Fate Mapping Reveals Origins and Dynamics of Monocy Homeostasis

Immunity 38, 79-91 DOI: 10.1016/j.immuni.2012.12.001

Citation Report

#	Article	IF	CITATIONS
1	CELLULAR REQUIREMENTS FOR THE PRIMARY IN VITRO ANTIBODY RESPONSE TO DNP-FICOLL. Journal of Experimental Medicine, 1974, 139, 1354-1360.	4.2	141
2	Monocyte heterogeneity in cardiovascular disease. Seminars in Immunopathology, 2013, 35, 553-562.	2.8	72
3	Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 2013, 14, 618-630.	7.7	1,012
4	The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nature Immunology, 2013, 14, 831-839.	7.0	147
5	Genetic Tracing via DNGR-1 Expression History Defines Dendritic Cells as a Hematopoietic Lineage. Cell, 2013, 154, 843-858.	13.5	253
6	Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Seminars in Immunopathology, 2013, 35, 585-600.	2.8	447
7	Proliferating macrophages prevail in atherosclerosis. Nature Medicine, 2013, 19, 1094-1095.	15.2	45
8	Real-Time InÂVivo Imaging Reveals the Ability of Monocytes to Clear Vascular Amyloid Beta. Cell Reports, 2013, 5, 646-653.	2.9	195
9	Use of Induced Pluripotent Stem Cells to Recapitulate Pulmonary Alveolar Proteinosis Pathogenesis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 183-193.	2.5	51
10	The role of macrophages in obstructive airways disease: Chronic obstructive pulmonary disease and asthma. Cytokine, 2013, 64, 613-625.	1.4	52
11	Transcriptional Control of Macrophage Identity, Self-Renewal, and Function. Advances in Immunology, 2013, 120, 269-300.	1.1	34
12	Ontogeny and Functional Specialization of Dendritic Cells in Human and Mouse. Advances in Immunology, 2013, 120, 1-49.	1.1	157
13	A Close Encounter of the Third Kind. Advances in Immunology, 2013, 120, 69-103.	1.1	125
14	A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience, 2013, 16, 1618-1626.	7.1	574
15	Sources of heterogeneity in human monocyte subsets. Immunology Letters, 2013, 152, 32-41.	1.1	69
16	The Spleen in Local and Systemic Regulation of Immunity. Immunity, 2013, 39, 806-818.	6.6	707
17	Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1478-1483.	1.1	232
18	Beyond Stem Cells: Self-Renewal of Differentiated Macrophages. Science, 2013, 342, 1242974.	6.0	408

#	Article	IF	CITATIONS
19	Tissue-resident macrophages. Nature Immunology, 2013, 14, 986-995.	7.0	1,621
20	Regulatory T cells in nonlymphoid tissues. Nature Immunology, 2013, 14, 1007-1013.	7.0	308
21	IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. Journal of Experimental Medicine, 2013, 210, 2477-2491.	4.2	337
22	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine, 2013, 210, 1977-1992.	4.2	976
23	Retinoid X receptors in macrophage biology. Trends in Endocrinology and Metabolism, 2013, 24, 460-468.	3.1	113
24	Tissue LyC6â^' Macrophages Are Generated in the Absence of Circulating LyC6â^' Monocytes and Nur77 in a Model of Muscle Regeneration. Journal of Immunology, 2013, 191, 5695-5701.	0.4	80
25	Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes. Immunity, 2013, 39, 599-610.	6.6	656
26	Intestinal macrophages: well educated exceptions from the rule. Trends in Immunology, 2013, 34, 162-168.	2.9	176
27	Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunology and Cell Biology, 2013, 91, 232-239.	1.0	114
28	Brain microglia: watchdogs with pedigree. Nature Neuroscience, 2013, 16, 253-255.	7.1	31
29	Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nature Communications, 2013, 4, 1886.	5.8	261
30	Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 503-510.	1.4	713
31	Tissue macrophage heterogeneity: issues and prospects. Seminars in Immunopathology, 2013, 35, 533-540.	2.8	41
32	The contentious ontogeny of fibrosis in the kidney. Kidney International, 2013, 84, 14-15.	2.6	6
33	Origin of monocytes and macrophages in a committed progenitor. Nature Immunology, 2013, 14, 821-830.	7.0	523
34	Identification of a Tissue-Specific, C/EBPβ-Dependent Pathway of Differentiation for Murine Peritoneal Macrophages. Journal of Immunology, 2013, 191, 4665-4675.	0.4	166
35	Monocyte and Macrophage Heterogeneity in the Heart. Circulation Research, 2013, 112, 1624-1633.	2.0	279
36	On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. Journal of Experimental Medicine, 2013, 210, 2611-2625.	4.2	98

#	Article	IF	CITATIONS
37	Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. American Journal of Physiology - Renal Physiology, 2013, 304, F1243-F1251.	1.3	28
38	Myb-Independent Macrophages: A Family of Cells That Develops with Their Tissue of Residence and Is Involved in Its Homeostasis. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 91-100.	2.0	35
39	The brain's best friend: microglial neurotoxicity revisited. Frontiers in Cellular Neuroscience, 2013, 7, 71.	1.8	116
40	Functional diversity of microglia – how heterogeneous are they to begin with?. Frontiers in Cellular Neuroscience, 2013, 7, 65.	1.8	174
41	Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. Journal of Experimental Medicine, 2013, 210, 2151-2159.	4.2	102
42	Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Review of Molecular Diagnostics, 2013, 13, 567-580.	1.5	86
43	Macrophages: Gatekeepers of Tissue Integrity. Cancer Immunology Research, 2013, 1, 201-209.	1.6	76
44	Intestinal monocytes and macrophages are required for T cell polarization in response to <i>Citrobacter rodentium</i> . Journal of Experimental Medicine, 2013, 210, 2025-2039.	4.2	176
45	Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13785-13790.	3.3	133
46	CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood, 2013, 122, 674-683.	0.6	63
47	Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions. PLoS ONE, 2013, 8, e71098.	1.1	226
48	Spironolactone Attenuates Bleomycin-Induced Pulmonary Injury Partially via Modulating Mononuclear Phagocyte Phenotype Switching in Circulating and Alveolar Compartments. PLoS ONE, 2013, 8, e81090.	1.1	34
49	Microglia, seen from the CX3CR1 angle. Frontiers in Cellular Neuroscience, 2013, 7, 26.	1.8	268
50	Managing Inflammation after Spinal Cord Injury through Manipulation of Macrophage Function. Neural Plasticity, 2013, 2013, 1-9.	1.0	92
51	Persistent Lung Inflammation and Fibrosis in Serum Amyloid P Component (Apcs-/-) Knockout Mice. PLoS ONE, 2014, 9, e93730.	1.1	69
52	Interleukin 17 Receptor A Modulates Monocyte Subsets and Macrophage Generation In Vivo. PLoS ONE, 2014, 9, e85461.	1.1	46
53	Distinct Functional Programs in Fetal T and Myeloid Lineages. Frontiers in Immunology, 2014, 5, 314.	2.2	13
54	Microglial diversity by responses and responders. Frontiers in Cellular Neuroscience, 2014, 8, 101.	1.8	109

ARTICLE

IF CITATIONS

55	Microglia Propertiesâ~†. , 2014, , .		0
56	Macrophage Polarization in Lung Biology and Diseases. , 2014, , .		4
57	Ly-6C ^{high} Monocytes Depend on Nr4a1 to Balance Both Inflammatory and Reparative Phases in the Infarcted Myocardium. Circulation Research, 2014, 114, 1611-1622.	2.0	427
58	Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung. PLoS Pathogens, 2014, 10, e1003940.	2.1	154
59	Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells. Haematologica, 2014, 99, 1006-1015.	1.7	15
60	From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 2014, 5, 514.	2.2	1,499
61	The intimate relationship between human cytomegalovirus and the dendritic cell lineage. Frontiers in Microbiology, 2014, 5, 389.	1.5	72
62	Human Dermal CD14 + Cells Are a Transient Population of Monocyte-Derived Macrophages. Immunity, 2014, 41, 465-477.	6.6	256
63	Ly6Chigh Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells. PLoS Pathogens, 2014, 10, e1004080.	2.1	94
64	Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection. PLoS Pathogens, 2014, 10, e1004053.	2.1	271
65	Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biology, 2014, 12, e1002002.	2.6	145
66	Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice. Blood, 2014, 124, 1522-1530.	0.6	48
67	Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2554-2562.	1.1	45
68	Nonclassical Ly6Câ^' Monocytes Drive the Development of Inflammatory Arthritis in Mice. Cell Reports, 2014, 9, 591-604.	2.9	270
69	Targeting monocyte and macrophage subpopulations for immunotherapy: a patent review (2009 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 779-790.	2.4	8
70	Chronic exposure to <scp>TGF</scp> β1 regulates myeloid cell inflammatory response in an <scp>IRF</scp> 7â€dependent manner. EMBO Journal, 2014, 33, 2906-2921.	3.5	95
71	Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Research, 2014, 13, 705-714.	0.3	76
72	Tissue macrophage identity and selfâ€renewal. Immunological Reviews, 2014, 262, 56-73.	2.8	183

#	Article	IF	CITATIONS
73	Fracture Healing via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. American Journal of Pathology, 2014, 184, 3192-3204.	1.9	240
74	Understanding macrophage diversity at the ontogenic and transcriptomic levels. Immunological Reviews, 2014, 262, 85-95.	2.8	37
75	A question of persistence: Langerhans cells and graftâ€versusâ€host disease. Experimental Dermatology, 2014, 23, 234-235.	1.4	3
76	The role of macrophages in influenza A virus infection. Future Virology, 2014, 9, 847-862.	0.9	29
77	Maintenance of white adipose tissue in man. International Journal of Biochemistry and Cell Biology, 2014, 56, 123-132.	1.2	19
78	Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood, 2014, 124, 1748-1764.	0.6	142
79	Transcriptomic analysis of mononuclear phagocyte differentiation and activation. Immunological Reviews, 2014, 262, 74-84.	2.8	62
80	Mononuclear phagocytes of the intestine, the skin, and the lung. Immunological Reviews, 2014, 262, 9-24.	2.8	91
81	Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunological Reviews, 2014, 262, 36-55.	2.8	575
82	Complexity and challenges in defining myeloid-derived suppressor cells. , 2014, , n/a-n/a.		102
83	Aging impairs peritoneal but not bone marrowâ€derived macrophage phagocytosis. Aging Cell, 2014, 13, 699-708.	3.0	120
84	Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment. Cell, 2014, 159, 1312-1326.	13.5	1,705
85	Early Life Exposure to Maternal Insulin Resistance Has Persistent Effects on Hepatic NAFLD in Juvenile Nonhuman Primates. Diabetes, 2014, 63, 2702-2713.	0.3	105
86	Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 2014, 260, 102-117.	2.8	466
87	Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. Journal of Leukocyte Biology, 2014, 96, 265-274.	1.5	86
88	Dynamic Changes in Macrophage Activation and Proliferation during the Development and Resolution of Intestinal Inflammation. Journal of Immunology, 2014, 193, 4684-4695.	0.4	37
89	Exploring the activated adipogenic niche: Interactions of macrophages and adipocyte progenitors. Cell Cycle, 2014, 13, 184-190.	1.3	37
90	Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis. Journal of Infectious Diseases, 2014, 209, 109-119.	1.9	113

		EPORT	
# 91	ARTICLE Blood Monocytes and Their Subsets in Health and Disease. , 2014, , 3-36.	IF	CITATIONS
92	STP Position Paper. Toxicologic Pathology, 2014, 42, 472-486.	0.9	43
93	Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127.	2.2	162
94	Inhibition of murine fibrocyte differentiation by cross-linked IgG is dependent on FcÂRI. Journal of Leukocyte Biology, 2014, 96, 275-282.	1.5	5
95	Cytomegalovirus Hijacks CX3CR1hi Patrolling Monocytes as Immune-Privileged Vehicles for Dissemination in Mice. Cell Host and Microbe, 2014, 15, 351-362.	5.1	88
96	Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research, 2014, 2, 1.	2.8	787
97	From proliferation to proliferation: monocyte lineage comes full circle. Seminars in Immunopathology, 2014, 36, 137-148.	2.8	48
98	Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 2014, 15, 300-312.	4.9	1,069
99	What is microglia neurotoxicity (Not)?. Glia, 2014, 62, 841-854.	2.5	127
100	Microglia fuel the learning brain. Trends in Immunology, 2014, 35, 139-140.	2.9	5
101	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	1.8	64
102	Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia, 2014, 57, 562-571.	2.9	193
103	Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology, 2014, 14, 181-194.	10.6	1,054
104	The Axis of Tolerance. Science, 2014, 343, 1439-1440.	6.0	17
105	Adipose tissueâ€resident regulatory <scp>T</scp> cells: phenotypic specialization, functions and therapeutic potential. Immunology, 2014, 142, 517-525.	2.0	104
106	In Vivo Characterization of Alveolar and Interstitial Lung Macrophages in Rhesus Macaques: Implications for Understanding Lung Disease in Humans. Journal of Immunology, 2014, 192, 2821-2829.	0.4	165
107	High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Experimental Neurology, 2014, 254, 109-120.	2.0	170
108	The Transcription Factor Gata6 Links Tissue Macrophage Phenotype and Proliferative Renewal. Science, 2014, 344, 645-648.	6.0	317

		Citation Ri	EPORT	
#	Article		IF	CITATIONS
109	Metabolic Regulation of Immune Responses. Annual Review of Immunology, 2014, 32,	609-634.	9.5	666
110	Perspectives on antigen presenting cells in zebrafish. Developmental and Comparative 2014, 46, 63-73.	Immunology,	1.0	48
111	The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 34	4, 921-925.	6.0	1,071
112	Monocytes and macrophages: developmental pathways and tissue homeostasis. Natur Immunology, 2014, 14, 392-404.	re Reviews	10.6	1,456
113	In situ proliferation contributes to accumulation of tumorâ€associated macrophages in mammary tumors. European Journal of Immunology, 2014, 44, 2247-2262.	n spontaneous	1.6	90
114	Identification of a unique TGF-β–dependent molecular and functional signature in m Neuroscience, 2014, 17, 131-143.	icroglia. Nature	7.1	2,056
115	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tiss International, 2014, 94, 112-124.	le	1.5	42
116	The function of FcÎ ³ receptors in dendritic cells and macrophages. Nature Reviews Imm 94-108.	unology, 2014, 14,	10.6	530
117	Alveolar macrophages: plasticity in a tissue-specific context. Nature Reviews Immunolo 81-93.	ogy, 2014, 14,	10.6	999
118	Macrophage heterogeneity in liver injury and fibrosis. Journal of Hepatology, 2014, 60,	1090-1096.	1.8	805
119	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through I Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	Distinct	6.6	1,120
120	Cardiac Macrophages: How to Mend a Broken Heart. Immunity, 2014, 40, 3-5.		6.6	15
121	Regulation and consequences of monocytosis. Immunological Reviews, 2014, 262, 16	7-178.	2.8	51
122	The Macrophage Paradox. Immunity, 2014, 41, 685-693.		6.6	142
123	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .			13
124	High-dimensional analysis of the murine myeloid cell system. Nature Immunology, 201	4, 15, 1181-1189.	7.0	349
125	Origin, development, and homeostasis of tissueâ€resident macrophages. Immunologic 262, 25-35.	al Reviews, 2014,	2.8	98
126	The Role of Macrophages in the Innate Immune Response to Streptococcus pneumoni Staphylococcus aureus. Advances in Microbial Physiology, 2014, 65, 125-202.	ae and	1.0	56

		CITATION RE	PORT	
#	Article		IF	CITATIONS
127	Editorial to Special Issue: Monocytes in Homeostasis and Disease. Cellular Immunology,	2014, 291, 1-2.	1.4	4
128	Inflammatory monocyte effector mechanisms. Cellular Immunology, 2014, 291, 32-40.		1.4	54
129	Monocyte homeostasis and the plasticity of inflammatory monocytes. Cellular Immuno 22-31.	ogy, 2014, 291,	1.4	98
130	Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 201	4, 34, 742-750.	1.1	145
131	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Ex Medicine, 2014, 211, 2151-2158.	(perimental	4.2	374
132	Myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound. Seminars Immunology, 2014, 26, 341-353.	in	2.7	76
133	Inflammatory monocytes promote progression of Duchenne muscular dystrophy and ca therapeutically targeted via <scp>CCR</scp> 2. EMBO Molecular Medicine, 2014, 6, 14	ın be 76-1492.	3.3	106
134	Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and the neonatal and adult heart. Proceedings of the National Academy of Sciences of the L America, 2014, 111, 16029-16034.	emodeling in Inited States of	3.3	576
135	Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunologica 2014, 262, 179-192.	Reviews,	2.8	163
136	Immunosenescence in monocytes, macrophages, and dendritic cells: Lessons learned fr and heart. Immunology Letters, 2014, 162, 290-297.	om the lung	1.1	63
137	InÂVivo Imaging of Enhanced Leukocyte Accumulation in Atherosclerotic Lesions in Hur the American College of Cardiology, 2014, 64, 1019-1029.	nans. Journal of	1.2	41
138	Immune surveillance of the central nervous system in multiple sclerosis — Relevance f experimental models. Journal of Neuroimmunology, 2014, 276, 9-17.	or therapy and	1.1	30
139	S1P-Dependent Trafficking of Intracellular Yersinia pestis through Lymph Nodes Establis and Systemic Infection. Immunity, 2014, 41, 440-450.	hes Buboes	6.6	51
140	The Impact of Ly6C ^{low} Monocytes after Cerebral Hypoxia-Ischemia in Adu of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e9.	t Mice. Journal	2.4	48
141	Functional significance of mononuclear phagocyte populations generated through adul hematopoiesis. Journal of Leukocyte Biology, 2014, 96, 969-980.	t	1.5	22
142	The plasticity of inflammatory monocyte responses to the inflamed central nervous syst Immunology, 2014, 291, 49-57.	tem. Cellular	1.4	26
143	Induction of the nuclear receptor PPAR-Î ³ by the cytokine GM-CSF is critical for the diffe fetal monocytes into alveolar macrophages. Nature Immunology, 2014, 15, 1026-1037	rentiation of	7.0	443
144	Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimen Hematology, 2014, 42, 717-727.	tal	0.2	68

#	Article	IF	CITATIONS
145	Regulation of Activation-associated MicroRNA Accumulation Rates during Monocyte-to-macrophage Differentiation. Journal of Biological Chemistry, 2014, 289, 28433-28447.	1.6	37
146	Innate immune regulation by <scp>STAT</scp> â€mediated transcriptional mechanisms. Immunological Reviews, 2014, 261, 84-101.	2.8	53
147	Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology, 2014, 7, 1023-1035.	2.7	135
148	Diverse macrophage populations mediate acute lung inflammation and resolution. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L709-L725.	1.3	456
149	Origin and Functions of Tissue Macrophages. Immunity, 2014, 41, 21-35.	6.6	1,191
150	Homeostasis in the mononuclear phagocyte system. Trends in Immunology, 2014, 35, 358-367.	2.9	153
151	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	7.0	921
152	Recognizing self versus non-self: new territory for monocytes. Nature Reviews Nephrology, 2014, 10, 548-549.	4.1	2
153	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	3.2	44
154	Characterization of a Resident Population of Adventitial Macrophage Progenitor Cells in Postnatal Vasculature. Circulation Research, 2014, 115, 364-375.	2.0	89
155	Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H598-H609.	1.5	35
156	Ontogeny and Functions of Central Nervous System Macrophages. Journal of Immunology, 2014, 193, 2615-2621.	0.4	113
157	Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathologica, 2014, 128, 191-213.	3.9	244
158	Microglia: unique and common features with other tissue macrophages. Acta Neuropathologica, 2014, 128, 319-331.	3.9	111
159	CSF-1R Signaling in Health and Disease: A Focus on the Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 149-159.	1.0	32
160	Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology, 2014, 14, 571-578.	10.6	1,494
161	Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell, 2014, 158, 15-24.	13.5	441
162	Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. Journal of Experimental Medicine, 2014, 211, 1525-1531.	4.2	159

\sim	 	D	
	(ΛN)		ועה
		NLF	

#	Article	IF	CITATIONS
163	Innate immune cells as homeostatic regulators of the hematopoietic niche. International Journal of Hematology, 2014, 99, 685-694.	0.7	18
164	CD8 T Cells Regulate Allergic Contact Dermatitis by Modulating CCR2–Dependent TNF/iNOS–Expressing Ly6C + CD11b + Monocytic Cells. Journal of Investigative Dermatology, 2014, 134, 666-676.	0.3	22
165	lκB Kinase Activity Drives Fetal Lung Macrophage Maturation along a Non-M1/M2 Paradigm. Journal of Immunology, 2014, 193, 1184-1193.	0.4	18
166	Microglia in Health and Disease. , 2014, , .		19
167	Innate Receptors and Cellular Defense against Pulmonary Infections. Journal of Immunology, 2014, 193, 3842-3850.	0.4	34
168	Pulmonary macrophage transplantation therapy. Nature, 2014, 514, 450-454.	13.7	249
169	IL-22 Gets to the Stem of Colorectal Cancer. Immunity, 2014, 40, 639-641.	6.6	16
170	Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. Journal of Immunological Methods, 2014, 403, 7-16.	0.6	52
171	Macrophage-Restricted Interleukin-10 Receptor Deficiency, but Not IL-10 Deficiency, Causes Severe Spontaneous Colitis. Immunity, 2014, 40, 720-733.	6.6	460
172	IL-10 and Macrophages Orchestrate Gut Homeostasis. Immunity, 2014, 40, 637-639.	6.6	38
173	The monocyte-macrophage axis in the intestine. Cellular Immunology, 2014, 291, 41-48.	1.4	129
174	The Ground State of Innate Immune Responsiveness Is Determined at the Interface of Genetic, Epigenetic, and Environmental Influences. Journal of Immunology, 2014, 193, 13-19.	0.4	25
175	Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. Journal of Experimental Medicine, 2014, 211, 1449-1464.	4.2	141
176	The Nuclear Receptor Nr4a1 Mediates Anti-Inflammatory Effects of Apoptotic Cells. Journal of Immunology, 2014, 192, 4852-4858.	0.4	70
177	Differentiation of human mononuclear phagocytes increases their innate response to Mycobacterium tuberculosis infection. Tuberculosis, 2014, 94, 207-218.	0.8	7
178	Differential Contribution of Monocytes to Heart Macrophages in Steady-State and After Myocardial Infarction. Circulation Research, 2014, 115, 284-295.	2.0	453
179	Infiltrating Monocyte-Derived Macrophages and Resident Kupffer Cells Display Different Ontogeny and Functions in Acute Liver Injury. Journal of Immunology, 2014, 193, 344-353.	0.4	391
180	Low Molecular Weight Hyaluronan Activates Cytosolic Phospholipase A21± and Eicosanoid Production in Monocytes and Macrophages. Journal of Biological Chemistry, 2014, 289, 4470-4488.	1.6	87

#	Article	IF	CITATIONS
181	Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochemical Journal, 2014, 458, 187-193.	1.7	51
182	Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. Journal of Immunological Methods, 2014, 408, 89-100.	0.6	403
183	Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood, 2014, 123, e110-e122.	0.6	299
184	Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood, 2014, 124, e33-e44.	0.6	83
185	Tyro3, Axl, and Mertk Receptor Signaling in Inflammatory Bowel Disease and Colitis-associated Cancer. Inflammatory Bowel Diseases, 2014, 20, 1472-1480.	0.9	30
186	A stratified myeloid system, the challenge of understanding macrophage diversity. Seminars in Immunology, 2015, 27, 353-356.	2.7	28
187	Development and function of tissue resident macrophages in mice. Seminars in Immunology, 2015, 27, 369-378.	2.7	79
188	Glioblastoma: Defining Tumor Niches. Trends in Cancer, 2015, 1, 252-265.	3.8	326
189	Early hematopoiesis and macrophage development. Seminars in Immunology, 2015, 27, 379-387.	2.7	124
190	Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology, 2015, 27, 397-409.	2.7	56
191	Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. Journal of Biophotonics, 2015, 8, 871-883.	1.1	45
192	Diverging biological roles among human monocyte subsets in the context of tuberculosis infection. Clinical Science, 2015, 129, 319-330.	1.8	39
193	Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood, 2015, 125, e1-e13.	0.6	120
194	Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood, 2015, 126, 1357-1366.	0.6	191
195	Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3. Scientific Reports, 2015, 5, 15702.	1.6	22
197	The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Scientific Reports, 2015, 5, 10055.	1.6	39
198	Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. Journal of Neuroinflammation, 2015, 12, 205.	3.1	47
199	Kupffer cell–monocyte communication is essential for initiating murine liver progenitor cell–mediated liver regeneration. Hepatology, 2015, 62, 1272-1284.	3.6	63

