36	Brain-computer interfacing: science fiction has come true. Brain, 2013, 136, 2001-2004.	3.7	13
37	Neuroprosthetic technology for individuals with spinal cord injury. Journal of Spinal Cord Medicine, 2013, 36, 258-272.	0.7	64

# 38	ARTICLE Control of Hand Prostheses: A Literature Review. , 2013, , .	IF	CITATIONS
39	Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface. Neurosurgical Focus, 2013, 34, E3.	1.0	25
41	Advances in Neuroprosthetic Learning and Control. PLoS Biology, 2013, 11, e1001561.	2.6	104
42	Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. Journal of Rehabilitation Research and Development, 2013, 50, 145.	1.6	197
43	An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery. Sensors, 2013, 13, 6014-6031.	2.1	31
44	Bioengineering solutions for neural repair and recovery in stroke. Current Opinion in Neurology, 2013, 26, 626-631.	1.8	20
45	Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology, 2013, 4, 184.	1.1	82
46	Progress toward a high-performance neural prosthetic. , 2013, , .		1
47	A fiber optic multi-channel neural recording system for freely moving rats. , 2013, , .		0
48	Generating tactile afferent stimulation patterns for slip and touch feedback in neural prosthetics. , 2013, 2013, 5922-5.		6
49	Feature extraction and unsupervised classification of neural population reward signals for reinforcement based BMI. , 2013, 2013, 5250-3.		6
50	HARMONIE: A multimodal control framework for human assistive robotics. , 2013, , .		19
51	Ultra-compliant neural probes are subject to fluid forces during dissolution of polymer delivery vehicles. , 2013, 2013, 1550-3.		2
52	Brain–machine interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18343-18343.	3.3	18
53	Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters. Journal of Neural Engineering, 2013, 10, 036015.	1.8	32
54	Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. Journal of Neural Engineering, 2013, 10, 036004.	1.8	180
56	Human Demonstration Trajectory Refinement for Redundant Manipulators. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 333-338.	0.4	1
57	Design, Control, and Sensory Feedback of Externally Powered Hand Prostheses: A Literature Review. Critical Reviews in Biomedical Engineering, 2013, 41, 161-181.	0.5	32

#	Article	IF	CITATIONS
58	Statistical Analysis and Decoding of Neural Activity in the Rodent Geniculate Ganglion Using a Metric-Based Inference System. PLoS ONE, 2013, 8, e65439.	1.1	2
59	How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits. PLoS ONE, 2013, 8, e83845.	1.1	16
60	Towards a circuit mechanism for movement tuning in motor cortex. Frontiers in Neural Circuits, 2012, 6, 127.	1.4	10
61	In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Frontiers in Neural Circuits, 2013, 7, 40.	1.4	72
62	Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Frontiers in Neural Circuits, 2013, 7, 92.	1.4	45
63	Creating new functional circuits for action via brain-machine interfaces. Frontiers in Computational Neuroscience, 2013, 7, 157.	1.2	39
64	A BMI-based occupational therapy assist suit: asynchronous control by SSVEP. Frontiers in Neuroscience, 2013, 7, 172.	1.4	64
65	The role of ECoG magnitude and phase in decoding position, velocity, and acceleration during continuous motor behavior. Frontiers in Neuroscience, 2013, 7, 200.	1.4	36
66	Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals. Advances in Human-Computer Interaction, 2013, 2013, 1-9.	1.8	17
67	On the Intimate Relationship between Man and Machine. Epistemology and Philosophy of Science, 2013, 37, 141-163.	0.0	0
68	Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation. PLoS ONE, 2014, 9, e114529.	1.1	45
69	High-Accuracy Brain-Machine Interfaces Using Feedback Information. PLoS ONE, 2014, 9, e103539.	1.1	11
70	A Direct Brain-to-Brain Interface in Humans. PLoS ONE, 2014, 9, e111332.	1.1	126
71	A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction. PLoS ONE, 2014, 9, e112091.	1.1	45
72	Coarse Electrocorticographic Decoding of Ipsilateral Reach in Patients with Brain Lesions. PLoS ONE, 2014, 9, e115236.	1.1	25
73	Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	5
74	Learned self-regulation of the lesioned brain with epidural electrocorticography. Frontiers in Behavioral Neuroscience, 2014, 8, 429.	1.0	36
75	Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Frontiers in Neuroengineering, 2014, 7, 2.	4.8	159

#	Article	IF	CITATIONS
76	The sinusoidal probe: a new approach to improve electrode longevity. Frontiers in Neuroengineering, 2014, 7, 10.	4.8	87
77	Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation. Frontiers in Human Neuroscience, 2014, 8, 285.	1.0	22
78	Alpha band functional connectivity correlates with the performance of brainââ,¬â€œmachine interfaces to decode real and imagined movements. Frontiers in Human Neuroscience, 2014, 8, 620.	1.0	22
79	Closed-loop control of spinal cord stimulation to restore hand function after paralysis. Frontiers in Neuroscience, 2014, 8, 87.	1.4	81
80	Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys. Frontiers in Neuroscience, 2014, 8, 97.	1.4	7
81	A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces. Frontiers in Neuroscience, 2014, 8, 111.	1.4	16
82	Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury. Frontiers in Neuroscience, 2014, 8, 123.	1.4	8
83	Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury. Frontiers in Integrative Neuroscience, 2014, 8, 17.	1.0	23
84	Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain. Frontiers in Systems Neuroscience, 2014, 8, 104.	1.2	9
85	¢â,¬Å"Messing with the mindââ,¬Âŧ evolutionary challenges to human brain augmentation. Frontiers in Systems Neuroscience, 2014, 8, 152.	1.2	7
86	Bottlenecks to clinical translation of direct brain-computer interfaces. Frontiers in Systems Neuroscience, 2014, 8, 226.	1.2	13
87	An EEG-Based BCI Platform to Improve Arm Reaching Ability of Chronic Stroke Patients by Means of an Operant Learning Training with a Contingent Force Feedback. International Journal of E-Health and Medical Communications, 2014, 5, 114-134.	1.4	4
89	Brain–computer interfaces. , 2014, , 565-576.		2
90	Intracranialbrainâ \in "computer interfaces for communication and control. , 2014, , 577-585.		3
91	Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control. Journal of Neural Engineering, 2014, 11, 046025.	1.8	30
92	The impact of mind-body awareness training on the early learning of a brain-computer interface. Technology, 2014, 02, 254-260.	1.4	40
93	Self-recalibrating classifiers for intracortical brain–computer interfaces. Journal of Neural Engineering, 2014, 11, 026001.	1.8	51
94	Time to address the problems at the neural interface. Journal of Neural Engineering, 2014, 11, 020201.	1.8	19

		CITATION REPORT		
#	Article		IF	CITATIONS
95	A freely-moving monkey treadmill model. Journal of Neural Engineering, 2014, 11, 04602	20.	1.8	56
96	Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task. Neural Engineering, 2014, 11, 066014.	Journal of	1.8	5
97	Comparison of inkjet-printed and microfabricated loop antennas for implants in wireless brain-machine interface systems. , 2014, , .			1
98	A brain-computer interface for high-level remote control of an autonomous, reinforcement-learning-based robotic system for reaching and grasping. , 2014, , .			25
99	High-performance brain-machine interface enabled by an adaptive optimal feedback-con process decoder. , 2014, 2014, 6493-6.	trolled point		16
100	Computationally efficient feature denoising filter and selection of optimal features for n insensitive spike sorting. , 2014, 2014, 1251-4.	oise		3
101	Qualitative assessment of Tongue Drive System by people with high-level spinal cord inju Rehabilitation Research and Development, 2014, 51, 451-466.	ury. Journal of	1.6	25
102	Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Reorganization. PLoS ONE, 2014, 9, e87253.	e Neural Input	1.1	65
103	Severely affected ALS patients have broad and high expectations for brain-machine inter Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 513-519.	faces.	1.1	18
104	Language Model Applications to Spelling with Brain-Computer Interfaces. Sensors, 2014	., 14, 5967-5993.	2.1	35
105	Neural Coding for Effective Rehabilitation. BioMed Research International, 2014, 2014,	1-17.	0.9	2
106	A Study on Decoding Models for the Reconstruction of Hand Trajectories from the Hum Magnetoencephalography. BioMed Research International, 2014, 2014, 1-8.	an	0.9	4
107	Locked in, but not out?. Neurology, 2014, 82, 1852-1853.		1.5	17
108	A design and implementation framework for unsupervised high-resolution recursive filte neuromotor prosthesis applications. , 2014, , .	rs in		0
109	Generalizability of EMG decoding using local field potentials. , 2014, 2014, 1630-3.			5
110	Towards a wireless optical stimulation system for long term in-vivo experiments. , 2014,	2014, 2024-7.		2
111	Beamforming approaches for untethered, ultrasonic neural dust motes for cortical recor simulation study. , 2014, 2014, 2625-8.	ding: A		11
112	Differences in motor cortical representations of kinematic variables between action obs action execution and implications for brain-machine interfaces. , 2014, 2014, 1334-7.	ervation and		0

#	Article	IF	CITATIONS
113	Combining Decoder Design and Neural Adaptation in Brain-Machine Interfaces. Neuron, 2014, 84, 665-680.	3.8	144
114	Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior. Neuron, 2014, 84, 1170-1182.	3.8	200
115	Design and optimization of mm-size implantable and wearable on-body antennas for biomedical systems. , 2014, , .		13
116	Neuroprosthetic limb control with electrocorticography: Approaches and challenges. , 2014, 2014, 5212-5.		2
117	Impaired import: how huntingtin harms. Nature Neuroscience, 2014, 17, 747-749.	7.1	2
118	Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. Journal of Neural Engineering, 2014, 11, 066008.	1.8	53
119	Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems and Biorobotics, 2014, , .	0.2	8
120	Design of a smart haptic system for repulsive force control under irregular manipulation environment. Smart Materials and Structures, 2014, 23, 125040.	1.8	2
121	Brain computer interface based functional electrical stimulation: An outline. , 2014, , .		3
122	A collaborative BCI approach to autonomous control of a prosthetic limb system. , 2014, , .		33
123	Identification of three mental states using a motor imagery based brain machine interface. , 2014, , .		3
124	A smart multi-receiver power transmission system for long-term biological monitoring. , 2014, , .		4
125	Robotics, Stem Cells, and Brain-Computer Interfaces in Rehabilitation and Recovery from Stroke. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S145-S154.	0.7	12
126	Preserved Foot Motor Cortex in Patients With Complete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2014, 28, 179-187.	1.4	6
127	Brain–Computer Interfaces and Assistive Technology. The International Library of Ethics, Law and Technology, 2014, , 7-38.	0.2	23
128	Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain–computer interface. Journal of Neural Engineering, 2014, 11, 024001.	1.8	22
129	The effect of chronic intracortical microstimulation on the electrode–tissue interface. Journal of Neural Engineering, 2014, 11, 026004.	1.8	48
130	Designing Dynamical Properties of Brain–Machine Interfaces to Optimize Task-Specific Performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 911-920.	2.7	28

		CITATION REPORT		
#	Article		IF	CITATIONS
131	Extracting kinetic information from human motor cortical signals. NeuroImage, 2014,	101, 695-703.	2.1	84
132	Microelectrode Array Recordings from the Ventral Roots in Chronically Implanted Cats Neurology, 2014, 5, 104.	. Frontiers in	1.1	20
134	Decoding grasp force profile from electrocorticography signals in non-human primate cortex. Neuroscience Research, 2014, 83, 1-7.	sensorimotor	1.0	36
135	A cortical–spinal prosthesis for targeted limb movement in paralysed primate avatar Communications, 2014, 5, 3237.	s. Nature	5.8	42
136	Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Current Surgery Repo	orts, 2014, 2, 1.	0.4	191
137	Give Me a Sign: Decoding Complex Coordinated Hand Movements Using High-Field fM Topography, 2014, 27, 248-257.	RI. Brain	0.8	30
138	Brain-machine interfaces: an overview. Translational Neuroscience, 2014, 5, .		0.7	64
139	Brain–Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Transactions on Biomedical Engineering, 2014, 61, 1425-1435.	Perspectives. IEEE	2.5	361
140	Adaptive Offset Correction for Intracortical Brain–Computer Interfaces. IEEE Transac Systems and Rehabilitation Engineering, 2014, 22, 239-248.	tions on Neural	2.7	17
141	Volitional modulation of optically recorded calcium signals during neuroprosthetic lear Nature Neuroscience, 2014, 17, 807-809.	ning.	7.1	133
142	Shedding light on learning. Nature Neuroscience, 2014, 17, 746-747.		7.1	1
143	Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Research, 2014, 78, 21-29.	ence	1.0	47
144	Brain–computer interfaces: a powerful tool for scientific inquiry. Current Opinion in 2014, 25, 70-75.	Neurobiology,	2.0	40
145	Optimization of nonlinear energy operator based spike detection circuit for high densi recordings. , 2014, , .	ty neural		1
146	Exploration of the brain for optimal placement of BCI implants in paralyzed people. , 20	014,,.		3
147	Simultaneous Neural Control of Simple Reaching and Grasping With the Modular Pros Using Intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engine 695-705.	thetic Limb ering, 2014, 22,	2.7	65
148	Collaborative Approach in the Development of Highâ€Performance Brain–Computer Neuroprosthetic Arm: Translation from Animal Models to Human Control. Clinical and Science, 2014, 7, 52-59.		1.5	55
149	Long-term decoding stability of local field potentials from silicon arrays in primate mot during a 2D center out task. Journal of Neural Engineering, 2014, 11, 036009.	or cortex	1.8	55

#	Article	IF	CITATIONS
150	Effects of caspase-1 knockout on chronic neural recording quality and longevity: Insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials, 2014, 35, 9620-9634.	5.7	118
151	A survey of brain computer interfaces and their applications. , 2014, , .		20
152	A high-performance brain-machine interface (BMI) using image information. , 2014, , .		0
153	To sort or not to sort: the impact of spike-sorting on neural decoding performance. Journal of Neural Engineering, 2014, 11, 056005.	1.8	94
154	Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials, 2014, 35, 9255-9268.	5.7	170
155	Neuroscience from a mathematical perspective: key concepts, scales and scaling hypothesis, universality. Biological Cybernetics, 2014, 108, 701-712.	0.6	10
156	Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. Journal of Neural Engineering, 2014, 11, 046007.	1.8	92
157	Performance sustaining intracortical neural prostheses. Journal of Neural Engineering, 2014, 11, 066003.	1.8	58
158	Rapid acquisition of novel interface control by small ensembles of arbitrarily selected primary motor cortex neurons. Journal of Neurophysiology, 2014, 112, 1528-1548.	0.9	31
159	Motor system evolution and the emergence of high cognitive functions. Progress in Neurobiology, 2014, 122, 73-93.	2.8	102
160	Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nature Reviews Neuroscience, 2014, 15, 313-325.	4.9	304
161	Brain Implants for Substituting Lost Motor Function: State of the Art and Potential Impact on the Lives of Motor-Impaired Seniors. Gerontology, 2014, 60, 366-372.	1.4	6
162	Information Systems Opportunities in Brain–Machine Interface Decoders. Proceedings of the IEEE, 2014, 102, 666-682.	16.4	79
163	Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nature Neuroscience, 2014, 17, 1107-1113.	7.1	116
164	From assistance towards restoration with epidural brain-computer interfacing. Restorative Neurology and Neuroscience, 2014, 32, 517-525.	0.4	35
165	Demonstration of a Semi-Autonomous Hybrid Brain–Machine Interface Using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 784-796.	2.7	162
166	Toward More Versatile and Intuitive Cortical Brain–Machine Interfaces. Current Biology, 2014, 24, R885-R897.	1.8	70
167	Continuous Closed-Loop Decoder Adaptation with a Recursive Maximum Likelihood Algorithm Allows for Rapid Performance Acquisition in Brain-Machine Interfaces. Neural Computation, 2014, 26, 1811-1839.	1.3	35

		CITATION RE	PORT	
#	Article		IF	CITATIONS
168	Physiological Challenges for Intracortical Electrodes. Brain Stimulation, 2014, 7, 1-6.		0.7	59
169	Recapitulating Flesh with Silicon and Steel: Advancements in Upper Extremity Robotic World Neurosurgery, 2014, 81, 730-741.	Prosthetics.	0.7	13
171	EEG-Based Classification of Imagined Arm Trajectories. Biosystems and Biorobotics, 20)14, , 611-620.	0.2	5
172	Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Neuron, 2014, 82, 1380-1393.	Control.	3.8	216
173	The Quest for the Bionic Arm. Journal of the American Academy of Orthopaedic Surgeo 22, 346-351.	ons, The, 2014,	1.1	8
174	Neural shaping with joint optimization of controller and plant under restricted dynami	cs. , 2014, , .		0
175	Real-Time Simulation of Three-Dimensional Shoulder Girdle and Arm Dynamics. IEEE Tra Biomedical Engineering, 2014, 61, 1947-1956.	ansactions on	2.5	58
176	Brain Machine Interface and Limb Reanimation Technologies: Restoring Function After Injury Through Development of a Bypass System. Mayo Clinic Proceedings, 2014, 89, 7		1.4	25
177	Direct Brain Control and Communication in Paralysis. Brain Topography, 2014, 27, 4-1	1.	0.8	52
178	Muscle synergies evoked by microstimulation are preferentially encoded during behavi Computational Neuroscience, 2014, 8, 20.	or. Frontiers in	1.2	56
179	Bidirectional control of a one-dimensional robotic actuator by operant conditioning of in rat motor cortex. Frontiers in Neuroscience, 2014, 8, 206.	a single unit	1.4	16
180	Low-latency multi-threaded processing of neuronal signals for brain-computer interfac in Neuroengineering, 2014, 7, 1.	es. Frontiers	4.8	61
181	Single trial prediction of self-paced reaching directions from EEG signals. Frontiers in N 2014, 8, 222.	euroscience,	1.4	60
182	Consensus of Clinical Neurorestorative Progress in Patients with Complete Chronic Sp Injury. Cell Transplantation, 2014, 23, 5-17.	inal Cord	1.2	29
183	A future of living machines?: International trends and prospects in biomimetic and biol Proceedings of SPIE, 2014, , .	ıybrid systems.	0.8	4
184	Brain machine interfaces: state of the art and challenges to translation. Neurobiology 2015, 83, 152-153.	of Disease,	2.1	0
185	Surveying the interest of individuals with upper limb loss in novel prosthetic control te Journal of NeuroEngineering and Rehabilitation, 2015, 12, 53.	chniques.	2.4	126
186	Systems Neuroengineering: Understanding and Interacting with the Brain. Engineering	s, 2015, 1, 292-308.	3.2	30

#	Article	IF	CITATIONS
187	ADVANCING CHRONIC INTRACORTICAL ELECTRODE RECORDING FUNCTION. , 2015, , 351-368.		0
188	Decoding upper limb residual muscle activity in severe chronic stroke. Annals of Clinical and Translational Neurology, 2015, 2, 1-11.	1.7	38
189	Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex. Journal of Neural Engineering, 2015, 12, 056010.	1.8	40
191	Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Scientific Reports, 2015, 5, 13893.	1.6	119
192	Comprehensive rehabilitative care across the spectrum of amyotrophic lateral sclerosis. NeuroRehabilitation, 2015, 37, 53-68.	0.5	53
193	Meal assistance robots: A review on current status, challenges and future directions. , 2015, , .		20
194	A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. BioMedical Engineering OnLine, 2015, 14, 81.	1.3	28
195	Multi-walled carbon nanotubes change morpho-functional and GABA characteristics of mouse cortical astrocytes. Journal of Nanobiotechnology, 2015, 13, 92.	4.2	8
196	Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study. Journal of Neural Engineering, 2015, 12, 056016.	1.8	25
197	Learning from brain control: clinical application of brain–computer interfaces. E-Neuroforum, 2015, 21, .	0.2	6
198	Lernen von Hirnkontrolle – Klinische Anwendung von Brain-Computer Interfaces. E-Neuroforum, 2015, 21, 130-143.	0.2	0
199	Emerging Neural Stimulation Technologies for Bladder Dysfunctions. International Neurourology Journal, 2015, 19, 3-11.	0.5	25
200	Developmental history of neurorestoratology. Journal of Neurorestoratology, 0, , 31.	1.1	1
201	Deafferented controllers: a fundamental failure mechanism in cortical neuroprosthetic systems. Frontiers in Behavioral Neuroscience, 2015, 9, 186.	1.0	4
202	Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury. Frontiers in Behavioral Neuroscience, 2015, 9, 234.	1.0	29
203	Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control. Frontiers in Neurorobotics, 2015, 9, 8.	1.6	25
204	Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task. Frontiers in Computational Neuroscience, 2015, 9, 84.	1.2	0
205	Global cortical activity predicts shape of hand during grasping. Frontiers in Neuroscience, 2015, 9, 121.	1.4	78