#	Article	IF	CITATIONS
200	<scp>IL</scp> â€1α induces <scp>CD11b^{low}</scp> alveolar macrophage proliferation and maturation during granuloma formation. Journal of Pathology, 2015, 235, 698-709.	2.1	46
201	Endogenous prostaglandin E2 potentiates antiâ€inflammatory phenotype of macrophage through the CREBâ€C/EBPâ€Î² cascade. European Journal of Immunology, 2015, 45, 2661-2671.	1.6	53
202	Role of splenic monocytes in atherosclerosis. Current Opinion in Lipidology, 2015, 26, 457-463.	1.2	17
204	Biology of Bony Fish Macrophages. Biology, 2015, 4, 881-906.	1.3	92
205	Fate Mapping of Dendritic Cells. Frontiers in Immunology, 2015, 6, 199.	2.2	44
206	From the Reticuloendothelial to Mononuclear Phagocyte System – The Unaccounted Years. Frontiers in Immunology, 2015, 6, 328.	2.2	91
207	Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species?. Frontiers in Immunology, 2015, 6, 330.	2.2	115
208	The Many Alternative Faces of Macrophage Activation. Frontiers in Immunology, 2015, 6, 370.	2.2	281
209	A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 2015, 6, 406.	2.2	99
210	Ontogeny of Tissue-Resident Macrophages. Frontiers in Immunology, 2015, 6, 486.	2.2	254
211	Transcriptional Regulation of Mononuclear Phagocyte Development. Frontiers in Immunology, 2015, 6, 533.	2.2	47
212	The Interplay Between Monocytes/Macrophages and CD4+ T Cell Subsets in Rheumatoid Arthritis. Frontiers in Immunology, 2015, 6, 571.	2.2	176
213	The Elusive Antifibrotic Macrophage. Frontiers in Medicine, 2015, 2, 81.	1.2	51
214	Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown. Frontiers in Microbiology, 2015, 6, 1122.	1.5	21
215	Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Frontiers in Neuroscience, 2014, 8, 447.	1.4	303
216	Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis. PLoS ONE, 2015, 10, e0145773.	1.1	28
217	Deploying FLAREs to Visualize Functional Outcomes of Host—Pathogen Encounters. PLoS Pathogens, 2015, 11, e1004912.	2.1	20
218	Adrenergic regulation of innate immunity: a review. Frontiers in Pharmacology, 2015, 6, 171.	1.6	247

#	Article	IF	CITATIONS
219	New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory. Immune Network, 2015, 15, 167.	1.6	53
220	Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch―Phenotype. BioMed Research International, 2015, 2015, 1-22.	0.9	214
221	Human mononuclear phagocyte system reunited. Seminars in Cell and Developmental Biology, 2015, 41, 59-69.	2.3	116
222	Monocyte trafficking across the vessel wall. Cardiovascular Research, 2015, 107, 321-330.	1.8	370
223	IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nature Communications, 2015, 6, 6525.	5.8	81
224	Antifibrotic Therapies in the Liver. Seminars in Liver Disease, 2015, 35, 184-198.	1.8	65
225	Interactions of Stellate Cells with Other Non-Parenchymal Cells. , 2015, , 185-207.		2
226	Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 2015, 18, 965-977.	7.1	2,340
227	Pulmonary Macrophages. , 2015, , 629-649.		7
228	New insights into the resolution of inflammation. Seminars in Immunology, 2015, 27, 161-168.	2.7	115
229	Revisiting Mouse Peritoneal Macrophages: Heterogeneity, Development, and Function. Frontiers in Immunology, 2015, 6, 225.	2.2	231
230	S1PR4 is required for plasmacytoid dendritic cell differentiation. Biological Chemistry, 2015, 396, 775-782.	1.2	20
231	Ageing and the immune system: focus on macrophages. European Journal of Microbiology and Immunology, 2015, 5, 14-24.	1.5	157
232	Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System. Journal of Immunology, 2015, 195, 134-144.	0.4	70
233	Purification of dendritic cell and macrophage subsets from the normal mouse small intestine. Journal of Immunological Methods, 2015, 421, 1-13.	0.6	19
234	Resolution of Liver Fibrosis: Basic Mechanisms and Clinical Relevance. Seminars in Liver Disease, 2015, 35, 119-131.	1.8	96
235	Ontogeny and Polarization of Macrophages in Inflammation: Blood Monocytes Versus Tissue Macrophages. Frontiers in Immunology, 2014, 5, 683.	2.2	177
236	Promoting macrophage survival delays progression of pre-existing atherosclerotic lesions through macrophage-derived apoE. Cardiovascular Research, 2015, 108, 111-123.	1.8	16

#	Article	IF	CITATIONS
237	The heterogeneity of lung macrophages in the susceptibility to disease. European Respiratory Review, 2015, 24, 505-509.	3.0	108
238	Macrophages Are Phenotypically and Functionally Diverse across Tissues in Simian Immunodeficiency Virus-Infected and Uninfected Asian Macaques. Journal of Virology, 2015, 89, 5883-5894.	1.5	23
239	CSF1 Restores Innate Immunity After Liver Injury in Mice andÂSerum Levels Indicate Outcomes of Patients With AcuteÂLiver Failure. Gastroenterology, 2015, 149, 1896-1909.e14.	0.6	156
240	Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses. Cell Reports, 2015, 12, 1314-1324.	2.9	119
241	MicroRNA-223 Regulates the Differentiation and Function of Intestinal Dendritic Cells and Macrophages by Targeting C/EBPl². Cell Reports, 2015, 13, 1149-1160.	2.9	83
242	Complexity and challenges in defining myeloid-derived suppressor cells. , 2015, 88, 77-91.		119
243	The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver – A systematic review. Journal of Hepatology, 2015, 62, 458-468.	1.8	50
244	Peripheral and central effects of repeated social defeat stress: Monocyte trafficking, microglial activation, and anxiety. Neuroscience, 2015, 289, 429-442.	1.1	158
245	Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews Immunology, 2015, 15, 117-129.	10.6	479
246	Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology, 2015, 220, 545-554.	0.8	75
247	Liver-Resident Macrophage Necroptosis Orchestrates Type 1 Microbicidal Inflammation and Type-2-Mediated Tissue Repair during Bacterial Infection. Immunity, 2015, 42, 145-158.	6.6	368
248	Dendritic cell specific targeting of MyD88 signalling pathways in vivo. European Journal of Immunology, 2015, 45, 32-39.	1.6	29
249	Monocyte Fate in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 272-279.	1.1	157
250	Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. Journal of Autoimmunity, 2015, 57, 42-52.	3.0	74
251	Ly6Chigh Monocytes Control Cerebral Toxoplasmosis. Journal of Immunology, 2015, 194, 3223-3235.	0.4	99
252	Functions and development of red pulp macrophages. Microbiology and Immunology, 2015, 59, 55-62.	0.7	70
253	Tissueâ€resident macrophages: then and now. Immunology, 2015, 144, 541-548.	2.0	274
254	Infiltration of circulating myeloid cells through CD95L contributes to neurodegeneration in mice. Journal of Experimental Medicine, 2015, 212, 469-480.	4.2	37

#	Article	IF	CITATIONS
255	Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Materials Today, 2015, 18, 313-325.	8.3	629
256	The role of IL-17 in CNS diseases. Acta Neuropathologica, 2015, 129, 625-637.	3.9	254
257	Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Frontiers in Immunology, 2015, 6, 249.	2.2	236
258	Beyond vascular inflammation—recent advances in understanding atherosclerosis. Cellular and Molecular Life Sciences, 2015, 72, 3853-3869.	2.4	58
259	Macrophage development and polarization in chronic inflammation. Seminars in Immunology, 2015, 27, 257-266.	2.7	97
260	Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiology of Disease, 2015, 74, 114-125.	2.1	160
261	Orchestrating liver development. Development (Cambridge), 2015, 142, 2094-2108.	1.2	281
262	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	6.6	506
263	Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020537.	2.3	298
264	Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020545.	2.3	264
265	Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-11² and TNF-1±. Journal of Neuroscience, 2015, 35, 8411-8422.	1.7	140
266	Foamy Monocytes Form Early and Contribute to Nascent Atherosclerosis in Mice With Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1787-1797.	1.1	71
267	Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathogens, 2015, 11, e1004873.	2.1	45
268	Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages. Molecular Immunology, 2015, 67, 265-275.	1.0	52
269	Monocyte and Macrophage Plasticity in Tissue Repair and Regeneration. American Journal of Pathology, 2015, 185, 2596-2606.	1.9	537
270	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	3.5	178
271	Microglia in action: how aging and injury can change the brainââ,¬â"¢s guardians. Frontiers in Cellular Neuroscience, 2015, 9, 54.	1.8	74
272	From the Cajal alumni Achúcarro and RÃo-Hortega to the rediscovery of never-resting microglia. Frontiers in Neuroanatomy, 2015, 9, 45.	0.9	65

#	Article	IF	CITATIONS
273	Lymph Node but Not Intradermal Injection Site Macrophages Are Critical for Germinal Center Formation and Antibody Responses to Rabies Vaccination. Journal of Virology, 2015, 89, 2842-2848.	1.5	10
274	C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, 2015, 42, 665-678.	6.6	847
275	Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity, 2015, 42, 679-691.	6.6	157
276	The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and Translational Medicine, 2015, 4, 2.	1.7	130
277	The Complex Myeloid Network of the Liver with Diverse Functional Capacity at Steady State and in Inflammation. Frontiers in Immunology, 2015, 6, 179.	2.2	61
278	Vascular-Resident CD169-Positive Monocytes and Macrophages Control Neutrophil Accumulation in the Kidney with Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 896-906.	3.0	83
279	Monocytes in Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1066-1070.	1.1	167
280	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Experimental Medicine, 2015, 212, 497-512.	4.2	143
281	CD14 expression is increased on monocytes in patients with anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis and correlates with the expression of ANCA autoantigens. Clinical and Experimental Immunology, 2015, 181, 65-75.	1.1	23
282	Innate and Adaptive Immune Functions of Peyer's Patch Monocyte-Derived Cells. Cell Reports, 2015, 11, 770-784.	2.9	88
283	Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62, 279-291.	3.6	304
284	Nonclassical Resident Macrophages Are Important Determinants in the Development of Myocardial Fibrosis. American Journal of Pathology, 2015, 185, 927-942.	1.9	64
285	Macrophages: Development and Tissue Specialization. Annual Review of Immunology, 2015, 33, 643-675.	9.5	687
286	A transcriptional perspective on human macrophage biology. Seminars in Immunology, 2015, 27, 44-50.	2.7	33
287	Cytomegalovirus immune evasion of myeloid lineage cells. Medical Microbiology and Immunology, 2015, 204, 367-382.	2.6	37
288	Nonclassical Patrolling Monocyte Function in the Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1306-1316.	1.1	274
289	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	4.7	173
290	Macrophages and Therapeutic Resistance in Cancer. Cancer Cell, 2015, 27, 462-472.	7.7	1,130

			_
#	ARTICLE	IF	CITATIONS
291	Triglyceride-Rich Lipoproteins Modulate the Distribution and Extravasation of Ly6C/Gr11ow Monocytes. Cell Reports, 2015, 12, 1802-1815.	2.9	33
292	Diabetes Inhibits Gr-1+Myeloid Cell Maturation viaCebpaDeregulation. Diabetes, 2015, 64, 4184-4197.	0.3	14
293	Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems. Trends in Immunology, 2015, 36, 625-636.	2.9	153
294	Functional classification of memory CD8+ T cells by CX3CR1 expression. Nature Communications, 2015, 6, 8306.	5.8	231
295	The PDGFR Receptor Family. , 2015, , 373-538.		2
296	CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. Journal of Leukocyte Biology, 2015, 98, 453-466.	1.5	81
297	Differential roles of resident microglia and infiltrating monocytes in murine CNS autoimmunity. Seminars in Immunopathology, 2015, 37, 613-623.	2.8	60
298	Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends in Immunology, 2015, 36, 614-624.	2.9	136
299	Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in Neurosciences, 2015, 38, 659-668.	4.2	60
300	Minireview: Emerging Concepts in Islet Macrophage Biology in Type 2 Diabetes. Molecular Endocrinology, 2015, 29, 946-962.	3.7	44
301	Innate and adaptive immune responses in the CNS. Lancet Neurology, The, 2015, 14, 945-955.	4.9	107
302	Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. Immunity, 2015, 43, 382-393.	6.6	397
303	The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nature Immunology, 2015, 16, 1034-1043.	7.0	149
304	Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015, 70, 1189-1196.	2.7	359
305	The role of tissue resident cells in neutrophil recruitment. Trends in Immunology, 2015, 36, 547-555.	2.9	112
306	The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity. Immunity, 2015, 43, 502-514.	6.6	391
307	Effects of aging on human leukocytes (part I): immunophenotyping of innate immune cells. Age, 2015, 37, 92.	3.0	43
308	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	4.2	235

ARTICLE IF CITATIONS # Macrophage adaptation in airway inflammatory resolution. European Respiratory Review, 2015, 24, 309 3.0 25 510-515. Regulation of macrophage development and function in peripheral tissues. Nature Reviews 10.6 489 Immunology, 2015, 15, 731-744. Molecular and epigenetic basis of macrophage polarized activation. Seminars in Immunology, 2015, 27, 311 2.7 208 237-248. The development and function of lung-resident macrophages and dendritic cells. Nature Immunology, 2015, 16, 36-44. Sinusoidal Immunity: Macrophages at the Lymphohematopoietic Interface. Cold Spring Harbor 313 2.3 35 Perspectives in Biology, 2015, 7, a016378. Defining dendritic cells. Current Opinion in Immunology, 2015, 32, 13-20. 2.4 315 Monocytes and infection: Modulator, messenger and effector. Immunobiology, 2015, 220, 210-214. 0.8 51 The cellular and proteomic response of primary and immortalized murine Kupffer cells following 1.3 immune stimulation diverges from that of monocyteâ€derived macrophages. Proteomics, 2015, 15, 545-553. Self-renewing macrophages â€" A new line of enquiries in mononuclear phagocytes. Immunobiology, 317 0.8 19 2015, 220, 169-174. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 13.7 1,724 2015, 518, 547-551. Targeting Macrophage Subsets for Infarct Repair. Journal of Cardiovascular Pharmacology and 319 1.0 75 Therapeutics, 2015, 20, 36-51. The cellular immune system in the post-myocardial infarction repair process. International Journal of 0.8 50 Cardiology, 2015, 179, 240-247. Genetic targeting of microglia. Glia, 2015, 63, 1-22. 321 2.5 116 Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced 2.1 54 Tissue Inflammation. PLoS Pathogens, 2016, 12, e1005378. Making sense of the cause of Crohn's â€" a new look at an old disease. F1000Research, 2016, 5, 2510. 323 0.8 13 Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight, 2016, 1, e87415. 324 Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells. Journal of Immunology 325 0.9 104 Research, 2016, 2016, 1-10. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation― 1.4 Always Inflammation?. Mediators of Inflammation, 2016, 2016, 1-9.

#	Article	IF	CITATIONS
327	Double Roles of Macrophages in Human Neuroimmune Diseases and Their Animal Models. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	28
328	Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Frontiers in Cellular and Infection Microbiology, 2016, 6, 72.	1.8	23
329	Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Asthma. Frontiers in Immunology, 2016, 7, 107.	2.2	57
330	How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology, 2016, 7, 204.	2.2	99
331	Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 144.	1.8	45
332	Induction of the type I interferon response in neurological forms of Gaucher disease. Journal of Neuroinflammation, 2016, 13, 104.	3.1	53
333	LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathologica Communications, 2016, 4, 68.	2.4	55
334	The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS ONE, 2016, 11, e0151674.	1.1	7
335	Choroidal Neovascularization Is Inhibited in Splenic-Denervated or Splenectomized Mice with a Concomitant Decrease in Intraocular Macrophage. PLoS ONE, 2016, 11, e0160985.	1.1	11
336	Role of monocytes and macrophages in regulating immune response following lung transplantation. Current Opinion in Organ Transplantation, 2016, 21, 239-245.	0.8	84
337	Macrophage reaction against biomaterials in the mouse model – Phenotypes, functions and markers. Acta Biomaterialia, 2016, 43, 3-13.	4.1	219
338	Time lapse <i>in vivo</i> microscopy reveals distinct dynamics of microgliaâ€ŧumor environment interactions—a new role for the tumor perivascular space as highway for trafficking microglia. Glia, 2016, 64, 1210-1226.	2.5	54
339	Microglia replenished OHSC: A culture system to study <i>in vivo</i> like adult microglia. Glia, 2016, 64, 1285-1297.	2.5	35
340	The Mononuclear Phagocyte System in Organ Transplantation. American Journal of Transplantation, 2016, 16, 1053-1069.	2.6	24
341	Functional Immune Anatomy of the Liver—As an Allograft. American Journal of Transplantation, 2016, 16, 1653-1680.	2.6	89
342	Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology, 2016, 12, 472-485.	3.5	493
343	Lung macrophages: old hands required rather than new blood?. Thorax, 2016, 71, 973-974.	2.7	0
344	Selective and inducible targeting of CD11b+mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. American Journal of Physiology - Lung Cellular and Molecular Physiology - 2016, 311, 187-1100	1.3	15

#	Article	IF	CITATIONS
345	Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Scientific Reports, 2016, 6, 23701.	1.6	46
346	Monocyte, Macrophage, and Dendritic Cell Development: the Human Perspective. Microbiology Spectrum, 2016, 4, .	1.2	24
347	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	5.8	275
348	Long-term persistence of human donor alveolar macrophages in lung transplant recipients. Thorax, 2016, 71, 1006-1011.	2.7	88
349	Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. American Journal of Physiology - Renal Physiology, 2016, 311, G533-G547.	1.6	55
350	Specialized Subsets of Tissue-Resident Macrophages in Secondary Lymphoid Organs. , 2016, , 759-769.		0
351	Subcapsular Hepatic Dendritic Cells: Hiding in Plain Sight. Gastroenterology, 2016, 151, 1065-1067.	0.6	4
352	Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Scientific Reports, 2016, 6, 20636.	1.6	165
353	Neuroimmune Modulation of Gut Function. Handbook of Experimental Pharmacology, 2016, 239, 247-267.	0.9	19
354	The retinal pigment epithelium as a gateway for monocyte trafficking into the eye. EMBO Journal, 2016, 35, 1219-1235.	3.5	26
355	Infiltrating monocytes in liver injury and repair. Clinical and Translational Immunology, 2016, 5, e113.	1.7	75
356	The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. Immunity, 2016, 45, 1205-1218.	6.6	237
357	Transcriptional Regulation and Macrophage Differentiation. Microbiology Spectrum, 2016, 4, .	1.2	35
358	Alveolar macrophage development in mice requires L-plastin for cellular localization in alveoli. Blood, 2016, 128, 2785-2796.	0.6	45
359	Murine Monocytes: Origins, Subsets, Fates, and Functions. Microbiology Spectrum, 2016, 4, .	1.2	48
360	Interferonâ€beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Molecular Medicine, 2016, 8, 670-678.	3.3	68
361	Role of Monocytes and Intestinal Macrophages in Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2016, 22, 1992-1998.	0.9	134
362	Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2016, 90, 5643-5656.	1.5	93

#	Article	IF	CITATIONS
363	Macrophages and Dendritic Cells. Circulation Research, 2016, 118, 637-652.	2.0	86
364	Functional Langerinhigh-Expressing Langerhans-like Cells Can Arise from CD14highCD16â^' Human Blood Monocytes in Serum-Free Condition. Journal of Immunology, 2016, 196, 3716-3728.	0.4	21
365	M-CSF Mediates Host Defense during Bacterial Pneumonia by Promoting the Survival of Lung and Liver Mononuclear Phagocytes. Journal of Immunology, 2016, 196, 5047-5055.	0.4	15
366	Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages. Cellular and Molecular Life Sciences, 2016, 73, 3665-3676.	2.4	14
367	Genetic manipulation of microglia during brain development and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 299-309.	1.8	49
368	Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nature Cell Biology, 2016, 18, 549-560.	4.6	329
369	Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352, aaf1098.	6.0	1,809
370	Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Advanced Drug Delivery Reviews, 2016, 102, 33-54.	6.6	29
371	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	15.2	987
372	The multicellular complexity of peripheral nerve regeneration. Current Opinion in Neurobiology, 2016, 39, 38-46.	2.0	168
373	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	7.0	872
374	Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. Journal of Experimental Medicine, 2016, 213, 929-949.	4.2	126
375	Maternal-Derived Hepatitis B Virus e Antigen Alters Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission. Immunity, 2016, 44, 1204-1214.	6.6	138
376	The force awakens: insights into the origin and formation of microglia. Current Opinion in Neurobiology, 2016, 39, 30-37.	2.0	45
377	Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annual Review of Immunology, 2016, 34, 449-478.	9.5	57
378	Lrp5/β-Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 191-201.	1.4	50
379	Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. Journal of Biological Chemistry, 2016, 291, 21271-21282.	1.6	54
380	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108

ARTICLE IF CITATIONS # Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature, 2016, 538, 381 13.7 67 392-396. Specification of tissue-resident macrophages during organogenesis. Science, 2016, 353, . 6.0 609 Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. Journal of 383 2.7 68 Internal Medicine, 2016, 280, 209-220. Depletion of CD11c⁺ cells in the CD11c.DTR model drives expansion of unique CD64⁺ Ly6C⁺ monocytes that are poised to release TNFâ€i±. European Journal of 384 Immunology, 2016, 46, 192-203. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. International Journal of Radiation Biology, 2016, 92, 385 1.0 58 754-765. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. Journal of Experimental Medicine, 2016, 213, 1951-1959. 4.2 The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nature Reviews 387 3.5 59 Rheumatology, 2016, 12, 543-558. Combination of Mass Cytometry and Imaging Analysis RevealsÂOrigin, Location, and Functional 388 0.6 Repopulation ofÂLiverÂMyeloid Cells in Mice. Gastroenterology, 2016, 151, 1176-1191. Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity. Journal of 389 0.4 61 Immunology, 2016, 197, 2157-2166. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature, 2016, 13.7 234 537, 239-243. Microglia in health and pain: impact of noxious early life events. Experimental Physiology, 2016, 101, 391 0.9 32 1003-1021. CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells 0.4 454 and Myeloid-Derived Suppressor Cells. Cancer Research, 2016, 76, 5671-5682. Myeloid Cell Turnover and Clearance. Microbiology Spectrum, 2016, 4, . 393 1.2 30 iRhom2 regulates CSF1R cell surface expression and nonâ€steady state myelopoiesis in mice. European 394 1.6 14 Journal of Immunology, 2016, 46, 2737-2748. 395 Homegrown Macrophages. Immunity, 2016, 45, 468-470. 6.6 8 Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82. Effects of alcohol withdrawal on monocyte subset defects in chronic alcohol users. Journal of 397 1.521 Leukocyte Biology, 2016, 100, 1191-1199. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at 398 homeostasis. Blood, 2016, 127, 2460-2471.

#	Article	IF	CITATIONS
399	Pathogenesis of Kupffer Cells in Cholestatic Liver Injury. American Journal of Pathology, 2016, 186, 2238-2247.	1.9	74
400	Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathogens and Disease, 2016, 74, ftw068.	0.8	116
401	2014 Jeffrey M. Hoeg Award Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1722-1733.	1.1	52
402	Transcriptomeâ€based profiling of yolk sacâ€derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO Journal, 2016, 35, 1730-1744.	3.5	108
403	Modulation of Macrophage Activation. , 2016, , 123-149.		1
404	Macrophage-based cell therapies: The long and winding road. Journal of Controlled Release, 2016, 240, 527-540.	4.8	145
405	On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nature Medicine, 2016, 22, 945-951.	15.2	333
406	Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nature Communications, 2016, 7, 12597.	5.8	115
407	Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice. Scientific Reports, 2016, 6, 34466.	1.6	33
408	Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. Npj Breast Cancer, 2016, 2, .	2.3	356
409	Host-Parasite Interactions. , 2016, , 409-430.		0
410	Sall1 is a transcriptional regulator defining microglia identity and function. Nature Immunology, 2016, 17, 1397-1406.	7.0	430
411	M2 macrophages in metabolism. Diabetology International, 2016, 7, 342-351.	0.7	19
412	Macrophages in age-related chronic inflammatory diseases. Npj Aging and Mechanisms of Disease, 2016, 2, 16018.	4.5	183
413	Bone marrow-derived macrophages distinct from tissue-resident macrophages play a pivotal role in Concanavalin A-induced murine liver injury via CCR9 axis. Scientific Reports, 2016, 6, 35146.	1.6	27
414	TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nature Communications, 2016, 7, 13151.	5.8	76
415	Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clinical Cancer Research, 2016, 22, 5971-5982.	3.2	206
416	Deleting an Nr4a1 Super-Enhancer Subdomain Ablates Ly6C low Monocytes while Preserving Macrophage Gene Function. Immunity, 2016, 45, 975-987.	6.6	127

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
417	Innate Immune Regulations and Liver Ischemia-Reperfusion Injury. Transplantation, 2016, 100, 2601-2610	0.5	133
418	Alveolar Macrophages Are a Prominent but Nonessential Target for Murine Cytomegalovirus Infecting the Lungs. Journal of Virology, 2016, 90, 2756-2766.	1.5	29
419	Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation, 2016, 23, 95-121.	1.0	240
420	Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. Journal of Hepatology, 2016, 65, 758-768.	1.8	197
421	Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. Journal of Experimental Medicine, 2016, 213, 1117-1131.	4.2	44
422	ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2â€dependent migration. FASEB Journal, 2016, 30, 2370-2381.	0.2	27
423	TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Cell Reports, 2016, 15, 2608-2615.	2.9	52
424	Editorial: CD36: Russian roulette of host and parasites during malaria infection. Journal of Leukocyte Biology, 2016, 99, 644-646.	1.5	1
425	Splenic Damage during SIV Infection. American Journal of Pathology, 2016, 186, 2068-2087.	1.9	17
426	Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 353, aad8670.	6.0	911
427	Can Alveolar Macrophages Made from Stem Cells Achieve Functional Rescue of Lung Diseases?. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1187-1188.	2.5	0
428	Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Experimental Biology and Medicine, 2016, 241, 1084-1097.	1.1	297
429	Dynamic changes of mononuclear phagocytes in circulating, pulmonary alveolar and interstitial compartments in a mouse model of experimental silicosis. Inhalation Toxicology, 2016, 28, 393-402.	0.8	17
430	Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2288-2292.	1.8	39
431	Exploring the role of inflammation in the malignant transformation of low-grade gliomas. Journal of Neuroimmunology, 2016, 297, 132-140.	1.1	58
432	Suppression of microRNA activity amplifies IFN-Î ³ -induced macrophage activation and promotes anti-tumour immunity. Nature Cell Biology, 2016, 18, 790-802.	4.6	214
433	Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience, 2016, 19, 995-998.	7.1	399
434	Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxidants and Redox Signaling, 2016, 25, 816-835.	2.5	47

ARTICLE IF CITATIONS # CatacLysMic specificity when targeting myeloid cells?. European Journal of Immunology, 2016, 46, 435 1.6 15 1340-1342. Targeting tumor tolerance: A new hope for pancreatic cancer therapy?., 2016, 166, 9-29. 437 Microglia and neuroprotection. Journal of Neurochemistry, 2016, 136, 10-17. 2.1 296 Macrophages: Key regulators of steady-state and demand-adapted hematopoiesis. Experimental 59 Hematology, 2016, 44, 213-222. Single-Cell Genomics and Epigenomics. Series in Bioengineering, 2016, , 257-301. 440 0.3 2 Multilayered ancestry of arterial macrophages. Nature Immunology, 2016, 17, 117-118. Immunology in the liver $\hat{a} \in \mathbb{C}$ from homeostasis to disease. Nature Reviews Gastroenterology and 442 8.2 810 Hepatology, 2016, 13, 88-110. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. 6.0 194 Science, 2016, 351, aad5510. 444 Essentials of Single-Cell Analysis. Series in Bioengineering, 2016, , . 0.3 29 Myelin and macrophages in the PNS: An intimate relationship in trauma and disease. Brain Research, 445 1.1 2016, 1641, 130-138 New insights into the multidimensional concept of macrophage ontogeny, activation and function. 446 7.0 630 Nature Immunology, 2016, 17, 34-40. The role of the local environment and epigenetics in shaping macrophage identity and their effect on 315 tissue homeostasis. Nature Immunology, 2016, 17, 18-25. The development and maintenance of resident macrophages. Nature Immunology, 2016, 17, 2-8. 448 7.0 474 Central nervous system myeloid cells as drug targets: current status and translational challenges. 449 21.5 Nature Reviews Drug Discovery, 2016, 15, 110-124. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and 450 7.0 275 circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168. Cancer immunosurveillance: role of patrolling monocytes. Cell Research, 2016, 26, 3-4. 34 452 Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity, 2016, 44, 439-449. 1,296 6.6 Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into 6.6 478 Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.