		15	0
#		IF	CITATIONS
206	Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes. Frontiers in Systems Neuroscience, 2015, 9, 47.	1.2	36
207	Advancing brain-machine interfaces: moving beyond linear state space models. Frontiers in Systems Neuroscience, 2015, 9, 108.	1.2	15
208	Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals. PLoS ONE, 2015, 10, e0131547.	1.1	33
209	Feature Selection Applying Statistical and Neurofuzzy Methods to EEG-Based BCI. Computational Intelligence and Neuroscience, 2015, 2015, 1-17.	1.1	10
210	Bioelectronic interfaces for artificially driven human movements. , 0, , 281-293.		0
211	Neuroprosthetics. , 2015, , 714-721.		3
212	Towards Independence: A BCI Telepresence Robot for People With Severe Motor Disabilities. Proceedings of the IEEE, 2015, 103, 969-982.	16.4	150
213	A high performing brain–machine interface driven by low-frequency local field potentials alone and together with spikes. Journal of Neural Engineering, 2015, 12, 036009.	1.8	110
214	A High-Performance Keyboard Neural Prosthesis Enabled by Task Optimization. IEEE Transactions on Biomedical Engineering, 2015, 62, 21-29.	2.5	51
215	Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 2015, 348, 906-910.	6.0	483
216	Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms. Proceedings of the IEEE, 2015, 103, 907-925.	16.4	166
217	Reading the mind to move the body. Science, 2015, 348, 860-861.	6.0	6
218	Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces. Frontiers in Behavioral Neuroscience, 2015, 9, 21.	1.0	37
219	Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. Journal of Neuroscience, 2015, 35, 8653-8661.	1.7	55
220	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	2.1	256
221	An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. International Journal of Robotics Research, 2015, 34, 763-780.	5.8	43
222	Brain-Machine Interfaces: The Perception-Action Closed Loop: A Two-Learner System. IEEE Systems, Man, and Cybernetics Magazine, 2015, 1, 6-8.	1.2	15
223	Leveraging historical knowledge of neural dynamics to rescue decoder performance as neural channels are lost: "Decoder hysteresis― , 2015, 2015, 1061-6.		3

#	Article	IF	CITATIONS
224	Sensory control of normal movement and of movement aided by neural prostheses. Journal of Anatomy, 2015, 227, 167-177.	0.9	16
225	Optimizing motor imagery neurofeedback through the use of multimodal immersive virtual reality and motor priming. , 2015, , .		15
226	Asynchronous Decoding of Error Potentials during the Monitoring of a Reaching Task. , 2015, , .		13
227	Emerging Subspecialties in Neurology: Neurorehabilitation. Neurology, 2015, 85, e50-2.	1.5	1
228	The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior. Journal of Neural Engineering, 2015, 12, 066018.	1.8	64
229	A full-duplex wireless integrated transceiver for implant-to-air data communications. , 2015, , .		5
230	Brain-Computer Interface Research. Springer Briefs in Electrical and Computer Engineering, 2015, , .	0.3	3
231	A 64-channel ultra-low power bioelectric signal acquisition system for brain-computer interface. , 2015, , .		9
232	Biological and bionic hands: Natural neural coding and artificial perception. , 2015, , .		1
233	Semi-autonomous Hybrid Brain-Machine Interface. Springer Briefs in Electrical and Computer Engineering, 2015, , 89-104.	0.3	1
234	Embroidered textile antennas for wireless body-centric communication and sensing. , 2015, , .		2
235	Movement target decoding from EEG and the corresponding discriminative sources: A preliminary study. , 2015, 2015, 1468-71.		4
236	Achievements and challenges of translational research in non-invasive SMR-BCI-controlled upper extremity neuroprosthesis in spinal cord injury. , 2015, , .		1
237	A mobile embedded platform for high performance neural signal computation and communication. , 2015, , .		4
238	A bidirectional brain-machine interface connecting alert rodents to a dynamical system. , 2015, 2015, 51-4.		12
239	Decoding bipedal locomotion from the rat sensorimotor cortex. Journal of Neural Engineering, 2015, 12, 056014.	1.8	32
240	Ten-dimensional anthropomorphic arm control in a human brainâ^'machine interface: difficulties, solutions, and limitations. Journal of Neural Engineering, 2015, 12, 016011.	1.8	385
241	Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. Journal of Neuroscience Methods, 2015, 242, 15-40	1.3	116

#	Article	IF	CITATIONS
242	Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Research, 2015, 1595, 51-73.	1.1	192
243	Brain–Machine Interfaces in Stroke Neurorehabilitation. , 2015, , 3-14.		9
244	Coding of movements in the motor cortex. Current Opinion in Neurobiology, 2015, 33, 34-39.	2.0	63
245	Motor cortex single-neuron and population contributions to compensation for multiple dynamic force fields. Journal of Neurophysiology, 2015, 113, 487-508.	0.9	6
246	A 4.78 mm 2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation. IEEE Journal of Solid-State Circuits, 2015, 50, 1038-1047.	3.5	75
247	Brain–computer interface control along instructed paths. Journal of Neural Engineering, 2015, 12, 016015.	1.8	11
248	Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies. ACS Chemical Neuroscience, 2015, 6, 48-67.	1.7	429
249	Using a Noninvasive Decoding Method to Classify Rhythmic Movement Imaginations of the Arm in Two Planes. IEEE Transactions on Biomedical Engineering, 2015, 62, 972-981.	2.5	59
250	Decoding a Wide Range of Hand Configurations from Macaque Motor, Premotor, and Parietal Cortices. Journal of Neuroscience, 2015, 35, 1068-1081.	1.7	147
251	What Would Brain-Computer Interface Users Want: Opinions and Priorities of Potential Users With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2015, 96, S38-S45.e5.	0.5	73
252	A novel approach for prediction of a repulsive force in a haptic manipulator: experimental verification with different trajectories. Smart Materials and Structures, 2015, 24, 025017.	1.8	1
253	Local field potentials in primate motor cortex encode grasp kinetic parameters. NeuroImage, 2015, 114, 338-355.	2.1	57
254	Smart Sensors for Health and Environment Monitoring. KAIST Research Series, 2015, , .	1.5	7
255	Cortical neuroprosthetics from a clinical perspective. Neurobiology of Disease, 2015, 83, 154-160.	2.1	14
256	Columnar Organization of the Motor Cortex: Direction of Movement. , 2015, , 123-141.		3
257	An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomedizinische Technik, 2015, 60, 199-205.	0.9	56
258	Invasive brain–machine interfaces: a survey of paralyzed patients' attitudes, knowledge and methods of information retrieval. Journal of Neural Engineering, 2015, 12, 043001.	1.8	29
259	Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron, 2015, 87, 297-309.	3.8	296

#	Article	IF	CITATIONS
260	Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter, 2015, 11, 4847-4861.	1.2	72
261	Humans as Superorganisms. Perspectives on Psychological Science, 2015, 10, 464-481.	5.2	54
262	Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. Journal of Materials Chemistry B, 2015, 3, 4965-4978.	2.9	127
263	Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays. Frontiers in Integrative Neuroscience, 2015, 9, 40.	1.0	38
264	Recent Advances on the Modular Organization of the Cortex. , 2015, , .		3
265	Fabrication and mechanical characterization of long and different penetrating length neural microelectrode arrays. Journal of Micromechanics and Microengineering, 2015, 25, 055014.	1.5	11
266	Defining Ecological Strategies in Neuroprosthetics. Neuron, 2015, 86, 29-33.	3.8	27
267	Engineering the Next Generation of Brain Scientists. Neuron, 2015, 86, 16-20.	3.8	7
268	BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials, 2015, 53, 753-762.	5.7	146
269	3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials, 2015, 53, 173-183.	5.7	108
270	Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 1.	2.4	773
271	Prediction of muscle activity during loaded movements of the upper limb. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 6.	2.4	22
272	An overview of brain computer interface. , 2015, , .		3
273	Neuroplasticity subserving the operation of brain–machine interfaces. Neurobiology of Disease, 2015, 83, 161-171.	2.1	21
274	Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano, 2015, 9, 4465-4474.	7.3	246
275	Management of Chronic Spinal Cord Dysfunction. CONTINUUM Lifelong Learning in Neurology, 2015, 21, 188-200.	0.4	11
276	Visual Guidance in Control of Grasping. Annual Review of Neuroscience, 2015, 38, 69-86.	5.0	61
277	Neuroprostheses for somatosensory function. , 2015, , 127-151.		2

#	Article	IF	CITATIONS
278	Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Current Opinion in Neurobiology, 2015, 33, 95-102.	2.0	56
279	Brain-Machine Interfaces beyond Neuroprosthetics. Neuron, 2015, 86, 55-67.	3.8	102
280	Recent advances in bioelectric prostheses. Neurology: Clinical Practice, 2015, 5, 164-170.	0.8	21
281	The Emergence of Single Neurons in Clinical Neurology. Neuron, 2015, 86, 79-91.	3.8	74
282	Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats. Journal of Neurotrauma, 2015, 32, 1666-1673.	1.7	25
283	Clinical translation of a high-performance neural prosthesis. Nature Medicine, 2015, 21, 1142-1145.	15.2	269
284	Quality of Neuron Signals Recorded in the Monkey Neocortex Using Chronically Implanted Multiple Microwires. Neuroscience and Behavioral Physiology, 2015, 45, 854-862.	0.2	0
285	Musculoskeletal Representation of a Large Repertoire of Hand Grasping Actions in Primates. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 210-220.	2.7	27
286	Lower body segmental dynamics control using eye blinking activity. , 2015, , .		3
287	Neural representations of movement intentions during brain-controlled self-motion. , 2015, , .		5
289	Moving Brain-Controlled Devices Outside the Lab: Principles and Applications. Trends in Augmentation of Human Performance, 2015, , 73-94.	0.4	1
290	System identification of brain-machine interface control using a cursor jump perturbation. , 2015, , .		5
291	Motor cortical adaptation induced by closed-loop BCI. , 2015, , .		1
292	Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex. Journal of Neuroscience, 2015, 35, 10888-10897.	1.7	33
293	Brain-Machine Interfaces: From Macro- to Microcircuits. , 2015, , 407-428.		1
294	An autonomous robotic assistant for drinking. , 2015, , .		42
295	Learning from brain control: clinical application of brain–computer interfaces. E-Neuroforum, 2015, 6, 87-95.	0.2	10
296	Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nature Methods, 2015, 12, 1157-1162.	9.0	106

#	Article	IF	CITATIONS
297	Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 867-876.	2.7	119
298	Recasting brain-machine interface design from a physical control system perspective. Journal of Computational Neuroscience, 2015, 39, 107-118.	0.6	12
299	Multi-Modal Sensing Techniques for Interfacing Hand Prostheses: A Review. IEEE Sensors Journal, 2015, 15, 6065-6076.	2.4	130
300	A lower limb exoskeleton control system based on steady state visual evoked potentials. Journal of Neural Engineering, 2015, 12, 056009.	1.8	163
301	Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. Journal of Neural Engineering, 2015, 12, 026003.	1.8	150
302	Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics. Journal of Neurophysiology, 2015, 114, 1500-1512.	0.9	53
303	Representation of Muscle Synergies in the Primate Brain. Journal of Neuroscience, 2015, 35, 12615-12624.	1.7	151
304	Simultaneous and independent control of a brain-computer interface and contralateral limb movement. Brain-Computer Interfaces, 2015, 2, 174-185.	0.9	14
305	Estimation of two-digit grip type and grip force level by frequency decoding of motor cortex activity for a BMI application. , 2015, , .		3
306	Biological and bionic hands: natural neural coding and artificial perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140209.	1.8	56
307	Classification of mouth movements using 7 T fMRI. Journal of Neural Engineering, 2015, 12, 066026.	1.8	22
308	Hand Shape Representations in the Human Posterior Parietal Cortex. Journal of Neuroscience, 2015, 35, 15466-15476.	1.7	79
309	Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Science Translational Medicine, 2015, 7, 313ra179.	5.8	249
310	Restoring tactile and proprioceptive sensation through a brain interface. Neurobiology of Disease, 2015, 83, 191-198.	2.1	66
311	Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain–machine interface performance. Journal of Neural Engineering, 2015, 12, 016009.	1.8	72
312	Modeling in vitro neural electrode interface in neural cell culture medium. Microsystem Technologies, 2015, 21, 1739-1747.	1.2	5
313	Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback. Human Brain Mapping, 2015, 36, 643-654.	1.9	26
314	Brain-controlled muscle stimulation for the restoration of motor function. Neurobiology of Disease, 2015, 83, 180-190.	2.1	28

#	Article	IF	CITATIONS
315	Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces. IEEE Transactions on Biomedical Engineering, 2015, 62, 570-581.	2.5	12
316	Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials, 2015, 37, 25-39.	5.7	176
317	Wireless neural probes based on one-port SAW delay line and neural firing-dependent varicap diode. Sensors and Actuators B: Chemical, 2015, 207, 243-253.	4.0	13
318	DARPA-funded efforts in the development of novel brain–computer interface technologies. Journal of Neuroscience Methods, 2015, 244, 52-67.	1.3	131
319	A survey of sensor fusion methods in wearable robotics. Robotics and Autonomous Systems, 2015, 73, 155-170.	3.0	190
322	Multifunctional Neurodevice for Recognition of Electrophysiological Signals and Data Transmission in an Exoskeleton Construction. Biology and Medicine (Aligarh), 2016, 8, .	0.3	4
323	Invasive vs. Non-Invasive Neuronal Signals for Brain-Machine Interfaces: Will One Prevail?. Frontiers in Neuroscience, 2016, 10, 295.	1.4	95
324	Neural Operant Conditioning as a Core Mechanism of Brain-Machine Interface Control. Technologies, 2016, 4, 26.	3.0	6
325	Design and Microfabrication Considerations for Reliable Flexible Intracortical Implants. Frontiers in Mechanical Engineering, 2016, 2, .	0.8	8
326	Current Challenges Facing the Translation of Brain Computer Interfaces from Preclinical Trials to Use in Human Patients. Frontiers in Cellular Neuroscience, 2015, 9, 497.	1.8	35
327	Fascicular Topography of the Human Median Nerve for Neuroprosthetic Surgery. Frontiers in Neuroscience, 2016, 10, 286.	1.4	50
328	Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience. Frontiers in Neuroscience, 2016, 10, 291.	1.4	22
329	Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Frontiers in Neuroscience, 2016, 10, 367.	1.4	42
330	A Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortex. Frontiers in Neuroscience, 2016, 10, 556.	1.4	4
331	Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience, 2016, 10, 584.	1.4	121
332	The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective. Frontiers in Neuroscience, 2016, 10, 599.	1.4	15
333	Neural Substrate Expansion for the Restoration of Brain Function. Frontiers in Systems Neuroscience, 2016, 10, 1.	1.2	85
334	A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface. Sensors, 2016, 16, 1582.	2.1	25

#	Article	IF	CITATIONS
335	Independent Mobility Achieved through a Wireless Brain-Machine Interface. PLoS ONE, 2016, 11, e0165773.	1.1	30
336	Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters. Journal of Neural Engineering, 2016, 13, 036009.	1.8	30
337	Decoding three-dimensional reaching movements using electrocorticographic signals in humans. Journal of Neural Engineering, 2016, 13, 026021.	1.8	80
338	Matrigel coatings for <scp>P</scp> arylene sheath neural probes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 357-368.	1.6	32
339	Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain–machine interfaces. Journal of Neural Engineering, 2016, 13, 041001.	1.8	26
340	Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. , 2016, , .		49
341	Advances in implantable bionic devices for blindness: a review. ANZ Journal of Surgery, 2016, 86, 654-659.	0.3	77
342	Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain–computer interfaces. Journal of Physiology (Paris), 2016, 110, 382-391.	2.1	17
343	SSVEP based BMI for a meal assistance robot. , 2016, , .		29
344	An algorithm to decode movement and laterality from Deep Brain Local Field Potentials utilizing time and frequency domain features. , 2016, , .		0
345	Wavelet based feature extraction for classification of motor imagery signals. , 2016, , .		6
346	Somatic and movement inductions phantom limb in non-amputees. Journal of Physics: Conference Series, 2016, 705, 012062.	0.3	0
347	Switching Markov decoders for asynchronous trajectory reconstruction from ECoG signals in monkeys for BCI applications. Journal of Physiology (Paris), 2016, 110, 348-360.	2.1	10
348	Design and Control of an Active Palm Roll Joint for the Human Prosthetic Hand. , 2016, , .		1
350	Common neural correlates of real and imagined movements contributing to the performance of brain–machine interfaces. Scientific Reports, 2016, 6, 24663.	1.6	18
351	Making brain–machine interfaces robust to future neural variability. Nature Communications, 2016, 7, 13749.	5.8	141
352	Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks. Scientific Reports, 2016, 6, 38565.	1.6	333
353	Toward a Proprioceptive Neural Interface that Mimics Natural Cortical Activity. Advances in Experimental Medicine and Biology, 2016, 957, 367-388.	0.8	34

#	Article	IF	CITATIONS
354	Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Science Robotics, 2016, 1, .	9.9	163
355	Predicting movement and laterality from Deep Brain Local Field Potentials. , 2016, , .		1
356	Design and Implementation of a Micro-rheometer for POC Applications. IFMBE Proceedings, 2016, , 457-461.	0.2	0
357	State of the Art and Future Prospects of Nanotechnologies in the Field of Brain-Computer Interfaces. IFMBE Proceedings, 2016, , 462-466.	0.2	0
358	Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. Journal of Neural Engineering, 2016, 13, 036001.	1.8	268
359	Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Brain Research, 2016, 1646, 25-33.	1.1	50
360	Microwave communication links for brain interface applications. , 2016, , .		2
361	New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report. IEEE Transactions on Biomedical Engineering, 2016, 63, 1354-1367.	2.5	23
362	Functional Priorities in Persons with Spinal Cord Injury: Using Discrete Choice Experiments To Determine Preferences. Journal of Neurotrauma, 2016, 33, 1958-1968.	1.7	85
363	Differential roles of high gamma and local motor potentials for movement preparation and execution. Brain-Computer Interfaces, 2016, 3, 88-102.	0.9	28
364	Brain–computer interfaces for patients with disorders of consciousness. Progress in Brain Research, 2016, 228, 241-291.	0.9	20
365	Development of wireless neural interface system. Biomedical Engineering Letters, 2016, 6, 164-171.	2.1	4
368	Chronic <i>in vivo</i> stability assessment of carbon fiber microelectrode arrays. Journal of Neural Engineering, 2016, 13, 066002.	1.8	166
370	Brain Machine-Interfaces for Motor and Communication Control. , 2016, , 227-251.		1
371	Restoration of Hand Function in Stroke and Spinal Cord Injury. , 2016, , 311-331.		8
372	BCI-Based Neuroprostheses and Physiotherapies for Stroke Motor Rehabilitation. , 2016, , 617-627.		3
373	Chronic impedance spectroscopy of an endovascular stent-electrode array. Journal of Neural Engineering, 2016, 13, 046020.	1.8	35
374	Brain–computer interfaces for communication and rehabilitation. Nature Reviews Neurology, 2016, 12, 513-525.	4.9	559

#	Article	IF	Citations
375	Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates. Scientific Reports, 2016, 6, 22170.	1.6	61
376	Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 69.	2.4	88
377	Construction of neural nets in brain-computer interface for robot arm steering. , 2016, , .		3
378	Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Journal of Neural Engineering, 2016, 13, 046019.	1.8	79
379	Scientific profile of brain–computer interfaces: Bibliometric analysis in a 10-year period. Neuroscience Letters, 2016, 635, 61-66.	1.0	15
380	Towards enhanced control of upper prosthetic limbs: A force-myographic approach. , 2016, , .		7
381	Upper extremity prosthesis user perspectives on unmet needs and innovative technology. , 2016, 2016, 287-290.		17
382	A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature, 2016, 539, 284-288.	13.7	492
383	Decoding speech using the timing of neural signal modulation. , 2016, 2016, 1532-1535.		11
384	Fully Implanted Brain–Computer Interface in a Locked-In Patient with ALS. New England Journal of Medicine, 2016, 375, 2060-2066.	13.9	392
385	Intracortical microstimulation of human somatosensory cortex. Science Translational Medicine, 2016, 8, 361ra141.	5.8	547
386	Maze learning by a hybrid brain-computer system. Scientific Reports, 2016, 6, 31746.	1.6	18
387	Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. Journal of Neural Engineering, 2016, 13, 061003.	1.8	101
388	Interfacing a salamander brain with a salamander-like robot: Control of speed and direction with calcium signals from brainstem reticulospinal neurons. , 2016, , .		8
389	Antennas in Body-Centric Sensor Network Devices. , 2016, , 2589-2612.		1
390	Somatosensory encoding with cuneate nucleus microstimulation: Detection of artificial stimuli. , 2016, 2016, 4719-4722.		11
391	Closed-Loop Neuroprostheticsa~†. , 2016, , 223-227.		2
392	Closed-Loop Stimulation in Emotional Circuits for Neuro-Psychiatric Disorders. , 2016, , 229-239.		2

#	Article	IF	CITATIONS
393	Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Scientific Reports, 2016, 6, 30383.	1.6	326
395	Idle state classification using spiking activity and local field potentials in a brain computer interface. , 2016, 2016, 1572-1575.		4
396	Key considerations in designing a somatosensory neuroprosthesis. Journal of Physiology (Paris), 2016, 110, 402-408.	2.1	31
397	A control-theoretic approach to brain-computer interface design. , 2016, , .		1
398	Key considerations in designing a speech brain-computer interface. Journal of Physiology (Paris), 2016, 110, 392-401.	2.1	46
399	What is the optimal task difficulty for reinforcement learning of brain self-regulation?. Clinical Neurophysiology, 2016, 127, 3033-3041.	0.7	26
400	Neurorestoration after stroke. Neurosurgical Focus, 2016, 40, E2.	1.0	72
401	Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 28.	2.4	78
402	Adaptive neuron-to-EMG decoder training for FES neuroprostheses. Journal of Neural Engineering, 2016, 13, 046009.	1.8	12
403	A four-dimensional virtual hand brain–machine interface using active dimension selection. Journal of Neural Engineering, 2016, 13, 036021.	1.8	8
404	Asynchronous P300 classification in a reactive brain-computer interface during an outlier detection task. Journal of Neural Engineering, 2016, 13, 046015.	1.8	2
405	Flexible, semi-autonomous grasping for assistive robotics. , 2016, , .		9
406	Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Medical and Biological Engineering and Computing, 2016, 54, 45-62.	1.6	69
407	Single-trial decoding of intended eye movement goals from lateral prefrontal cortex neural ensembles. Journal of Neurophysiology, 2016, 115, 486-499.	0.9	18
408	Recording and decoding for neural prostheses. Proceedings of the IEEE, 2016, 104, 374-391.	16.4	42
409	Long-term decoding of movement force and direction with a wireless myoelectric implant. Journal of Neural Engineering, 2016, 13, 016002.	1.8	29
410	Reading the Human Brain. Body and Society, 2016, 22, 140-177.	0.3	23
411	Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Medical and Biological Engineering and Computing, 2016, 54, 1-17.	1.6	52

#	Article	IF	CITATIONS
412	Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface. Journal of Neural Engineering, 2016, 13, 016009.	1.8	21
413	Brain–Computer Interface Based Solutions for End-Users with Severe Communication Disorders. , 2016, , 217-240.		10
414	Exploring human epileptic activity at the single-neuron level. Epilepsy and Behavior, 2016, 58, 11-17.	0.9	11
415	Human Bond Communications: Generic Classification and Technology Enablers. Wireless Personal Communications, 2016, 88, 5-21.	1.8	12
416	Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control. Journal of Neuroscience, 2016, 36, 3623-3632.	1.7	80
417	Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab on A Chip, 2016, 16, 959-976.	3.1	96
418	Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. Journal of Neural Engineering, 2016, 13, 026017.	1.8	169
419	Ethical issues in neuroprosthetics. Journal of Neural Engineering, 2016, 13, 021002.	1.8	35
420	Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 2016, 13, 026003.	1.8	127
421	Brain–computer interfaces for dissecting cognitive processes underlying sensorimotor control. Current Opinion in Neurobiology, 2016, 37, 53-58.	2.0	82
422	Relationship between the spatial pattern of P300 and performance of a P300-based brain-computer interface in amyotrophic lateral sclerosis. Brain-Computer Interfaces, 2016, 3, 1-8.	0.9	5
423	The Motor Control of Hand Movements in the Human Brain: Toward the Definition of a Cortical Representation of Postural Synergies. Springer Series on Touch and Haptic Systems, 2016, , 41-60.	0.2	0
424	Movement: How the Brain Communicates with the World. Cell, 2016, 164, 1122-1135.	13.5	92
425	Acute changes associated with electrode insertion measured with optical coherence microscopy. , 2016, , .		0
426	EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks. IEEE Transactions on Biomedical Engineering, 2016, 63, 4-14.	2.5	277
427	Ideas in movement: The next wave of brain-computer interfaces. Nature Medicine, 2016, 22, 2-5.	15.2	15
428	Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 521-531.	2.7	37
429	Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain–Machine Interfaces. IEEE Transactions on Biomedical Engineering, 2016, 63, 1728-1741.	2.5	16

#	Article	IF	CITATIONS
430	Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. Journal of Neuroscience Methods, 2016, 258, 46-55.	1.3	83
431	Using robots in "Hands-on―academic activities: a case study examining speech-generating device use and required skills. Disability and Rehabilitation: Assistive Technology, 2016, 11, 433-443.	1.3	12
432	Rehabilitation Technologies for Spinal Injury. Biosystems and Biorobotics, 2016, , 65-85.	0.2	1
433	A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 643-653.	2.7	73
434	Chronic <i>In Vivo</i> Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Transactions on Biomedical Engineering, 2016, 63, 111-119.	2.5	153
435	Give me a sign: decoding four complex hand gestures based on high-density ECoG. Brain Structure and Function, 2016, 221, 203-216.	1.2	78
436	A High-Performance Neural Prosthesis Incorporating Discrete State Selection With Hidden Markov Models. IEEE Transactions on Biomedical Engineering, 2017, 64, 935-945.	2.5	63
437	Flight simulation using a Brain-Computer Interface: A pilot, pilot study. Experimental Neurology, 2017, 287, 473-478.	2.0	25
438	Hardware Efficient Automatic Thresholding for NEO-Based Neural Spike Detection. IEEE Transactions on Biomedical Engineering, 2017, 64, 826-833.	2.5	18
439	Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications, 2017, 8, 13825.	5.8	88
440	Decoding of intended saccade direction in an oculomotor brain–computer interface. Journal of Neural Engineering, 2017, 14, 046007.	1.8	12
441	Decoding Local Field Potentials for Neural Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1705-1714.	2.7	52
442	A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Journal of Neural Engineering, 2017, 14, 016015.	1.8	65
443	Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain-Computer Interfaces, 2017, 4, 3-36.	0.9	24
444	Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 9.	2.4	58
445	Neurotrauma Management for the Severely Injured Polytrauma Patient. , 2017, , .		2
446	Characterization and Decoding the Spatial Patterns of Hand Extension/Flexion using High-Density ECoG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 370-379.	2.7	30
447	EXiO—A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 131-141.	2.7	36

#	Article	IF	CITATIONS
448	Practical brain-machine interface system. , 2017, , .		0
449	Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature Biomedical Engineering, 2017, 1, .	11.6	245
450	Review: Human Intracortical Recording and Neural Decoding for Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1687-1696.	2.7	80
451	Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 2017, 53, 46-58.	4.1	159
452	Combat casualty care and lessons learned from the past 100 years of war. Current Problems in Surgery, 2017, 54, 315-351.	0.6	28
453	Signal-independent noise in intracortical brain–computer interfaces causes movement time properties inconsistent with Fitts' law. Journal of Neural Engineering, 2017, 14, 026010.	1.8	9
454	Autonomy infused teleoperation with application to brain computer interface controlled manipulation. Autonomous Robots, 2017, 41, 1401-1422.	3.2	64
455	Developing a treatment for neurogenic bladder dysfunction using Model Predictive Control (MPC). Biomedical Signal Processing and Control, 2017, 36, 155-167.	3.5	4
456	Classification of different reaching movements from the same limb using EEG. Journal of Neural Engineering, 2017, 14, 046018.	1.8	48
457	Brain-Machine Interface Development for Finger Movement Control. Springer Briefs in Electrical and Computer Engineering, 2017, , 31-49.	0.3	1
458	Neuroprosthetics: Restoring multi-joint motor control. Nature Biomedical Engineering, 2017, 1, .	11.6	7
459	Sensorimotor experience and verb-category mapping in human sensory, motor and parietal neurons. Cortex, 2017, 92, 304-319.	1.1	14
460	Design and manufacturing challenges of optogenetic neural interfaces: a review. Journal of Neural Engineering, 2017, 14, 041001.	1.8	68
462	Physiological properties of brain-machine interface input signals. Journal of Neurophysiology, 2017, 118, 1329-1343.	0.9	38
463	3D printing and modelling of customized implants and surgical guides for non-human primates. Journal of Neuroscience Methods, 2017, 286, 38-55.	1.3	84
464	Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control. Journal of Neural Engineering, 2017, 14, 046016.	1.8	18
465	An engineered home environment for untethered data telemetry from nonhuman primates. Journal of Neuroscience Methods, 2017, 288, 72-81.	1.3	6
466	Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities. Proceedings of SPIE, 2017, , .	0.8	0

#	Article	IF	CITATIONS
467	Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies. Proceedings of SPIE, 2017, , .	0.8	2
468	A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Review of Medical Devices, 2017, 14, 439-447.	1.4	129
469	A Hardware-Efficient Scalable Spike Sorting Neural Signal Processor Module for Implantable High-Channel-Count Brain Machine Interfaces. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 743-754.	2.7	44
470	Functional remodeling of subtype-specific markers surrounding implanted neuroprostheses. Journal of Neurophysiology, 2017, 118, 194-202.	0.9	33
472	Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017, 35, 585-597.	4.9	28
473	<i>In vitro</i> biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina. Journal of Neural Engineering, 2017, 14, 036012.	1.8	22
474	BCI Use and Its Relation to Adaptation in Cortical Networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1697-1704.	2.7	14
475	Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream. Journal of Neuroscience, 2017, 37, 4311-4322.	1.7	28
476	Interfacing to the brain's motor decisions. Journal of Neurophysiology, 2017, 117, 1305-1319.	0.9	36
477	Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet, The, 2017, 389, 1821-1830.	6.3	632
478	Reaching again: a glimpse of the future with neuroprosthetics. Lancet, The, 2017, 389, 1777-1778.	6.3	2
479	Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological Reviews, 2017, 97, 767-837.	13.1	409
480	Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering, 2017, 14, 016001.	1.8	41
481	Transparency enhancement for an active knee orthosis by a constraint-free mechanical design and a gait phase detection based predictive control. Meccanica, 2017, 52, 729-748.	1.2	5
482	Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats. Journal of Neural Engineering, 2017, 14, 016010.	1.8	14
483	Closed-loop brain training: the science of neurofeedback. Nature Reviews Neuroscience, 2017, 18, 86-100.	4.9	814
484	Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 729-742.	2.7	85
485	Brain–Machine Interface Control Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1725-1734.	2.7	58

	CITA	ATION REPORT	
#	Article	IF	CITATIONS
487	Mechanisms of urodele limb regeneration. Regeneration (Oxford, England), 2017, 4, 159-200.	6.3	97
488	Volitional Control Research. , 2017, , 137-150.		2
489	Central nervous system microstimulation: Towards selective micro-neuromodulation. Current Opinion in Biomedical Engineering, 2017, 4, 65-77.	1.8	12
490	Detecting abrupt change in neuronal tuning via adaptive point process estimation. , 2017, 2017, 4395-4398.		3
491	Advances in BCI: A Neural Bypass Technology to Reconnect the Brain to the Body. Springer Briefs in Electrical and Computer Engineering, 2017, , 9-20.	0.3	3
492	The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Research, 2017, 1674, 91-100.	1.1	28
493	Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study. Journal of Spinal Cord Medicine, 2017, 40, 715-722.	0.7	2
494	Estimated Prevalence of the Target Population for Brain-Computer Interface Neurotechnology in the Netherlands. Neurorehabilitation and Neural Repair, 2017, 31, 677-685.	1.4	20
495	Intracortical Microstimulation as a Feedback Source for Brain-Computer Interface Users. Springer Briefs in Electrical and Computer Engineering, 2017, , 43-54.	0.3	28
496	Neural control of finger movement via intracortical brain–machine interface. Journal of Neural Engineering, 2017, 14, 066004.	1.8	50
497	Microarrays in the Brain. , 2017, , 3-39.		0
498	CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1111-1122.	2.7	23
499	Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 2017, 38, 5391-5420.	1.9	1,656
500	Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces. Scientific Reports, 2017, 7, 7395.	1.6	33
501	What can neuronal populations tell us about cognition?. Current Opinion in Neurobiology, 2017, 46, 48-57.	2.0	9
502	Cryptographic decoding of movement. Nature Biomedical Engineering, 2017, 1, 929-930.	11.6	0
503	Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Scientific Reports, 2017, 7, 14323.	1.6	14
504	Glial responses to implanted electrodes in the brain. Nature Biomedical Engineering, 2017, 1, 862-877.	11.6	402

#	Article	IF	CITATIONS
505	Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to Brain Computer Interfacing and Human Augmentation. Scientific Reports, 2017, 7, 15254.	1.6	55
506	Augmenting intracortical brain-machine interface with neurally driven error detectors. Journal of Neural Engineering, 2017, 14, 066007.	1.8	23
507	Restoring Touch through Intracortical Microstimulation of Human Somatosensory Cortex. , 2017, , .		4
508	CNS Recording: Devices and Techniques. Series on Bioengineering and Biomedical Engineering, 2017, , 467-488.	0.1	0
509	Editorial. Advancement in brain–machine interfaces for patients with tetraplegia: neurosurgical perspective. Neurosurgical Focus, 2017, 43, E5.	1.0	9
510	Staying in the Loop: Relational Agency and Identity in Next-Generation DBS for Psychiatry. AJOB Neuroscience, 2017, 8, 59-70.	0.6	92
511	Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function. NeuroImage, 2017, 146, 658-666.	2.1	26
512	Control of a Robot Using Brain Computer Interface to Aid in Rehabilitation. Biosystems and Biorobotics, 2017, , 1239-1243.	0.2	0
513	Empirical Movement Models for Brain Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 694-703.	2.7	2
514	The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Experimental Neurology, 2017, 287, 437-451.	2.0	45
515	Frequency Band Separability Feature Extraction Method With Weighted Haar Wavelet Implementation for Implantable Spike Sorting. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 530-538.	2.7	14
516	Dynamic training protocol improves the robustness of PR-based myoelectric control. Biomedical Signal Processing and Control, 2017, 31, 249-256.	3.5	26
517	14 Brain–Computer Interfaces to Enhance Function After Spinal Cord Injury. , 2017, , .		0
518	Generation of Stimulus Triggering From Intracortical Spike Activity for Brain–Machine–Body Interfaces (BMBIs). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 998-1008.	2.7	2
519	Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation. Journal of Motor Behavior, 2017, 49, 27-34.	0.5	28
520	Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials, 2017, 113, 279-292.	5.7	99
521	A Nonhuman Primate Brain–Computer Typing Interface. Proceedings of the IEEE, 2017, 105, 66-72.	16.4	18
522	Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 750-760	2.7	13

# 523	ARTICLE Controlling an electromyography-based power-assist device for the wrist using	IF 1.1	CITATIONS
523	electroencephalography cortical currents. Advanced Robotics, 2017, 31, 88-96. Motor cortical activity changes during neuroprosthetic-controlled object interaction. Scientific	1.1	52
525	Reports, 2017, 7, 16947. Closed-Loop Controller for Treating Lower Urinary Tract Dysfunction: a Multi-Linear Predictive Control Strategy. IFAC-PapersOnLine, 2017, 50, 15133-15138.	0.5	1
526	Real Time EEG Based Cognitive Brain Computer Interface for Control Applications via Arduino Interfacing. Procedia Computer Science, 2017, 115, 812-820.	1.2	21
527	An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit. , 2017, 2017, 217-220.		4
528	Control of cell fate and excitability at the neural electrode interface: Genetic reprogramming and optical induction. , 2017, , .		3
529	Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking. , 2017, 2017, 1049-1054.		22
530	Blind parallel interrogation of ultrasonic neural dust motes based on canonical polyadic decomposition: A simulation study. , 2017, , .		0
531	EEG-based brain-computer interface to a virtual walking avatar engages cortical adaptation. , 2017, , .		6
532	Neurogenic bladder dysfunction: a novel treatment using robust model predictive control supported by noise attenuation technique. International Journal of Control, Automation and Systems, 2017, 15, 2669-2680.	1.6	3
533	High performance communication by people with paralysis using an intracortical brain-computer interface. ELife, 2017, 6, .	2.8	367
534	Reducing the Impact of Shoulder Abduction Loading on the Classification of Hand Opening and Grasping in Individuals with Poststroke Flexion Synergy. Frontiers in Bioengineering and Biotechnology, 2017, 5, 39.	2.0	10
535	Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review. Frontiers in Neurorobotics, 2017, 11, 59.	1.6	71
536	Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback. Frontiers in Neurorobotics, 2017, 11, 60.	1.6	52
537	Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration. Frontiers in Neuroscience, 2017, 11, 111. High Amplitude EEG Motor Potential during Repetitive Foot Movement: Possible Use and Challenges	1.4	12
538	for Futuristic BCIs That Restore Mobility after Spinal Cord Injury. Frontiers in Neuroscience, 2017, 11, 362.	1.4	7
539	Reconstruction of Arm Movement Directions from Human Motor Cortex Using fMRI. Frontiers in Neuroscience, 2017, 11, 434. Restoration of Hindlimb Movements after Complete Spinal Cord Injury Using Brain-Controlled	1.4	0
540	Functional Electrical Stimulation. Frontiers in Neuroscience, 2017, 11, 715.	1.4	16