#	Article	IF	CITATIONS
454	Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death and Differentiation, 2016, 23, 1026-1037.	5.0	46
455	Asthma: Airways That Are Hyperactive by Design. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 596-598.	2.5	3
456	Now We Know Who You Are: A Clear Description of Mononuclear Phagocyte Subsets in the Human Lung. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 594-596.	2.5	5
457	Epigenetic Regulation of Monocyte and Macrophage Function. Antioxidants and Redox Signaling, 2016, 25, 758-774.	2.5	104
458	Macrophages: sentinels and regulators of the immune system. Cellular Microbiology, 2016, 18, 475-487.	1.1	147
459	Indigenous microbiota and Leishmaniasis. Parasite Immunology, 2016, 38, 37-44.	0.7	21
460	Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circulation Research, 2016, 118, 1498-1511.	2.0	225
461	Microglia: Architects of the Developing Nervous System. Trends in Cell Biology, 2016, 26, 587-597.	3.6	264
462	Resolution of inflammation: a new therapeutic frontier. Nature Reviews Drug Discovery, 2016, 15, 551-567.	21.5	642
463	Ontogeny of Tumor-Associated Macrophages and Its Implication in Cancer Regulation. Trends in Cancer, 2016, 2, 20-34.	3.8	126
464	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	5.8	604
465	Microglia: A Unique Versatile Cell in the Central Nervous System. ACS Chemical Neuroscience, 2016, 7, 428-434.	1.7	39
466	Macrophage precursor cells from the left atrial appendage of the heart spontaneously reprogram into a C-kit+/CD45â^' stem cell-like phenotype. International Journal of Cardiology, 2016, 209, 296-306.	0.8	10
467	The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 2016, 37, 208-220.	2.9	1,507
468	Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages. Cytokine, 2016, 78, 69-78.	1.4	21
469	New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1738-46.	3.3	1,400
470	Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cellular and Molecular Immunology, 2016, 13, 316-327.	4.8	414
471	The role of macrophages in obesity-driven chronic liver disease. Journal of Leukocyte Biology, 2016, 99, 693-698.	1.5	34

#	Article	IF	CITATIONS
472	PGE2-treated macrophages inhibit development of allergic lung inflammation in mice. Journal of Leukocyte Biology, 2016, 100, 95-102.	1.5	38
473	Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease?. Trends in Molecular Medicine, 2016, 22, 303-316.	3.5	239
474	Development and Function of Arterial and Cardiac Macrophages. Trends in Immunology, 2016, 37, 32-40.	2.9	64
475	The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 2016, 19, 20-27.	7.1	1,148
476	Characterization of the human immune cell network at the gingival barrier. Mucosal Immunology, 2016, 9, 1163-1172.	2.7	212
477	Recruited monocytes modulate malaria-induced lung injury through CD36-mediated clearance of sequestered infected erythrocytes. Journal of Leukocyte Biology, 2016, 99, 659-671.	1.5	37
478	The central role of hypothalamic inflammation in the acute illness response and cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 42-52.	2.3	110
479	Protective features of peripheral monocytes/macrophages in stroke. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 329-338.	1.8	71
480	Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro-Oncology, 2016, 18, 797-806.	0.6	170
481	Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation. Current Opinion in Pharmacology, 2016, 26, 96-101.	1.7	67
482	Monocyte and macrophage contributions to cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2016, 93, 149-155.	0.9	210
483	Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat. Biological Psychiatry, 2016, 79, 803-813.	0.7	108
484	Macrophages and dendritic cells in the post-testicular environment. Cell and Tissue Research, 2016, 363, 97-104.	1.5	47
485	Fine-tuning of type I IFN-signaling in microglia — implications for homeostasis, CNS autoimmunity and interferonopathies. Current Opinion in Neurobiology, 2016, 36, 38-42.	2.0	39
486	Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Current Opinion in Pharmacology, 2016, 26, 1-9.	1.7	69
487	Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia, 2016, 30, 570-579.	3.3	102
488	Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials, 2016, 77, 280-290.	5.7	105
489	Neuron–microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology, 2016, 104, 76-81.	2.0	71

#	Article	IF	CITATIONS
490	Macrophage polarization: the link between inflammation and related diseases. Inflammation Research, 2016, 65, 1-11.	1.6	169
491	Myeloid cell-based therapies in neurological disorders: How far have we come?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 323-328.	1.8	13
492	Reprogramming of macrophages — new opportunities for therapeutic targeting. Current Opinion in Pharmacology, 2016, 26, 10-15.	1.7	63
493	Increased Myeloid Cell Production and Lung Bacterial Clearance in Mice Exposed to Cigarette Smoke. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 424-435.	1.4	16
494	CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunology, 2016, 9, 352-363.	2.7	110
495	Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 23-34.	3.3	90
496	Microglial <scp>M1/M2</scp> polarization and metabolic states. British Journal of Pharmacology, 2016, 173, 649-665.	2.7	1,308
497	Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. Journal of Physiology, 2017, 595, 1929-1945.	1.3	396
498	Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 40-48.	2.5	101
499	Mononuclear phagocytes as a target, not a barrier, for drug delivery. Journal of Controlled Release, 2017, 259, 53-61.	4.8	34
500	Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Cell Reports, 2017, 18, 198-212.	2.9	125
501	EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4AT Cells. Cell Reports, 2017, 18, 1270-1284.	2.9	63
502	Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clinical Science, 2017, 131, 269-283.	1.8	31
503	Microglial Biology and Physiology. , 2017, , 167-199.		0
504	Skeletal muscle inflammation and atrophy in heart failure. Heart Failure Reviews, 2017, 22, 179-189.	1.7	53
505	Neutrophils in Homeostasis, Immunity, and Cancer. Immunity, 2017, 46, 15-28.	6.6	320
506	Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research, 2017, 77, 2266-2278.	0.4	463
507	Cooperation of Gastric Mononuclear Phagocytes withHelicobacter pyloriduring Colonization. Journal of Immunology, 2017, 198, 3195-3204.	0.4	23

#	Article	IF	CITATIONS
508	Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. Journal of Neuroinflammation, 2017, 14, 48.	3.1	264
509	Resident macrophages in the healthy and inflamed intestinal muscularis externa. Pflugers Archiv European Journal of Physiology, 2017, 469, 541-552.	1.3	18
510	Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. Journal of Neuroscience, 2017, 37, 3294-3310.	1.7	56
511	Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. Journal of Bone and Mineral Research, 2017, 32, 1469-1480.	3.1	69
512	Activation of E-prostanoid 3 receptor in macrophages facilitates cardiac healing after myocardial infarction. Nature Communications, 2017, 8, 14656.	5.8	36
513	Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Archiv European Journal of Physiology, 2017, 469, 385-396.	1.3	160
514	New "programmers―in tissue macrophage activation. Pflugers Archiv European Journal of Physiology, 2017, 469, 375-383.	1.3	7
515	Hematopoietic pannexin 1 function is critical for neuropathic pain. Scientific Reports, 2017, 7, 42550.	1.6	49
516	Mononuclear phagocyte subpopulations in the mouse kidney. American Journal of Physiology - Renal Physiology, 2017, 312, F640-F646.	1.3	35
517	Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology, 2017, 17, 349-362.	10.6	663
518	Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 294-306.	1.4	139
519	Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Scientific Reports, 2017, 7, 447.	1.6	176
520	A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nature Neuroscience, 2017, 20, 793-803.	7.1	446
521	Harnessing the early post-injury inflammatory responses for cardiac regeneration. Journal of Biomedical Science, 2017, 24, 7.	2.6	41
522	Gastrointestinal Pharmacology. Handbook of Experimental Pharmacology, 2017, , .	0.9	13
523	Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity, 2017, 46, 549-561.	6.6	196
524	CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nature Medicine, 2017, 23, 714-722.	15.2	101
525	Association of Increased F4/80 ^{high} Macrophages With Suppression of Serumâ€Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells. Arthritis and Rheumatology, 2017, 69, 1762-1771.	2.9	23

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
526	Understanding Spontaneous Conversion: The Case of the Ly6C â^ Monocyte. Immunity, 2017, 46, 764-766.	6.6	16
527	Genomic Characterization of Murine Monocytes Reveals C/EBPÎ ² Transcription Factor Dependence of Ly6C â^' Cells. Immunity, 2017, 46, 849-862.e7.	6.6	233
528	Identification of a Human Clonogenic Progenitor with Strict Monocyte Differentiation Potential: A Counterpart of Mouse cMoPs. Immunity, 2017, 46, 835-848.e4.	6.6	74
529	Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol and Alcoholism, 2017, 52, 414-424.	0.9	56
530	Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell, 2017, 21, 120-134.e7.	5.2	187
531	Monocyte/Macrophage: NK Cell Cooperation—Old Tools for New Functions. Results and Problems in Cell Differentiation, 2017, 62, 73-145.	0.2	8
532	Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nature Immunology, 2017, 18, 665-674.	7.0	200
533	F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen. Results and Problems in Cell Differentiation, 2017, 62, 161-179.	0.2	145
534	Does niche competition determine the origin of tissue-resident macrophages?. Nature Reviews Immunology, 2017, 17, 451-460.	10.6	321
535	Macrophage Subset Expressing CD169 in Peritoneal Cavity-Regulated Mucosal Inflammation Together with Lower Levels of CCL22. Inflammation, 2017, 40, 1191-1203.	1.7	7
536	Microglial NFκB-TNFα hyperactivation induces obsessive–compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5029-5034.	3.3	96
537	The Liver. , 2017, , 3-22.		17
538	Macrophages. Results and Problems in Cell Differentiation, 2017, , .	0.2	8
539	Indications for cellular migration from the central nervous system to its draining lymph nodes in CD11c-GFP+ bone-marrow chimeras following EAE. Experimental Brain Research, 2017, 235, 2151-2166.	0.7	13
540	Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results and Problems in Cell Differentiation, 2017, 62, 23-43.	0.2	32
541	<i>Irf4</i> -dependent CD103 ⁺ CD11b ⁺ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut, 2017, 66, 2110-2120.	6.1	63
542	Role of Gut Inflammation in Altering the Monocyte Compartment and Its Osteoclastogenic Potential in HLA–B27–Transgenic Rats. Arthritis and Rheumatology, 2017, 69, 1807-1815.	2.9	20
543	CNS Macrophages Control Neurovascular Development via CD95L. Cell Reports, 2017, 19, 1378-1393.	2.9	24

		CITATION REPORT		
#	Article		IF	CITATIONS
544	Alternative monocytes settle in for the long term. Nature Immunology, 2017, 18, 599-6	500.	7.0	3
545	Dicer Deficiency Differentially Impacts Microglia of the Developing and Adult Brain. Imn 1030-1044.e8.	nunity, 2017, 46,	6.6	68
546	Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coag XIII-A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1494-1502.	julation Factor	1.1	44
547	Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. Journal of 2017, 199, 17-24.	Immunology,	0.4	325
548	Deletion of <scp>PIK</scp> fyve alters alveolar macrophage populations and exacerbat inflammation in mice. EMBO Journal, 2017, 36, 1707-1718.	es allergic	3.5	23
549	Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances A Immunity and Survival Induced by DC Immunotherapy. Cancer Immunology Research, 2	Antitumor 2017, 5, 535-546.	1.6	108
550	A Polecat's View of Patrolling Monocytes. Circulation Research, 2017, 120, 1699-1	701.	2.0	11
551	The metabolic regulator mTORC1 controls terminal myeloid differentiation. Science Imi 2, .	munology, 2017,	5.6	23
552	Effects of age-related shifts in cellular function and local microenvironment upon the in immune response to implants. Seminars in Immunology, 2017, 29, 24-32.	inate	2.7	37
553	The fate and lifespan of human monocyte subsets in steady state and systemic inflamm Experimental Medicine, 2017, 214, 1913-1923.	nation. Journal of	4.2	725
554	Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils an primary lung allograft dysfunction. Science Translational Medicine, 2017, 9, .	d mediate	5.8	65
555	Monitoring in vivo function of cortical microglia. Cell Calcium, 2017, 64, 109-117.		1.1	27
556	Cells of the Immune System. Molecular and Integrative Toxicology, 2017, , 95-201.		0.5	1
557	Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammati Experimental Medicine, 2017, 214, 905-917.	on. Journal of	4.2	63
558	Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and ca disease. A redox-regulated master controller of monocyte function and macrophage ph Radical Biology and Medicine, 2017, 109, 75-83.	ardiovascular enotype. Free	1.3	38
559	Macrophage heterogeneity and energy metabolism. Experimental Cell Research, 2017,	360, 35-40.	1.2	45
560	Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood ACS Applied Materials & amp; Interfaces, 2017, 9, 12182-12194.	Components.	4.0	24
561	New insights into mononuclear phagocyte biology from the visual system. Nature Revie Immunology, 2017, 17, 322-332.	ews	10.6	60

#	Article	IF	CITATIONS
562	Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives. Tissue Engineering - Part B: Reviews, 2017, 23, 421-435.	2.5	107
563	Transcriptional control of monocyte and macrophage development. International Immunology, 2017, 29, 97-107.	1.8	55
564	Immunomodulatory Nanomedicine. Macromolecular Bioscience, 2017, 17, 1700021.	2.1	11
565	Aging and cancer: The role of macrophages and neutrophils. Ageing Research Reviews, 2017, 36, 105-116.	5.0	171
566	Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology, 2017, , .	0.5	1
567	Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Archiv European Journal of Physiology, 2017, 469, 527-539.	1.3	129
568	Alveolar Macrophages in Allergic Asthma: the Forgotten Cell Awakes. Current Allergy and Asthma Reports, 2017, 17, 12.	2.4	67
569	Prolonged Ischemia Triggers Necrotic Depletion of Tissue-Resident Macrophages To Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury. Journal of Immunology, 2017, 198, 3588-3595.	0.4	58
570	Liver macrophages in healthy and diseased liver. Pflugers Archiv European Journal of Physiology, 2017, 469, 553-560.	1.3	34
571	Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Archiv European Journal of Physiology, 2017, 469, 561-572.	1.3	60
572	Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nature Reviews Cardiology, 2017, 14, 387-400.	6.1	66
573	Liver macrophages in tissue homeostasis and disease. Nature Reviews Immunology, 2017, 17, 306-321.	10.6	935
574	Endothelial Protective Monocyte Patrolling in Large Arteries Intensified by Western Diet and Atherosclerosis. Circulation Research, 2017, 120, 1789-1799.	2.0	82
575	Ontogeny and homeostasis of CNS myeloid cells. Nature Immunology, 2017, 18, 385-392.	7.0	334
576	Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge. Scientific Reports, 2017, 7, 44270.	1.6	58
577	Macrophages, Microglia and Dendritic Cell Function. , 2017, , 155-166.		0
578	CX3CR1-dependent endothelial margination modulates Ly6Chigh monocyte systemic deployment upon inflammation in mice. Blood, 2017, 129, 1296-1307.	0.6	38
579	The regulation of acute immune responses to the bacterial lung pathogen <i>Legionella pneumophila</i> . Journal of Leukocyte Biology, 2017, 101, 875-886.	1.5	18

#	Article	IF	CITATIONS
580	MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice. Journal of Immunology, 2017, 198, 852-861.	0.4	29
581	Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature, 2017, 541, 96-101.	13.7	250
582	Brain metastasis: Unique challenges and open opportunities. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 49-57.	3.3	110
583	A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages. Scientific Reports, 2017, 7, 12570.	1.6	15
584	Blood-derived macrophages prone to accumulate lysosomal lipids trigger oxLDL-dependent murine hepatic inflammation. Scientific Reports, 2017, 7, 12550.	1.6	25
585	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
586	ERV1 Overexpression in Myeloid Cells Protects against High Fat Diet Induced Obesity and Glucose Intolerance. Scientific Reports, 2017, 7, 12848.	1.6	36
587	Nonclassical Monocytes Mediate Secondary Injury, Neurocognitive Outcome, and Neutrophil Infiltration after Traumatic Brain Injury. Journal of Immunology, 2017, 199, 3583-3591.	0.4	73
588	Inflammatory Resolution Triggers a Prolonged Phase of Immune Suppression through COX-1/mPGES-1-Derived Prostaglandin E 2. Cell Reports, 2017, 20, 3162-3175.	2.9	69
589	Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity. Cell Reports, 2017, 20, 3034-3042.	2.9	89
590	Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. European Journal of Pharmacology, 2017, 816, 14-24.	1.7	30
591	Functional diversity of macrophages in vascular biology and disease. Vascular Pharmacology, 2017, 99, 13-22.	1.0	12
592	C/EBPÎ ² is required for survival of Ly6Câ^' monocytes. Blood, 2017, 130, 1809-1818.	0.6	68
593	Different properties of skin of different body sites: The root of keloid formation?. Wound Repair and Regeneration, 2017, 25, 758-766.	1.5	27
594	Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine, 2017, 100, 11-15.	1.4	28
595	Inflammatory responses induce an identity crisis of alveolar macrophages, leading to pulmonary alveolar proteinosis. Journal of Biological Chemistry, 2017, 292, 18098-18112.	1.6	14
596	Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid. Scientific Reports, 2017, 7, 10981.	1.6	37
597	cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation. Neuron, 2017, 95, 1334-1349.e5.	3.8	60

#	Article	IF	Citations
598	Macrophage dysfunction in the pathogenesis and treatment of asthma. European Respiratory Journal, 2017, 50, 1700196.	3.1	106
599	A novel function of CXCL10 in mediating monocyte production of proinflammatory cytokines. Journal of Leukocyte Biology, 2017, 102, 1271-1280.	1.5	49
600	Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2043-2052.	1.1	65
601	CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice. Experimental and Molecular Medicine, 2017, 49, e371-e371.	3.2	14
602	Erythropoietin enhances Kupffer cell number and activity in the challenged liver. Scientific Reports, 2017, 7, 10379.	1.6	36
603	Human monocytes downregulate innate response receptors following exposure to the microbial metabolite nâ€butyrate. Immunity, Inflammation and Disease, 2017, 5, 480-492.	1.3	18
604	The role of monocytes in models of infection by protozoan parasites. Molecular Immunology, 2017, 88, 174-184.	1.0	13
605	From chronic overnutrition to metaflammation and insulin resistance: adipose tissue and liver contributions. FEBS Letters, 2017, 591, 3061-3088.	1.3	78
606	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	4.2	755
607	Identification Of Erythromyeloid Progenitors And Their Progeny In The Mouse Embryo By Flow Cytometry. Journal of Visualized Experiments, 2017, , .	0.2	5
608	Involvement of Monocyte Subsets in the Immunopathology of Giant Cell Arteritis. Scientific Reports, 2017, 7, 6553.	1.6	45
609	Maturation of phagosomes containing different erythrophagocytic particles in primary macrophages. FEBS Open Bio, 2017, 7, 1281-1290.	1.0	2
610	Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clinical Science, 2017, 131, 2161-2182.	1.8	66
611	The nonreceptor protein tyrosine kinase Pyk2 promotes the turnover of monocytes at steady state. Journal of Leukocyte Biology, 2017, 102, 1069-1080.	1.5	25
612	Developmental origin and maintenance of distinct testicular macrophage populations. Journal of Experimental Medicine, 2017, 214, 2829-2841.	4.2	112
613	Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 2017, 47, 323-338.e6.	6.6	499
614	Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir. MBio, 2017, 8, .	1.8	131
615	Notch Signaling. , 2017, , .		0

	Сітат	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
616	A new approach for ratiometric in vivo calcium imaging of microglia. Scientific Reports, 2017, 7, 6030.	1.6	55
617	T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node. Immunity, 2017, 47, 349-362.e5.	6.6	107
618	Complement System in Neural Synapse Elimination in Development and Disease. Advances in Immunology, 2017, 135, 53-79.	1.1	193
619	Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nature Communications, 2017, 8, 2074.	5.8	76
620	Dietary NaCl affects bleomycin-induced lung fibrosis in mice. Experimental Lung Research, 2017, 43, 395-406.	0.5	7
621	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
622	Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes. Immunity, 2017, 47, 890-902.e4.	6.6	297
623	Renal Macrophages and Dendritic Cells in SLE Nephritis. Current Rheumatology Reports, 2017, 19, 81.	2.1	48
624	A microglia-cytokine axis to modulate synaptic connectivity and function. Current Opinion in Neurobiology, 2017, 47, 138-145.	2.0	79
625	The Cytokine TGF-Î ² Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity, 2017, 47, 903-912.e4.	6.6	235
626	Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cellular Immunology, 2017, 322, 74-83.	1.4	81
627	Adipose tissue macrophages develop from bone marrow–independent progenitors in <i>Xenopus laevis</i> and mouse. Journal of Leukocyte Biology, 2017, 102, 845-855.	1.5	67
628	A Novel Subset of Anti-Inflammatory CD138+ Macrophages Is Deficient in Mice with Experimental Lupus. Journal of Immunology, 2017, 199, 1261-1274.	0.4	27
629	Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. British Journal of Cancer, 2017, 117, 628-638.	2.9	119
630	Tissue macrophages: heterogeneity and functions. BMC Biology, 2017, 15, 53.	1.7	448
631	Antigen presenting capacity of murine splenic myeloid cells. BMC Immunology, 2017, 18, 4.	0.9	15
632	The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	14
633	Development of allergic immunity in early life. Immunological Reviews, 2017, 278, 101-115.	2.8	20
#	Article	IF	CITATIONS
-----	---	-----	-----------
634	The Innate Immune Response in Myocardial Infarction, Repair, and Regeneration. Advances in Experimental Medicine and Biology, 2017, 1003, 251-272.	0.8	38
635	Ly6C high Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1640-1645.	1.1	33
636	The Role of Cardiac Tissue Macrophages in Homeostasis and Disease. Advances in Experimental Medicine and Biology, 2017, 1003, 105-118.	0.8	6
637	Atherosclerosis. Advances in Experimental Medicine and Biology, 2017, 1003, 121-144.	0.8	61
638	Targeting distinct myeloid cell populations inÂvivo using polymers, liposomes and microbubbles. Biomaterials, 2017, 114, 106-120.	5.7	63
639	Selective recruitment of non-classical monocytes promotes skeletal muscle repair. Biomaterials, 2017, 117, 32-43.	5.7	51
640	Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signalling, 2017, 13, 153-170.	1.1	71
641	Microglia and brain macrophages: An update. Neuropathology, 2017, 37, 452-464.	0.7	68
642	Heterogeneity, functional specialization and differentiation of monocyteâ€derived dendritic cells. Immunology and Cell Biology, 2017, 95, 244-251.	1.0	32
643	Monocyte Conversion During Inflammation and Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 35-42.	1.1	295
644	Macrophage Polarization. Annual Review of Physiology, 2017, 79, 541-566.	5.6	1,934
645	Macrophage Phenotype in Liver Injury and Repair. Scandinavian Journal of Immunology, 2017, 85, 166-174.	1.3	93
646	Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Seminars in Cell and Developmental Biology, 2017, 61, 12-21.	2.3	97
647	ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages. Poultry Science, 2017, 96, 42-50.	1.5	28
648	CCR2 deficiency does not provide sustained improvement of muscular dystrophy in <i> mdx ^{5cv} </i> mice. FASEB Journal, 2017, 31, 35-46.	0.2	27
649	The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunology and Cell Biology, 2017, 95, 225-235.	1.0	55
650	CD36 Deficiency Impairs the Small Intestinal Barrier and InducesÂSubclinical Inflammation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 82-98.	2.3	42
651	P2 receptors, microglial cytokines and chemokines, and neuropathic pain. Journal of Neuroscience Research, 2017, 95, 1319-1329.	1.3	57