#	Article	IF	CITATIONS
541	Neurobionics and the brain–computer interface: current applications and future horizons. Medical Journal of Australia, 2017, 206, 363-368.	0.8	52
542	Wireless Brain-Robot Interface: User Perception and Performance Assessment of Spinal Cord Injury Patients. Wireless Communications and Mobile Computing, 2017, 2017, 1-16.	0.8	9
543	Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms. BioMed Research International, 2017, 2017, 1-17.	0.9	31
544	Brain–Computer Interface–Based Communication in the Completely Locked-In State. PLoS Biology, 2017, 15, e1002593.	2.6	176
545	Adaptive super twisting controller: In search of a universal controller for the paraplegic knee movement using FES. , 2017, , .		4
546	Continuous force decoding from deep brain local field potentials for Brain Computer Interfacing. , 2017, 2017, 371-374.		10
547	Feasibility analysis of genetically-encoded calcium indicators as a neural signal source for all-optical brain-machine interfaces. , 2017, , .		4
548	Introduction to the JINS Special Issue: Motor Cognition. Journal of the International Neuropsychological Society, 2017, 23, 103-107.	1.2	0
549	Clinical therapeutic guideline for neurorestoration in spinal cord injury (Chinese version 2016). Journal of Neurorestoratology, 2017, Volume 5, 73-83.	1.1	11
550	Noninvasive Brain Machine Interfaces for Assistive and Rehabilitation Robotics. , 2017, , 187-216.		6
551	Untangling Neural Representations in the Motor Cortex. Neuron, 2018, 97, 736-738.	3.8	5
552	InÂvivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. Biomaterials, 2018, 164, 121-133.	5.7	58
553	Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials, 2018, 164, 1-10.	5.7	59
554	A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain–Computer Interfaces. IEEE Transactions on Biomedical Engineering, 2018, 65, 2066-2078.	2.5	19
555	An sEMG-Based Human–Robot Interface for Robotic Hands Using Machine Learning and Synergies. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1149-1158.	1.4	73
556	Volitional Modulation of Primary Visual Cortex Activity Requires the Basal Ganglia. Neuron, 2018, 97, 1356-1368.e4.	3.8	44
557	Prediction of Reach Goals in Depth and Direction from the Parietal Cortex. Cell Reports, 2018, 23, 725-732.	2.9	23
558	Quality of life and reconstructive surgery efforts in severe hand injuries. Innovative Surgical Sciences, 2018, 3, 147-156.	0.4	2

#	Article	IF	CITATIONS
559	Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI. International Journal of Neural Systems, 2018, 28, 1850018.	3.2	123
560	Sequence-based manipulation of robotic arm control in brain machine interface. International Journal of Intelligent Robotics and Applications, 2018, 2, 149-160.	1.6	4
561	A noninvasive brain–computer interface approach for predicting motion intention of activities of daily living tasks for an upper-limb wearable robot. International Journal of Advanced Robotic Systems, 2018, 15, 172988141876731.	1.3	19
562	A fast intracortical brain–machine interface with patterned optogenetic feedback. Journal of Neural Engineering, 2018, 15, 046011.	1.8	18
563	Object discrimination using electrotactile feedback. Journal of Neural Engineering, 2018, 15, 046007.	1.8	29
564	Soft Ultrathin Silicon Electronics for Soft Neural Interfaces: A Review of Recent Advances of Soft Neural Interfaces Based on Ultrathin Silicon. IEEE Nanotechnology Magazine, 2018, 12, 21-34.	0.9	16
565	Implantable Neural Microsystems in Medical Industry. IEEE Sensors Journal, 2018, 18, 2117-2124.	2.4	5
566	Modeling task-specific neuronal ensembles improves decoding of grasp. Journal of Neural Engineering, 2018, 15, 036006.	1.8	0
567	Brain–machine interfaces for controlling lower-limb powered robotic systems. Journal of Neural Engineering, 2018, 15, 021004.	1.8	157
568	A brain-spinal interface (BSI) system-on-chip (SoC) for closed-loop cortically-controlled intraspinal microstimulation. Analog Integrated Circuits and Signal Processing, 2018, 95, 1-16.	0.9	6
569	Decoder calibration with ultra small current sample set for intracortical brain–machine interface. Journal of Neural Engineering, 2018, 15, 026019.	1.8	17
570	Rapid calibration of an intracortical brain–computer interface for people with tetraplegia. Journal of Neural Engineering, 2018, 15, 026007.	1.8	95
571	Brain–Machine Interfaces. , 2018, , 197-218.		0
572	Dynamic Neuroscience. , 2018, , .		9
573	Mind Reading and Writing: The Future of Neurotechnology. Trends in Cognitive Sciences, 2018, 22, 598-610.	4.0	65
574	Feasibility of Automatic Error Detect-and-Undo System in Human Intracortical Brain–Computer Interfaces. IEEE Transactions on Biomedical Engineering, 2018, 65, 1771-1784.	2.5	12
575	Synthesis of Subject-Specific Human Balance Responses Using a Task-Level Neuromuscular Control Platform. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 865-873.	2.7	1
576	Approaches to large scale neural recording by chronic implants for mobile BCIs. , 2018, , .		4

	CITATION REI	PORT	
Article		IF	Citations
A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Sp Electrophysiological Setup. Neuroinformatics, 2018, 16, 217-229.	vike Times in an	1.5	2
Intracortical recording stability in human brain–computer interface users. Journal of N Engineering, 2018, 15, 046016.	leural	1.8	100
Optimizing the Usability of Brain-Computer Interfaces. Neural Computation, 2018, 30, 2	1323-1358.	1.3	5
Brain-computer interfaces based on intracortical recordings of neural activity for restora movement and communication of people with paralysis. , 2018, , .	ation of		1
Human neuroimaging reveals the subcomponents of grasping, reaching and pointing ac 2018, 98, 128-148.	tions. Cortex,	1.1	54
A Materials Roadmap to Functional Neural Interface Design. Advanced Functional Mater 1701269.	ials, 2018, 28,	7.8	266
EEG-based BCI and video games: a progress report. Virtual Reality, 2018, 22, 119-135.		4.1	126
Brain Control of an External Device by Extracting the Highest Force-Related Contents of Potentials in Freely Moving Rats. IEEE Transactions on Neural Systems and Rehabilitatio 2018, 26, 18-25.	Local Field n Engineering,	2.7	13
Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) epidural ECoG in nonhuman primates. Journal of Neural Engineering, 2018, 15, 016011.		1.8	20
A review on mechanical considerations for chronically-implanted neural probes. Journal 6 Engineering, 2018, 15, 031001.	of Neural	1.8	139
Biotolerability of Intracortical Microelectrodes. Advanced Biology, 2018, 2, 1700115.		3.0	7
Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-impla interface: new emphasis on the biological interface. Journal of Neural Engineering, 2018	ant neural , 15, 033001.	1.8	111
Signal processing methods for reducing artifacts in microelectrode brain recordings cau functional electrical stimulation. Journal of Neural Engineering, 2018, 15, 026014.	sed by	1.8	26
Fluidic Microactuation of Flexible Electrodes for Neural Recording. Nano Letters, 2018, 2	18, 326-335.	4.5	84
Remapping cortical modulation for electrocorticographic brain–computer interfaces: somatotopy-based approach in individuals with upper-limb paralysis. Journal of Neural Er 2018, 15, 026021.	a ngineering,	1.8	38
Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities. Neuro 2018, 24, 400-416.	scientist,	2.6	60

Neural Prostheses for Reaching and Grasping. , 2018, , . 593

0

594	Noninvasive Brain-computer Interface Based High-level Control of a Robotic Arm for Pick and Place Tasks. , 2018, , .
-----	--

#

577

579

581

583

585

587

589

590

591

#	Article	IF	CITATIONS
595	Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface. Biomedical Physics and Engineering Express, 2018, 4, 055018.	0.6	8
596	Neuromagnetic Geminoid Control by BCI Based on Four Bilateral Hand Movements. , 2018, , .		3
597	Real-Time MEG-Based Brain-Geminoid Control Using Single-trial SVM Classification. , 2018, , .		5
598	Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter. Frontiers in Neuroscience, 2018, 12, 751.	1.4	36
599	Control of Human Motor Rehabilitation Devices. Human Physiology, 2018, 44, 686-695.	0.1	1
600	Brain signal acquisition methods in BCIs to estimate human motion intention $\hat{a} \in \hat{~}$ a survey. , 2018, , .		2
601	Trends and Future of Brain-Computer Interfaces. , 2018, , .		3
602	Online Calibration of Intracortical Neural Interface Based on Transfer Learning. Journal of Physics: Conference Series, 2018, 1069, 012090.	0.3	0
603	Interaction techniques for a neural-guided hand exoskeleton. Procedia Computer Science, 2018, 141, 442-446.	1.2	3
604	Innovations in electrical stimulation harness neural plasticity to restore motor function. Bioelectronics in Medicine, 2018, 1, 251-263.	2.0	5
605	Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLoS ONE, 2018, 13, e0206137.	1.1	16
606	An sEMG-based Interface to give People with Severe Muscular Atrophy control over Assistive Devices. , 2018, 2018, 2136-2141.		10
607	Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements. Scientific Reports, 2018, 8, 16357.	1.6	8
608	Eyelid Drive System: An Assistive Technology Employing Inductive Sensing of Eyelid Movement. IEEE Transactions on Biomedical Circuits and Systems, 2018, 13, 1-1.	2.7	7
609	Three-Dimensional Brain–Computer Interface Control Through Simultaneous Overt Spatial Attentional and Motor Imagery Tasks. IEEE Transactions on Biomedical Engineering, 2018, 65, 2417-2427.	2.5	41
610	Functional Tasks Performed by People with Severe Muscular Atrophy Using an sEMG Controlled Robotic Manipulator. , 2018, 2018, 1713-1718.		12
611	Cortical control of a tablet computer by people with paralysis. PLoS ONE, 2018, 13, e0204566.	1.1	108
612	Exploring representations of human grasping in neural, muscle and kinematic signals. Scientific Reports, 2018, 8, 16669.	1.6	32

#	Article	IF	CITATIONS
613	Single Neuron Firing Rate Statistics in Motor Cortex During Execution and Observation of Movement. , 2018, 2018, 981-986.		0
614	Introductory Chapter: Toward Near-Natural Assistive Devices. , 0, , .		Ο
615	Brain–Computer Interfaces. , 2018, , 341-356.		2
616	Invasive Brain–Computer Interfaces for Functional Restoration. , 2018, , 379-391.		1
617	Invasive Brain-Computer Interfaces and Neural Recordings From Humans. Handbook of Behavioral Neuroscience, 2018, 28, 527-539.	0.7	7
618	Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes. , 2018, 2018, 2539-2542.		0
619	Decoding Speech from Intracortical Multielectrode Arrays in Dorsal "Arm/Hand Areas―of Human Motor Cortex. , 2018, 2018, 93-97.		16
620	Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Current Opinion in Biomedical Engineering, 2018, 8, 84-92.	1.8	35
621	HD-EEG Based Classification of Motor-Imagery Related Activity in Patients With Spinal Cord Injury. Frontiers in Neurology, 2018, 9, 955.	1.1	9
622	Decoding arm speed during reaching. Nature Communications, 2018, 9, 5243.	5.8	34
623	The role of inflammation on the functionality of intracortical microelectrodes. Journal of Neural Engineering, 2018, 15, 066027.	1.8	25
624	Decoding Steady-State Visual Evoked Potentials From Electrocorticography. Frontiers in Neuroinformatics, 2018, 12, 65.	1.3	18
625	Rodent Behavioral Testing to Assess Functional Deficits Caused by Microelectrode Implantation in the Rat Motor Cortex. Journal of Visualized Experiments, 2018, , .	0.2	5
626	Optimizing the learning rate for adaptive estimation of neural encoding models. PLoS Computational Biology, 2018, 14, e1006168.	1.5	32
627	Training in Use of Brain–Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements. Frontiers in Neuroscience, 2018, 12, 478.	1.4	12
628	Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms. Sensors, 2018, 18, 2408.	2.1	10
629	Brain Computer Interfaces in Rehabilitation Medicine. PM and R, 2018, 10, S233-S243.	0.9	59
630	Paradigm Shift in Sensorimotor Control Research and Brain Machine Interface Control: The Influence of Context on Sensorimotor Representations. Frontiers in Neuroscience, 2018, 12, 579.	1.4	19

#	Article	IF	CITATIONS
631	Meeting brain–computer interface user performance expectations using a deep neural network decoding framework. Nature Medicine, 2018, 24, 1669-1676.	15.2	123
632	Acquisition of Neural Action Potentials Using Rapid Multiplexing Directly at the Electrodes. Micromachines, 2018, 9, 477.	1.4	32
633	The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates. Journal of Neurophysiology, 2018, 120, 2164-2181.	0.9	1
634	Implicit Grasp Force Representation in Human Motor Cortical Recordings. Frontiers in Neuroscience, 2018, 12, 801.	1.4	20
635	Single-Finger Neural Basis Information-Based Neural Decoder for Multi-Finger Movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2240-2248.	2.7	1
636	Is Lower Extremity Transplantation a Superior Alternative to Prostheses? No—At Least Not Yet. Current Transplantation Reports, 2018, 5, 349-357.	0.9	Ο
637	Latent Factors and Dynamics in Motor Cortex and Their Application to Brain–Machine Interfaces. Journal of Neuroscience, 2018, 38, 9390-9401.	1.7	81
638	A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent. Frontiers in Neuroscience, 2018, 12, 763.	1.4	31
639	Neural Basis of Touch and Proprioception in Primate Cortex. , 2018, 8, 1575-1602.		150
640	The History and Horizons of Microscale Neural Interfaces. Micromachines, 2018, 9, 445.	1.4	17
640 641	The History and Horizons of Microscale Neural Interfaces. Micromachines, 2018, 9, 445. Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008.	1.4 1.3	17 20
	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process		
641	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces:	1.3	20
641 642	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces: W-HERBS. Frontiers in Neuroscience, 2018, 12, 511.	1.3 1.4	20 34
641 642 643	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces: W-HERBS. Frontiers in Neuroscience, 2018, 12, 511. Optoelectronic system for brain neuronal network stimulation. PLoS ONE, 2018, 13, e0198396. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain–Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018,	1.3 1.4 1.1	20 34 15
641642643645	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces: W-HERBS. Frontiers in Neuroscience, 2018, 12, 511. Optoelectronic system for brain neuronal network stimulation. PLoS ONE, 2018, 13, e0198396. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain–Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1301-1310. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of	1.3 1.4 1.1 2.7	20 34 15 36
 641 642 643 645 646 	Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Computation, 2018, 30, 2986-3008. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain–Machine Interfaces: WHERBS. Frontiers in Neuroscience, 2018, 12, 511. Optoelectronic system for brain neuronal network stimulation. PLoS ONE, 2018, 13, e0198396. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain–Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1301-1310. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG. Medical and Biological Engineering and Computing, 2018, 56, 2095-2107.	1.3 1.4 1.1 2.7	20 34 15 36 14

ARTICLE IF CITATIONS Spike detection: The first step towards an ENG-based neuroprosheses. Journal of Neuroscience 650 1.3 8 Methods, 2018, 308, 294-308. Brain-machine interfaces for rehabilitation in stroke: A review. NeuroRehabilitation, 2018, 43, 77-97. The Evolution of Man and Machineâ€"a Review of Current Surgical Techniques and Cutting 652 0.6 1 Technologies After Upper Extremity Amputation. Current Trauma Reports, 2018, 4, 339-347. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate. Frontiers in Neuroscience, 2018, 12, 22. Melatonin improves quality and longevity of chronic neural recording. Biomaterials, 2018, 180, 654 5.7 65 225-239. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics, 2018, 15, 604-617. 2.1 COMPARATIVE STUDY OF NON-LINEAR CONTROLLERS FOR THE REGULATION OF THE PARAPLEGIC KNEE 656 MOVEMENT USING FUNCTIONAL ELECTRICAL STIMULATION. Journal of Mechanics in Medicine and Biology, 0.3 2 2018, 18, 1850019. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes. Frontiers 2.0 in Bioengineering and Biotechnology, 2018, 6, 26. Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for 658 Electrophysiological Recording From Neural Tissue. Frontiers in Bioengineering and Biotechnology, 2.0 8 2018, 6, 85. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for 659 1.3 intracortical brain–machine interfaces. BioMedical Engineering OnLine, 2018, 17, 28. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle 660 2.4 11 reinnervation: a case study. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 37. Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. Journal of Neurophysiology, 2018, 120, 343-360. The role of oligodendrocytes and their progenitors on neural interface technology: A novel 662 5.7 30 perspective on tissue regeneration and repair. Biomaterials, 2018, 183, 200-217. Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface., 2018,,. Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer 664 1.4 5 Interfaces: A Review. Frontiers in Neuroscience, 2018, 12, 540. Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum. Biomedical Physics and Engineering Express, 2018, 4, 055025. Towards Real-Time, Continuous Decoding of Gripping Force From Deep Brain Local Field Potentials. 666 2.7 19 IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1460-1468. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. 1.3 Journal of Neuroscience Methods, 2018, 306, 103-114.

#	Article	IF	CITATIONS
668	Brain–computer interfaces for neurorehabilitation: enhancing functional electrical stimulation. , 2018, , 425-451.		0
669	Extinction as a deficit of the decision-making circuitry in the posterior parietal cortex. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 151, 163-182.	1.0	2
670	Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 2018, 9, 2421.	5.8	342
671	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	2.6	51
672	Neuroprosthetics. , 2019, , 241-253.		3
673	Developing a Three- to Six-State EEG-Based Brain–Computer Interface for a Virtual Robotic Manipulator Control. IEEE Transactions on Biomedical Engineering, 2019, 66, 977-987.	2.5	24
674	Real-time Closed Loop Neural Decoding on a Neuromorphic chip. , 2019, , .		9
675	Monolayer Graphene Coating of Intracortical Probes for Long‣asting Neural Activity Monitoring. Advanced Healthcare Materials, 2019, 8, e1801331.	3.9	25
676	Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Frontiers in Neuroscience, 2019, 13, 759.	1.4	11
677	Clinical neuroprosthetics: Today and tomorrow. Journal of Clinical Neuroscience, 2019, 68, 13-19.	0.8	13
678	Neurorestorative interventions involving bioelectronic implants after spinal cord injury. Bioelectronic Medicine, 2019, 5, 10.	1.0	22
679	External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need?. Applied Sciences (Switzerland), 2019, 9, 2471.	1.3	12
680	Sound- and current-driven laminar profiles and their application method mimicking acoustic responses in the mouse auditory cortex in vivo. Brain Research, 2019, 1721, 146312.	1.1	6
681	Brain-Computer Interface Research. Springer Briefs in Electrical and Computer Engineering, 2019, , .	0.3	4
682	Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments. Springer Briefs in Electrical and Computer Engineering, 2019, , 53-61.	0.3	13
684	Transcending the brain: is there a cost to hacking the nervous system?. Brain Communications, 2019, 1, fcz015.	1.5	8
685	Bypassing stroke-damaged neural pathways via a neural interface induces targeted cortical adaptation. Nature Communications, 2019, 10, 4699.	5.8	22
686	Classification of Articulator Movements and Movement Direction from Sensorimotor Cortex Activity. Scientific Reports, 2019, 9, 14165.	1.6	17

# 687	ARTICLE Enhancing VAEs for collaborative filtering. , 2019, , .	IF	Citations
688	Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 2019, 1, 22.	1.7	44
689	Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex. Biomedical Physics and Engineering Express, 2019, 5, 065017.	0.6	4
690	The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications. Advances in Physics: X, 2019, 4, 1664319.	1.5	12
691	A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. Journal of Neural Engineering, 2019, 16, 066043.	1.8	13
692	Nanoparticle Doped PEDOT for Enhanced Electrode Coatings and Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1900622.	3.9	49
693	Vision-Assisted Interactive Human-in-the-Loop Distal Upper Limb Rehabilitation Robot and its Clinical Usability Test. Applied Sciences (Switzerland), 2019, 9, 3106.	1.3	11
694	Neural Correlates of Control of a Kinematically Redundant Brain-Machine Interface*. , 2019, , .		3
695	A Robust Encoding Scheme for Delivering Artificial Sensory Information via Direct Brain Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1994-2004.	2.7	13
696	Direct Electrical Stimulation in Electrocorticographic Brain–Computer Interfaces: Enabling Technologies for Input to Cortex. Frontiers in Neuroscience, 2019, 13, 804.	1.4	46
697	Large-Scale Neural Consolidation in BMI Learning*. , 2019, , .		3
698	Experimental Comparison of Hardware-Amenable Spike Detection Algorithms for iBMIs. , 2019, , .		3
699	A 25ÂMbps, 12.4ÂpJ/b DQPSK Backscatter Data Uplink for the NeuroDisc Brain–Computer Interface. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 858-867.	2.7	15
700	Flexible Probe for Electrical Neural Signal Recording. , 2019, , .		0
701	Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis. Current Opinion in Biomedical Engineering, 2019, 11, 85-101.	1.8	13
702	Single-cell selectivity and functional architecture of human lateral occipital complex. PLoS Biology, 2019, 17, e3000280.	2.6	9
703	DESIGN OF CONTROL SYSTEM FOR MOTOR IMAGERY BASED NEURO-AID APPLICATION. Biomedical Engineering - Applications, Basis and Communications, 2019, 31, 1950031.	0.3	2
705	Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials, 2019, 225, 119519.	5.7	83

		Citation Report	
#	Article	IF	CITATIONS
706	Brain–machine interfaces from motor to mood. Nature Neuroscience, 2019, 22, 1554-1564.	7.1	157
707	Progress in the Field of Micro-Electrocorticography. Micromachines, 2019, 10, 62.	1.4	34
708	Neural Decoding of Synergy-Based Hand Movements Using Electroencephalography. IEEE Access, 2 7, 18155-18163.	019, 2.6	14
709	Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Frontiers in Neural Circuits, 2019, 13, 15.	1.4	31
710	Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model. Scientific Reports, 2019, 9, 8881.	1.6	28
711	Single-paradigm and hybrid brain computing interfaces and their use by disabled patients. Journal or Neural Engineering, 2019, 16, 061001.	f 1.8	13
712	Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neuron, 2019, 103, 292-308.e4.	3.8	195
713	Spinal cord repair: advances in biology and technology. Nature Medicine, 2019, 25, 898-908.	15.2	323
714	Towards the Recognition of the Emotions of People with Visual Disabilities through Brain–Compu Interfaces. Sensors, 2019, 19, 2620.	iter 2.1	4
715	Clinically Significant Gains in Skillful Grasp Coordination by an Individual With Tetraplegia Using an Implanted Brain-Computer Interface With Forearm Transcutaneous Muscle Stimulation. Archives of Physical Medicine and Rehabilitation, 2019, 100, 1201-1217.	0.5	39
716	3D Reconstruction of the Intracortical Volume Around a Hybrid Microelectrode Array. Frontiers in Neuroscience, 2019, 13, 393.	1.4	4
717	Attempted Arm and Hand Movements can be Decoded from Low-Frequency EEG from Persons with Spinal Cord Injury. Scientific Reports, 2019, 9, 7134.	1.6	91
719	Speech synthesis from neural decoding of spoken sentences. Nature, 2019, 568, 493-498.	13.7	518
720	Real-Time Performance of a Tactile Neuroprosthesis on Awake Behaving Rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1053-1062.	2.7	17
721	Precise Tubular Braid Structures of Ultrafine Microwires as Neural Probes: Significantly Reduced Chronic Immune Response and Greater Local Neural Survival in Rat Cortex. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 846-856.	2.7	4
722	Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Acti for Brain Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1467-1472.	vity 2.7	16
723	A 200-Mb/s Energy Efficient Transcranial Transmitter Using Inductive Coupling. IEEE Transactions or Biomedical Circuits and Systems, 2019, 13, 435-443.	ז 2.7	13
724	A CMOS MedRadio Transceiver With Supply-Modulated Power Saving Technique for an Implantable Brain–Machine Interface System. IEEE Journal of Solid-State Circuits, 2019, 54, 1541-1552.	3.5	23

#	Article	IF	CITATIONS
725	Brain-Computer Interfaces in Quadriplegic Patients. Neurosurgery Clinics of North America, 2019, 30, 275-281.	0.8	11
726	Intrinsic Variable Learning for Brain-Machine Interface Control by Human Anterior Intraparietal Cortex. Neuron, 2019, 102, 694-705.e3.	3.8	31
727	Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain–machine interface. Journal of Neural Engineering, 2019, 16, 036011.	1.8	21
728	In-home and remote use of robotic body surrogates by people with profound motor deficits. PLoS ONE, 2019, 14, e0212904.	1.1	18
729	Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings. Small, 2019, 15, e1900582.	5.2	21
730	Adaptive Artifact Removal From Intracortical Channels for Accurate Decoding of a Force Signal in Freely Moving Rats. Frontiers in Neuroscience, 2019, 13, 350.	1.4	13
731	Volitional control of single-electrode high gamma local field potentials by people with paralysis. Journal of Neurophysiology, 2019, 121, 1428-1450.	0.9	12
732	Shared control of a robotic arm using non-invasive brain–computer interface and computer vision guidance. Robotics and Autonomous Systems, 2019, 115, 121-129.	3.0	59
733	Vision-aided brain–machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury. BioMedical Engineering OnLine, 2019, 18, 14.	1.3	11
734	Restoring Movement in Paralysis with a Bioelectronic Neural Bypass Approach: Current State and Future Directions. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034306.	2.9	7
735	Decoding neural activity to predict rat locomotion using intracortical and epidural arrays. Journal of Neural Engineering, 2019, 16, 036005.	1.8	9
736	Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system. Bioelectronic Medicine, 2019, 5, 3.	1.0	19
737	Age-dependent differences in learning to control a robot arm using a body-machine interface. Scientific Reports, 2019, 9, 1960.	1.6	10
738	Single Relay Selection in the Cognitive Cooperative Network: Toward Bandwidth Efficiency Improvement. , 2019, , .		7
739	Super Long Interval Time-Lapse Image Generation for Proactive Preservation of Cultural Heritage Using Crowdsourcing. , 2019, , .		1
740	A Spatially Consistent Geometric D2D Small-Scale Fading Model for Multiple Frequencies. , 2019, , .		2
741	Experimental Characterization of Rectifier Made of Pump-Charge and DC–DC Converter for Receiver of Wireless Power Transfer. , 2019, , .		2
742	Prediction of Cardiovascular Disease using Data Mining Technique. , 2019, , .		1

#	Article	IF	Citations
743	Photoplethysmography: Light Emitter Diode Wavelength Derivation from the Absorption Spectra of Haemoglobin. , 2019, , .		1
744	Application of Piezoresistive Stress Sensor in Mold-1st Fan-out Wafer Level Packaging Processes. , 2019, , .		2
745	Criteria for Selection Envelope Tracking Power Supply Parameters for High Peak-to-Average Power Ratio Applications. , 2019, , .		14
746	Novel Runner-Root Algorithm based Maximum Power Point Tracking Approach for Permanent-Magnet Synchronous Generator Direct-Driven Wind Energy Conversion Systems. , 2019, , .		0
747	neomento SAD - VR Treatment For Social Anxiety. , 2019, , .		3
748	State Space Models with Dynamical and Sparse Variances, and Inference by EM Message Passing. , 2019, ,		3
749	Discussion on the Rotation Transformation in Fully Polarimetric Synthetic Aperture Radar DARA Interpretation. , 2019, , .		0
750	Design and Automatic Generation of High-Speed Circuits for Wireline Communications. , 2019, , .		0
752	Construction of Environmental Map Based on Lidar Based Tracking System. , 2019, , .		1
753	Digital and Accessible Library: Inclusive Innovation for the Digitization of Educational Materials and Libraries. , 2019, , .		1
754	FPGA-based LED Display Technology. , 2019, , .		2
755	A simple and practical approach to development of the fast algorithms for matrix-vector multiplication. , 2019, , .		0
756	Optimizing Secrecy Performance of Trusted RF Relay against External Eavesdropping. , 2019, , .		1
757	Is my Neural Network Neuromorphic? Taxonomy, Recent Trends and Future Directions in Neuromorphic Engineering. , 2019, , .		8
758	Research on the Wheel Model Automatic Identification System. , 2019, , .		2
759	Survey on Automatic Script Identification Techniques. , 2019, , .		1
760	On Discharge Inception Voltage for Insulators under Non-uniform Field with AC Voltage. , 2019, , .		1
761	Towards Intelligent Intracortical BMI (i\$^2\$BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1615-1624.	2.7	18

	Сітатіо	n Report	
#	Article	IF	CITATIONS
762	A Design of APFC Module Applied in Induction Machine Driver. , 2019, , .		0
763	User-state Prediction using Brain Connectivity. , 2019, , .		1
764	Recessed Traces for Planarized Passivation of Chronic Neural Microelectrodes. , 2019, 2019, 5125-5128.		5
765	From thought to action: The brain–machine interface in posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26274-26279.	3.3	49
766	An Investigation of System Architecture for Autonomous Vehicle: Modeling and Simulation. , 2019, , .		0
767	EVER 2019 List of Reviewers Page. , 2019, , .		0
769	A Trial Robotic Wheel Unit for Mobile Platform. , 2019, , .		0
770	Multiple Biological Network Alignment through Network Generation and Feature Weight Annotations. , 2019, , .		1
771	A Permissioned Blockchain Approach to the Authorization Process in Electronic Health Records. , 2019, , .		9
773	Fine-grained Image Caption based on Multi-level Attention. , 2019, , .		0
774	Radio Frequency Interference Devices: the SMOS Experience. , 2019, , .		3
775	Accurate Lane Detection with Atrous Convolution and Spatial Pyramid Pooling for Autonomous Driving. , 2019, , .		8
776	Website Log Statistical Testing and Analysis. , 2019, , .		0
777	AR Brain-Shift Display for Computer-Assisted Neurosurgery. , 2019, , .		3
778	ICACC 2019 TOC. , 2019, , .		0
779	Distributed processing of movement signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26266-26273.	3.3	5
780	Towards a Modular Brain-Machine Interface for Intelligent Vehicle Systems Control – A CARLA Demonstration. , 2019, , .		0
781	Attitude Control of Satellites Actuated by Hybrid Actuators. , 2019, , .		1

43

#	Article	IF	CITATIONS
782	First Vertically Stacked Tensily Strained Ge _{0.98} Si _{0.02} nGAAFETs with No Parasitic Channel and L _G = 40 nm Featuring Record I _{ON} = 48 μA at V _{OV} =V _{DS} =0.5V and Record G _{m,max} (μS/μm)/SS _{SAT} (mV/dec) = 8.3 at V _{DS} =0.5V., 2019,,.		5
783	Paintable Wireless Passive Sensor based on Electromagnetic Waveguide to Detect Loose Bolts for Remote Infrastructure Inspection. , 2019, , .		3
784	Microwave Heating Study of Dielectric Material Placed at the Injection Port of an E-Plane Bend. , 2019, ,		0
785	Decoding Movement From Electrocorticographic Activity: A Review. Frontiers in Neuroinformatics, 2019, 13, 74.	1.3	61
786	Demonstration of a portable intracortical brain-computer interface. Brain-Computer Interfaces, 2019, 6, 106-117.	0.9	14
787	Neural Interface: Frontiers and Applications. Advances in Experimental Medicine and Biology, 2019, , .	0.8	5
788	Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations From ECoGs. Frontiers in Neuroscience, 2019, 13, 1248.	1.4	1
789	An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging. Micromachines, 2019, 10, 789.	1.4	8
790	Workshops of the seventh international brain-computer interface meeting: not getting lost in translation. Brain-Computer Interfaces, 2019, 6, 71-101.	0.9	8
791	Modular Prosthetic Limb Control by an Individual with Congenital Upper-Limb Amputation: A Case Report. Journal of Prosthetics and Orthotics, 2019, 31, 213-221.	0.2	2
792	What is the functional relevance of reorganization in primary motor cortex after spinal cord injury?. Neurobiology of Disease, 2019, 121, 286-295.	2.1	16
793	Reintegrating Veterans with Polytrauma into the Community and Workplace. Physical Medicine and Rehabilitation Clinics of North America, 2019, 30, 275-288.	0.7	1
794	Brain-Computer Interface (BCI). , 2019, , 143-152.		1
795	Optimizing fMRI experimental design for MVPA-based BCI control: Combining the strengths of block and event-related designs. NeuroImage, 2019, 186, 369-381.	2.1	23
796	Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical background, applications and prospects. Neurophysiologie Clinique, 2019, 49, 125-136.	1.0	66
797	Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. Journal of Neurotrauma, 2019, 36, 1451-1460.	1.7	56
798	Artifact-free recordings in human bidirectional brain–computer interfaces. Journal of Neural Engineering, 2019, 16, 016002.	1.8	37
799	Decoding Native Cortical Representations for Flexion and Extension at Upper Limb Joints Using Electrocorticography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 203-303	2.7	18

#	Article	IF	CITATIONS
800	Performance of Forearm FMG for Estimating Hand Gestures and Prosthetic Hand Control. Journal of Bionic Engineering, 2019, 16, 88-98.	2.7	29
801	The Potential for a Speech Brain–Computer Interface Using Chronic Electrocorticography. Neurotherapeutics, 2019, 16, 144-165.	2.1	71
803	Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials, 2019, 188, 144-159.	5.7	51
804	Multiscale modeling and decoding algorithms for spike-field activity. Journal of Neural Engineering, 2019, 16, 016018.	1.8	22
805	Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands. Journal of Neural Engineering, 2019, 16, 026011.	1.8	14
806	Biomechatronic Applications of Brain-Computer Interfaces. , 2019, , 129-175.		6
807	Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. Journal of Neural Engineering, 2019, 16, 026012.	1.8	91
808	An automated behavioral apparatus to combine parameterized reaching and grasping movements in 3D space. Journal of Neuroscience Methods, 2019, 312, 139-147.	1.3	4
809	Using High-Frequency Local Field Potentials From Multicortex to Decode Reaching and Grasping Movements in Monkey. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 270-280.	2.6	7
810	Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurgical Review, 2019, 42, 227-241.	1.2	19
811	The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. Advanced Materials, 2020, 32, e1901482.	11.1	74
812	The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 2020, 13, 163-180.	1.7	50
813	Reinforcement schedules differentially affect learning in neuronal operant conditioning in rats. Neuroscience Research, 2020, 153, 62-67.	1.0	2
814	Spinal cord neural interfacing in common marmosets (<i>Callithrix jacchus</i>). Journal of Neural Engineering, 2020, 17, 016031.	1.8	9
815	A versatile robotic platform for the design of natural, three-dimensional reaching and grasping tasks in monkeys. Journal of Neural Engineering, 2020, 17, 016004.	1.8	10
816	Advanced technologies for intuitive control and sensation of prosthetics. Biomedical Engineering Letters, 2020, 10, 119-128.	2.1	19
817	Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 760-767.	3.9	62
818	Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes. Acta Biomaterialia, 2020, 102, 205-219.	4.1	33

#	Article	IF	Citations
819	Printed 3D Electrode Arrays with Micrometerâ€Scale Lateral Resolution for Extracellular Recording of Action Potentials. Advanced Materials Technologies, 2020, 5, 1900517.	3.0	23
820	Awake Craniotomy and Memory Induction Through Electrical Stimulation: Why Are Penfield's Findings Not Replicated in the Modern Era?. Neurosurgery, 2020, 87, E130-E137.	0.6	5
821	Deep Learning Neural Encoders for Motor Cortex. IEEE Transactions on Biomedical Engineering, 2020, 67, 2145-2158.	2.5	7
822	Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019). Journal of Orthopaedic Translation, 2020, 20, 14-24.	1.9	73
823	Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 2020, 23, 260-270.	7.1	204
824	Brain–Machine Interface Induced Morpho-Functional Remodeling of the Neural Motor System in Severe Chronic Stroke. Neurotherapeutics, 2020, 17, 635-650.	2.1	13
825	Short reaction times in response to multi-electrode intracortical microstimulation may provide a basis for rapid movement-related feedback. Journal of Neural Engineering, 2020, 17, 016013.	1.8	16
826	Nonlinear sparse partial least squares: an investigation of the effect of nonlinearity and sparsity on the decoding of intracranial data. Journal of Neural Engineering, 2020, 17, 016055.	1.8	3
827	Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation, 2020, 23, 411-426.	0.4	40
828	The Modular Prosthetic Limb. , 2020, , 393-444.		19
829	Neural Decoding of Upper Limb Movements Using Electroencephalography. Springer Briefs in Electrical and Computer Engineering, 2020, , 25-33.	0.3	1
830	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
831	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
832	Plasticity and Adaptation in Neuromorphic Biohybrid Systems. IScience, 2020, 23, 101589.	1.9	26
833	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
834	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
835	From unstable input to robust output. Nature Biomedical Engineering, 2020, 4, 665-667.	11.6	5
836	Spatiotemporal Maps of Proprioceptive Inputs to the Cervical Spinal Cord During Three-Dimensional Reaching and Grasping. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1668-1677.	2.7	8

#	ARTICLE	IF	CITATIONS
837	Intra-cortical brain-machine interfaces for controlling upper-limb powered muscle and robotic systems in spinal cord injury. Clinical Neurology and Neurosurgery, 2020, 196, 106069.	0.6	11
838	Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review. Frontiers in Neurorobotics, 2020, 14, 558987.	1.6	14
839	Power-saving design opportunities for wireless intracortical brain–computer interfaces. Nature Biomedical Engineering, 2020, 4, 984-996.	11.6	66
840	Controlling a robotic arm for functional tasks using a wireless head-joystick: A case study of a child with congenital absence of upper and lower limbs. PLoS ONE, 2020, 15, e0226052.	1.1	4
841	Dorsal Column Nuclei Neural Signal Features Permit Robust Machine-Learning of Natural Tactile- and Proprioception-Dominated Stimuli. Frontiers in Systems Neuroscience, 2020, 14, 46.	1.2	2
842	Brain-Machine Interfaces: A Tale of Two Learners. IEEE Systems, Man, and Cybernetics Magazine, 2020, 6, 12-19.	1.2	45
843	A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces. Nature Biomedical Engineering, 2020, 4, 973-983.	11.6	73
844	Towards Autonomous Intra-Cortical Brain Machine Interfaces: Applying Bandit Algorithms for Online Reinforcement Learning. , 2020, , .		1
845	Challenges for Large-Scale Cortical Interfaces. Neuron, 2020, 108, 259-269.	3.8	51
847	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
848	Bionic Organs. , 2020, , 167-192.		1
849	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
850	Flying of Insects. , 2020, , 271-299.		5
851	Bioinspired Building Envelopes. , 2020, , 343-354.		0
853	Brain Automation, Panacea for Physical Disabilities. , 2020, , .		0
855	Increasing power efficiency. Nature Biomedical Engineering, 2020, 4, 937-938.	11.6	2
856	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
857	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5

#	Article	IF	CITATIONS
858	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
859	Orthogonalizing the Activity of Two Neural Units for 2D Cursor Movement Control. , 2020, 2020, 3046-3049.		1
860	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
861	Intracortical Microstimulation Feedback Improves Grasp Force Accuracy in a Human Using a Brain-Computer Interface. , 2020, 2020, 3355-3358.		7
862	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
863	The Hybridization of the Human with Brain Implants: The Neuralink Project. Cambridge Quarterly of Healthcare Ethics, 2020, 29, 668-672.	0.5	12
864	Operant conditioning of motor cortex neurons reveals neuron-subtype-specific responses in a brain-machine interface task. Scientific Reports, 2020, 10, 19992.	1.6	6
865	Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3140-3147.	2.7	58
866	Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural–Machine Interaction. Frontiers in Human Neuroscience, 2020, 14, 580105.	1.0	14
867	Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochemical and Biophysical Research Communications, 2021, 564, 114-133.	1.0	42
868	CLoSES: A platform for closed-loop intracranial stimulation in humans. NeuroImage, 2020, 223, 117314.	2.1	21
869	Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface. Sensors, 2020, 20, 5528.	2.1	2
870	Implantable Neuroamplifers for Electrocorticography Using Flexible and Biocompatible Technology. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900830.	0.8	0
871	Ultra-small carbon fiber electrode recording site optimization and improved <i>in vivo</i> chronic recording yield. Journal of Neural Engineering, 2020, 17, 026037.	1.8	51
872	Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. Advanced Biology, 2020, 4, e1900287.	3.0	23
873	Endovascular Neuromodulation: Safety Profile and Future Directions. Frontiers in Neurology, 2020, 11, 351.	1.1	16
874	Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Reports, 2020, 31, 107581.	2.9	37
875	Brain-Computer Interfaces and the Translation of Thought into Action. Neuroethics, 2020, 14, 155.	1.7	4