	СПАТЮ	REPORT	
#	Article	IF	CITATIONS
652	Macrophage NOS2 in Tumor Leukocytes. Antioxidants and Redox Signaling, 2017, 26, 1023-1043.	2.5	17
653	Essential Role of mTORC1 in Self-Renewal of Murine Alveolar Macrophages. Journal of Immunology, 2017, 198, 492-504.	0.4	41
654	Monocytes and Macrophages. , 2017, , 217-252.		0
655	Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Scientific Reports, 2017, 7, 14065.	1.6	46
656	Rheumatoid Arthritis and Other Inflammatory Articular Diseases. , 2017, , 1105-1140.		1
657	Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, 2017, , .	0.2	5
658	A mechanistic review of particle overload by titanium dioxide. Inhalation Toxicology, 2017, 29, 530-540.	0.8	9
659	Murine Monocytes: Origins, Subsets, Fates, and Functions. , 2017, , 141-153.		2
660	Myeloid Cell Turnover and Clearance. , 2017, , 99-115.		2
661	Monocyte, Macrophage, and Dendritic Cell Development: the Human Perspective. , 2017, , 79-97.		1
662	Transcriptional Regulation and Macrophage Differentiation. , 2017, , 117-139.		1
663	Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. International Journal of Molecular Sciences, 2017, 18, 2135.	1.8	297
664	Differential Location and Distribution of Hepatic Immune Cells. Cells, 2017, 6, 48.	1.8	77
665	Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 2017, 4, 80.	1.1	64
666	Diabetic Cardiomyopathy: An Immunometabolic Perspective. Frontiers in Endocrinology, 2017, 8, 72.	1.5	60
667	GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity. Frontiers in Immunology, 2017, 7, 680.	2.2	38
668	Modulators of the Balance between M1 and M2 Macrophages during Pregnancy. Frontiers in Immunology, 2017, 8, 120.	2.2	178
669	Targeting the Monocyte–Macrophage Lineage in Solid Organ Transplantation. Frontiers in Immunology, 2017, 8, 153.	2.2	63

		CITATION REPOR	т
#	Article	IF	CITATIONS
670	Human Lung Mononuclear Phagocytes in Health and Disease. Frontiers in Immunology, 2017, 8, 49	9. 2.2	50
671	Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearanc Acetaminophen-Induced Liver Injury. Frontiers in Immunology, 2017, 8, 626.	e in 2.2	74
672	Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing. Frontiers in Immunology, 2017, 8, 635.	2.2	63
673	Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation?. Frontiers in Immunology, 2017, 8, 941.	2.2	33
674	Promoter Specificity and Efficacy in Conditional and Inducible Transgenic Targeting of Lung Macrophages. Frontiers in Immunology, 2017, 8, 1618.	2.2	78
675	Tissue-Resident Macrophages in Fungal Infections. Frontiers in Immunology, 2017, 8, 1798.	2.2	42
676	Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies. Front in Aging Neuroscience, 2017, 9, 234.	ers 1.7	22
677	Macrophages as Key Drivers of Cancer Progression and Metastasis. Mediators of Inflammation, 202 2017, 1-11.	17, 1.4	231
678	The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediators of Inflammation, 2017, 2017, 1-15.	1.4	129
679	Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor. Current Topics in Developmental Biology, 2017, 123, 229-275.	1.0	121
680	Splitting the "Unsplittable†Dissecting Resident and Infiltrating Macrophages in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 2072.	1.8	23
681	Prolonged immune alteration following resolution of acute inflammation in humans. PLoS ONE, 20 12, e0186964.	17, 1.1	23
682	COPD monocytes demonstrate impaired migratory ability. Respiratory Research, 2017, 18, 90.	1.4	19
683	Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell International, 2017, 68.	17, 1.8	91
684	Myelomonocytic Cell Lines in Modeling HIV-1 Infection of the Bone Marrow. , 2017, , .		5
685	The Biological Function of Kupffer Cells in Liver Disease. , 0, , .		7
686	Tissue-resident macrophages as replicative niches for intracellular pathogens. Emerging Topics in L Sciences, 2017, 1, 621-626.	fe 1.1	2
687	Monocytes and macrophages in cardiac injury and repair. Journal of Thoracic Disease, 2017, 9, S30	-S35. 0.6	58

#	Article	IF	CITATIONS
688	Liver—Structure and Microanatomy. , 2018, , .		0
689	Contribution of resident and recruited macrophages in vascular physiology and pathology. Current Opinion in Hematology, 2018, 25, 196-203.	1.2	6
690	mTOR masters monocyte development in bone marrow by decreasing the inhibition of STAT5 on IRF8. Blood, 2018, 131, 1587-1599.	0.6	37
691	Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity, 2018, 48, 364-379.e8.	6.6	450
692	Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nature Neuroscience, 2018, 21, 530-540.	7.1	384
693	Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?. FEBS Journal, 2018, 285, 1973-1984.	2.2	106
694	Multiparametric Analysis of Myeloid Populations by Flow Cytometry. Methods in Molecular Biology, 2018, 1745, 113-124.	0.4	0
695	Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discovery, 2018, 4, 9.	3.1	73
696	Molecular control of the identity of tissue-resident macrophages. International Immunology, 2018, 30, 485-491.	1.8	14
697	Tsc1 controls the development and function of alveolar macrophages. Biochemical and Biophysical Research Communications, 2018, 498, 592-596.	1.0	7
698	Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. Journal of Experimental Medicine, 2018, 215, 1115-1133.	4.2	100
699	HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Scientific Reports, 2018, 8, 3603.	1.6	57
700	Role of Monocytes in Heart Failure and Atrial Fibrillation. Journal of the American Heart Association, 2018, 7, .	1.6	72
701	Ly6C ^{Hi} Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1102-1114.	1.1	128
702	New interplay between interstitial and alveolar macrophages explains pulmonary alveolar proteinosis (PAP) induced by indium tin oxide particles. Archives of Toxicology, 2018, 92, 1349-1361.	1.9	17
703	Lymph node macrophages: Scavengers, immune sentinels and trophic effectors. Cellular Immunology, 2018, 330, 168-174.	1.4	65
704	Engulfment of Hbâ€activated platelets differentiates monocytes into proâ€inflammatory macrophages in PNH patients. European Journal of Immunology, 2018, 48, 1285-1294.	1.6	8
705	Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizoneâ€induced demyelination. European Journal of Immunology, 2018, 48, 1308-1318.	1.6	71

#	Article	IF	CITATIONS
706	Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Scientific Reports, 2018, 8, 5913.	1.6	98
707	Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nature Immunology, 2018, 19, 442-452.	7.0	101
708	Innate immune memory: An evolutionary perspective. Immunological Reviews, 2018, 283, 21-40.	2.8	165
709	An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. Journal of Leukocyte Biology, 2018, 104, 579-586.	1.5	51
710	Testicular macrophages: Guardians of fertility. Cellular Immunology, 2018, 330, 120-125.	1.4	72
711	The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. Journal of Leukocyte Biology, 2018, 103, 1021-1028.	1.5	26
712	Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochemistry and Cell Biology, 2018, 149, 619-633.	0.8	7
713	The role of hepatic macrophages in liver metastasis. Cellular Immunology, 2018, 330, 202-215.	1.4	39
714	Inducible disruption of the c-myb gene allows allogeneic bone marrow transplantation without irradiation. Journal of Immunological Methods, 2018, 457, 66-72.	0.6	4
715	Inflammatory Macrophage Expansion in Pulmonary Hypertension Depends upon Mobilization of Blood-Borne Monocytes. Journal of Immunology, 2018, 200, 3612-3625.	0.4	105
716	Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends in Molecular Medicine, 2018, 24, 472-489.	3.5	219
717	Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. Journal of Experimental Medicine, 2018, 215, 1627-1647.	4.2	281
718	Creating a 3D microenvironment for monocyte cultivation: ECM-mimicking hydrogels based on gelatine and hyaluronic acid derivatives. RSC Advances, 2018, 8, 7606-7614.	1.7	19
719	Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 2018, 271, 102-110.	0.4	47
720	Alveolar Macrophages. Cellular Immunology, 2018, 330, 86-90.	1.4	196
721	CD301b/MGL2 ⁺ Mononuclear Phagocytes Orchestrate Autoimmune Cardiac Valve Inflammation and Fibrosis. Circulation, 2018, 137, 2478-2493.	1.6	18
722	High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity, 2018, 48, 380-395.e6.	6.6	638
723	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.4	75

#	Article	IF	CITATIONS
724	Inflammatory Monocytes Drive Influenza A Virus–Mediated Lung Injury in Juvenile Mice. Journal of Immunology, 2018, 200, 2391-2404.	0.4	83
725	Some news from the unknown soldier, the Peyer's patch macrophage. Cellular Immunology, 2018, 330, 159-167.	1.4	20
726	Progesterone, the maternal immune system and the onset of parturition in the mouseâ€. Biology of Reproduction, 2018, 98, 376-395.	1.2	33
727	Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359, 1269-1273.	6.0	422
728	The biology of serous cavity macrophages. Cellular Immunology, 2018, 330, 126-135.	1.4	51
729	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	4.2	314
730	The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nature Communications, 2018, 9, 582.	5.8	76
731	Bladder resident macrophages: Mucosal sentinels. Cellular Immunology, 2018, 330, 136-141.	1.4	27
732	Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. Letters in Biomathematics, 2018, 5, S6-S35.	0.3	18
733	Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell, 2018, 172, 500-516.e16.	13.5	563
734	Illuminating the covert mission of mononuclear phagocytes in their regional niches. Current Opinion in Immunology, 2018, 50, 94-101.	2.4	9
735	Immune regulation by monocytes. Seminars in Immunology, 2018, 35, 12-18.	2.7	85
736	Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 313-323.	1.1	22
737	Monocyte-derived Alveolar Macrophages: The Dark Side of Lung Repair?. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 5-6.	1.4	51
738	Developmental control of macrophage function. Current Opinion in Immunology, 2018, 50, 64-74.	2.4	65
739	Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. Journal of Hepatology, 2018, 68, 682-690.	1.8	43
740	Fetal monocytes and the origins of tissue-resident macrophages. Cellular Immunology, 2018, 330, 5-15.	1.4	268
741	The origins and homeostasis of monocytes and tissueâ€resident macrophages in physiological situation. Journal of Cellular Physiology, 2018, 233, 6425-6439.	2.0	110

#	Article	IF	CITATIONS
742	Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nature Communications, 2018, 9, 75.	5.8	194
743	Muscularis macrophages: Key players in intestinal homeostasis and disease. Cellular Immunology, 2018, 330, 142-150.	1.4	72
744	Cold atmospheric plasma-modulated phorbol 12-myristate 13-acetate-induced differentiation of U937 cells to macrophage-like cells. Free Radical Research, 2018, 52, 212-222.	1.5	5
745	Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 2018, 359, 684-688.	6.0	349
746	Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. Circulation Research, 2018, 122, 113-127.	2.0	181
747	Sall1 Regulates Microglial Morphology Cell Autonomously in the Developing Retina. Advances in Experimental Medicine and Biology, 2018, 1074, 209-215.	0.8	13
748	Hydrogen peroxide extracellular concentration in the ventrolateral medulla and its increase in response to hypoxia in vitro: Possible role of microglia. Brain Research, 2018, 1692, 87-99.	1.1	10
749	The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. Regeneration (Oxford, England), 2018, 5, 3-25.	6.3	30
750	Potential immunotherapies for traumatic brain and spinal cord injury. Chinese Journal of Traumatology - English Edition, 2018, 21, 125-136.	0.7	35
751	New concepts in macrophage ontogeny in the adult neural retina. Cellular Immunology, 2018, 330, 79-85.	1.4	13
752	Upregulation of Microglial ZEB1 Ameliorates Brain Damage after Acute Ischemic Stroke. Cell Reports, 2018, 22, 3574-3586.	2.9	62
753	Monocytes and macrophages in heart valves: Uninvited guests or critical performers?. Current Opinion in Biomedical Engineering, 2018, 5, 82-89.	1.8	14
754	S100A8/A9 Drives Neuroinflammatory Priming and Protects against Anxiety-like Behavior after Sepsis. Journal of Immunology, 2018, 200, 3188-3200.	0.4	36
755	Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity, 2018, 48, 514-529.e6.	6.6	144
756	Common polymorphisms of <i>chemokine (Câ€X3 motif) receptor 1</i> gene modify amyotrophic lateral sclerosis outcome: A populationâ€based study. Muscle and Nerve, 2018, 57, 212-216.	1.0	25
757	Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of Neural Transmission, 2018, 125, 809-826.	1.4	84
758	Hepatic leukemia-associated macrophages exhibit a pro-inflammatory phenotype in Notch1-induced acute T cell leukemia. Immunobiology, 2018, 223, 73-80.	0.8	12
759	Macrophage polarization and allergic asthma. Translational Research, 2018, 191, 1-14.	2.2	246

#	Article	IF	CITATIONS
760	Early treatment with Resolvin E1 facilitates myocardial recovery from ischaemia in mice. British Journal of Pharmacology, 2018, 175, 1205-1216.	2.7	48
761	Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Translational Research, 2018, 191, 15-28.	2.2	275
762	Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Developmental and Comparative Immunology, 2018, 81, 95-104.	1.0	6
763	Inflammation and fibrosis. Matrix Biology, 2018, 68-69, 106-121.	1.5	325
764	The chemokine receptor <scp>CX</scp> ₃ <scp>CR</scp> 1 coordinates monocyte recruitment and endothelial regeneration after arterial injury. EMBO Molecular Medicine, 2018, 10, 151-159.	3.3	42
765	Mannose receptor high, M2 dermal macrophages mediate nonhealing <i>Leishmania major</i> infection in a Th1 immune environment. Journal of Experimental Medicine, 2018, 215, 357-375.	4.2	92
766	Macrophage polarization and meta-inflammation. Translational Research, 2018, 191, 29-44.	2.2	238
767	Interferon regulatory factor 4/5 signaling impacts on microglial activation after ischemic stroke in mice. European Journal of Neuroscience, 2018, 47, 140-149.	1.2	53
768	Mechanisms of Hepatitis B Virus Persistence. Trends in Microbiology, 2018, 26, 33-42.	3.5	134
769	Regulation and phylogeny of skeletal muscle regeneration. Developmental Biology, 2018, 433, 200-209.	0.9	149
770	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia. , 2018, , .		2
770 771	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia. , 2018, , . Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Gas Research, 2018, 8, 154.	1.2	2 20
770 771 772	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia. , 2018, , . Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Gas Research, 2018, 8, 154. Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes. Frontiers in Immunology, 2018, 9, 2685.	1.2 2.2	2 20 51
770 771 772 773	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia. , 2018, , . Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Gas Research, 2018, 8, 154. Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes. Frontiers in Immunology, 2018, 9, 2685. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nature Reviews Rheumatology, 2018, 14, 714-726.	1.2 2.2 3.5	2 20 51 81
770 771 772 773 774	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia., 2018, , . Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Gas Research, 2018, 8, 154. Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes. Frontiers in Immunology, 2018, 9, 2685. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nature Reviews Rheumatology, 2018, 14, 714-726. Social Stress Mobilizes Hematopoietic Stem Cells to Establish Persistent Splenic Myelopoiesis. Cell Reports, 2018, 25, 2552-2562.e3.	1.2 2.2 3.5 2.9	2 20 51 81 94
 770 771 772 773 774 775 	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia., 2018,,. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Cas Research, 2018, 8, 154. Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes. Frontiers in Immunology, 2018, 9, 2685. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nature Reviews Rheumatology, 2018, 14, 714-726. Social Stress Mobilizes Hematopoietic Stem Cells to Establish Persistent Splenic Myelopoiesis. Cell Reports, 2018, 25, 2552-2562.e3. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis. JCl Insight, 2018, 3,.	1.2 2.2 3.5 2.9 2.3	2 20 51 81 94
 770 771 772 773 774 775 776 	The Coupled Tuff-Bff Algorithm for Automatic 3D Segmentation of Microglia., 2018, , . Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Medical Gas Research, 2018, 8, 154. Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes. Frontiers in Immunology, 2018, 9, 2685. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nature Reviews Rheumatology, 2018, 14, 714-726. Social Stress Mobilizes Hematopoietic Stem Cells to Establish Persistent Splenic Myelopoiesis. Cell Reports, 2018, 25, 2552-2562.e3. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis. JCl Insight, 2018, 3, . Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nature Communications, 2018, 9, 4845.	1.2 2.2 3.5 2.9 2.3 5.8	2 20 51 81 94 43

#	Article	IF	CITATIONS
778	Epidermal γδT cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. Journal of Experimental Medicine, 2018, 215, 2994-3005.	4.2	80
779	Sonderforschungsbereich (SFB/TRR 167) NeuroMac "Entwicklung, Funktion und Potenzial von myeloischen Zellen im zentralen Nervensystem". E-Neuroforum, 2018, 24, 61-66.	0.2	0
780	Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Frontiers in Immunology, 2018, 9, 2943.	2.2	35
781	The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Frontiers in Immunology, 2018, 9, 2948.	2.2	190
782	Neonatal Lethality and Inflammatory Phenotype of the New Transgenic Mice with Overexpression of Human Interleukin-6 in Myeloid Cells. Doklady Biochemistry and Biophysics, 2018, 483, 344-347.	0.3	11
783	Origin, Differentiation, and Function of Intestinal Macrophages. Frontiers in Immunology, 2018, 9, 2733.	2.2	216
784	Macrophages in the Aging Liver and Age-Related Liver Disease. Frontiers in Immunology, 2018, 9, 2795.	2.2	116
785	Transglutaminases in Monocytes and Macrophages. Medical Sciences (Basel, Switzerland), 2018, 6, 115.	1.3	16
786	Inflammatory Cells of the Lung: Macrophages. , 2018, , 94-114.		2
787	A miR-150/TET3 pathway regulates the generation of mouse and human non-classical monocyte subset. Nature Communications, 2018, 9, 5455.	5.8	33
788	Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nature Communications, 2018, 9, 5206.	5.8	166
789	Hepatic Sinusoidal Cells and Liver-Associated Lymphocytes. , 2018, , 29-40.		0
790	Impaired COMMD10-Mediated Regulation of Ly6Chi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Frontiers in Immunology, 2018, 9, 2623.	2.2	13
791	Nanomaterial Manipulation of Immune Microenvironment in the Diseased Liver. Advanced Functional Materials, 2019, 29, 1805760.	7.8	13
792	Emergence of immunoregulatory Ym1 ⁺ Ly6C ^{hi} monocytes during recovery phase of tissue injury. Science Immunology, 2018, 3, .	5.6	69
793	Multivalent nanosystems: targeting monocytes/macrophages. International Journal of Nanomedicine, 2018, Volume 13, 5511-5521.	3.3	12
794	The estrogen–macrophage interplay in the homeostasis of the female reproductive tract. Human Reproduction Update, 2018, 24, 652-672.	5.2	32
795	Macrophages and Fibroblasts, Key Players in Cancer Chemoresistance. Frontiers in Cell and Developmental Biology, 2018, 6, 131.	1.8	91

#	Article	IF	CITATIONS
796	Mechanisms of monocyte cell death triggered by dengue virus infection. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 576-586.	2.2	17
797	Monopoiesis in humans and mice. International Immunology, 2018, 30, 503-509.	1.8	24
798	CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe?. Current Gene Therapy, 2018, 17, 442-452.	0.9	35
799	Regulation of Hepatic Inflammation via Macrophage Cell Death. Seminars in Liver Disease, 2018, 38, 340-350.	1.8	31
800	Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathogens, 2018, 14, e1007154.	2.1	53
801	Aire Controls in Trans the Production of Medullary Thymic Epithelial Cells Expressing Ly-6C/Ly-6G. Journal of Immunology, 2018, 201, 3244-3257.	0.4	6
802	The Macrophage in Cardiac Homeostasis and Disease. Journal of the American College of Cardiology, 2018, 72, 2213-2230.	1.2	149
803	Cardiomyocytes and Macrophages Discourse on the Method to Govern Cardiac Repair. Frontiers in Cardiovascular Medicine, 2018, 5, 134.	1.1	32
805	Selective DNAM-1 expression on small peritoneal macrophages contributes to CD4+ T cell costimulation. Scientific Reports, 2018, 8, 15180.	1.6	19
806	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.	6.6	609
806 807	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.	6.6 5.8	609 32
806 807 808	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269. Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593.	6.6 5.8 0.6	609 32 55
806 807 808 809	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593.CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. Scientific Reports, 2018, 8, 15076.	6.6 5.8 0.6 1.6	609 32 55 31
806 807 808 809 810	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593.CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. scientific Reports, 2018, 8, 15076.Designer macrophages: Pitfalls and opportunities for modelling macrophage phenotypes from pluripotent stem cells. Differentiation, 2018, 104, 42-49.	 6.6 5.8 0.6 1.6 1.0 	 609 32 55 31 12
806 807 808 809 810 811	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593.CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. Scientific Reports, 2018, 8, 15076.Designer macrophages: Pitfalls and opportunities for modelling macrophage phenotypes from pluripotent stem cells. Differentiation, 2018, 104, 42-49.Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease. Journal of the American College of Cardiology, 2018, 72, 2166-2180.	 6.6 5.8 0.6 1.6 1.0 1.2 	 609 32 55 31 12 109
806 807 808 809 810 811 811	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269. Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593. CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. Scientific Reports, 2018, 8, 15076. Designer macrophages: Pitfalls and opportunities for modelling macrophage phenotypes from pluripotent stem cells. Differentiation, 2018, 104, 42-49. Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease. Journal of the American College of Cardiology, 2018, 72, 2166-2180. TLR9 and IL-1R1 Promote Mobilization of Pulmonary Dendritic Cells during Beryllium Sensitization. Journal of Immunology, 2018, 201, 2232-243.	 6.6 5.8 0.6 1.6 1.0 1.2 0.4 	 609 32 55 31 12 109 15
 806 807 808 809 810 811 812 813 	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, 2018, 132, 2580-2593.CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. Scientific Reports, 2018, 8, 15076.Designer macrophages: Pitfalls and opportunities for modelling macrophage phenotypes from pluripotent stem cells. Differentiation, 2018, 104, 42-49.Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease. Journal of the American College of Cardiology, 2018, 72, 2166-2180.TLR9 and IL-1R1 Promote Mobilization of Pulmonary Dendritic Cells during Beryllium Sensitization. Journal of Immunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology, 2018, 18, 733-744.	 6.6 5.8 0.6 1.6 1.2 0.4 10.6 	 609 32 55 31 12 109 15 482

		EPUKI	
# 815	ARTICLE Macrophages: friend or foe in idiopathic pulmonary fibrosis?. Respiratory Research, 2018, 19, 170.	IF 1.4	Citations 205
816	Stromal Cell Responses in Infection. Advances in Experimental Medicine and Biology, 2018, 1060, 23-36.	0.8	2
817	The interstitium in cardiac repair: role of the immune–stromal cell interplay. Nature Reviews Cardiology, 2018, 15, 601-616.	6.1	94
819	Self-Maintaining Gut Macrophages Are Essential for Intestinal Homeostasis. Cell, 2018, 175, 400-415.e13.	13.5	371
820	Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell, 2018, 175, 458-471.e19.	13.5	136
821	Macrophages and Cardiovascular Health. Physiological Reviews, 2018, 98, 2523-2569.	13.1	79
822	Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-Î ³ receptors. Blood Advances, 2018, 2, 941-953.	2.5	58
823	Quantifying Microglial Phagocytosis of Apoptotic Cells in the Brain in Health and Disease. Current Protocols in Immunology, 2018, 122, e49.	3.6	16
824	SIV Latency in Macrophages in the CNS. Current Topics in Microbiology and Immunology, 2018, 417, 111-130.	0.7	22
825	Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nature Immunology, 2018, 19, 636-644.	7.0	175
826	Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. Journal of Experimental Medicine, 2018, 215, 1507-1518.	4.2	272
827	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5.8	152
828	Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology, 2018, 18, 225-242.	10.6	1,263
829	Isolation and Identification of Murine Serous Cavity Macrophages. Methods in Molecular Biology, 2018, 1784, 51-67.	0.4	10
830	Modelling microglial function with induced pluripotent stem cells: an update. Nature Reviews Neuroscience, 2018, 19, 445-452.	4.9	41
831	Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. ELife, 2018, 7, .	2.8	86
832	Lung Interstitial Macrophages: Past, Present, and Future. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	115
833	TRPV4 Channel Signaling in Macrophages Promotes Gastrointestinal Motility via Direct Effects on Smooth Muscle Cells. Immunity, 2018, 49, 107-119.e4.	6.6	63

#	Article	IF	CITATIONS
834	Specialized functions of resident macrophages in brain and heart. Journal of Leukocyte Biology, 2018, 104, 743-756.	1.5	24
836	Gut Barrier: Adaptive Immunity. , 2018, , 641-661.		1
837	The role of neutrophils in the pathogenesis of Crohn's disease. European Journal of Clinical Investigation, 2018, 48, e12983.	1.7	23
838	Roles of Macrophage Subtypes in Bowel Anastomotic Healing and Anastomotic Leakage. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	21
839	Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells. ELife, 2018, 7, .	2.8	34
840	Liver X receptors regulate hepatic F4/80 + CD11b+ Kupffer cells/macrophages and innate immune responses in mice. Scientific Reports, 2018, 8, 9281.	1.6	37
841	Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. ELife, 2018, 7, .	2.8	41
842	Monocyte and Neutrophil Isolation, Migration, and Phagocytosis Assays. Current Protocols in Immunology, 2018, 122, e53.	3.6	2
843	Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?. Journal of Immunology Research, 2018, 2018, 1-25.	0.9	325
844	Dysregulated Functions of Lung Macrophage Populations in COPD. Journal of Immunology Research, 2018, 2018, 1-19.	0.9	51
845	PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS ONE, 2018, 13, e0195212.	1.1	37
846	Phagocytes. , 2018, , 1-25.		0
847	Inflammatory Mediators in Heart Failure. , 2018, , 33-50.		0
848	Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB Journal, 2018, 32, 5227-5237.	0.2	23
849	Leading-Edge Approaches for InÂVitro Hepatotoxicity Evaluation. , 2018, , 651-712.		0
850	The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Frontiers in Physiology, 2018, 9, 419.	1.3	817
851	Cyclic Stretch Negatively Regulates IL-1Î ² Secretion Through the Inhibition of NLRP3 Inflammasome Activation by Attenuating the AMP Kinase Pathway. Frontiers in Physiology, 2018, 9, 802.	1.3	21
852	Contributions of monocytes to nervous system disorders. Journal of Molecular Medicine, 2018, 96, 873-883.	1.7	27