#	Article	IF	CITATIONS
876	The future of upper extremity rehabilitation robotics: research and practice. Muscle and Nerve, 2020, 61, 708-718.	1.0	22
877	"l Felt the Ballâ€â€"The Future of Spine Injury Recovery. World Neurosurgery, 2020, 140, 602-613.	0.7	1
878	Citizen Neuroscience: Brain–Computer Interface Researcher Perspectives on Do-It-Yourself Brain Research. Science and Engineering Ethics, 2020, 26, 2769-2790.	1.7	3
879	The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Annals of Translational Medicine, 2020, 8, 712-712.	0.7	31
880	Nationwide survey of 780 Japanese patients with amyotrophic lateral sclerosis: their status and expectations from brain–machine interfaces. Journal of Neurology, 2020, 267, 2932-2940.	1.8	7
881	The Motor Cortex Has Independent Representations for Ipsilateral and Contralateral Arm Movements But Correlated Representations for Grasping. Cerebral Cortex, 2020, 30, 5400-5409.	1.6	19
882	Enhancing gesture decoding performance using signals from posterior parietal cortex: a stereo-electroencephalograhy (SEEG) study. Journal of Neural Engineering, 2020, 17, 046043.	1.8	13
883	Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 2020, 123, 103843.	3.9	115
884	Restoring Somatosensation: Advantages and Current Limitations of Targeting the Brainstem Dorsal Column Nuclei Complex. Frontiers in Neuroscience, 2020, 14, 156.	1.4	16
885	Brain-computer interfaces in neurologic rehabilitation practice. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 101-116.	1.0	43
886	Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex. Neurosurgery, 2020, 87, 630-638.	0.6	14
887	Bidirectional brain-computer interfaces. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 163-181.	1.0	31
888	Brain-computer interfaces for basic neuroscience. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 233-247.	1.0	2
889	Electroencephalography. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 249-262.	1.0	36
890	General principles of machine learning for brain-computer interfacing. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 311-328.	1.0	10
891	A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Experimental Neurology, 2020, 328, 113274.	2.0	39
892	Multifield Coupled Dynamics of Power Supply Arc Based on Image 3D Reconstruction Mathematical Model. IEEE Sensors Journal, 2020, 20, 12024-12031.	2.4	1
893	Dilated Causal Convolutional Model For RF Fingerprinting. , 2020, , .		43

#	Article	IF	CITATIONS
894	The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models. Neural Computation, 2020, 32, 969-1017.	1.3	13
895	Load-Leveling Trainer for Demand Side Management on a 45kW Cyber-Physical Microgrid. , 2020, , .		1
896	Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way. Cell, 2020, 181, 396-409.e26.	13.5	101
897	Small-Dimension Feature Matrix Construction Method for Decoding Repetitive Finger Movements From Electroencephalogram Signals. IEEE Access, 2020, 8, 56060-56071.	2.6	4
898	Brain-computer interfaces for communication. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 67-85.	1.0	23
899	Applications of brain-computer interfaces to the control of robotic and prosthetic arms. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 87-99.	1.0	37
900	Industrial perspectives on brain-computer interface technology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 341-352.	1.0	12
901	Hearing the needs of clinical users. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 353-368.	1.0	16
902	A CNN-based comparing network for the detection of steady-state visual evoked potential responses. Neurocomputing, 2020, 403, 452-461.	3.5	14
903	A framework for on-implant spike sorting based on salient feature selection. Nature Communications, 2020, 11, 3278.	5.8	11
904	A roadmap to a columnar visual cortical prosthetic. Current Opinion in Physiology, 2020, 16, 68-78.	0.9	5
905	Speech-related dorsal motor cortex activity does not interfere with iBCI cursor control. Journal of Neural Engineering, 2020, 17, 016049.	1.8	21
906	Multi-Channel Neural Recording Implants: A Review. Sensors, 2020, 20, 904.	2.1	30
907	A neural network for online spike classification that improves decoding accuracy. Journal of Neurophysiology, 2020, 123, 1472-1485.	0.9	11
908	LSTM Improves Accuracy of Reaching Trajectory Prediction From Magnetoencephalography Signals. IEEE Access, 2020, 8, 20146-20150.	2.6	10
909	Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials, 2020, 239, 119842.	5.7	26
910	Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosensors and Bioelectronics, 2020, 155, 112096.	5.3	39
911	Self-Adaptive Secondary Frequency Regulation Strategy of Micro-Grid With Multiple Virtual Synchronous Generators. IEEE Transactions on Industry Applications, 2020, 56, 6007-6018.	3.3	33

#	Article	IF	CITATIONS
912	Using machine learning to reveal the population vector from EEG signals. Journal of Neural Engineering, 2020, 17, 026002.	1.8	11
913	Sparse Ensemble Machine Learning to Improve Robustness of Long-Term Decoding in iBMIs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 380-389.	2.7	7
914	A Brain to Spine Interface for Transferring Artificial Sensory Information. Scientific Reports, 2020, 10, 900.	1.6	15
915	Semi-Autonomous Robotic Arm Reaching With Hybrid Gaze–Brain Machine Interface. Frontiers in Neurorobotics, 2019, 13, 111.	1.6	20
916	Brain mechanisms in motor control during reaching movements: Transition of functional connectivity according to movement states. Scientific Reports, 2020, 10, 567.	1.6	24
917	Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. Journal of Neural Engineering, 2020, 17, 021001.	1.8	22
918	Power Modulations of ECoG Alpha/Beta and Gamma Bands Correlate With Time-Derivative of Force During Hand Grasp. Frontiers in Neuroscience, 2020, 14, 100.	1.4	21
919	Low-Cost Robotic Guide Based on a Motor Imagery Brain–Computer Interface for Arm Assisted Rehabilitation. International Journal of Environmental Research and Public Health, 2020, 17, 699.	1.2	13
920	In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials, 2020, 234, 119767.	5.7	24
921	Brain–machine interfaces. , 2020, , 1037-1045.		0
922	Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robotics and Autonomous Systems, 2020, 128, 103515.	3.0	50
923	Fault diagnosis of circuit breakers based on time–frequency and chaotic vibration analysis. IET Generation, Transmission and Distribution, 2020, 14, 1214-1221.	1.4	17
924	Pseudorandom Number Generators with Predeterminated Period and Pre-period. , 2020, , .		1
925	A Mongrel Technique for the Reducation of Sidelobes in OFDM $\hat{a} \in$ Based Cognitive Radio System. , 2020, , .		3
926	Inhibition of Long-Term Variability in Decoding Forelimb Trajectory Using Evolutionary Neural Networks With Error-Correction Learning. Frontiers in Computational Neuroscience, 2020, 14, 22.	1.2	4
927	Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell, 2020, 181, 763-773.e12.	13.5	94
928	Toward the Next Generation of Retinal Neuroprosthesis: Visual Computation with Spikes. Engineering, 2020, 6, 449-461.	3.2	23
929	Improved Sliding Mode Control With Time Delay Estimation for Motion Tracking of Cell Puncture Mechanism. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3199-3210.	3.5	14

#	Article	IF	Citations
930	Glymphatic clearance of simulated silicon dispersion in mouse brain analyzed by laser induced breakdown spectroscopy. Heliyon, 2020, 6, e03702.	1.4	2
931	Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nature Biomedical Engineering, 2020, 4, 672-685.	11.6	118
932	Security Analysis of Russian Transport Cards. , 2020, , .		0
933	A new numerical approach to the calibration and interpretation of PEA measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 666-674.	1.8	11
934	Extracellular voltage thresholds for maximizing information extraction in primate auditory cortex: implications for a brain computer interface. Journal of Neural Engineering, 2021, 18, 036010.	1.8	3
935	Statistical Loss and Analysis for Deep Learning in Hyperspectral Image Classification. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 322-333.	7.2	44
936	Neuropsychological and neurophysiological aspects of brainâ€computerâ€interface (BCI) control in paralysis. Journal of Physiology, 2021, 599, 2351-2359.	1.3	45
937	Human-machine shared control: New avenue to dexterous prosthetic hand manipulation. Science China Technological Sciences, 2021, 64, 767-773.	2.0	12
938	In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials, 2021, 268, 120526.	5.7	28
939	Feature-Selection-Based Transfer Learning for Intracortical Brain–Machine Interface Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 60-73.	2.7	5
940	The sensory representation of causally controlled objects. Neuron, 2021, 109, 677-689.e4.	3.8	18
941	Decoding visual information from high-density diffuse optical tomography neuroimaging data. NeuroImage, 2021, 226, 117516.	2.1	11
942	A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces. Nano Energy, 2021, 80, 105548.	8.2	33
943	Plug-and-play control of a brain–computer interface through neural map stabilization. Nature Biotechnology, 2021, 39, 326-335.	9.4	60
944	Design of intracortical microstimulation patterns to control the location, intensity, and quality of evoked sensations in human and animal models. , 2021, , 479-506.		0
945	Accurate Offline Asynchronous Detection of Individual Finger Movement From Intracranial Brain Signals Using a Novel Multiway Approach. IEEE Transactions on Biomedical Engineering, 2021, 68, 2176-2187.	2.5	3
946	Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. NeuroImage: Clinical, 2021, 31, 102728.	1.4	3
947	Actions, Agents, and Interfaces. Advances in Neuroethics, 2021, , 11-23.	0.1	1

#	Article	IF	CITATIONS
948	Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface: â€~Disentangling' Sensorimotor Events During Brain-Computer Interface Control. Springer Briefs in Electrical and Computer Engineering, 2021, , 75-85.	0.3	1
949	Using Neuralink by Humans: A Process Which Brings Humanity Closer to the Future. Advances in Intelligent Systems and Computing, 2021, , 233-238.	0.5	1
950	Decoding and perturbing decision states in real time. Nature, 2021, 591, 604-609.	13.7	64
951	Post-Adaptation Effects in a Motor Imagery Brain-Computer Interface Online Coadaptive Paradigm. IEEE Access, 2021, 9, 41688-41703.	2.6	9
952	Invasive BCI Approaches for Restoration of Upper Extremity Movements. , 2021, , 217-232.		1
953	Auditory cues reveal intended movement information in middle frontal gyrus neuronal ensemble activity of a person with tetraplegia. Scientific Reports, 2021, 11, 98.	1.6	12
954	Intracortical microstimulation for tactile feedback in awake behaving rats. , 2021, , 379-411.		1
955	Restoring the sense of touch with electrical stimulation of the nerve and brain. , 2021, , 349-378.		2
956	A Roadmap Towards Standards for Neurally Controlled End Effectors. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 84-90.	1.7	8
957	Power Modulations of Gamma Band in Sensorimotor Cortex Correlate with Time-Derivative of Grasp Force in Human Subjects. Springer Briefs in Electrical and Computer Engineering, 2021, , 89-102.	0.3	0
959	Restoring upper extremity function with brain-machine interfaces. International Review of Neurobiology, 2021, 159, 153-186.	0.9	0
960	The Neural Representation of Force across Grasp Types in Motor Cortex of Humans with Tetraplegia. ENeuro, 2021, 8, ENEURO.0231-20.2020.	0.9	9
961	Toward Non-invasive BCI-Based Movement Decoding. , 2021, , 233-249.		0
962	Functional MRI based simulations of ECoG grid configurations for optimal measurement of spatially distributed hand-gesture information. Journal of Neural Engineering, 2021, 18, 026013.	1.8	5
963	Quantifying the alignment error and the effect of incomplete somatosensory feedback on motor performance in a virtual brain–computer-interface setup. Scientific Reports, 2021, 11, 4614.	1.6	1
964	An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention. Frontiers in Human Neuroscience, 2021, 15, 618626.	1.0	15
966	The Spectrum of Responsibility Ascription for End Users of Neurotechnologies. Neuroethics, 2021, 14, 423-435.	1.7	6
970	Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. Journal of Neural Engineering, 2021, 18, 026011.	1.8	27

#	Article	IF	CITATIONS
971	SSVEP-assisted RSVP brain–computer interface paradigm for multi-target classification. Journal of Neural Engineering, 2021, 18, 016021.	1.8	10
972	Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation. Journal of Neural Engineering, 2021, 18, 045001.	1.8	8
974	Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization. Journal of Neural Engineering, 2021, 18, 036013.	1.8	25
975	High-density mapping of primate digit representations with a 1152-channel µECoG array. Journal of Neural Engineering, 2021, 18, 036025.	1.8	20
976	Defining Surgical Terminology and Risk for Brain Computer Interface Technologies. Frontiers in Neuroscience, 2021, 15, 599549.	1.4	19
977	Rat Locomotion Detection Based on Brain Functional Directed Connectivity from Implanted Electroencephalography Signals. Brain Sciences, 2021, 11, 345.	1.1	2
978	Extended home use of an advanced osseointegrated prosthetic arm improves function, performance, and control efficiency. Journal of Neural Engineering, 2021, 18, 026020.	1.8	17
979	Spatiotemporal patterns of gene expression around implanted silicon electrode arrays. Journal of Neural Engineering, 2021, 18, 045005.	1.8	33
980	Decoding Saccade Intention From Primate Prefrontal Cortical Local Field Potentials Using Spectral, Spatial, and Temporal Dimensionality Reduction. International Journal of Neural Systems, 2021, 31, 2150023.	3.2	3
981	Hierarchical Dynamical Model for Multiple Cortical Neural Decoding. Neural Computation, 2021, 33, 1372-1401.	1.3	4
982	Neurochips: Considerations from a neurosurgeon's standpoint. , 2021, 12, 173.		4
983	A Multi-DoF Prosthetic Hand Finger Joint Controller for Wearable sEMG Sensors by Nonlinear Autoregressive Exogenous Model. Sensors, 2021, 21, 2576.	2.1	6
985	A Framework for Optimizing Co-adaptation in Body-Machine Interfaces. Frontiers in Neurorobotics, 2021, 15, 662181.	1.6	12
986	User State Classification Based on Functional Brain Connectivity Using a Convolutional Neural Network. Electronics (Switzerland), 2021, 10, 1158.	1.8	2
988	Toward higher-performance bionic limbs for wider clinical use. Nature Biomedical Engineering, 2023, 7, 473-485.	11.6	104
989	The effects evaluation of a long-term neurofeedback training using coupling EEG-EMG features**Research supported by the National Key Research and Development Program of China under grant 2017YFB1300302, National Natural Science Foundation of China (No. 81630051, 81925020, 62006171), and Tianiin Key Technology R&D Program (No. 17ZXRGGX00020) 2021		0
990	Towards an Artificial Intelligence-based Smart Ward Control using Speech and EEG Signals. , 2021, , .		0
991	Non-invasive Cognitive-level Human Interfacing for the Robotic Restoration of Reaching & Grasping. , 2021, , .		3

#	Article	IF	CITATIONS
992	Neural interface translates thoughts into type. Nature, 2021, 593, 197-198.	13.7	3
993	Decoding of continuous movement attempt in 2-dimensions from non-invasive low frequency brain signals. , 2021, , .		7
994	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms― current progress, challenges, and charting the future. Bioelectronic Medicine, 2021, 7, 7.	1.0	5
995	Single-trial decoding of movement intentions using functional ultrasound neuroimaging. Neuron, 2021, 109, 1554-1566.e4.	3.8	51
996	High-performance brain-to-text communication via handwriting. Nature, 2021, 593, 249-254.	13.7	409
997	A brain-computer interface that evokes tactile sensations improves robotic arm control. Science, 2021, 372, 831-836.	6.0	245
998	Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nature Communications, 2021, 12, 3689.	5.8	38
999	Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 2021, 918, 1-133.	10.3	88
1000	Improving scalability in systems neuroscience. Neuron, 2021, 109, 1776-1790.	3.8	14
1001	Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. BioMed Research International, 2021, 2021, 1-11.	0.9	23
1002	A Nonlinear Maximum Correntropy Information Filter for High-Dimensional Neural Decoding. Entropy, 2021, 23, 743.	1.1	5
1003	Concerns in the Blurred Divisions Between Medical and Consumer Neurotechnology. IEEE Systems Journal, 2021, 15, 3069-3080.	2.9	9
1005	An artificial nervous system to treat chronic stroke. Artificial Organs, 2021, 45, 804-812.	1.0	2
1006	Bioethics of Brain Computer Interfaces. , 0, , .		0
1007	A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering, 2023, 7, 533-545.	11.6	29
1008	A Chopped Neural Front-End Featuring Input Impedance Boosting With Suppressed Offset-Induced Charge Transfer. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 402-411.	2.7	14
1009	Freedom of Speech. New England Journal of Medicine, 2021, 385, 278-279.	13.9	1
1010	Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurgery Clinics of North America, 2021, 32, 407-417.	0.8	3

#	Article	IF	CITATIONS
1011	Chronic recordings from the marmoset motor cortex reveals modulation of neural firing and local field potentials overlap with macaques. Journal of Neural Engineering, 2021, 18, 0460b2.	1.8	0
1012	Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses. , 2021, , .		2
1013	Exploring data-driven modeling and analysis of nonlinear pathological tremors. Mechanical Systems and Signal Processing, 2021, 156, 107659.	4.4	4
1014	Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. Journal of Neural Engineering, 2021, 18, 0460b9.	1.8	24
1015	Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia. IEEE Transactions on Biomedical Engineering, 2021, 68, 2313-2325.	2.5	83
1016	Generalizable cursor click decoding using grasp-related neural transients. Journal of Neural Engineering, 2021, 18, 0460e9.	1.8	8
1017	Brain-Machine Interfaces. Hand Clinics, 2021, 37, 391-399.	0.4	1
1018	Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. Journal of Neural Engineering, 2021, 18, 045012.	1.8	50
1019	A High-Voltage Compliance, 32-Channel Digitally Interfaced Neuromodulation System on Chip. IEEE Journal of Solid-State Circuits, 2021, 56, 2476-2487.	3.5	23
1020	Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. Journal of Neural Engineering, 2021, 18, 0460d7.	1.8	27
1021	Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. Micromachines, 2021, 12, 972.	1.4	16
1024	A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med, 2021, 2, 912-937.	2.2	16
1025	Brain–Computer Interfaces: Neurorehabilitation of Voluntary Movement after Stroke and Spinal Cord Injury. Synthesis Lectures on Assistive Rehabilitative and Health-Preserving Technologies, 2021, 10, i-133.	0.2	0
1026	Solving musculoskeletal biomechanics with machine learning. PeerJ Computer Science, 2021, 7, e663.	2.7	8
1027	Local field potentials in a pre-motor region predict learned vocal sequences. PLoS Computational Biology, 2021, 17, e1008100.	1.5	6
1028	The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews, 2022, 102, 551-604.	13.1	32
1029	Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface. Neuron, 2021, 109, 3164-3177.e8.	3.8	24
1030	Case Study: Mapping Evoked Fields in Primary Motor and Sensory Areas via Magnetoencephalography in Tetraplegia. Frontiers in Neurology, 2021, 12, 739693.	1.1	2

#	Article	IF	CITATIONS
1031	Historical perspectives, challenges, and future directions of implantable brain-computer interfaces for sensorimotor applications. Bioelectronic Medicine, 2021, 7, 14.	1.0	11
1032	Long-term stability of the chronic epidural wireless recorder WIMAGINE in tetraplegic patients. Journal of Neural Engineering, 2021, 18, 056026.	1.8	16
1034	The impact of distractions on intracortical brain–computer interface control of a robotic arm. Brain-Computer Interfaces, 2022, 9, 23-35.	0.9	2
1035	Decoding attempted phantom hand movements from ipsilateral sensorimotor areas after amputation. Journal of Neural Engineering, 2021, 18, 056037.	1.8	0
1036	Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration. Brain Stimulation, 2021, 14, 1184-1196.	0.7	16
1037	A Functional BCI Model by the P2731 working group: Physiology. Brain-Computer Interfaces, 2021, 8, 54-81.	0.9	1
1038	Force Decoding of Caudal Forelimb Area and Rostral Forelimb Area in Chronic Stroke Rats. IEEE Transactions on Biomedical Engineering, 2021, 68, 3078-3086.	2.5	3
1039	Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model. Biomedical Signal Processing and Control, 2022, 71, 103101.	3.5	49
1040	Clinical guidelines for neurorestorative therapies in spinal cord injury (2021 China version). Journal of Neurorestoratology, 2021, 9, 31-49.	1.1	35
1041	Summary of over Fifty Years with Brain-Computer Interfaces—A Review. Brain Sciences, 2021, 11, 43.	1.1	93
1042	Brain-Computer Interface Use to Control Military Weapons and Tools. Advances in Intelligent Systems and Computing, 2021, , 196-204.	0.5	6
1043	Can Prosthetic Hands Mimic a Healthy Human Hand?. Prosthesis, 2021, 3, 11-23.	1.1	5
1044	Learning Robust Features From Nonstationary Brain Signals by Multiscale Domain Adaptation Networks for Seizure Prediction. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 1208-1216.	2.6	13
1045	Tracking Fast Neural Adaptation by Globally Adaptive Point Process Estimation for Brain-Machine Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1690-1700.	2.7	6
1046	Information and Communication Theoretical Understanding and Treatment of Spinal Cord Injuries: State-of-The-Art and Research Challenges. IEEE Reviews in Biomedical Engineering, 2023, 16, 332-347.	13.1	9
1047	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
1048	The Mind-Controlled Robotic Hand. , 2014, , 173-190.		3
1049	Artificial Limbs for Upper Extremity Amputation. , 2015, , 609-619.		1