#	Article	IF	CITATIONS
853	Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 2018, 21, 1049-1060.	7.1	318
854	Primary cilia disruption differentially affects the infiltrating and resident macrophage compartment in the liver. American Journal of Physiology - Renal Physiology, 2018, 314, G677-G689.	1.6	23
855	Absence of Tumor Necrosis Factor Supports Alternative Activation of Macrophages in the Liver after Infection with Leishmania major. Frontiers in Immunology, 2018, 9, 1.	2.2	717
856	The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Frontiers in Immunology, 2018, 9, 31.	2.2	18
857	The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis. Frontiers in Immunology, 2018, 9, 400.	2.2	25
858	Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Frontiers in Immunology, 2018, 9, 502.	2.2	22
859	The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Frontiers in Immunology, 2018, 9, 673.	2.2	110
860	Understanding the Cellular Origin of the Mononuclear Phagocyte System Sheds Light on the Myeloid Postulate of Immune Paralysis in Sepsis. Frontiers in Immunology, 2018, 9, 823.	2.2	18
861	Immune Microenvironment in Glioblastoma Subtypes. Frontiers in Immunology, 2018, 9, 1004.	2.2	291
862	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105.	2.2	147
862 863	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108.	2.2 2.2	147
862 863 864	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467.	2.2 2.2 2.2	147 14 82
862 863 864 865	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467. mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178.	2.2 2.2 2.2 1.8	147 14 82 42
862 863 864 865 866	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467. mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421.	2.2 2.2 2.2 1.8 1.4	147 14 82 42 151
862 863 864 865 866	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467. mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, 2018, 30, 493-501.	2.2 2.2 2.2 1.8 1.4	147 14 82 42 151
862 863 864 865 866 867	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synoviocytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467. mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, 2018, 30, 493-501. Activation of human macrophages by human corneal allogen in vitro. PLoS ONE, 2018, 13, e0194855.	2.2 2.2 1.8 1.4 1.8 1.1	147 14 82 42 151 46
 862 863 864 865 866 867 868 869 	Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 2018, 9, 1105. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages. Frontiers in Immunology, 2018, 9, 1108. Ontology and Function of Fibroblast-Like and Macrophage-Like Synovicytes: How Do They Talk to Each Other and Can They Be Targeted for Rheumatoid Arthritis Therapy?. Frontiers in Immunology, 2018, 9, 1467. mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, 2018, 30, 493-501. Activation of human macrophages by human corneal allogen in vitro. PLoS ONE, 2018, 13, e0194855. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice. International Journal of Molecular Sciences, 2018, 19, 817.	 2.2 2.2 2.2 1.8 1.4 1.8 1.1 1.8 	 147 14 82 42 151 46 6 34

#	Article	IF	CITATIONS
871	Persistent Infiltration and Impaired Response of Peripherally-Derived Monocytes after Traumatic Brain Injury in the Aged Brain. International Journal of Molecular Sciences, 2018, 19, 1616.	1.8	56
872	Activation and polarization of circulating monocytes in severe chronic obstructive pulmonary disease. BMC Pulmonary Medicine, 2018, 18, 101.	0.8	37
873	Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods in Molecular Biology, 2018, 1809, 145-168.	0.4	0
874	Isolation and Characterization of Mononuclear Phagocytes in the Mouse Lung and Lymph Nodes. Methods in Molecular Biology, 2018, 1809, 33-44.	0.4	22
875	Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology, 2018, 408, 62-69.	2.0	13
876	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	46
877	Monitoring Translation Activity of mRNA-Loaded Nanoparticles in Mice. Molecular Pharmaceutics, 2018, 15, 3909-3919.	2.3	27
878	Soluble fibrinogenâ€like protein 2 ameliorates acute rejection of liver transplantation in rat via inducing Kupffer cells M2 polarization. Cancer Medicine, 2018, 7, 3168-3177.	1.3	24
880	Cre Driver Mice Targeting Macrophages. Methods in Molecular Biology, 2018, 1784, 263-275.	0.4	97
881	Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncolmmunology, 2018, 7, e1438105.	2.1	13
882	Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following MyocardialÂInfarction or Pressure Overload Hypertrophy. Journal of the American College of Cardiology, 2018, 72, 885-904.	1.2	43
883	Heme ameliorates dextran sodium sulfate-induced colitis through providing intestinal macrophages with noninflammatory profiles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8418-8423.	3.3	38
884	In Vivo Imaging of Microglia With Multiphoton Microscopy. Frontiers in Aging Neuroscience, 2018, 10, 218.	1.7	29
885	Understanding the Biology of Self-Renewing Macrophages. Cells, 2018, 7, 103.	1.8	82
886	A new biomarker candidate for spinal muscular atrophy: Identification of a peripheral blood cell population capable of monitoring the level of survival motor neuron protein. PLoS ONE, 2018, 13, e0201764.	1.1	15
887	Von Hippel-Lindau Protein Is Required for Optimal Alveolar Macrophage Terminal Differentiation, Self-Renewal, and Function. Cell Reports, 2018, 24, 1738-1746.	2.9	26
888	The Kaleidoscope of Microglial Phenotypes. Frontiers in Immunology, 2018, 9, 1753.	2.2	221
889	Innate Immunity and Inflammation. , 2018, , 74-128.		0

		15	C
#	ARTICLE	IF	CHATIONS
890	Medical Journal, 2018, 54, 10.	0.5	5
891	Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil–platelet interactions. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2150-2164.	2.4	83
892	Murine macrophage chemokine receptor CCR2 plays a crucial role in macrophage recruitment and regulated inflammation in wound healing. European Journal of Immunology, 2018, 48, 1445-1455.	1.6	59
893	Immunotoxicity Testing. Methods in Molecular Biology, 2018, , .	0.4	5
894	The widening spectrum of immunological memory. Current Opinion in Immunology, 2018, 54, 42-49.	2.4	28
895	Regulation of hematopoiesis by the chemokine system. Cytokine, 2018, 109, 76-80.	1.4	21
896	Macrophages Switch Their Phenotype by Regulating Maf Expression during Different Phases of Inflammation. Journal of Immunology, 2018, 201, 635-651.	0.4	33
897	Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. Advances in Experimental Medicine and Biology, 2018, 1107, 15-40.	0.8	8
898	Evaluating Macrophages in Immunotoxicity Testing. Methods in Molecular Biology, 2018, 1803, 255-296.	0.4	1
899	Myeloid cell responses after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 97-108.	1.1	63
900	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	15.2	439
901	Differentiated macrophages acquire a pro-inflammatory and cell death–resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. Journal of Biological Chemistry, 2018, 293, 11913-11927.	1.6	20
902	Generation of a triple-fluorescent mouse strain allows a dynamic and spatial visualization of different liver phagocytes in vivo. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20170317.	0.3	1
903	The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development. Development (Cambridge), 2019, 146, .	1.2	42
904	The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathogens, 2019, 15, e1007460.	2.1	82
905	Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature, 2019, 572, 670-675.	13.7	345
906	Deletion of the RNA regulator HuR in tumorâ€associated microglia and macrophages stimulates antiâ€tumor immunity and attenuates glioma growth. Glia, 2019, 67, 2424-2439.	2.5	26
907	Macrophages in Renal Fibrosis. Advances in Experimental Medicine and Biology, 2019, 1165, 285-303.	0.8	40

#	Article	IF	Citations
908	Novel Microglia Depletion Systems: A Genetic Approach Utilizing Conditional Diphtheria Toxin Receptor Expression and a Pharmacological Model Based on the Blocking of Macrophage Colony-Stimulating Factor 1 Receptor. Methods in Molecular Biology, 2019, 2034, 217-230.	0.4	5
909	The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB Journal, 2019, 33, 12188-12199.	0.2	43
910	Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies. Acta Biotheoretica, 2019, 67, 321-359.	0.7	11
911	Microglia. Methods in Molecular Biology, 2019, , .	0.4	1
912	Macrophage Plasticity and Function in the Eye and Heart. Trends in Immunology, 2019, 40, 825-841.	2.9	38
913	The epigenome as a putative target for skin repair: the HDAC inhibitor Trichostatin A modulates myeloid progenitor plasticity and behavior and improves wound healing. Journal of Translational Medicine, 2019, 17, 247.	1.8	14
914	Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Frontiers in Immunology, 2019, 10, 1587.	2.2	197
915	Single-cell transcriptomics–based MacSpectrum reveals macrophage activation signatures in diseases. JCI Insight, 2019, 4, .	2.3	86
916	Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nature Communications, 2019, 10, 3215.	5.8	191
917	The Ontogeny of Monocyte Subsets. Frontiers in Immunology, 2019, 10, 1642.	2.2	133
918	Monocyte mobilisation, microbiota & amp; mental illness. Brain, Behavior, and Immunity, 2019, 81, 74-91.	2.0	35
919	Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 531-543.	8.2	481
920	The HIV Reservoir in Monocytes and Macrophages. Frontiers in Immunology, 2019, 10, 1435.	2.2	154
921	Role of microglia in spinal cord injury. Neuroscience Letters, 2019, 709, 134370.	1.0	69
922	Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2raâ^'/â^' Mice. Molecular Therapy, 2019, 27, 1597-1611.	3.7	21
923	The Role of Stabilin-1 in Lymphocyte Trafficking and Macrophage Scavenging in the Liver Microenvironment. Biomolecules, 2019, 9, 283.	1.8	19
924	Intestinal Macrophages in Resolving Inflammation. Journal of Immunology, 2019, 203, 593-599.	0.4	52
925	Regulating the development of pulmonary Group 2 innate lymphoid cells. Biological Chemistry, 2019, 400, 1497-1507.	1.2	2

#	Article	IF	CITATIONS
926	Macrophages at CNS interfaces: ontogeny and function in health andÂdisease. Nature Reviews Neuroscience, 2019, 20, 547-562.	4.9	250
927	Mesothelial cell CSF1 sustains peritoneal macrophage proliferation. European Journal of Immunology, 2019, 49, 2012-2018.	1.6	21
928	Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 666.	1.6	68
929	The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Reports, 2019, 28, 172-189.e7.	2.9	38
930	Heterogeneity of Macrophages in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1237-1246.	1.8	9
931	Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus, 2019, 9, 20180089.	1.5	54
932	Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Frontiers in Immunology, 2019, 10, 2215.	2.2	58
933	Cien Años de MicroglÃa: Milestones in a Century of Microglial Research. Trends in Neurosciences, 2019, 42, 778-792.	4.2	131
934	Endogenous Uteroglobin as Intrinsic Anti-inflammatory Signal Modulates Monocyte and Macrophage Subsets Distribution Upon Sepsis Induced Lung Injury. Frontiers in Immunology, 2019, 10, 2276.	2.2	23
935	THE ROLE OF OSTEOMACS IN REGULATING STEM CELL FUNCTION AND THE HEMATOPOIETIC NICHE. Experimental Hematology, 2019, 76, S79.	0.2	0
936	The CSF-1-receptor inhibitor, JNJ-40346527 (PRV-6527), reduced inflammatory macrophage recruitment to the intestinal mucosa and suppressed murine T cell mediated colitis. PLoS ONE, 2019, 14, e0223918.	1.1	11
937	Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity, 2019, 51, 899-914.e7.	6.6	110
938	Characterisation of a New Human Alveolar Macrophage-Like Cell Line (Daisy). Lung, 2019, 197, 687-698.	1.4	8
939	Origin and function of synovial macrophage subsets during inflammatory joint disease. Advances in Immunology, 2019, 143, 75-98.	1.1	23
940	Long-Term Microgliosis Driven by Acute Systemic Inflammation. Journal of Immunology, 2019, 203, 2979-2989.	0.4	28
941	The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. Molecular Biology, 2019, 53, 696-703.	0.4	26
942	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
943	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	2.2	67

	CHATON R	EPORT	
#	Article	IF	Citations
944	The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 2019, 10, 1893.	2.2	59
945	High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage. JCI Insight, 2019, 4, .	2.3	14
946	Inhaled GM-CSF in neonatal mice provides durable protection against bacterial pneumonia. Science Advances, 2019, 5, eaax3387.	4.7	8
947	Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 1817.	2.2	38
948	Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell, 2019, 178, 1509-1525.e19.	13.5	361
949	Female-Specific Role of Progranulin to Suppress Bone Formation. Endocrinology, 2019, 160, 2024-2037.	1.4	6
950	Remote Postischemic Conditioning Promotes Stroke Recovery by Shifting Circulating Monocytes to CCR2 ⁺ Proinflammatory Subset. Journal of Neuroscience, 2019, 39, 7778-7789.	1.7	32
951	Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2019, 216, 2562-2581.	4.2	110
952	Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nature Communications, 2019, 10, 3964.	5.8	206
953	Function of CSF1 and IL34 in Macrophage Homeostasis, Inflammation, and Cancer. Frontiers in Immunology, 2019, 10, 2019.	2.2	130
954	Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Frontiers in Immunology, 2019, 10, 2031.	2.2	23
955	RvD1 ameliorates LPS-induced acute lung injury via the suppression of neutrophil infiltration by reducing CXCL2 expression and release from resident alveolar macrophages. International Immunopharmacology, 2019, 76, 105877.	1.7	48
956	When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nature Reviews Neurology, 2019, 15, 704-717.	4.9	100
957	The BACH1–HMOX1 Regulatory Axis Is Indispensable for Proper Macrophage Subtype Specification and Skeletal Muscle Regeneration. Journal of Immunology, 2019, 203, 1532-1547.	0.4	22
958	Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , .	0.8	18
959	Voltage-gated sodium channel inhibitor reduces atherosclerosis by modulating monocyte/macrophage subsets and suppressing macrophage proliferation. Biomedicine and Pharmacotherapy, 2019, 120, 109352.	2.5	10
960	Proinflammatory Differentiation of Macrophages Through Microparticles That Form Immune Complexes Leads to T- and B-Cell Activation in Systemic Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 2058.	2.2	39
961	The challenges of primary biliary cholangitis: What is new and what needs to be done. Journal of Autoimmunity, 2019, 105, 102328.	3.0	86

		LPORT	
#	ARTICLE Quorum Sensing by Monocyte-Derived Populations, Frontiers in Immunology, 2019, 10, 2140	IF 22	Citations
963	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	13.5	772
964	Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23. Nature Communications, 2019, 10, 4517.	5.8	8
965	Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2019, 203, 2252-2264.	0.4	57
966	Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Frontiers in Cellular Neuroscience, 2019, 13, 414.	1.8	51
967	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	6.6	384
968	MicroRNAs: Fine Tuners of Monocyte Heterogeneity. Frontiers in Immunology, 2019, 10, 2145.	2.2	23
969	CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunology, 2019, 20, 7.	0.9	24
970	Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 3176.	2.2	261
971	Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Science Immunology, 2019, 4, .	5.6	173
972	A Blazing Landscape: Neuroinflammation Shapes Brain Metastasis. Cancer Research, 2019, 79, 423-436.	0.4	60
973	Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e30-e37.	1.1	18
974	Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363, .	6.0	583
975	Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 2019, 10, 518.	5.8	372
976	Fetal-derived macrophages dominate in adult mammary glands. Nature Communications, 2019, 10, 281.	5.8	74
977	RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Frontiers in Immunology, 2019, 10, 894.	2.2	24
978	Adipose Tissue-Resident Immune Cells in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2019, 10, 1173.	2.2	91
979	Considering the spleen in sickle cell disease. Expert Review of Hematology, 2019, 12, 563-573.	1.0	26

#	Article	IF	CITATIONS
980	PD-L1 expression on nonclassical monocytes reveals their origin and immunoregulatory function. Science Immunology, 2019, 4, .	5.6	60
981	Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Frontiers in Immunology, 2019, 10, 1408.	2.2	137
982	Reply to: "Unveiling the depletion of Kupffer cells in experimental hepatocarcinogenesis through liver macrophage subtype-specific markers― Journal of Hepatology, 2019, 71, 633-635.	1.8	1
983	Ontogeny of Synovial Macrophages and the Roles of Synovial Macrophages From Different Origins in Arthritis. Frontiers in Immunology, 2019, 10, 1146.	2.2	37
984	Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. , 2019, 7, 147.		142
985	Subgroups of monocytes predict cardiovascular events in patients with coronary heart disease. The PHAMOS trial (Prospective Halle Monocytes Study). Hellenic Journal of Cardiology, 2019, 60, 311-321.	0.4	24
986	A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity, 2019, 50, 1482-1497.e7.	6.6	141
987	TRIM33 deficiency in monocytes and macrophages impairs resolution of colonic inflammation. EBioMedicine, 2019, 44, 60-70.	2.7	10
988	MRTF-A regulates proliferation and survival properties of pro-atherogenic macrophages. Journal of Molecular and Cellular Cardiology, 2019, 133, 26-35.	0.9	16
989	BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11888-11893.	3.3	58
990	Studies on patients establish Crohn's disease as a manifestation of impaired innate immunity. Journal of Internal Medicine, 2019, 286, 373-388.	2.7	22
992	Pericytes in Cutaneous Wound Healing. Advances in Experimental Medicine and Biology, 2019, 1147, 1-63.	0.8	11
993	Quantifying the Dynamics of Hematopoiesis by In Vivo IdU Pulseâ€Chase, Mass Cytometry, and Mathematical Modeling. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1075-1084.	1.1	0
994	Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neuroscience Letters, 2019, 707, 134310.	1.0	89
995	A simple culture method for liver and intestinal tissue-resident macrophages from neonatal mice. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 436-444.	0.7	3
996	Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1–induced mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13067-13076.	3.3	66
997	Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Science Advances, 2019, 5, eaaw1327.	4.7	57
998	IL-23–producing IL-10Rα–deficient gut macrophages elicit an IL-22–driven proinflammatory epithelial cell response. Science Immunology, 2019, 4, .	5.6	68

#	Article	IF	CITATIONS
999	High-intensity interval training reduces monocyte activation in obese adults. Brain, Behavior, and Immunity, 2019, 80, 818-824.	2.0	15
1000	Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. International Immunology, 2019, 31, 687-696.	1.8	59
1002	Developmental Apoptosis Promotes a Disease-Related Gene Signature and Independence from CSF1R Signaling in Retinal Microglia. Cell Reports, 2019, 27, 2002-2013.e5.	2.9	53
1003	Fetal origin confers radioresistance on liver macrophages via p21. Journal of Hepatology, 2019, 71, 553-562.	1.8	31
1004	Deletion of p38α MAPK in microglia blunts trauma-induced inflammatory responses in mice. Journal of Neuroinflammation, 2019, 16, 98.	3.1	34
1005	Inferior alveolar nerve transection disturbs innate immune responses and bone healing after tooth extraction. Annals of the New York Academy of Sciences, 2019, 1448, 52-64.	1.8	17
1006	Macroscale biomaterials strategies for local immunomodulation. Nature Reviews Materials, 2019, 4, 379-397.	23.3	172
1007	Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. European Journal of Immunology, 2019, 49, 831-841.	1.6	33
1009	Serous macrophages pack Bhlhe40 for a randonnée. Nature Immunology, 2019, 20, 670-671.	7.0	0
1010	Bhlhe40 mediates tissue-specific control of macrophage proliferation in homeostasis and type 2 immunity. Nature Immunology, 2019, 20, 687-700.	7.0	62
1011	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	7.1	603
1012	The origins and non-canonical functions of macrophages in development and regeneration. Development (Cambridge), 2019, 146, .	1.2	98
1013	Capturing the Fantastic Voyage of Monocytes Through Time and Space. Frontiers in Immunology, 2019, 10, 834.	2.2	80
1014	Liver Macrophages: Old Dogmas and New Insights. Hepatology Communications, 2019, 3, 730-743.	2.0	256
1015	The Shh receptor Boc is important for myelin formation and repair. Development (Cambridge), 2019, 146, .	1.2	18
1016	Lymphatic Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche. Immunity, 2019, 50, 1453-1466.e4.	6.6	97
1017	Trauma Induces Emergency Hematopoiesis through IL-1/MyD88–Dependent Production of G-CSF. Journal of Immunology, 2019, 202, 3020-3032.	0.4	28
1018	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	6.6	217

		CITATION REPORT		
#	Article		IF	CITATIONS
1019	Nonclassical Monocytes in Health and Disease. Annual Review of Immunology, 2019, 3	7, 439-456.	9.5	294
1020	The many facets of macrophages in rheumatoid arthritis. Biochemical Pharmacology, 2	019, 165, 152-169.	2.0	144
1021	Spinal motor circuit synaptic plasticity after peripheral nerve injury depends on microg and a CCR2 mechanism. Journal of Neuroscience, 2019, 39, 2945-17.	ia activation	1.7	27
1022	Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls Cancers, 2019, 11, 298.	in Lung Cancer.	1.7	10
1023	Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor of of Experimental Medicine, 2019, 216, 900-915.	lysfunction. Journal	4.2	35
1024	Nonspecific effects of oral vaccination with live-attenuated <i>Salmonella</i> Typhi str Science Advances, 2019, 5, eaau6849.	ain Ty21a.	4.7	13
1025	Methods to Study Monocyte and Macrophage Trafficking in Atherosclerosis Progressio Resolution. Methods in Molecular Biology, 2019, 1951, 153-165.	n and	0.4	15
1026	ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and recovery after spinal cord injury. Brain, Behavior, and Immunity, 2019, 80, 129-145.	functional	2.0	15
1027	Host tissue determinants of tumour immunity. Nature Reviews Cancer, 2019, 19, 215-	227.	12.8	150
1028	Distinctive Effects of GM-CSF and M-CSF on Proliferation and Polarization of Two Majo Macrophage Populations. Journal of Immunology, 2019, 202, 2700-2709.	r Pulmonary	0.4	40
1029	Two distinct interstitial macrophage populations coexist across tissues in specific subt Science, 2019, 363, .	ssular niches.	6.0	676
1030	Microglia lacking a peroxisomal \hat{l}^2 -oxidation enzyme chronically alter their inflammator without evoking neuronal and behavioral deficits. Journal of Neuroinflammation, 2019,	y profile 16, 61.	3.1	20
1031	Targeting Tumor-Associated Macrophages in Cancer. Trends in Immunology, 2019, 40,	310-327.	2.9	660
1032	COMMD10-Guided Phagolysosomal Maturation Promotes Clearance of Staphylococcu Macrophages. IScience, 2019, 14, 147-163.	s aureus in	1.9	12
1033	Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 2019, 18, 5	53-566.	21.5	287
1034	Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte c Immunological Reviews, 2019, 289, 9-30.	lynamics.	2.8	70
1035	Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming ar Progression. Cell Metabolism, 2019, 29, 1376-1389.e4.	id Tumor	7.2	261
1036	Bone marrow-derived Ly6Câ^' macrophages promote ischemia-induced chronic kidney and Disease, 2019, 10, 291.	disease. Cell Death	2.7	43

#	Article	IF	CITATIONS
1037	Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration. Nature Immunology, 2019, 20, 626-636.	7.0	108
1038	Derivation of Macrophages from Mouse Bone Marrow. Methods in Molecular Biology, 2019, 1960, 41-55.	0.4	6
1039	Endocardially Derived Macrophages Are Essential for Valvular Remodeling. Developmental Cell, 2019, 48, 617-630.e3.	3.1	61
1040	Microglia in Alzheimer's disease: A target for immunotherapy. Journal of Leukocyte Biology, 2019, 106, 219-227.	1.5	78
1041	Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathologica Communications, 2019, 7, 20.	2.4	124
1042	Chasing Mavericks: The quest for defining developmental waves of hematopoiesis. Current Topics in Developmental Biology, 2019, 132, 1-29.	1.0	15
1043	Resident Immunity in Tissue Repair and Maintenance: The Zebrafish Model Coming of Age. Frontiers in Cell and Developmental Biology, 2019, 7, 12.	1.8	28
1044	Lipid-Activated Nuclear Receptors. Methods in Molecular Biology, 2019, , .	0.4	0
1045	M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney International, 2019, 95, 760-773.	2.6	100
1046	Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 2019, 106, 309-322.	1.5	330
1047	Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity, 2019, 50, 288-301.	6.6	106
1048	Is Resolution the End of Inflammation?. Trends in Molecular Medicine, 2019, 25, 198-214.	3.5	131
1049	BATF2 prevents T-cell-mediated intestinal inflammation through regulation of the IL-23/IL-17 pathway. International Immunology, 2019, 31, 371-383.	1.8	15
1050	Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nature Immunology, 2019, 20, 1631-1643.	7.0	107
1051	A gene expression-based study on immune cell subtypes and glioma prognosis. BMC Cancer, 2019, 19, 1116.	1.1	43
1052	Innate Immunity and Alcohol. Journal of Clinical Medicine, 2019, 8, 1981.	1.0	21
1053	Cellular source of hypothalamic macrophage accumulation in diet-induced obesity. Journal of Neuroinflammation, 2019, 16, 221.	3.1	11
1054	The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Frontiers in Microbiology, 2019, 10, 2828.	1.5	123

#	Article	IF	CITATIONS
1055	Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 2670.	2.2	36
1056	Understanding the Heterogeneity of Resident Liver Macrophages. Frontiers in Immunology, 2019, 10, 2694.	2.2	82
1057	Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Frontiers in Cellular Neuroscience, 2019, 13, 491.	1.8	5
1058	Inherited and Environmental Factors Influence Human Monocyte Heterogeneity. Frontiers in Immunology, 2019, 10, 2581.	2.2	25
1059	Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Scientific Reports, 2019, 9, 17937.	1.6	45
1060	Growing old in the age of heterogeneity: the perils of shifting clonality. Current Opinion in Hematology, 2019, 26, 222-227.	1.2	4
1061	High Resolution Intravital Imaging of the Renal Immune Response to Injury and Infection in Mice. Frontiers in Immunology, 2019, 10, 2744.	2.2	11
1062	Macrophages in cardiac repair: Environmental cues and therapeutic strategies. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	37
1063	Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness. Frontiers in Immunology, 2019, 10, 2641.	2.2	39
1064	Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Communications Biology, 2019, 2, 450.	2.0	61
1065	Monocytes undergo multi-step differentiation in mice during oral infection by Toxoplasma gondii. Communications Biology, 2019, 2, 472.	2.0	10
1066	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	13.5	292
1067	How reversible are the effects of silver nanoparticles on macrophages? A proteomic-instructed view. Environmental Science: Nano, 2019, 6, 3133-3157.	2.2	21
1068	Microglia in the developing retina. Neural Development, 2019, 14, 12.	1.1	75
1069	Polyacrylic acid-coated iron oxide nanoparticles could be a useful tool for tracking inflammatory monocytes. Future Science OA, 2019, 5, FSO423.	0.9	4
1070	A Quantitative Approach to SIV Functional Latency in Brain Macrophages. Journal of NeuroImmune Pharmacology, 2019, 14, 23-32.	2.1	12
1071	Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase-1. Vascular Pharmacology, 2019, 112, 79-90.	1.0	24
1072	Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathologica, 2019, 137, 321-341.	3.9	177

#	Article	IF	CITATIONS
1073	Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain, Behavior, and Immunity, 2019, 77, 77-91.	2.0	44
1074	The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends in Immunology, 2019, 40, 98-112.	2.9	188
1075	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
1076	Concomitant type I IFN and M-CSF signaling reprograms monocyte differentiation and drives pro-tumoral arginase production. EBioMedicine, 2019, 39, 132-144.	2.7	15
1077	Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Progress in Retinal and Eye Research, 2019, 70, 85-98.	7.3	68
1078	Variety matters: Diverse functions of monocyte subtypes in vascular inflammation and atherogenesis. Vascular Pharmacology, 2019, 113, 9-19.	1.0	16
1079	CD11a expression distinguishes infiltrating myeloid cells from plaqueâ€associated microglia in Alzheimer's disease. Glia, 2019, 67, 844-856.	2.5	32
1080	Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Î ² Cell Proliferation and Function in Obesity. Cell Metabolism, 2019, 29, 457-474.e5.	7.2	173
1081	MicroRNA-21 Deficiency Alters the Survival of Ly-6C ^{lo} Monocytes in <i>ApoE</i> ^{â^'/â^'} Mice and Reduces Early-Stage Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 170-177.	1.1	20
1082	Human Rhinovirus Inhibits Macrophage Phagocytosis of Bacteria in Chronic Obstructive Pulmonary Disease. More Than a Common Cold. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1451-1452.	2.5	2
1083	TLR Activation Alters Bone Marrow-Derived Macrophage Differentiation. Journal of Innate Immunity, 2019, 11, 99-108.	1.8	5
1084	How toll-like receptors reveal monocyte plasticity: the cutting edge of antiinflammatory therapy. Cellular and Molecular Life Sciences, 2019, 76, 745-755.	2.4	7
1085	Removal of microglial-specific MyD88 signaling alters dentate gyrus doublecortin and enhances opioid addiction-like behaviors. Brain, Behavior, and Immunity, 2019, 76, 104-115.	2.0	31
1086	Macrophage Plasticity in Skin Fibrosis. Molecular and Translational Medicine, 2019, , 61-87.	0.4	0
1087	Macrophage immunomodulation in chronic osteolytic diseases—the case of periodontitis. Journal of Leukocyte Biology, 2019, 105, 473-487.	1.5	69
1088	Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 25-36.	1.1	130
1089	Complement Targets Newborn Retinal Ganglion Cells for Phagocytic Elimination by Microglia. Journal of Neuroscience, 2019, 39, 2025-2040.	1.7	78
1090	The Myeloid Cell Compartment—Cell by Cell. Annual Review of Immunology, 2019, 37, 269-293.	9.5	140

#	Article	IF	CITATIONS
1091	Blocking NF-κB Activation in Ly6c+ Monocytes Attenuates Necrotizing Enterocolitis. American Journal of Pathology, 2019, 189, 604-618.	1.9	29
1092	Characterization of Subpopulations of Chicken Mononuclear Phagocytes That Express TIM4 and CSF1R. Journal of Immunology, 2019, 202, 1186-1199.	0.4	47
1093	Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology, 2019, 20, 163-172.	7.0	2,330
1094	A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis. Nature Immunology, 2019, 20, 141-151.	7.0	30
1095	Microglia Express Mu Opioid Receptor: Insights From Transcriptomics and Fluorescent Reporter Mice. Frontiers in Psychiatry, 2018, 9, 726.	1.3	54
1096	Hormesis of methylmercury-human serum albumin conjugate on N9 microglia via ERK/MAPKs and STAT3 signaling pathways. Toxicology and Applied Pharmacology, 2019, 362, 59-66.	1.3	13
1097	Bone Marrow-Derived Macrophages Enhance Vessel Stability in Modular Engineered Tissues. Tissue Engineering - Part A, 2019, 25, 911-923.	1.6	7
1098	The Influence of Microglial Elimination and Repopulation on Stress Sensitization Induced byÂRepeated Social Defeat. Biological Psychiatry, 2019, 85, 667-678.	0.7	72
1099	Tissue Resident CCR2â^' and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circulation Research, 2019, 124, 263-278.	2.0	424
1100	Retinal Degeneration. Methods in Molecular Biology, 2019, , .	0.4	5
1101	Fate Mapping In Vivo to Distinguish Bona Fide Microglia Versus Recruited Monocyte-Derived Macrophages in Retinal Disease. Methods in Molecular Biology, 2019, 1834, 153-164.	0.4	7
1102	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	7.0	537
1103	Astrocytes and microglia: Models and tools. Journal of Experimental Medicine, 2019, 216, 71-83.	4.2	103
1104	Immunometabolic Crosstalk: An Ancestral Principle of Trained Immunity?. Trends in Immunology, 2019, 40, 1-11.	2.9	92
1105	Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods?. Clinical and Translational Oncology, 2019, 21, 391-403.	1.2	26
1106	Dual functions of microglia in the formation and refinement of neural circuits during development. International Journal of Developmental Neuroscience, 2019, 77, 18-25.	0.7	19
1107	Influences of immunostimulants on phagocytes in cultured fish: a mini review. Reviews in Aquaculture, 2019, 11, 1219-1227.	4.6	19
1108	Immunological Lung Diseases. , 2019, , 967-980.e1.		0

#	Article	IF	CITATIONS
1109	Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia. Molecular Immunology, 2019, 110, 77-87.	1.0	24
1110	Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrow-derived macrophage. Protein and Cell, 2019, 10, 196-210.	4.8	28
1111	Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View. Neuroscience, 2019, 405, 3-13.	1.1	17
1112	The role of the innate immune system on pulmonary infections. Biological Chemistry, 2019, 400, 443-456.	1.2	36
1113	A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. European Respiratory Journal, 2020, 55, 1900646.	3.1	188
1114	Tissue-Resident Alveolar Macrophages Do Not Rely on Glycolysis for LPS-induced Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 243-255.	1.4	70
1115	Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. Journal of Cellular Physiology, 2020, 235, 5120-5129.	2.0	7
1116	Isolation of functional mature peritoneal macrophages from healthy humans. Immunology and Cell Biology, 2020, 98, 114-126.	1.0	14
1117	Origin and ontogeny of lung macrophages: from mice to humans. Immunology, 2020, 160, 126-138.	2.0	103
1118	Origin and Differentiation of Nerve-Associated Macrophages. Journal of Immunology, 2020, 204, 271-279.	0.4	57
1119	Mitochondrial quality control in pulmonary fibrosis. Redox Biology, 2020, 33, 101426.	3.9	66
1120	The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis and Cartilage, 2020, 28, 544-554.	0.6	143
1121	Innate immunity as the trigger of systemic autoimmune diseases. Journal of Autoimmunity, 2020, 110, 102382.	3.0	63
1122	Urateâ€induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunological Reviews, 2020, 294, 92-105.	2.8	121
1124	Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. American Journal of Pathology, 2020, 190, 372-387.	1.9	22
1125	The different faces of the macrophage in asthma. Current Opinion in Pulmonary Medicine, 2020, 26, 62-68.	1.2	54
1126	The influence of environment and origin on brain resident macrophages and implications for therapy. Nature Neuroscience, 2020, 23, 157-166.	7.1	74
1127	Semaphorin 3E Regulates the Response of Macrophages to Lipopolysaccharide-Induced Systemic Inflammation. Journal of Immunology, 2020, 204, 128-136.	0.4	13

#	Article	IF	CITATIONS
1128	Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study. European Journal of Immunology, 2020, 50, 353-362.	1.6	53
1129	Identifying the variables that drive tamoxifenâ€independent CreERT2 recombination: Implications for microglial fate mapping and gene deletions. European Journal of Immunology, 2020, 50, 459-463.	1.6	43
1130	Microglial cellâ€derived interleukinâ€6 influences behavior and inflammatory response in the brain following traumatic brain injury. Clia, 2020, 68, 999-1016.	2.5	23
1131	Immune Response and Tissue Damage. , 2020, , 155-203.		2
1132	Mib2 Deficiency Inhibits Microglial Activation and Alleviates Ischemia-Induced Brain Injury. , 2020, 11, 523.		25
1133	Proliferation of Ly6C+ monocytes/macrophages contributes to their accumulation in mouse skin wounds. Journal of Leukocyte Biology, 2020, 107, 551-560.	1.5	21
1134	Tolerogenic properties of liver macrophages in nonâ€alcoholic steatohepatitis. Liver International, 2020, 40, 609-621.	1.9	6
1135	MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. Journal of Zhejiang University: Science B, 2020, 21, 12-28.	1.3	31
1136	Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 2020, 9, 46.	1.8	196
1137	Distinct origins and functions of cardiac orthotopic macrophages. Basic Research in Cardiology, 2020, 115, 8.	2.5	18
1138	Long-lived tumor-associated macrophages in glioma. Neuro-Oncology Advances, 2020, 2, vdaa127.	0.4	4
1139	At the Forefront of the Mucosal Barrier: The Role of Macrophages in the Intestine. Cells, 2020, 9, 2162.	1.8	33
1140	Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO Journal, 2020, 39, e104464.	3.5	105
1141	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	1.1	19
1142	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	13.7	520
1143	Deciphering the heterogeneity of myeloid cells during neuroinflammation in the singleâ€cell era. Brain Pathology, 2020, 30, 1192-1207.	2.1	9
1144	A new mouse model to study restoration of interleukin-6 (IL-6) expression in a Cre-dependent manner: microglial IL-6 regulation of experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2020, 17, 304.	3.1	4
1145	Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Molecular Medicine, 2020, 26, 95.	1.9	41

#	Article	IF	Citations
1146	Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors. PLoS ONE, 2020, 15, e0240691.	1.1	1
1147	Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. Journal of Clinical Medicine, 2020, 9, 3226.	1.0	41
1148	Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biology, 2020, 18, e3000859.	2.6	94
1149	Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Frontiers in Immunology, 2020, 11, 581750.	2.2	28
1150	Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Engineered Regeneration, 2020, 1, 35-50.	3.0	35
1151	Central and local controls of monocytopoiesis influence the outcome of Leishmania infection. Cytokine, 2021, 147, 155325.	1.4	4
1152	Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity, 2020, 53, 1033-1049.e7.	6.6	93
1153	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	1.3	68
1154	The Whole Body as the System in Systems Immunology. IScience, 2020, 23, 101509.	1.9	24
1155	Targeting tumor-associated macrophages for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188434.	3.3	68
1156	Paracrine signaling of human mesenchymal stem cell modulates retinal microglia population number and phenotype in vitro. Experimental Eye Research, 2020, 200, 108212.	1.2	7
1157	Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 2020, 587, 613-618.	13.7	197
1158	Role for Retinoic Acid-Related Orphan Receptor Alpha (RORα) Expressing Macrophages in Diet-Induced Obesity. Frontiers in Immunology, 2020, 11, 1966.	2.2	12
1159	Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. International Journal of Molecular Sciences, 2020, 21, 4825.	1.8	24
1160	Microglia: A Central Player in Depression. Current Medical Science, 2020, 40, 391-400.	0.7	71
1161	Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research, 2020, 69, 883-895.	1.6	171
1162	Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood–brain barrier. Acta Neuropathologica, 2020, 140, 549-567.	3.9	47
1163	Monocyte Transmodulation: The Next Novel Therapeutic Approach in Overcoming Ischemic Stroke?. Frontiers in Neurology, 2020, 11, 578003.	1.1	14

#	Article	IF	CITATIONS
1164	Microglial Expression of Hdac1 and Hdac2 is Dispensable for Experimental Autoimmune Encephalomyelitis (EAE) Progression. J, 2020, 3, 358-365.	0.6	0
1165	The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Frontiers in Oncology, 2020, 10, 590941.	1.3	117
1166	Inducible cell-specific mouse models for paired epigenetic and transcriptomic studies of microglia and astroglia. Communications Biology, 2020, 3, 693.	2.0	27
1167	RasV12 Expression in Microglia Initiates Retinal Inflammation and Induces Photoreceptor Degeneration. , 2020, 61, 34.		8
1168	Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Science Advances, 2020, 6, .	4.7	27
1169	Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. International Journal of Molecular Sciences, 2020, 21, 8462.	1.8	18
1170	Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology, 2020, 11, 583042.	2.2	108
1171	DCIR3 and DCIR4 are widely expressed among tissue-resident macrophages with the exception of microglia and alveolar macrophages. Biochemistry and Biophysics Reports, 2020, 24, 100840.	0.7	2
1172	Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biology, 2020, 21, 294.	3.8	118
1173	Immunotherapy Targeting Tumor-Associated Macrophages. Frontiers in Medicine, 2020, 7, 583708.	1.2	15
1174	Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization. Journal of Neuroinflammation, 2020, 17, 341.	3.1	16
1175	Microglial responses to peripheral type 1 interferon. Journal of Neuroinflammation, 2020, 17, 340.	3.1	35
1176	MCTR1 enhances the resolution of lipopolysaccharideâ€induced lung injury through STAT6â€mediated resident M2 alveolar macrophage polarization in mice. Journal of Cellular and Molecular Medicine, 2020, 24, 9646-9657.	1.6	27
1177	The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes. International Journal of Molecular Sciences, 2020, 21, 5595.	1.8	16
1178	Efficient Strategies for Microglia Replacement in the Central Nervous System. Cell Reports, 2020, 32, 108041.	2.9	68
1179	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
1180	Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Reports, 2020, 31, 107796.	2.9	59
1181	Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection. Nature Communications, 2020, 11, 3687.	5.8	55

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
1182	Apoptosis of hematopoietic progenitor-derived adipose tissue–resident macrophages contributes to insulin resistance after myocardial infarction. Science Translational Medicine, 2020, 12, .	5.8	13
1183	Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances, 2020, 10, 26895-26916.	1.7	40
1184	Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. International Journal of Molecular Sciences, 2020, 21, 5207.	1.8	119
1185	Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells, 2020, 9, 1785.	1.8	56
1186	The Diverse Roles of Monocytes in Cryptococcosis. Journal of Fungi (Basel, Switzerland), 2020, 6, 111.	1.5	5
1187	Immune cells as tumor drug delivery vehicles. Journal of Controlled Release, 2020, 327, 70-87.	4.8	53
1188	Impaired phagocytic function in CX3CR1 ⁺ tissueâ€resident skeletal muscle macrophages prevents muscle recovery after influenza A virusâ€induced pneumonia in old mice. Aging Cell, 2020, 19, e13180.	3.0	21
1189	Single-Cell RNA-seq Reveals Obesity-Induced Alterations in the Brca1-Mutated Mammary Gland Microenvironment. Cancers, 2020, 12, 2235.	1.7	5
1190	Cell Cycle Regulation in Macrophages and Susceptibility to HIV-1. Viruses, 2020, 12, 839.	1.5	14
1191	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78.	1.1	41
1191 1192	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>Streptococcus pneumoniae</i> to Cause Deadly Pneumonia. Journal of Immunology, 2020, 205, 1601-1607.	1.1 0.4	41 34
1191 1192 1193	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>> Streptococcus pneumoniae</i> > to Cause Deadly Pneumonia. Journal of Immunology, 2020, 205, 1601-1607. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25.	1.1 0.4 13.5	41 34 79
1191 1192 1193 1194	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>> Streptococcus pneumoniae</i> to Cause Deadly Pneumonia. Journal of Immunology, 2020, 205, 1601-1607. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Frontiers in Immunology, 2020, 11, 571951.	1.1 0.4 13.5 2.2	41 34 79 17
1191 1192 1193 1194 1195	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>> Streptococcus pneumoniae <i>> Streptococcus pneumoniae (i> Streptococcus pneumoniae (i> Streptococcus pneumoniae (i> CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Frontiers in Immunology, 2020, 11, 571951. An Allosteric Shift in CD11c Affinity Activates a Proatherogenic State in Arrested Intermediate Monocytes. Journal of Immunology, 2020, 205, 2806-2820.</i></i>	1.1 0.4 13.5 2.2 0.4	 41 34 79 17 7
 1191 1192 1193 1194 1195 1196 	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>Streptococcus pneumoniae to Cause Deadly Pneumonia. Journal of Immunology, 2020, 205, 1601-1607. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Frontiers in Immunology, 2020, 11, 571951. An Allosteric Shift in CD11c Affinity Activates a Proatherogenic State in Arrested Intermediate Monocytes. Journal of Immunology, 2020, 205, 2806-2820. Siamon Gordon: A half-century fascination with macrophages. Journal of Experimental Medicine, 2020, 217, .</i>	 1.1 0.4 13.5 2.2 0.4 4.2 	 41 34 79 17 7 0
 1191 1192 1193 1194 1195 1196 1197 	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive <i>Streptococcus pneumoniae CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Frontiers in Immunology, 2020, 11, 571951. An Allosteric Shift in CD11c Affinity Activates a Proatherogenic State in Arrested Intermediate Monocytes. Journal of Immunology, 2020, 205, 2806-2820. Siamon Gordon: A half-century fascination with macrophages. Journal of Experimental Medicine, 2020, 217, . Dynamics of human monocytes and airway macrophages during healthy aging and after transplant.</i>	1.1 0.4 13.5 2.2 0.4 4.2 4.2	 41 34 79 17 7 0 113
 1191 1192 1193 1193 1194 1195 1196 1197 1198 	Plasticity of monocyte development and monocyte fates. Immunology Letters, 2020, 227, 66-78. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive (i) Streptococcus pneumoniae (li> to Cause Deadly Pneumonia. Journal of Immunology, 2020, 205, 1601-1607. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Frontiers in Immunology, 2020, 11, 571951. An Allosteric Shift in CD11c Affinity Activates a Proatherogenic State in Arrested Intermediate Monocytes. Journal of Immunology, 2020, 205, 2806-2820. Siamon Gordon: A half-century fascination with macrophages. Journal of Experimental Medicine, 2020, 217, . Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. Journal of Experimental Medicine, 2020, 217, . Plaque-associated myeloid cells derive from resident microglia in an Alzheimer〙s disease model. Journal of Experimental Medicine, 2020, 217, .	1.1 0.4 13.5 2.2 0.4 4.2 4.2 4.2	 41 34 79 17 7 0 113 45

#	Article	IF	CITATIONS
1200	Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. Journal of Experimental Medicine, 2020, 217, .	4.2	72
1201	Single-cell RNA sequencing uncovers heterogenous transcriptional signatures in macrophages during efferocytosis. Scientific Reports, 2020, 10, 14333.	1.6	48
1202	Resident macrophages as potential therapeutic targets for cardiac ageing and injury. Clinical and Translational Immunology, 2020, 9, e1167.	1.7	10
1203	Generation, localization and functions of macrophages during theÂdevelopment of testis. Nature Communications, 2020, 11, 4375.	5.8	47
1204	Macrophages in the pancreas: Villains by circumstances, not necessarily by actions. Immunity, Inflammation and Disease, 2020, 8, 807-824.	1.3	15
1205	Estrogenâ€dependent sex difference in microglia in the developing brain of Japanese quail (<i>Coturnix) Tj ETQq1</i>	1 0.78431 1.5	l4 rgBT /O∨
1206	An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 446.	1.8	5
1207	IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nature Communications, 2020, 11, 4786.	5.8	49
1208	Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets. Trends in Immunology, 2020, 41, 864-877.	2.9	51
1209	Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron, 2020, 108, 451-468.e9.	3.8	106
1210	Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. Science Advances, 2020, 6, eabb2119.	4.7	66
1211	Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathologica Communications, 2020, 8, 146.	2.4	30
1212	The impact of cell maturation and tissue microenvironments on the expression of endosomal Toll-like receptors in monocytes and macrophages. International Immunology, 2020, 32, 785-798.	1.8	14
1213	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	7.0	115
1214	Differential contribution of bone marrow-derived infiltrating monocytes and resident macrophages to persistent lung inflammation in chronic air pollution exposure. Scientific Reports, 2020, 10, 14348.	1.6	16
1215	Macrophages and scavenger receptors in obesityâ€associated nonâ€alcoholic liver fatty disease (NAFLD). Scandinavian Journal of Immunology, 2020, 92, e12971.	1.3	9
1216	A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO Journal, 2020, 39, e104136.	3.5	103
1217	LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6Chigh to Ly6Cint/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discovery, 2020, 6, 87.	3.1	18

#	Article	IF	CITATIONS
1218	Non-genetic Heterogeneity of Macrophages in Diseases—A Medical Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 613116.	1.8	10
1219	Biomaterials-Mediated Regulation of Macrophage Cell Fate. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609297.	2.0	44
1220	Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Frontiers in Immunology, 2020, 11, 600822.	2.2	10
1221	Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology. Basic Research in Cardiology, 2020, 115, 77.	2.5	29
1222	Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice. Cells, 2020, 9, 2407.	1.8	13
1223	Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. Journal of Leukocyte Biology, 2021, 110, 107-114.	1.5	45
1224	Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair. Journal of Leukocyte Biology, 2021, 110, 89-106.	1.5	6
1225	Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. Journal of Neuroinflammation, 2020, 17, 329.	3.1	52
1226	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	1.5	146
1227	Ly6cLo non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation. Scientific Reports, 2020, 10, 7165.	1.6	16
1228	Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582, 571-576.	13.7	279
1229	Equid infective Theileria cluster in distinct 18S rRNA gene clades comprising multiple taxa with unusually broad mammalian host ranges. Parasites and Vectors, 2020, 13, 261.	1.0	19
1230	Distinct fate, dynamics and niches of renal macrophages of bone marrow or embryonic origins. Nature Communications, 2020, 11, 2280.	5.8	62
1231	Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies. Molecular Immunology, 2020, 123, 1-6.	1.0	3
1232	Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. Journal of Immunology, 2020, 204, 3375-3388.	0.4	11
1233	Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system?. Cellular and Molecular Life Sciences, 2020, 77, 4081-4091.	2.4	20
1234	Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 457-472.	8.2	152
1235	Characterization of splenic MRC1hiMHCIIlo and MRC1loMHCIIhi cells from the monocyte/macrophage lineage of White Leghorn chickens. Veterinary Research, 2020, 51, 73.	1.1	18

#	Article	IF	CITATIONS
1236	Runx3 prevents spontaneous colitis by directing the differentiation of anti-inflammatory mononuclear phagocytes. PLoS ONE, 2020, 15, e0233044.	1.1	13
1237	Sevoflurane depletes macrophages from the melanoma microenvironment. PLoS ONE, 2020, 15, e0233789.	1.1	7
1238	Leukocyte Heterogeneity in Adipose Tissue, Including in Obesity. Circulation Research, 2020, 126, 1590-1612.	2.0	44
1239	Fetalâ€derived macrophages persist and sequentially maturate in ovaries after birth in mice. European Journal of Immunology, 2020, 50, 1500-1514.	1.6	17
1240	Towards the better understanding of myelopoiesis using single-cell technologies. Molecular Immunology, 2020, 122, 186-192.	1.0	12
1241	The many flavors of monocyte/macrophageendothelial cell interactions. Current Opinion in Hematology, 2020, 27, 181-189.	1.2	28
1242	miRâ€142â€5p and miRâ€130aâ€3p regulate pulmonary macrophage polarization and asthma airway remodeling Immunology and Cell Biology, 2020, 98, 715-725.	· 1.0	22
1243	Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain, Behavior, & Immunity - Health, 2020, 4, 100057.	1.3	3
1244	Novel Hexb-based tools for studying microglia in the CNS. Nature Immunology, 2020, 21, 802-815.	7.0	186
1245	Essential Contribution of Macrophage Tie2 Signalling in a Murine Model of Laser-Induced Choroidal Neovascularization. Scientific Reports, 2020, 10, 9613.	1.6	3
1246	Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "NaÃ⁻ve-Like―Cells Capable of Restricting Mycobacteria Growth. Frontiers in Immunology, 2020, 11, 1016.	2.2	21
1247	Cx3cr1CreERT2-driven Atg7 deletion in adult mice induces intestinal adhesion. Molecular Brain, 2020, 13, 88.	1.3	4
1248	CD11cHiÂmonocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008621.	2.1	36
1249	Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity, 2020, 52, 942-956.	6.6	90
1250	Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020, 52, 957-970.	6.6	280
1251	A comparison for the effects of raw, smoked, and smoked and brined areca nut extracts on the immune and inflammatory responses in the Kunming mice. Journal of Food Biochemistry, 2020, 44, e13319.	1.2	8
1252	GlioM&M: Web-based tool for studying circulating and infiltrating monocytes and macrophages in glioma. Scientific Reports, 2020, 10, 9898.	1.6	10
1253	Cytomegaloviruses and Macrophages—Friends and Foes From Early on?. Frontiers in Immunology, 2020, 11, 793.	2.2	16