#	Article	IF	CITATIONS
1050	Brain–Computer Interfaces. , 2020, , 131-183.		53
1051	Intracortical Brain–Machine Interfaces. , 2020, , 185-221.		5
1052	Brain-Computer Interfaces for Motor Rehabilitation. , 2017, , 1-31.		1
1053	Neuroprosthetics. , 2017, , 689-720.		3
1054	Neural-gesteuerte Robotik für Assistenz und Rehabilitation im Alltag. , 2020, , 117-131.		3
1055	Ethical Implications of Brain–Computer Interfacing. , 2015, , 699-704.		4
1056	Brain–Machine Interfaces for Communication in Complete Paralysis: Ethical Implications and Challenges. , 2015, , 705-724.		10
1057	Effective Neural Representations for Brain-Mediated Human-Robot Interactions. Trends in Augmentation of Human Performance, 2014, , 207-237.	0.4	1
1058	Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. Advances in Experimental Medicine and Biology, 2019, 1101, 1-40.	0.8	12
1059	Invasive Brain Machine Interface System. Advances in Experimental Medicine and Biology, 2019, 1101, 67-89.	0.8	5
1060	Future of Neural Interfaces. Advances in Experimental Medicine and Biology, 2019, 1101, 225-241.	0.8	7
1063	Neural Representation of Observed, Imagined, and Attempted Grasping Force in Motor Cortex of Individuals with Chronic Tetraplegia. Scientific Reports, 2020, 10, 1429.	1.6	16
1064	A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Scientific Data, 2018, 5, 180211.	2.4	94
1065	Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm. Journal of Neural Engineering, 2020, 17, 046031.	1.8	43
1066	Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. Journal of Neural Engineering, 2020, 17, 041002.	1.8	17
1067	A comprehensive model-based framework for optimal design of biomimetic patterns of electrical stimulation for prosthetic sensation. Journal of Neural Engineering, 2020, 17, 046045.	1.8	23
1068	Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. Journal of Neural Engineering, 2020, 17, 056027.	1.8	16
1069	Fabrication and modeling of recessed traces for silicon-based neural microelectrodes. Journal of Neural Engineering, 2020, 17, 056003.	1.8	6

#	Article	IF	CITATIONS
1070	Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. Journal of Neural Engineering, 2020, 17, 066007.	1.8	52
1071	Multi-source domain adaptation for decoder calibration of intracortical brain-machine interface. Journal of Neural Engineering, 2020, 17, 066009.	1.8	4
1072	Motor imagery recognition with automatic EEG channel selection and deep learning. Journal of Neural Engineering, 2020, , .	1.8	23
1073	Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. Journal of Neurotrauma, 2020, 37, 1933-1953.	1.7	37
1095	A Shared Control Strategy for Reach and Grasp of Multiple Objects Using Robot Vision and Noninvasive Brain–Computer Interface. IEEE Transactions on Automation Science and Engineering, 2022, 19, 360-372.	3.4	16
1096	Information theoretic analysis of proprioceptive encoding during finger flexion in the monkey sensorimotor system. Journal of Neurophysiology, 2015, 113, 295-306.	0.9	3
1097	Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates. F1000Research, 2019, 8, 749.	0.8	18
1098	American Spinal Injury Association (ASIA) 40th Anniversary: Beginnings, Accomplishments and Future Challenges. Topics in Spinal Cord Injury Rehabilitation, 2013, 19, 153-171.	0.8	3
1099	Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering. PLoS Computational Biology, 2016, 12, e1004730.	1.5	94
1100	Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces. PLoS Computational Biology, 2016, 12, e1005119.	1.5	67
1101	Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning. PLoS Computational Biology, 2016, 12, e1005175.	1.5	128
1102	Studies in RF Power Communication, SAR, and Temperature Elevation in Wireless Implantable Neural Interfaces. PLoS ONE, 2013, 8, e77759.	1.1	15
1103	Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals. PLoS ONE, 2015, 10, e0128456.	1.1	23
1104	Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications. PLoS ONE, 2015, 10, e0137910.	1.1	47
1105	A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLoS ONE, 2017, 12, e0172578.	1.1	214
1106	Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE, 2017, 12, e0182578.	1.1	161
1107	Prediction of movement intention using connectivity within motor-related network: An electrocorticography study. PLoS ONE, 2018, 13, e0191480.	1.1	8
1108	Machine Learning for Neural Decoding. ENeuro, 2020, 7, ENEURO.0506-19.2020.	0.9	123

#	Article	IF	CITATIONS
1109	Autonomy Infused Teleoperation with Application to BCI Manipulation. , 0, , .		26
1111	An Integrated Brain-Machine Interface Platform With Thousands of Channels. Journal of Medical Internet Research, 2019, 21, e16194.	2.1	526
1112	The Connection Between the Nervous System and Machines: Commentary. Journal of Medical Internet Research, 2019, 21, e16344.	2.1	7
1113	Sensory Feedback in Upper Limb Prostheses. Proceedings of the Latvian Academy of Sciences, 2020, 74, 308-317.	0.0	3
1114	State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. Journal of Neurorestoratology, 2020, 8, 12-25.	1.1	39
1115	Anti-inflammatory Approaches to Mitigate the Neuroinflammatory Response to Brain-Dwelling Intracortical Microelectrodes. Journal of Immunological Sciences, 2018, 2, 15-21.	0.5	9
1117	A Spatio-Temporal Fractal Model for a CPS Approach to Brain-Machine-Body Interfaces. , 2016, , .		38
1118	Lower-Limb Neuroprostheses. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 153-180.	0.2	4
1119	The Status of Research into Intention Recognition. Advances in Psychology, Mental Health, and Behavioral Studies, 0, , 201-221.	0.1	2
1120	Brain-Computer Interfaces for Control of Upper Extremity Neuroprostheses in Individuals with High Spinal Cord Injury. , 2018, , 809-836.		2
1121	Advancements in the mind-machine interface: towards re-establishment of direct cortical control of limb movement in spinal cord injury. Neural Regeneration Research, 2016, 11, 1060.	1.6	3
1122	A systematic review on machine learning in neurosurgery: the future of decision making in patient care Turkish Neurosurgery, 2017, 28, 167-173.	0.1	31
1123	Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. ELife, 2019, 8, .	2.8	64
1124	Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. ELife, 2020, 9, .	2.8	45
1125	Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. ELife, 2020, 9, .	2.8	35
1126	An Improved Greedy Reduction Algorithm Based on Neighborhood Rough Set Model for Sensors Screening of Exoskeleton. IEEE Sensors Journal, 2021, 21, 26964-26977.	2.4	6
1127	Emerging trends in BCI-robotics for motor control and rehabilitation. Current Opinion in Biomedical Engineering, 2021, 20, 100354.	1.8	22
1128	Investigating Data Cleaning Methods to Improve Performance of Brain–Computer Interfaces Based on Stereo-Electroencephalography. Frontiers in Neuroscience, 2021, 15, 725384.	1.4	8

ARTICLE IF CITATIONS Algorithm Change Protocols in the Regulation of Adaptive Machine Learning–Based Medical Devices. 1129 2.1 23 Journal of Medical Internet Research, 2021, 23, e30545. Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration 1.5 in spinal cord injury. Brain Communications, 2021, 3, fcab248. Improving reaching with functional electrical stimulation by incorporating stiffness modulation. 1131 1.8 1 Journal of Neural Engineering, 2021, 18, 055009. Functional Neuroscience: Cortical Control of Limb Prosthesis., 2013, , 1-16. Somatosensory Prosthesis., 2013, , 1-4. 1133 0 Evaluation of Various Strategies to Improve the Training of a Brain Computer Interface System., 2013,, 1134 Give Me a Sign: Studies on the Decodability of Hand Gestures Using Activity of the Sensorimotor 1136 Cortex as a Potential Control Signal for Implanted Brain Computer Interfaces. Springer Briefs in 0.3 3 Electrical and Computer Engineering, 2014, , 7-17. Neuronal Population Vector., 2014, , 1-7. 1138 Robots, Cognitive Enhancers and Moral Dilemmas., 2014, , 210-228. 0 Neural Decoding., 2014, , 1-16. Cortical Motor Prosthesis., 2014, , 1-17. 0 1140 A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D 0.1 Coordinates Derived from Brain Signal. Journal of Biomedical Engineering Research, 2014, 35, 50-54. Human Single Unit Activity for Reach and Grasp Motor Prostheses., 2014, , 305-326. 1143 0 Ethical Issues in Brain–Computer Interface Research and Systems for Motor Control. , 2015, , 725-740. 1144 Robust articulatory speech synthesis using deep neural networks for BCI applications., 0, , . 12 1145 US regulators move on thought-controlled prosthetics. Nature, 2014, 515, 476-476. 1146 Antennas in Body-Centric Sensor Network Devices., 2015, , 1-20. 1147 0 Brain-Computer Interfaces for Communication and Rehabilitation Using Intracortical Neuronal 1148 Activity from the Prefrontal Cortex and Basal Ganglia in Humans. Springer Briefs in Electrical and Computer Engineering, 2015, , 19-27.

#	Article	IF	CITATIONS
1149	Cortical Motor Prosthesis. , 2015, , 892-905.		0
1150	Implantable Neural Sensors for Brain Machine Interface. KAIST Research Series, 2015, , 51-73.	1.5	0
1154	Neuroprothesen und Gehirn-Computer-Schnittstellen. , 2017, , 151-161.		0
1155	Physik, Biologie und Mathematik: Grundbegriffe, Skalen und Allgemeingültigkeit. , 2017, , 209-229.		0
1156	Output Device for Brain Machine Interface. Journal of the Japan Society for Precision Engineering, 2017, 83, 1000-1005.	0.0	0
1157	Functional Restoration for Neurological Trauma: Current Therapies and Future Directions. , 2017, , 295-308.		0
1160	Brain-Computer Interfaces for Motor Rehabilitation. , 2018, , 1471-1501.		0
1161	Functional Neuroscience: Cortical Control of Limb Prostheses. , 2018, , 1-13.		0
1162	ä¼2"å†åŸ‹è¾¼åž‹ãƒ–レã,฿ƒ³ãƒ»ãƒžã,•ン・ã,฿ƒ³ã,¿ãƒ¼ãƒ•ã,§ãƒ¼ã,¹ã«ã,ˆã,‹æ©Ÿèƒ½å†ů»º. Journal of th	e Sooiety o	of B iomechai
1164	Brain-Machine Interfaces. Advances in Web Technologies and Engineering Book Series, 2018, , 351-371.	0.4	0
1167	ROBUST AND SCALABLE TISSUE-ENGINEERINED ELECTRONIC NERVE INTERFACES (TEENI). , 2018, , .		3
1169	Brain-Machine Interfaces. , 2019, , 1-4.		0
1170	What Lies Ahead? (The Future of Our Technological Society). Science and Fiction, 2019, , 239-265.	0.0	0
1171	Elektromagnetismus. , 2019, , 7-11.		0

1172	Mensch-Maschine-Schnittstellen und ›verteilte Agencyâ€1 am Beispiel motorischer Neuroprothesen. , 2019, , 205-212.		0
1175	A comparing network for the classification of steady-state visual evoked potential responses based on convolutional neural network. , 2019, , .		3
1177	VirtEl - Software for Magnetic Encephalography Data Analysis by the Method of Virtual Electrodes. Mathematical Biology and Bioinformatics, 2019, 14, 340-354.	0.1	3

1192	Decoding of standard and non-standard visuomotor associations from parietal cortex. Journal of Neural Engineering, 2020, 17, 046027.	1.8	4	
------	---	-----	---	--

#	Article	IF	CITATIONS
1195	Introduction of brain computer interface to neurologists. Annals of Clinical Neurophysiology, 2021, 23, 92-98.	0.1	1
1196	Ethical and social aspects of neural prosthetics. Progress in Biomedical Engineering, 2022, 4, 012004.	2.8	2
1197	The neural mechanisms of manual dexterity. Nature Reviews Neuroscience, 2021, 22, 741-757.	4.9	73
1198	Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces. Journal of Neuroscience, 2022, 42, 220-239.	1.7	10
1200	Minimal Tissue Reaction after Chronic Subdural Electrode Implantation for Fully Implantable Brain–Machine Interfaces. Sensors, 2021, 21, 178.	2.1	9
1201	A Flexible Meal Aid Robotic Arm System Based on SSVEP. , 2020, , .		2
1203	Spatial-temporal aspects of continuous EEG-based neurorobotic control. Journal of Neural Engineering, 2020, 17, 066006.	1.8	11
1204	Gene Expression Analysis of Innate Immune Compromised Mice Reveals Secondary Target Genes in Response to Intracortical Microelectrode Implantation. SSRN Electronic Journal, 0, , .	0.4	0
1205	Neurorestoration: Advances in human brain–computer interface using microelectrode arrays. Journal of Neurorestoratology, 2020, 8, 32-39.	1.1	4
1206	Limitations for Extraterrestrial Colonisation and Civilisation Built and the Potential for Human Enhancements. Space and Society, 2020, , 71-93.	1.6	4
1207	Microelectrode Recording in Neurosurgical Patients. , 2020, , 93-106.		0
1209	Restoring Functional Reach-to-Grasp in a Person with Chronic Tetraplegia Using Implanted Functional Electrical Stimulation and Intracortical Brain-Computer Interfaces. Springer Briefs in Electrical and Computer Engineering, 2020, , 35-45.	0.3	0
1210	The Status of Research into Intention Recognition. , 2020, , 1290-1306.		0
1212	Robust neural decoding by kernel regression with Siamese representation learning. Journal of Neural Engineering, 2021, 18, 056062.	1.8	6
1213	Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface. Journal of Neural Engineering, 2021, 18, 066019.	1.8	28
1214	Timescales of local and cross-area interactions during neuroprosthetic learning. Journal of Neuroscience, 2021, 41, JN-RM-1397-21.	1.7	1
1216	Brain-Computer Interfaces for Control of Upper Extremity Neuroprostheses in Individuals with High Spinal Cord Injury. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 237-264.	0.2	3
1217	A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. Journal of Neural Engineering, 2020, 17, 056023.	1.8	5

#	Article	IF	CITATIONS
1221	Agency and Accountability: Ethical Considerations for Brain-Computer Interfaces. The Rutgers Journal of Bioethics, 2020, 11, 9-20.	0.0	1
1222	Novel intraoperative online functional mapping of somatosensory finger representations for targeted stimulating electrode placement: technical note. Journal of Neurosurgery, 2021, , 1-8.	0.9	14
1223	A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size. Neural Computation, 2022, 34, 219-254.	1.3	5
1224	Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. Journal of Neural Engineering, 2021, 18, 066044.	1.8	14
1225	Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array. Journal of Neurophysiology, 2021, 126, 2104-2118.	0.9	23
1227	A Neuromorphic Brain Interface Based on RRAM Crossbar Arrays for High Throughput Real-Time Spike Sorting. IEEE Transactions on Electron Devices, 2022, 69, 2137-2144.	1.6	6
1228	Quantitative Modeling on Nonstationary Neural Spikes: From Reinforcement Learning to Point Process. , 2021, , 1-60.		1
1229	Flexible and Soft Materials and Devices for Neural Interface. , 2021, , 1-61.		1
1230	EDAN: An EMG-controlled Daily Assistant to Help People With Physical Disabilities. , 2020, , .		16
1231	A robot control platform for motor impaired people. , 2020, , .		Ο
1232	A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity. Scientific Reports, 2022, 12, 1101.	1.6	8
1233	Exploring Cognition with Brain–Machine Interfaces. Annual Review of Psychology, 2022, 73, 131-158.	9.9	12
1234	Adaptive Wireless Power Transfer and Backscatter Communication for Perpetual Operation of Wireless Brain–Computer Interfaces. Proceedings of the IEEE, 2022, 110, 89-106.	16.4	5
1235	Numerical study of laser synapse connecting Hindmarsh–Rose neurons. European Physical Journal: Special Topics, 2022, 231, 341-350.	1.2	2
1236	A Multimodal Neural-Recording IC With Reconfigurable Analog Front-Ends for Improved Availability and Usability for Recording Channels. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 185-199.	2.7	8
1238	Sense of agency for intracortical brain–machine interfaces. Nature Human Behaviour, 2022, 6, 565-578.	6.2	15
1239	Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings. NeuroImage, 2022, 250, 118969.	2.1	12
1240	Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications. Advanced Healthcare Materials, 2022, 11, e2102382.	3.9	23

#	Article	IF	CITATIONS
1241	Motor BMIs Have Entered the Clinical Realm. , 2022, , 1-37.		1
1242	Controlling an effector with eye movements: The effect of entangled sensory and motor responsibilities. PLoS ONE, 2022, 17, e0263440.	1.1	0
1243	Workshops of the eighth international brain–computer interface meeting: BCls: the next frontier. Brain-Computer Interfaces, 2022, 9, 69-101.	0.9	4
1244	Towards in vivo neural decoding. Biomedical Engineering Letters, 2022, 12, 185-195.	2.1	2
1245	Horizonte de la Inteligencia Artificial y Neurociencias. Jbnc - Jornal Brasileiro De Neurocirurgia, 2021, 32, 13-17.	0.0	0
1249	Improved Spike-Based Brain-Machine Interface Using Bayesian Adaptive Kernel Smoother and Deep Learning. IEEE Access, 2022, 10, 29341-29356.	2.6	5
1251	Emerging concepts in the clinical management of SCI for the future. , 2022, , 575-585.		0
1252	Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	19
1253	Motion prediction for the sensorimotor control of hand prostheses with a brain-machine interface using EEG. , 2022, , .		2
1254	Functioning of Declarative Memory: Intersection between Neuropsychology and Mathematics. , 2022, 1,		0
1256	Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. Journal of Neural Engineering, 2022, 19, 021003.	1.8	2
1257	Evaluating the clinical benefit of brain-computer interfaces for control of a personal computer. Journal of Neural Engineering, 2022, , .	1.8	4
1258	An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. Journal of Neural Engineering, 2022, 19, 026021.	1.8	13
1259	Decoding ECoG signal into 3D hand translation using deep learning. Journal of Neural Engineering, 2022, 19, 026023.	1.8	15
1260	Studies to Overcome Brain–Computer Interface Challenges. Applied Sciences (Switzerland), 2022, 12, 2598.	1.3	9
1261	Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron, 2022, 110, 1777-1787.e3.	3.8	12
1263	Feel Your Reach: An EEG-Based Framework to Continuously Detect Goal-Directed Movements and Error Processing to Gate Kinesthetic Feedback Informed Artificial Arm Control. Frontiers in Human Neuroscience, 2022, 16, 841312.	1.0	10
1264	Indicators and criteria of consciousness: ethical implications for the care of behaviourally unresponsive patients. BMC Medical Ethics, 2022, 23, 30.	1.0	11