#	Article	IF	CITATIONS
1254	Microglia. , 2020, , 995-1020.		3
1255	Innate Allorecognition and Memory in Transplantation. Frontiers in Immunology, 2020, 11, 918.	2.2	23
1256	Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. Journal of Leukocyte Biology, 2020, 108, 297-308.	1.5	17
1257	Establishment and Maintenance of the Macrophage Niche. Immunity, 2020, 52, 434-451.	6.6	308
1258	The immune response of inbred laboratory mice to <i>Litomosoides sigmodontis</i> : A route to discovery in myeloid cell biology. Parasite Immunology, 2020, 42, e12708.	0.7	29
1259	Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs. Seminars in Immunopathology, 2020, 42, 247-264.	2.8	51
1260	Oxidative Stress in Pulmonary Fibrosis. , 2020, 10, 509-547.		127
1261	Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Frontiers in Immunology, 2020, 11, 410.	2.2	54
1262	The Impact of Type 1 Interferons on Alveolar Macrophage Tolerance and Implications for Host Susceptibility to Secondary Bacterial Pneumonia. Frontiers in Immunology, 2020, 11, 495.	2.2	5
1263	Resolution of Deep Venous Thrombosis: Proposed Immune Paradigms. International Journal of Molecular Sciences, 2020, 21, 2080.	1.8	35
1264	Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Science Immunology, 2020, 5, .	5.6	155
1265	Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circulation Research, 2020, 126, e61-e79.	2.0	21
1266	Monocytes and the Host Response to Fungal Pathogens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 34.	1.8	33
1267	There Is (Scientific) Strength in Numbers: A Comprehensive Quantitation of Fc Gamma Receptor Numbers on Human and Murine Peripheral Blood Leukocytes. Frontiers in Immunology, 2020, 11, 118.	2.2	60
1268	Thinking Outside the Box: Innate- and B Cell-Memory Responses as Novel Protective Mechanisms Against Tuberculosis. Frontiers in Immunology, 2020, 11, 226.	2.2	19
1269	PGE2 Is Crucial for the Generation of FAST Whole- Tumor-Antigens Loaded Dendritic Cells Suitable for Immunotherapy in Glioblastoma. Pharmaceutics, 2020, 12, 215.	2.0	4
1270	STOP floxing around: Specificity and leakiness of inducible Cre/loxP systems. European Journal of Immunology, 2020, 50, 338-341.	1.6	29
1271	Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell, 2020, 180, 833-846.e16.	13.5	292

#	Article	IF	CITATIONS
1272	Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Reports, 2020, 30, 3004-3019.e5.	2.9	53
1273	Chemokine, cytokine and haematological profiles in Sprague-Dawley rats co-infected with Plasmodium berghei ANKA and Trichinella zimbabwensis-A laboratory animal model for malaria and tissue-dwelling nematodes co-infection. Heliyon, 2020, 6, e03475.	1.4	7
1274	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	10.6	1,345
1275	Signaling pathways that control mRNA translation initiation in macrophages. Cellular Signalling, 2020, 73, 109700.	1.7	5
1276	Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596.	2.0	41
1277	The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. Frontiers in Immunology, 2020, 11, 1211.	2.2	25
1278	Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell, 2020, 182, 388-403.e15.	13.5	337
1279	Role of Macrophages and Microglia in Zebrafish Regeneration. International Journal of Molecular Sciences, 2020, 21, 4768.	1.8	31
1280	Breathing fresh air into respiratory research with single-cell RNA sequencing. European Respiratory Review, 2020, 29, 200060.	3.0	11
1281	The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food and Chemical Toxicology, 2020, 143, 111556.	1.8	26
1282	Interleukin-6 Derived from the Central Nervous System May Influence the Pathogenesis of Experimental Autoimmune Encephalomyelitis in a Cell-Dependent Manner. Cells, 2020, 9, 330.	1.8	20
1283	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	3
1284	The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Frontiers in Immunology, 2019, 10, 3133.	2.2	42
1285	Osteoclasts Derive Predominantly from Bone Marrow–Resident CX3CR1+ Precursor Cells in Homeostasis, whereas Circulating CX3CR1+ Cells Contribute to Osteoclast Development during Fracture Repair. Journal of Immunology, 2020, 204, 868-878.	0.4	23
1286	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
1287	Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 901-915.	1.2	28
1288	Microglial A20 Protects the Brain from CD8 T-Cell-Mediated Immunopathology. Cell Reports, 2020, 30, 1585-1597.e6.	2.9	36
1289	Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Frontiers in Endocrinology, 2020, 11, 7.	1.5	99
#	Article	IF	CITATIONS
------	--	------	-----------
1290	The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. Journal of the American Society of Nephrology: JASN, 2020, 31, 257-278.	3.0	62
1291	ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3083-3092.	3.3	70
1292	Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 2020, 180, 502-520.e19.	13.5	99
1293	Obesity retunes turnover kinetics of tissue-resident macrophages in fat. Journal of Leukocyte Biology, 2020, 107, 773-782.	1.5	15
1294	Peritoneal Level of CD206 Associates With Mortality and an Inflammatory Macrophage Phenotype in Patients With Decompensated Cirrhosis and Spontaneous Bacterial Peritonitis. Gastroenterology, 2020, 158, 1745-1761.	0.6	26
1295	Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nature Protocols, 2020, 15, 1041-1065.	5.5	30
1296	Single Eye mRNA-Seq Reveals Normalisation of the Retinal Microglial Transcriptome Following Acute Inflammation. Frontiers in Immunology, 2019, 10, 3033.	2.2	14
1297	HMCB1/RACE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. Journal of Neuroinflammation, 2020, 17, 15.	3.1	87
1298	CCL3/CCR1 mediates CD14+CD16â^' circulating monocyte recruitment in knee osteoarthritis progression. Osteoarthritis and Cartilage, 2020, 28, 613-625.	0.6	30
1299	Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Frontiers in Immunology, 2020, 11, 58.	2.2	96
1300	Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiology Research and Practice, 2020, 2020, 1-16.	0.5	36
1301	Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages!. Trends in Immunology, 2020, 41, 481-492.	2.9	198
1302	Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis. Immunity, 2020, 52, 1057-1074.e7.	6.6	248
1303	Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide - Biology and Chemistry, 2020, 100-101, 17-29.	1.2	37
1304	Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice. Journal of Neuroscience Research, 2022, 100, 203-219.	1.3	36
1305	Ceramide and palmitic acid inhibit macrophage-mediated epithelial–mesenchymal transition in colorectal cancer. Molecular and Cellular Biochemistry, 2020, 468, 153-168.	1.4	32
1306	Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell, 2020, 181, 557-573.e18.	13.5	218
1307	RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression. Nature Communications, 2020, 11, 1655.	5.8	39

#	ARTICLE	IF	CITATIONS
1308	Aimz innammasome surveillance of DivA damage shapes heurodevelopment. Nature, 2020, 380, 647-652.	13.7	130
1309	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	7.1	148
1310	Interactions between macrophages and helminths. Parasite Immunology, 2020, 42, e12717.	0.7	38
1311	Inflammasome Activation in Bovine Peripheral Blood-Derived Macrophages Is Associated with Actin Rearrangement. Animals, 2020, 10, 655.	1.0	1
1312	Macrophages: The Potent Immunoregulatory Innate Immune Cells. , 0, , .		28
1313	The origin, fate and function of macrophages in the peripheral nervous system—an update. International Immunology, 2020, 32, 709-717.	1.8	13
1314	Role of chemokines, innate and adaptive immunity. Cellular Signalling, 2020, 73, 109647.	1.7	36
1315	Synovial Macrophages in Rheumatoid Arthritis: The Past, Present, and Future. Mediators of Inflammation, 2020, 2020, 1-8.	1.4	23
1316	Microglial Corpse Clearance: Lessons From Macrophages. Frontiers in Immunology, 2020, 11, 506.	2.2	63
1317	Cerebral toxoplasmosis. , 2020, , 1043-1073.		0
1318	Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends in Neurosciences, 2020, 43, 433-449.	4.2	74
1319	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	15.6	42
1320	Complement inhibitor factor H expressed by breast cancer cells differentiates CD14 ⁺ human monocytes into immunosuppressive macrophages. Oncolmmunology, 2020, 9, 1731135.	2.1	20
1321	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	2.0	96
1322	Macrophage lineages in heart valve development and disease. Cardiovascular Research, 2021, 117, 663-673.	1.8	28
1323	Control of myeloid cell density in barrier tissues. FEBS Journal, 2021, 288, 405-426.	2.2	6
1324	Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology, 2021, 162, 123-134.	2.0	16
1325	Microglial Calcium Waves During the Hyperacute Phase of Ischemic Stroke. Stroke, 2021, 52, 274-283.	1.0	26

ATION R

#	Article	IF	CITATIONS
1326	Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities. , 2021, 218, 107683.		22
1327	Targeting immunometabolism in host defence against <i>Mycobacterium tuberculosis</i> . Immunology, 2021, 162, 145-159.	2.0	34
1328	Microglial reduction of colony stimulating factorâ€1 receptor expression is sufficient to confer adult onset leukodystrophy. Glia, 2021, 69, 779-791.	2.5	19
1329	Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 946-956.	2.5	63
1330	Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cellular and Molecular Immunology, 2021, 18, 45-56.	4.8	294
1331	Tissue-specific features of microglial innate immune responses. Neurochemistry International, 2021, 142, 104924.	1.9	8
1332	The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Veterinary Journal, 2021, 53, 231-249.	0.9	10
1333	Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Advances in Cancer Research, 2021, 149, 171-255.	1.9	13
1334	Heterogeneous Host–Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends in Microbiology, 2021, 29, 606-620.	3.5	10
1335	Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nature Neuroscience, 2021, 24, 19-23.	7.1	86
1336	A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity, 2021, 54, 176-190.e7.	6.6	99
1337	Tissue-Resident Macrophages in the Control of Infection and Resolution of Inflammation. Shock, 2021, 55, 14-23.	1.0	29
1338	The serotonin <scp>2B</scp> receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia, 2021, 69, 638-654.	2.5	20
1339	New insights into macrophage heterogeneity in rheumatoid arthritis. Joint Bone Spine, 2021, 88, 105091.	0.8	13
1340	Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Current Opinion in Immunology, 2021, 68, 54-63.	2.4	38
1341	Monocyte Subsets With High Osteoclastogenic Potential and Their Epigenetic Regulation Orchestrated by IRF8. Journal of Bone and Mineral Research, 2020, 36, 199-214.	3.1	13
1342	Macrophages and the maintenance of homeostasis. Cellular and Molecular Immunology, 2021, 18, 579-587.	4.8	182
1346	Sensory neuron–associated macrophages as novel modulators of neuropathic pain. Pain Reports, 2021, 6, e873.	1.4	32

#	Article	IF	CITATIONS
1347	Critical role of synovial tissue–resident macrophage niche in joint homeostasis and suppression of chronic inflammation. Science Advances, 2021, 7, .	4.7	27
1348	Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Frontiers in Immunology, 2020, 11, 582998.	2.2	15
1350	Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. Science Advances, 2021, 7, .	4.7	44
1351	Monocytes in the Tumor Microenvironment. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 93-122.	9.6	126
1352	Microglia Control CNS T Regulatory Cell Activity During Remission From EAE Pathology. SSRN Electronic Journal, 0, , .	0.4	0
1353	The role of the immune system during pregnancy: General concepts. , 2021, , 1-21.		5
1355	Macrophage function in the elderly and impact on injury repair and cancer. Immunity and Ageing, 2021, 18, 4.	1.8	39
1356	Dynamic Shifts in the Composition of Resident and Recruited Macrophages Influence Tissue Remodeling in NASH. Cell Reports, 2021, 34, 108626.	2.9	164
1357	Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nature Neuroscience, 2021, 24, 245-258.	7.1	64
1359	Monocyte Regulation in Homeostasis and Malignancy. Trends in Immunology, 2021, 42, 104-119.	2.9	64
1360	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	11.1	141
1361	Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Science Advances, 2021, 7, .	4.7	35
1362	Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocrine Reviews, 2021, 42, 407-435.	8.9	21
1363	Functional regulation of decidual macrophages during pregnancy. Journal of Reproductive Immunology, 2021, 143, 103264.	0.8	46
1364	Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 622035.	1.8	29
1365	Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Frontiers in Cell and Developmental Biology, 2021, 9, 631699.	1.8	14
1366	Macrophages in Lung Injury, Repair, and Fibrosis. Cells, 2021, 10, 436.	1.8	150
1367	In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 2021, 590, 457-462.	13.7	74

#	Article	IF	CITATIONS
1368	Deficiency of inactive rhomboid protein 2 (iRhom2) attenuates diet-induced hyperlipidaemia and early atherogenesis. Cardiovascular Research, 2021, , .	1.8	4
1369	Mapping the origin and fate of myeloid cells in distinct compartments of the eye by singleâ€cell profiling. EMBO Journal, 2021, 40, e105123.	3.5	60
1370	Immunological Feature and Transcriptional Signaling of Ly6C Monocyte Subsets From Transcriptome Analysis in Control and Hyperhomocysteinemic Mice. Frontiers in Immunology, 2021, 12, 632333.	2.2	11
1371	Microglia control small vessel calcification via TREM2. Science Advances, 2021, 7, .	4.7	22
1373	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research, 2021, 2021, 4189516.	2.8	35
1374	Resident Innate Immune Cells in the Cornea. Frontiers in Immunology, 2021, 12, 620284.	2.2	37
1375	The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, 2021, 131, .	3.9	86
1376	Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nature Communications, 2021, 12, 1158.	5.8	58
1377	Helminth Imprinting of Hematopoietic Stem Cells Sustains Anti-Inflammatory Trained Innate Immunity That Attenuates Autoimmune Disease. Journal of Immunology, 2021, 206, 1618-1630.	0.4	22
1378	Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity, 2021, 54, 259-275.e7.	6.6	107
1379	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	1.2	55
1380	Automated segmentation and analysis of retinal microglia within ImageJ. Experimental Eye Research, 2021, 203, 108416.	1.2	6
1381	From Species to Regional and Local Specialization of Intestinal Macrophages. Frontiers in Cell and Developmental Biology, 2020, 8, 624213.	1.8	11
1382	Functions for Retinoic Acid-Related Orphan Receptor Alpha (RORα) in the Activation of Macrophages During Lipopolysaccharide-Induced Septic Shock. Frontiers in Immunology, 2021, 12, 647329.	2.2	11
1383	Slc1a3-2A-CreERT2 mice reveal unique features of Bergmann glia and augment a growing collection of Cre drivers and effectors in the 129S4 genetic background. Scientific Reports, 2021, 11, 5412.	1.6	10
1384	PPARÎ ³ is essential for the development of bone marrow erythroblastic island macrophages and splenic red pulp macrophages. Journal of Experimental Medicine, 2021, 218, .	4.2	23
1385	Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell, 2021, 184, 1348-1361.e22.	13.5	149
1386	M2 Macrophages Serve as Critical Executor of Innate Immunity in Chronic Allograft Rejection. Frontiers in Immunology, 2021, 12, 648539.	2.2	14

#	Article	IF	CITATIONS
1387	Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Frontiers in Immunology, 2020, 11, 609921.	2.2	26
1389	Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathologica Communications, 2021, 9, 54.	2.4	99
1390	Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomaterialia, 2021, 133, 4-16.	4.1	146
1391	BCCâ€induced protection against <i>Mycobacterium tuberculosis</i> infection: Evidence, mechanisms, and implications for nextâ€generation vaccines. Immunological Reviews, 2021, 301, 122-144.	2.8	26
1392	Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology, 2021, 163, 250-261.	2.0	91
1393	Immunopathogenesis in HIV-associated pediatric tuberculosis. Pediatric Research, 2022, 91, 21-26.	1.1	3
1394	Optimized Detection of Acute MHV68 Infection With a Reporter System Identifies Large Peritoneal Macrophages as a Dominant Target of Primary Infection. Frontiers in Microbiology, 2021, 12, 656979.	1.5	8
1396	Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RCS1 mediated calcium signaling-dependent immune response. Cell Death and Differentiation, 2021, 28, 2238-2256.	5.0	33
1397	The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. Molecular Neurodegeneration, 2021, 16, 19.	4.4	46
1398	Roles of Macrophages in the Development and Treatment of Gut Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 625423.	1.8	87
1399	Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Frontiers in Immunology, 2021, 12, 620510.	2.2	65
1400	Selective Ablation of BDNF from Microglia Reveals Novel Roles in Self-Renewal and Hippocampal Neurogenesis. Journal of Neuroscience, 2021, 41, 4172-4186.	1.7	29
1401	Sectm1a Facilitates Protection against Inflammation-Induced Organ Damage through Promoting TRM Self-Renewal. Molecular Therapy, 2021, 29, 1294-1311.	3.7	8
1402	Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nature Communications, 2021, 12, 1770.	5.8	58
1403	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	2.9	41
1404	The Interplay of HIV-1 and Macrophages in Viral Persistence. Frontiers in Microbiology, 2021, 12, 646447.	1.5	44
1405	Origins, Biology, and Diseases of Tissue Macrophages. Annual Review of Immunology, 2021, 39, 313-344.	9.5	88
1406	MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 2021, 143, 1513-1525.	1.6	67

#	Article	IF	CITATIONS
1407	Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Frontiers in Pharmacology, 2021, 12, 653940.	1.6	48
1410	Macrophage-Mediated Tissue Vascularization: Similarities and Differences Between Cornea and Skin. Frontiers in Immunology, 2021, 12, 667830.	2.2	26
1411	Hepatic macrophage accumulation with aging: cause for concern?. American Journal of Physiology - Renal Physiology, 2021, 320, G496-G505.	1.6	9
1412	New Insights and Novel Therapeutic Potentials for Macrophages in Myocardial Infarction. Inflammation, 2021, 44, 1696-1712.	1.7	37
1413	Tumour immune landscape of paediatric high-grade gliomas. Brain, 2021, 144, 2594-2609.	3.7	21
1414	Macrophages in Transplantation: A Matter of Plasticity, Polarization, and Diversity. Transplantation, 2022, 106, 257-267.	0.5	24
1415	Generation of cryopreserved macrophages from normal and genetically engineered human pluripotent stem cells for disease modelling. PLoS ONE, 2021, 16, e0250107.	1.1	4
1416	Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Research Notes, 2021, 14, 135.	0.6	0
1417	Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovascular Research, 2022, 118, 798-813.	1.8	18
1418	Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells, 2021, 10, 957.	1.8	24
1419	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	9.5	228
1420	Microbiota, Epigenetics, and Trained Immunity. Convergent Drivers and Mediators of the Asthma Trajectory from Pregnancy to Childhood. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 802-808.	2.5	23
1421	Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer. Cells, 2021, 10, 903.	1.8	12
1422	Flow cytometry evaluation of CD14/CD16 monocyte subpopulations in systemic sclerosis patients: a cross sectional controlled study. Advances in Rheumatology, 2021, 61, 27.	0.8	9
1423	Phylogenetic analysis of classical swine fever virus isolates from China. Archives of Virology, 2021, 166, 2255-2261.	0.9	7
1424	Immunometabolism of Tissue-Resident Macrophages – An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Frontiers in Immunology, 2021, 12, 665782.	2.2	15
1425	Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver International, 2021, 41, 2279-2294.	1.9	78
1426	Perivascular Macrophages Regulate Blood Flow Following Tissue Damage. Circulation Research, 2021, 128, 1694-1707.	2.0	13

		CITATION R	EPORT	
#	ARTICLE SensorvÂneuron-derived TAFA4 promotes macrophage tissue repair functions. Nature	2021 594 94-99	IF 13.7	CITATIONS
1428	Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleu peritoneal cavity macrophages following injury. Nature Communications, 2021, 12, 286	ural and 63.	5.8	25
1429	Perinatal development of innate immune topology. ELife, 2021, 10, .		2.8	19
1431	Liver macrophages and inflammation in physiology and physiopathology of nonâ€alcoh disease. FEBS Journal, 2022, 289, 3024-3057.	olic fatty liver	2.2	37
1432	Myeloid cell diversification during regenerative inflammation: Lessons from skeletal mu Seminars in Cell and Developmental Biology, 2021, 119, 89-100.	scle.	2.3	10
1433	The inflammatory speech of fibroblasts. Immunological Reviews, 2021, 302, 126-146.		2.8	79
1434	Nrf2 Regulates Anti-Inflammatory A20 Deubiquitinase Induction by LPS in Macrophages Manner. Antioxidants, 2021, 10, 847.	s in Contextual	2.2	4
1436	The Mononuclear Phagocyte System of the Rat. Journal of Immunology, 2021, 206, 225	51-2263.	0.4	15
1437	The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic or and Metastasis Reviews, 2021, 40, 427-445.	ancers. Cancer	2.7	15
1438	Macrophages and Stem Cells—Two to Tango for Tissue Repair?. Biomolecules, 2021, 2	11, 697.	1.8	14
1439	Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptom Frontiers in Immunology, 2021, 12, 628156.	Pathways and e Analysis.	2.2	6
1440	Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulm Proceedings of the National Academy of Sciences of the United States of America, 202	onary fibrosis. 1, 118, .	3.3	36
1441	Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular APP / PS1 â€ŧransgenic mice. Glia, 2021, 69, 1987-2005.	[,] disorders in	2.5	6
1442	Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney In Frontiers in Medicine, 2021, 8, 676688.	jury Syndrome.	1.2	6
1443	The multifaceted roles of macrophages in bone regeneration: A story of polarization, ac time. Acta Biomaterialia, 2021, 133, 46-57.	tivation and	4.1	113
1444	Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Frontiers i 2021, 12, 669891.	n Immunology,	2.2	26
1445	The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respirat Syndrome. Frontiers in Immunology, 2021, 12, 682871.	cory Distress	2.2	67
1446	Nonclassical monocytes in cardiovascular physiology and disease. American Journal of F Cell Physiology, 2021, 320, C761-C770.	Physiology -	2.1	16

#	Article	IF	CITATIONS
1447	Early-Derived Murine Macrophages Temporarily Renounce Tissue Identity during Acute Systemic Inflammation. Journal of Immunology, 2021, 207, 569-576.	0.4	4
1448	C3VFC: A Method for Tracing and Quantification of Microglia in 3D Temporal Images. Applied Sciences (Switzerland), 2021, 11, 6078.	1.3	0
1450	Ginsenoside Rd attenuates mouse experimental autoimmune neuritis by modulating monocyte subsets conversion. Biomedicine and Pharmacotherapy, 2021, 138, 111489.	2.5	12
1451	The expanding world of tissueâ€resident macrophages. European Journal of Immunology, 2021, 51, 1882-1896.	1.6	51
1452	Protocol for microglia replacement by peripheral blood (Mr PB). STAR Protocols, 2021, 2, 100613.	0.5	11
1453	Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature, 2021, 595, 578-584.	13.7	284
1454	A mouse model of microglia-specific ablation in the embryonic central nervous system. Neuroscience Research, 2021, 173, 54-61.	1.0	1
1457	Dermal macrophage and its potential in inducing hair follicle regeneration. Molecular Immunology, 2021, 134, 25-33.	1.0	3
1458	Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Frontiers in Cell and Developmental Biology, 2021, 9, 640703.	1.8	25
1459	Tissue-resident macrophages: guardians of organ homeostasis. Trends in Immunology, 2021, 42, 495-507.	2.9	77
1462	Commitment to dendritic cells and monocytes. International Immunology, 2021, 33, 815-819.	1.8	5
1463	Single-Cell Proteomics Reveals the Defined Heterogeneity of Resident Macrophages in White Adipose Tissue. Frontiers in Immunology, 2021, 12, 719979.	2.2	24
1464	Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathogens, 2021, 17, e1009768.	2.1	6
1465	Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nature Communications, 2021, 12, 4646.	5.8	47
1466	Innate allorecognition in transplantation. Journal of Heart and Lung Transplantation, 2021, 40, 557-561.	0.3	17
1467	Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cellular and Molecular Immunology, 2021, 18, 2165-2176.	4.8	22
1469	Homeostatic functions of monocytes and interstitial lung macrophages are regulated via collagen domain-binding receptor LAIR1. Immunity, 2021, 54, 1511-1526.e8.	6.6	35
1470	Cytomegalovirus subverts macrophage identity. Cell, 2021, 184, 3774-3793.e25.	13.5	34

#	Article	IF	CITATIONS
1471	Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacological Research, 2021, 169, 105663.	3.1	3
1472	Apoptotic cell signals and heterogeneity in macrophage function: Fine-tuning for a healthy liver. Seminars in Cell and Developmental Biology, 2021, 119, 72-81.	2.3	1
1473	Trained Innate Immunity in Hematopoietic Stem Cell and Solid Organ Transplantation. Transplantation, 2021, 105, 1666-1676.	0.5	9
1474	Sexual dimorphism of monocyte transcriptome in individuals with chronic low-grade inflammation. Biology of Sex Differences, 2021, 12, 43.	1.8	12
1475	Latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. Genes and Diseases, 2022, 9, 1194-1207.	1.5	8
1476	Integration of transcriptional and metabolic control in macrophage activation. EMBO Reports, 2021, 22, e53251.	2.0	16
1477	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	1.0	58
1478	Little cells of the little brain: microglia in cerebellar development and function. Trends in Neurosciences, 2021, 44, 564-578.	4.2	23
1479	Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 659666.	1.8	19
1480	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	7.8	17
1482	CCR2 Deficiency Impairs Ly6Clo and Ly6Chi Monocyte Responses in Orientia tsutsugamushi Infection. Frontiers in Immunology, 2021, 12, 670219.	2.2	13
1483	Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 7239.	1.8	21
1484	Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain, Behavior, and Immunity, 2022, 99, 363-382.	2.0	8
1485	Macrophages on the margin: choroid plexus immune responses. Trends in Neurosciences, 2021, 44, 864-875.	4.2	37
1486	Contrasting functional responses of resident Kupffer cells and recruited liver macrophages to irradiation and liver X receptor stimulation. PLoS ONE, 2021, 16, e0254886.	1.1	4
1487	New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 709178.	2.2	32
1488	Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Frontiers in Immunology, 2021, 12, 715209.	2.2	7
1489	The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair. International Journal of Molecular Sciences, 2021, 22, 7923.	1.8	33