#	Article	IF	CITATIONS
1265	Applying Dimensionality Reduction Techniques in Source-Space Electroencephalography via Template and Magnetic Resonance Imaging-Derived Head Models to Continuously Decode Hand Trajectories. Frontiers in Human Neuroscience, 2022, 16, 830221.	1.0	5
1266	Neuromotor prosthetic to treat stroke-related paresis: N-of-1 trial. Communications Medicine, 2022, 2,	1.9	3
1267	Implicit mechanisms of intention. Current Biology, 2022, 32, 2051-2060.e6.	1.8	15
1268	Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array. Journal of Neural Engineering, 2022, 19, 026044.	1.8	17
1270	A Brain Biometric-based Identification Approach Using Local Field Potentials. , 2021, 2021, 1116-1119.		1
1271	Brain–Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis. Neurorehabilitation and Neural Repair, 2022, 36, 83-96.	1.4	16
1272	Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Communications Biology, 2021, 4, 1406.	2.0	23
1273	A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Journal of Neural Engineering, 2021, 18, 066053.	1.8	55
1274	Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces. Frontiers in Bioengineering and Biotechnology, 2021, 9, 759711.	2.0	26
1276	Highly Configurable 100 Channel Recording and Stimulating Integrated Circuit for Biomedical Experiments. Sensors, 2021, 21, 8482.	2.1	0
1277	High Throughput Neuromorphic Brain Interface with CuO _x Resistive Crossbars for Real-time Spike Sorting. , 2021, , .		4
1278	F-Value Time-Frequency Analysis: Between-Within Variance Analysis. Frontiers in Neuroscience, 2021, 15, 729449.	1.4	5
1279	A Multifunctional Adaptive and Interactive AI system to support people living with stroke, acquired brain or spinal cord injuries: A study protocol. PLoS ONE, 2022, 17, e0266702.	1.1	4
1280	Course-Grained Multi-scale EMD Based Fuzzy Entropy for Multi-target Classification During Simultaneous SSVEP-RSVP Hybrid BCI Paradigm. International Journal of Fuzzy Systems, 0, , 1.	2.3	0
1296	Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion. SSRN Electronic Journal, O, , .	0.4	0
1297	Non-Invasive Human-Machine Interface (HMI) Systems With Hybrid On-Body Sensors for Controlling Upper-Limb Prosthesis: A Review. IEEE Sensors Journal, 2022, 22, 10292-10307.	2.4	15
1298	Increasing Robustness of Brain–Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals. Frontiers in Neuroscience, 2022, 16, 858377.	1.4	2
1299	Preserved cortical somatotopic and motor representations in tetraplegic humans. Current Opinion in Neurobiology, 2022, 74, 102547.	2.0	7

#	Article	IF	CITATIONS
1300	An Ensemble Approach for Classification of Reach and Grasp Movements based on EEG Signals. , 2021, , .		1
1302	Đ¢ĐµĐ»ĐµÑĐ½Ñ‹Đµ Đ,ллҎзĐ,Đ,: Ñ"ĐµĐ½Đ¾Đ¼ĐµĐ½Đ¾Đ»Đ¾Đ3Đ,Ñ•, Đ¼ĐµÑĐ°Đ½Đ,Đ·Đ¼Ñ‹, 1	ĬµŒ;ŒĨ	ἷ€ĐĵĐ¼ĐμĐ
1303	Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain–machine interface for brain injury. Journal of Neural Engineering, 2022, 19, 036024.	1.8	3
1304	A Power-Efficient Brain-Machine Interface System With a Sub-mw Feature Extraction and Decoding ASIC Demonstrated in Nonhuman Primates. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 395-408.	2.7	6
1305	Short report: surgery for implantable brain-computer interface assisted by robotic navigation system. Acta Neurochirurgica, 2022, 164, 2299-2302.	0.9	2
1307	A low-power communication scheme for wireless, 1000 channel brain–machine interfaces. Journal of Neural Engineering, 2022, 19, 036037.	1.8	6
1308	Design-development of an at-home modular brain–computer interface (BCI) platform in a case study of cervical spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	5
1311	Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface. IEEE Transactions on Biomedical Engineering, 2022, 69, 3825-3835.	2.5	8
1313	Development of a Vision-Guided Shared-Control System for Assistive Robotic Manipulators. Sensors, 2022, 22, 4351.	2.1	5
1314	Characteristics and stability of sensorimotor activity driven by isolated-muscle group activation in a human with tetraplegia. Scientific Reports, 2022, 12, .	1.6	0
1315	Restoration of complex movement in the paralyzed upper limb. Journal of Neural Engineering, 2022, 19, 046002.	1.8	7
1317	Editorial: Improving Neuroprosthetics Through Novel Techniques for Processing Electrophysiological Human Brain Signals. Frontiers in Neuroscience, 0, 16, .	1.4	1
1318	High-density single-unit human cortical recordings using the Neuropixels probe. Neuron, 2022, 110, 2409-2421.e3.	3.8	36
1319	Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. Entropy, 2022, 24, 819.	1.1	37
1320	Somatosensory Prosthesis. , 2022, , 3185-3188.		0
1321	Functional Neuroscience: Cortical Control of Limb Prostheses. , 2022, , 1474-1487.		0
1322	Neural Decoding. , 2022, , 2213-2225.		0
1323	Implantable Sensors. , 2022, , .		1

#	Article	IF	CITATIONS
1324	Cortical Motor Prosthesis. , 2022, , 1061-1074.		0
1325	Neuronal Population Vector. , 2022, , 2407-2412.		0
1327	In Vivo Neural Interfaces—From Small- to Large-Scale Recording. Frontiers in Nanotechnology, 0, 4, .	2.4	4
1328	Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task. Nature Communications, 2022, 13, .	5.8	5
1329	Shared Control of Bimanual Robotic Limbs With a Brain-Machine Interface for Self-Feeding. Frontiers in Neurorobotics, 0, 16, .	1.6	19
1331	Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Sensors, 2022, 22, 5000.	2.1	10
1333	BCImat: a Matlab-based framework for Intracortical Brain-Computer Interfaces and their simulation with an artificial spiking neural network. Journal of Open Source Software, 2022, 7, 3956.	2.0	1
1334	Artifact-Recovery in Neuromodulators using Tunable High-Pass Corners. , 2022, , .		2
1335	Neuroinflammatory Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to Improve the Recording Performance of Intracortical Microelectrodes. Cells, 2022, 11, 2348.	1.8	14
1337	Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion. Antioxidants, 2022, 11, 1628.	2.2	5
1339	Brain–Computer Interfaces for Treatment of Focal Dystonia. Movement Disorders, 2022, 37, 1798-1802.	2.2	2
1340	Slow Firing Single Units Are Essential for Optimal Decoding of Silent Speech. Frontiers in Human Neuroscience, 0, 16, .	1.0	2
1342	Assess and rehabilitate body representations via (neuro)robotics: An emergent perspective. Frontiers in Neurorobotics, 0, 16, .	1.6	0
1343	In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials, 2022, 289, 121784.	5.7	18
1344	Intracranial EEG Recordings of High-Frequency Activity From a Wireless Implantable BMI Device in Awake Nonhuman Primates. IEEE Transactions on Biomedical Engineering, 2023, 70, 1107-1113.	2.5	0
1345	Central and Peripheral Neural Interfaces for Control of Upper Limb Actuators for Motor Rehabilitation After Stroke: Technical and Clinical Considerations. , 2022, , 1-54.		1
1346	Brain-Machine Interfaces for Upper and Lower Limb Prostheses. , 2022, , 1-45.		0
1347	Neurochips: An Ethical Consideration. , 2022, , 101-109.		0

#	Article	IF	Citations
1348	An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for Implantable Brain-Machine Interface. , 2022, , .		8
1349	Neurorestoratology: New Advances in Clinical Therapy. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1031-1038.	0.8	5
1351	Stability of motor representations after paralysis. ELife, 0, 11, .	2.8	8
1352	Examination of effectiveness of kinaesthetic haptic feedback for motor imagery-based brain-computer interface training. Brain-Computer Interfaces, 2023, 10, 16-37.	0.9	5
1353	Volitional Generation of Reproducible, Efficient Temporal Patterns. Brain Sciences, 2022, 12, 1269.	1.1	1
1356	Neurocognitive and motor-control challenges for the realization of bionic augmentation. Nature Biomedical Engineering, 2023, 7, 344-348.	11.6	5
1357	Methodological Recommendations for Studies on the Daily Life Implementation of Implantable Communication-Brain–Computer Interfaces for Individuals With Locked-in Syndrome. Neurorehabilitation and Neural Repair, 2022, 36, 666-677.	1.4	4
1358	Clinical neuroscience and neurotechnology: An amazing symbiosis. IScience, 2022, 25, 105124.	1.9	3
1359	Deep brain–machine interfaces: sensing and modulating the human deep brain. National Science Review, 2022, 9, .	4.6	8
1360	Finger movement and coactivation predicted from intracranial brain activity using extended Block-Term Tensor Regression. Journal of Neural Engineering, 0, , .	1.8	0
1361	Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex. Journal of Neural Engineering, 2022, 19, 066039.	1.8	4
1362	Novel Grasping Mechanisms of 3Dâ€Printed Prosthetic Hands. Advanced Intelligent Systems, 2022, 4, .	3.3	4
1365	Al-Supported Brain–Computer Interfaces and the Emergence of â€~Cyberbilities'. , 2022, , 427-444.		0
1367	Hardware-Efficient Compression of Neural Multi-Unit Activity. IEEE Access, 2022, 10, 117515-117529.	2.6	2
1368	The Hand After Stroke and SCI: Restoration of Function with Technology. , 2022, , 113-134.		1
1369	BCI-Based Neuroprostheses and Physiotherapies for Stroke Motor Rehabilitation. , 2022, , 509-524.		0
1370	Hardware evaluation of spike detection algorithms towards wireless brain machine interfaces. , 2022,		6
1373	Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder. Nature Communications, 2022, 13, .	5.8	20

#	Article	IF	CITATIONS
1374	Learning to control a BMI-driven wheelchair for people with severe tetraplegia. IScience, 2022, 25, 105418.	1.9	10
1375	Decoder calibration framework for intracortical brain-computer interface system via domain adaptation. Biomedical Signal Processing and Control, 2023, 81, 104453.	3.5	1
1376	Trends in Volumetric-Energy Efficiency of Implantable Neurostimulators: A Review From a Circuits and Systems Perspective. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17, 2-20.	2.7	1
1377	Learning-induced Neural Plasticity in the Primary Motor Cortex during the Motor Imagery Task and the Speech Task. , 2022, , .		1
1378	Delving into Temporal-Spectral Connections in Spike-LFP Decoding by Transformer Networks. Communications in Computer and Information Science, 2023, , 15-29.	0.4	1
1379	Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?. Neurorehabilitation and Neural Repair, 2022, 36, 747-756.	1.4	14
1380	Training with noninvasive brain–machine interface, tactile feedback, and locomotion to enhance neurological recovery in individuals with complete paraplegia: a randomized pilot study. Scientific Reports, 2022, 12, .	1.6	3
1381	Learning in a closed-loop brain-machine interface with distributed optogenetic cortical feedback. Journal of Neural Engineering, 2022, 19, 066045.	1.8	0
1382	Bibliometric analysis on Brain-computer interfaces in a 30-year period. Applied Intelligence, 2023, 53, 16205-16225.	3.3	2
1383	Active upper limb prostheses: a review on current state and upcoming breakthroughs. Progress in Biomedical Engineering, 2023, 5, 012001.	2.8	17
1384	Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. Journal of Neural Engineering, 2023, 20, 014001.	1.8	10
1386	Tracking momentary fluctuations in human attention with a cognitive brain-machine interface. Communications Biology, 2022, 5, .	2.0	4
1387	Interim Safety Profile From the Feasibility Study of the BrainGate Neural Interface System. Neurology, 2023, 100, .	1.5	11
1388	Neuroprosthetics: from sensorimotor to cognitive disorders. Communications Biology, 2023, 6, .	2.0	19
1389	Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients. JAMA Neurology, 2023, 80, 270.	4.5	28
1390	Neural interfacing biomaterials coated with the firmly tethered neuro-specific lipid bilayer. Applied Surface Science, 2023, 624, 156424.	3.1	0
1391	A review on the application of intelligent control strategies for post-stroke hand rehabilitation machines. Advances in Mechanical Engineering, 2023, 15, 168781322211480.	0.8	1
1392	Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. Advanced Science, 2023, 10, .	5.6	5

ARTICLE IF CITATIONS Heterogeneous domain adaptation for intracortical signal classification using domain consensus. 1393 3.5 1 Biomedical Signal Processing and Control, 2023, 82, 104540. A Deep Neural Network-Based Spike Sorting With Improved Channel Selection and Artefact Removal. 1395 2.6 IEEE Access, 2023, 11, 15131-15143. Brain-Machine Interfaces: From Restoring Sensorimotor Control to Augmenting Cognition., 2023,, 1396 0 1343-1380. Flexible and Soft Materials and Devices for Neural Interface., 2023, , 79-139. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and 1398 sensitivity to change in assistive hand exoskeleton application. Journal of NeuroEngineering and 2.4 2 Rehabilitation, 2023, 20, . Decoding spatial locations from primate lateral prefrontal cortex neural activity during virtual 1399 1.8 navigation. Journal of Neural Engineering, 2023, 20, 016054. Neurosurgical Considerations for the Brain Computer Interface., 2023, , 3567-3604. 1400 0 Motor BMIs Have Entered the Clinical Realm., 2023, , 1381-1417. 1401 Neural Interfaces Involving the CNS and PNS Combined with Upper Limb Actuators for Motor 1402 0 Rehabilitation After Stroke: Technical and Clinical Considerations., 2023, , 1701-1754. Artificial Sensory Feedback to the Brain: Somatosensory Feedback for Neural Devices and BCI. , 2023, , 1403 1261-1283. Towards a Wireless Implantable Brain-Machine Interface for Locomotion Control., 2023, 1003-1022. 0 1404 A Neuroprosthetic for Individuals with Tetraplegia: The Path from a Clinical Research Tool to a 1405 Home-Use Assistive Device. , 2023, , 3353-3385 Quantitative Modeling on Nonstationary Neural Spikes: From Reinforcement Learning to Point 1406 0 Process., 2023, , 2555-2614. Modeling of the Peripheral Nerve to Investigate Advanced Neural Stimulation (Sensory Neural) Tj ETQq1 1 0.784314 rgBT /Overlock 1 1407 In Vitro Study of Artifact-Recovery Using a 32-Channel Neuromodulator Platform. IEEE Transactions 1408 0 3.5on Circuits and Systems I: Regular Papers, 2023, , 1-10. Autonomous grasping of 3-D objects by a vision-actuated robot arm using Brain–Computer Interface. 1410 3.5 Biomedical Signal Processing and Control, 2023, 84, 104765. Human single neuron recordings., 2024, , . 1412 0 Advances in applications of head mounted devices (HMDs): Physical techniques for drug delivery and 1413 4.8 neuromodulation. Journal of Controlled Release, 2023, 354, 810-820.

#	Article	IF	CITATIONS
1414	Brain-Machine Interfaces for Upper and Lower Limb Prostheses. , 2023, , 1091-1135.		0
1416	Bio-robotics research for non-invasive myoelectric neural interfaces for upper-limb prosthetic control: a 10-year perspective review. National Science Review, 2023, 10, .	4.6	5
1417	Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. Journal of Neural Engineering, 2023, 20, 026019.	1.8	4
1418	Neural Plasticity in Sensorimotor Brain–Machine Interfaces. Annual Review of Biomedical Engineering, 2023, 25, 51-76.	5.7	2
1419	Neuronal representation of bimanual arm motor imagery in the motor cortex of a tetraplegia human, a pilot study. Frontiers in Neuroscience, 0, 17, .	1.4	4
1420	Demystifying Cognitive Informatics and its Applications in Brain-Computer Interface. Wireless Personal Communications, 2023, 129, 1343-1368.	1.8	3
1421	Understanding de novo learning for brain-machine interfaces. Journal of Neurophysiology, 2023, 129, 749-750.	0.9	2
1422	Flexible and smart electronics for single-cell resolved brain–machine interfaces. Applied Physics Reviews, 2023, 10, .	5.5	1
1423	An Analysis of Deep Learning Models in SSVEP-Based BCI: A Survey. Brain Sciences, 2023, 13, 483.	1.1	5
1424	A Low-Complexity Brain–Computer Interface for High-Complexity Robot Swarm Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1816-1825.	2.7	1
1425	Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance. Frontiers in Human Neuroscience, 0, 17, .	1.0	2
1426	Intracortical Hindlimb Brain–Computer Interface Systems: A Systematic Review. IEEE Access, 2023, 11, 28119-28139.	2.6	1
1427	Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics. Science Advances, 2023, 9, .	4.7	10
1429	Biosignal-based co-adaptive user-machine interfaces for motor control. Current Opinion in Biomedical Engineering, 2023, 27, 100462.	1.8	3
1430	Neurotechnologies to restore hand functions. , 2023, 1, 390-407.		5
1431	Translational opportunities and challenges of invasive electrodes for neural interfaces. Nature Biomedical Engineering, 2023, 7, 424-442.	11.6	17
1432	Restoring continuous finger function with temporarily paralyzed nonhuman primates using brain–machine interfaces. Journal of Neural Engineering, 2023, 20, 036006.	1.8	0
1439	Intracortical brain-computer interfaces in primates: a review and outlook. Biomedical Engineering Letters, 2023, 13, 375-390.	2.1	2

#	Article	IF	CITATIONS
1444	Brain-Computer Interfaces. , 2023, , 343-347.		0
1460	HAT: Head-Worn Assistive Teleoperation of Mobile Manipulators. , 2023, , .		0
1461	Neural Decoding for Intracortical Brain–Computer Interfaces. Cyborg and Bionic Systems, 2023, 4, .	3.7	4
1472	Virtual reality, augmented reality technologies, and rehabilitation. , 2023, , 111-134.		0
1480	How Does Artificial Intelligence Contribute to iEEG Research?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 761-802.	0.1	2
1481	Can Chronically Implanted iEEG Sense and Stimulation Devices Accelerate the Discovery of Neural Biomarkers?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 873-889.	0.1	0
1482	How Can I Use Utah Arrays for Brain-Computer Interfaces?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 863-872.	0.1	0
1485	Neural encoding of artificial sensations evoked by peripheral nerve stimulation for neuroprosthetic applications. , 2023, , 237-265.		0
1498	The Construction of Intelligent Grasping System Based on EEG. Lecture Notes in Computer Science, 2023, , 245-256.	1.0	0
1502	An Exploratory Multi-Session Study of Learning High-Dimensional Body-Machine Interfacing for Assistive Robot Control. , 2023, , .		2
1516	A Challenge for Bringing a BCI Closer to Motor Control: The "Interface Uncanny Valley―Hypothesis. , 2023, , .		0
1518	State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces. , 2023, , .		0
1525	May the Force Be with You: Biomimetic Grasp Force Decoding for Brain Controlled Bionic Hands. Springer Briefs in Electrical and Computer Engineering, 2024, , 109-121.	0.3	0
1526	Designing Touch: Intracortical Neurohaptic Feedback in Virtual Reality. Springer Briefs in Electrical and Computer Engineering, 2024, , 93-107.	0.3	0
1528	Neuromorphic hardware for somatosensory neuroprostheses. Nature Communications, 2024, 15, .	5.8	1
1530	FPGA implementation of a Spiking Neural Network for Real-Time Action Potential and Burst Detection. , 2023, , .		0
1532	Design of interactive neural input device for arm prosthesis. , 2024, , 1-21.		0
1533	High-fidelity interfacing for bionic rehabilitation. , 2024, , 213-260.		Ο

#	Article	IF	CITATIONS
1534	Brain-Controlled Assistive Robotics and Prosthetics. , 0, , 129-147.		0
1535	Brain Patterns Generated while Using a Tongue Control Interface: A Preliminary Study with Two Individuals with ALS. , 2023, , .		0
1546	Continuous Decoding of Movement Trajectory During Unimanual Movement Using Bilateral Motor Cortex Signals. , 2023, , .		0