#	Article	IF	CITATIONS
1490	Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Therapy, 2021, 28, 477-493.	2.3	5
1491	Characterization of microglial transcriptomes in the brain and spinal cord of mice in early and late experimental autoimmune encephalomyelitis using a RiboTag strategy. Scientific Reports, 2021, 11, 14319.	1.6	7
1492	Heterogeneous Myeloid Cells in Tumors. Cancers, 2021, 13, 3772.	1.7	30
1494	Modeling CSFâ€l receptor deficiency diseases – how close are we?. FEBS Journal, 2022, 289, 5049-5073.	2.2	24
1495	A conserved pathway of transdifferentiation in murine Kupffer cells. European Journal of Immunology, 2021, 51, 2452-2463.	1.6	8
1496	Effect of cycloâ€oxygenase inhibition on embryonic microglia and the sexual differentiation of the brain and behavior of Japanese quail (Coturnix japonica). Hormones and Behavior, 2021, 134, 105024.	1.0	1
1497	Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. Journal of Bone and Mineral Research, 2020, 36, 1661-1679.	3.1	24
1498	Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Failure Reviews, 2022, 27, 1413-1430.	1.7	24
1500	Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. Journal of Experimental Medicine, 2021, 218, .	4.2	70
1501	TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity. Journal of Clinical Investigation, 2021, 131, .	3.9	42
1502	Acetylcholineâ€synthesizing macrophages in subcutaneous fat are regulated by β ₂ â€adrenergic signaling. EMBO Journal, 2021, 40, e106061.	3.5	21
1504	The Multiple Facets of Iron Recycling. Genes, 2021, 12, 1364.	1.0	22
1505	The protective immunity induced by SARS-CoV-2 infection and vaccination: a critical appraisal. Exploration of Immunology, 2021, , 199-225.	1.7	5
1506	Caveolin-1 Deficiency Protects Mice Against Carbon Tetrachloride-Induced Acute Liver Injury Through Regulating Polarization of Hepatic Macrophages. Frontiers in Immunology, 2021, 12, 713808.	2.2	7
1507	The Macrophage Iron Signature in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 8457.	1.8	13
1508	Interleukin 23 Produced by Hepatic Monocyte-Derived Macrophages Is Essential for the Development of Murine Primary Biliary Cholangitis. Frontiers in Immunology, 2021, 12, 718841.	2.2	8
1509	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233
1510	Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. Journal of Neuroinflammation, 2021, 18, 186.	3.1	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1511	Comparative Review of Microglia and Monocytes in CNS Phagocytosis. Cells, 2021, 10,	2555.	1.8	16
1513	Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Frontiers in 2021, 12, 749708.	Immunology,	2.2	25
1514	Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Pr Dendritic Cells. International Journal of Molecular Sciences, 2021, 22, 9982.	esentation of	1.8	7
1515	A subset of Kupffer cells regulates metabolism through the expression of CD36. Immun 2101-2116.e6.	ity, 2021, 54,	6.6	99
1516	Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice. Neuroscience Bulletin, 2021, 37, 1671-1682.		1.5	13
1517	Distribution and Polarization of Hematogenous Macrophages Associated with the Prog Intervertebral Disc Degeneration. Spine, 2022, 47, E149-E158.	ression of	1.0	14
1518	Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell hom splenic marginal zone. Proceedings of the National Academy of Sciences of the United America, 2021, 118, .	eostasis in the States of	3.3	7
1519	Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Cannabis and Cannabinoid Research, 2021, , .	Manner.	1.5	18
1520	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 202	21, 54, 2072-2088.e7.	6.6	76
1521	Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. Journal of Neuromu Diseases, 2022, 9, 1-23.	ıscular	1.1	17
1522	TAMs in Brain Metastasis: Molecular Signatures in Mouse and Man. Frontiers in Immuno 716504.	ology, 2021, 12,	2.2	8
1523	Postnatal immune activation causes social deficits in a mouse model of tuberous sclero microglia and clinical implications. Science Advances, 2021, 7, eabf2073.	sis: Role of	4.7	12
1524	Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- a NLRP3-ASC-inflammasome pathway. Cell Reports, 2021, 36, 109720.	nd	2.9	42
1525	Differential Effects of Prostaglandin D 2 Signaling on Macrophages and Microglia in Mu Coronavirus Encephalomyelitis. MBio, 2021, 12, e0196921.	rine	1.8	2
1527	Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.		3.8	30
1528	Glucocorticoid resistance and Î ² 2-adrenergic receptor signaling pathways promote peri pro-inflammatory conditions associated with chronic psychological stress: A systematic across species. Neuroscience and Biobehavioral Reviews, 2021, 128, 117-135.	pheral review	2.9	13
1529	A differential DNA methylome signature of pulmonary immune cells from individuals co latent tuberculosis infection. Scientific Reports, 2021, 11, 19418.	nverting to	1.6	12
1530	Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photorece degenerative environment. Molecular Therapy - Methods and Clinical Development, 202	ptor 21, 23, 210-224.	1.8	2

#	Article	IF	CITATIONS
1532	PLX3397, a CSF1 receptor inhibitor, limits allotransplantation-induced vascular remodelling. Cardiovascular Research, 2022, 118, 2718-2731.	1.8	6
1533	Macrophages and cancer stem cells: a malevolent alliance. Molecular Medicine, 2021, 27, 121.	1.9	27
1534	Assessment of Alveolar Macrophage Dysfunction Using an in vitro Model of Acute Respiratory Distress Syndrome. Frontiers in Medicine, 2021, 8, 737859.	1.2	4
1535	Regional specialization of macrophages along the gastrointestinal tract. Trends in Immunology, 2021, 42, 795-806.	2.9	11
1536	Hematopoietic Stem Cells in Wound Healing Response. Advances in Wound Care, 2022, 11, 598-621.	2.6	5
1537	Brown adipose tissue monocytes support tissue expansion. Nature Communications, 2021, 12, 5255.	5.8	23
1538	LICHT of pulmonary NKT cells annihilates tissue protective alveolar macrophages in augmenting severe influenza pneumonia. Science Bulletin, 2021, 66, 2124-2134.	4.3	2
1539	Experimental respiratory exposure to putative Gulf War toxins promotes persistent alveolar macrophage recruitment and pulmonary inflammation. Life Sciences, 2021, 282, 119839.	2.0	3
1540	Trained Immunity as an Adaptive Branch of Innate Immunity. International Journal of Molecular Sciences, 2021, 22, 10684.	1.8	8
1541	Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Letters, 2021, 520, 184-200.	3.2	40
1542	Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. Journal of Autoimmunity, 2021, 124, 102723.	3.0	8
1543	Regulation of myeloid-cell activation. Current Opinion in Immunology, 2021, 73, 34-42.	2.4	9
1544	Delivery strategies for reprogramming tumor-associated macrophages. , 2022, , 83-115.		0
1545	Infusion of Kupffer Cells Expanded in Vitro Ameliorated Liver Fibrosis in a Murine Model of Liver Injury. Cell Transplantation, 2021, 30, 096368972110040.	1.2	4
1546	Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study. Theranostics, 2021, 11, 2232-2246.	4.6	17
1547	Trained innate immunity. Immunologic Research, 2021, 69, 1-7.	1.3	15
1548	Non-coding RNAs Related to Lipid Metabolism and Non-alcoholic Fatty Liver Disease. , 2021, , 73-88.		0
1549	Electrospun tissue regeneration biomaterials for immunomodulation. , 2021, , 89-117.		0

#	Article	IF	CITATIONS
1551	Cellular Indoctrination: How the Tumor Microenvironment Reeducates Macrophages Towards Nefarious Ends. , 2021, , .		0
1552	Contribution of PDGFRÎ \pm lineage cells in adult mouse hematopoiesis. Biochemical and Biophysical Research Communications, 2021, 534, 186-192.	1.0	2
1553	Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach. Mathematical Biosciences and Engineering, 2021, 18, 764-799.	1.0	10
1554	Functional cooperation of the hedgehog and androgen signaling pathways during developmental and repairing myelination. Glia, 2021, 69, 1369-1392.	2.5	12
1555	Does tissue imprinting restrict macrophage plasticity?. Nature Immunology, 2021, 22, 118-127.	7.0	117
1556	Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. International Journal of Molecular Sciences, 2021, 22, 436.	1.8	40
1557	Macrophage reprogramming for therapy. Immunology, 2021, 163, 128-144.	2.0	30
1558	Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Reports, 2021, 6, e892.	1.4	26
1559	Alterations in Chromatin Structure and Function in the Microglia. Frontiers in Cell and Developmental Biology, 2020, 8, 626541.	1.8	7
1561	Origins and diversity of macrophages in health and disease. Clinical and Translational Immunology, 2020, 9, e1222.	1.7	40
1562	Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology. Methods in Molecular Biology, 2021, 2191, 287-307.	0.4	7
1563	Kupffer Cells in Health and Disease. , 2014, , 217-247.		7
1564	Polarized Activation of Macrophages. , 2014, , 37-57.		3
1566	In Vivo Visualization of Microglia Using Tomato Lectin. Methods in Molecular Biology, 2019, 2034, 165-175.	0.4	13
1567	Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. Advances in Experimental Medicine and Biology, 2019, 1161, 45-64.	0.8	16
1568	Trained Innate Immunity and Its Implications for Mucosal Immunity and Inflammation. Advances in Experimental Medicine and Biology, 2019, 1197, 11-26.	0.8	22
1569	Role of Chemokines and Chemokine Receptors in Cancer. , 2020, , 235-262.		3
1570	Clinical Pathology Assays in Immunopathology. Molecular and Integrative Toxicology, 2017, , 457-488.	0.5	2

#	Article	IF	CITATIONS
1571	The Switch: Mechanisms Governing Macrophage Phenotypic Variability in Liver Disease. , 2017, , 53-74.		1
1572	Role of Chemokines and Chemokine Receptors in Cancer. , 2015, , 121-142.		1
1573	Immunopathogenesis of HBV Infection. Advances in Experimental Medicine and Biology, 2020, 1179, 71-107.	0.8	31
1574	Physiology of Microglia. Advances in Experimental Medicine and Biology, 2019, 1175, 129-148.	0.8	45
1575	Potential functions of embryonic cardiac macrophages in angiogenesis, lymphangiogenesis and extracellular matrix remodeling. Histochemistry and Cell Biology, 2021, 155, 117-132.	0.8	13
1576	Macrophage Activation and Polarization. , 2016, , 289-292.		4
1577	Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Reports, 2020, 33, 108571.	2.9	99
1578	Liver fibrosis and repair: immune regulation of wound healing in a solid organ. , 0, .		1
1579	Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 2019, 19, 369-382.	10.6	1,365
1580	Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1. Nature Neuroscience, 2020, 23, 832-841.	7.1	22
1581	Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clinical Science, 2019, 133, 1977-1992.	1.8	35
1582	The cell biology of inflammation: From common traits to remarkable immunological adaptations. Journal of Cell Biology, 2020, 219, .	2.3	32
1606	Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors. Neurophotonics, 2020, 7, 1.	1.7	8
1608	Niche-specific functional heterogeneity of intestinal resident macrophages. Gut, 2021, 70, 1383-1395.	6.1	52
1609	Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight, 2019, 4, .	2.3	167
1610	CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites. JCI Insight, 2016, 1, e86914.	2.3	53
1611	Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight, 2017, 2, e90349.	2.3	66
1612	A CCR2+ myeloid cell niche required for pancreatic Î ² cell growth. JCI Insight, 2017, 2, .	2.3	16

#	Article	IF	CITATIONS
1613	No recovery of replication-competent HIV-1 from human liver macrophages. Journal of Clinical Investigation, 2018, 128, 4501-4509.	3.9	41
1614	The role of macrophages in the resolution of inflammation. Journal of Clinical Investigation, 2019, 129, 2619-2628.	3.9	484
1615	Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. Journal of Clinical Investigation, 2020, 130, 1961-1976.	3.9	56
1616	Complement activation on endothelium initiates antibody-mediated acute lung injury. Journal of Clinical Investigation, 2020, 130, 5909-5923.	3.9	32
1617	Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. Journal of Clinical Investigation, 2014, 124, 2023-2036.	3.9	140
1618	CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease. Journal of Clinical Investigation, 2014, 124, 4266-4280.	3.9	173
1619	Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation, 2015, 125, 3147-3162.	3.9	197
1620	Transcriptional control of microglia phenotypes in health and disease. Journal of Clinical Investigation, 2017, 127, 3220-3229.	3.9	150
1621	Making sense of the cause of Crohn's – a new look at an old disease. F1000Research, 2016, 5, 2510.	0.8	13
1622	Microglia – the brain's busy bees. F1000prime Reports, 2013, 5, 53.	5.9	28
1623	Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Computational Biology, 2016, 12, e1005018.	1.5	40
1624	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390.	1.1	36
1624 1625	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390. The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	1.1	36 48
1624 1625 1626	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390.The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses. PLoS ONE, 2015, 10, e0119782.	1.1 1.1 1.1	36 48 27
1624 1625 1626 1627	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390.The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses. PLoS ONE, 2015, 10, e0119782.CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE, 2015, 10, e0134721.	1.1 1.1 1.1 1.1	 36 48 27 25
1624 1625 1626 1627 1628	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390. The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses. PLoS ONE, 2015, 10, e0119782. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE, 2015, 10, e0134721. Tumor-Infiltrating Macrophages in Post-Transplant, Relapsed Classical Hodgkin Lymphoma Are Donor-Derived. PLoS ONE, 2016, 11, e0163559.	1.1 1.1 1.1 1.1	36 48 27 25 9
1624 1625 1626 1627 1628 1629	Modulation of Mononuclear Phagocyte Inflammatory Response by Liposome-Encapsulated Voltage Gated Sodium Channel Inhibitor Ameliorates Myocardial Ischemia/Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e74390.The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses. PLoS ONE, 2015, 10, e0119782.CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE, 2015, 10, e0134721.Tumor-Infiltrating Macrophages in Post-Transplant, Relapsed Classical Hodgkin Lymphoma Are Donor-Derived. PLoS ONE, 2016, 11, e0163559.Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen. PLoS Pathogens, 2016, 12, e1005691.	1.1 1.1 1.1 1.1 2.1	 36 48 27 25 9 37

	Сіта	tion Report	
#	Article	IF	CITATIONS
1631	Macrophage as a mediator of immune response: Sustenance of immune homeostasis. Macrophage, 0, , .	1.0	5
1632	Targeting Microglia Using Cx3cr1-Cre Lines: Revisiting the Specificity. ENeuro, 2019, 6, ENEURO.0114-19.2019.	0.9	57
1633	Removal of the Potassium Chloride Co-Transporter from the Somatodendritic Membrane of Axotomized Motoneurons Is Independent of BDNF/TrkB Signaling But Is Controlled by Neuromuscular Innervation. ENeuro, 2019, 6, ENEURO.0172-19.2019.	0.9	18
1634	Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia. ENeur 2019, 6, ENEURO.0448-18.2019.	^{ro,} 0.9	153
1635	Microglia promote glioblastoma via mTORâ€mediated immunosuppression of the tumour microenvironment. EMBO Journal, 2020, 39, e103790.	3.5	77
1636	Unraveling the Complexity of the Renal Mononuclear Phagocyte System by Genetic Cell Lineage Tracing. Journal of the American Society of Nephrology: JASN, 2020, 31, 233-235.	3.0	3
1637	The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget, 2016, 7, 75339-75352.	0.8	79
1638	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	0.8	154
1639	Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander?. Oncotarget, 2015, 6, 38446-38457.	0.8	25
1640	The impact of ranitidine on monocyte responses in the context of solid tumors. Oncotarget, 2016, 7, 10891-10904.	0.8	10
1641	Characterization of Mouse Adult Testicular Macrophage Populations by Immunofluorescence Imaging and Flow Cytometry. Bio-protocol, 2019, 9, .	0.2	10
1642	Distinct signals and immune cells drive liver pathology and glomerulonephritis in ABIN1[D485N] mice. Life Science Alliance, 2019, 2, e201900533.	1.3	17
1643	Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer. Life Science Alliance, 2020, 3, e202000694.	1.3	20
1644	Differential Sensitivity of Kupffer Cells and Hepatic Monocyte-Derived Macrophages to Bacterial Lipopolysaccharide. , 2019, 1, 1-8.		9
1645	Spinal cord microglia in health and disease. Acta Naturae, 2020, 12, 4-17.	1.7	12
1646	TIME Is a Great Healer—Targeting Myeloid Cells in the Tumor Immune Microenvironment to Improve Triple-Negative Breast Cancer Outcomes. Cells, 2021, 10, 11.	1.8	13
1647	Monocyte Recruitment, Specification, and Function in Atherosclerosis. Cells, 2021, 10, 15.	1.8	53
1648	Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 2021, 10, 51.	1.8	159

#	Article	IF	CITATIONS
1649	Mononuclear phagocyte system in hepatitis C virus infection. World Journal of Gastroenterology, 2018, 24, 4962-4973.	1.4	10
1650	Regulation of macrophage activation in the liver after acute injury: Role of the fibrinolytic system. World Journal of Gastroenterology, 2020, 26, 1879-1887.	1.4	14
1651	Headmasters: Microglial regulation of learning and memory in health and disease. AIMS Molecular Science, 2018, 5, 63-89.	0.3	5
1652	Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surgery and Nutrition, 2014, 3, 364-76.	0.7	66
1653	Cx3CR1 Expression Identifies Distinct Macrophage Populations That Contribute Differentially to Inflammation and Repair. ImmunoHorizons, 2019, 3, 262-273.	0.8	76
1654	Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis. Immune Network, 2020, 20, e22.	1.6	11
1655	Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World Journal of Biological Chemistry, 2016, 7, 231.	1.7	42
1656	Macrophage populations and self-renewal: Changing the paradigm. World Journal of Immunology, 2015, 5, 131.	0.5	6
1657	Immune surveillance of the lung by migrating tissue monocytes. ELife, 2015, 4, e07847.	2.8	98
1658	Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. ELife, 2016, 5, .	2.8	117
1659	Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. ELife, 2016, 5, .	2.8	34
1660	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	2.8	128
1661	Microglial SIRPα regulates the emergence of CD11c+ microglia and demyelination damage in white matter. ELife, 2019, 8, .	2.8	39
1662	Defining murine monocyte differentiation into colonic and ileal macrophages. ELife, 2020, 9, .	2.8	25
1663	Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. ELife, 2020, 9, .	2.8	27
1664	A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. ELife, 2020, 9, .	2.8	54
1665	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
1666	Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. ELife, 2020, 9, .	2.8	38

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1667	A new genetic strategy for targeting microglia in development and disease. ELife, 2020	, 9, .	2.8	99
1668	Notch and TLR signaling coordinate monocyte cell fate and inflammation. ELife, 2020, 9),.	2.8	45
1669	Tissue-resident macrophages promote extracellular matrix homeostasis in the mammar of nulliparous mice. ELife, 2020, 9, .	y gland stroma	2.8	63
1670	Differential accumulation of storage bodies with aging defines discrete subsets of micro healthy brain. ELife, 2020, 9, .	oglia in the	2.8	49
1671	Light-induced engagement of microglia to focally remodel synapses in the adult brain. E	Life, 2020, 9, .	2.8	23
1672	LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome 2020, 9, .	activation. ELife,	2.8	29
1673	Ribosomal profiling during prion disease uncovers progressive translational derangemennot in neurons. ELife, 2020, 9, .	nt in glia but	2.8	29
1674	Deciphering glial scar after spinal cord injury. Burns and Trauma, 2021, 9, tkab035.		2.3	23
1675	Characterizing Intercellular Communication of Pan-Cancer Reveals SPP1+ Tumor-Associ Macrophage Expanded in Hypoxia and Promoting Cancer Malignancy Through Single-Co Frontiers in Cell and Developmental Biology, 2021, 9, 749210.	ated 2ll RNA-Seq Data.	1.8	31
1676	Histamine in cancer immunology and immunotherapy. Current status and new perspec Pharmacology Research and Perspectives, 2021, 9, e00778.	tives.	1.1	20
1678	NLRC5 Deficiency Deregulates Hepatic Inflammatory Response but Does Not Aggravate Tetrachloride-Induced Liver Fibrosis. Frontiers in Immunology, 2021, 12, 749646.	? Carbon	2.2	2
1679	Synapse development is regulated by microglial THIK-1 K ⁺ channels. Proce National Academy of Sciences of the United States of America, 2021, 118, .	eedings of the	3.3	14
1681	Microglia regulate brain progranulin levels through the endocytosis/lysosomal pathway. 2021, 6, .	JCI Insight,	2.3	7
1682	COVID-19 and Beyond: Exploring Public Health Benefits from Non-Specific Effects of BC Microorganisms, 2021, 9, 2120.	G Vaccination.	1.6	5
1683	IL-33-induced metabolic reprogramming controls the differentiation of alternatively act macrophages and the resolution of inflammation. Immunity, 2021, 54, 2531-2546.e5.	ivated	6.6	67
1684	Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. Journ Neuroinflammation, 2021, 18, 235.	nal of	3.1	3
1685	Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Repore53035.	ts, 2021, 22,	2.0	13
1686	p38 MAP Kinase Signaling in Microglia Plays a Sex-Specific Protective Role in CNS Autoi Regulates Microglial Transcriptional States. Frontiers in Immunology, 2021, 12, 715311	mmunity and	2.2	10

ARTICLE IF CITATIONS Activation of and in. Neuromethods, 2022, , 11-38. 0.2 0 1687 Alveolar Macrophages: Adaptation to Their Anatomic Niche during and after Inflammation. Cells, 2021, 1688 1.8 10, 2720. LN Monocytes Limit DC-Poly I:C Induced Cytotoxic T Cell Response via IL-10 and Induction of Suppressor 1689 2.2 3 CD4 T Cells. Frontiers in Immunology, 2021, 12, 763379. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Frontiers in Immunology, 2021, 12, 718432. The Roles of Macrophages in Heart Regeneration and Repair After Injury. Frontiers in Cardiovascular 1691 1.1 13 Medicine, 2021, 8, 744615. Abnormal monocyte differentiation and function in chronic myelomonocytic leukemia. Current 1.2 Opinion in Hematology, 2021, Publish Ahead of Print, 20-26. 1694 Coronary artery disease and myocardial infarction., 2011, , 301-306. 0 Microglial Ontogeny and Functions in Shaping Brain Circuits., 2014, , 183-215. 1695 1696 Critical Importance of the Perinatal Period in the Development of Obesity., 2014, , 57-71. 0 Intestinal Macrophages: Specialized Antigen-Presenting Cells at the Front Line., 2014, , 249-265. Lessons from In Vivo Imaging., 2014, , 81-114. 0 1698 Adult Neurogenesis, Learning and Memory., 2014, , 249-271. 1699 Tumor-Associated Macrophages in Tumor Progression: From Bench to Bedside., 2015, , 99-111. 1700 0 Immunomodulatory Regulation of Lung Regeneration and Repair. Pancreatic Islet Biology, 2015, , 1701 0.1 159-168. Notch and Myeloid Cells., 2017, , 35-55. 1703 0 Immunopathology of the Hepatobiliary System. Molecular and Integrative Toxicology, 2017, , 329-417. 1704 Diversity of Inflammatory Cells in Vascular Degenerative Disease. Cardiac and Vascular Biology, 2017, , 1705 0.2 0 81-97. 1706 Monocytes and Macrophages in the Aged Lung and Heart., 2018, , 1-22.

#	Article	IF	CITATIONS
1707	COMMD10-Guided Phagolysosomal Maturation Promotes Clearance of <i>Staphylococcus Aureus</i> in Macrophages. SSRN Electronic Journal, 0, , .	0.4	0
1708	Innate Immune Mechanisms in Myocardial Infarction - An Update. Romanian Journal of Laboratory Medicine, 2018, 26, 9-20.	0.1	1
1709	Tumor-Induced Cholesterol Efflux from Macrophages Drives IL-4 Mediated Reprogramming and Tumor Progression. SSRN Electronic Journal, 0, , .	0.4	1
1710	Discrepancy in Microglia and Peripheral Monocytic Cells - A scope in the Pathophysiology of Psychiatric maladies. Journal of Neuroscience and Neurological Disorders, 0, , 028-032.	0.1	0
1711	The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. SSRN Electronic Journal, 0, , .	0.4	1
1719	Proteopathic Tau Primes and Activates Interleukin-1ß(Il-1ß) via MyD88- and NLRP3-ASC-Inflammasome Dependent Pathways. SSRN Electronic Journal, 0, , .	0.4	2
1720	Monocytes and Macrophages in the Aged Lung and Heart. , 2019, , 689-710.		0
1722	Multi-actions of Microglia. Contemporary Clinical Neuroscience, 2019, , 303-328.	0.3	0
1723	Functional and phenotypic characteristics of classical (M1) and alternatively activated (M2) macropfages and their role during normal and pathological pregnancy (literature review). Russian Journal of Human Reproduction, 2019, 25, 110.	0.1	0
1725	Macrophage Markers. Materials and Methods, 0, 9, .	0.0	0
1742	M1 and M2 Macrophages Polarization via mTORC1 Influences Innate Immunity and Outcome of Ehrlichia Infection. , 2020, 2, 108-115.		12
1748	LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. Journal of Experimental Medicine, 2021, 218, .	4.2	31
1750	Monocytes in central nervous system remyelination. Glia, 2022, 70, 797-807.	2.5	5
1752	The immune niche of the liver. Clinical Science, 2021, 135, 2445-2466.	1.8	39
1753	PDGFRαâ€lineage origin directs monocytes to trafficking proficiency to support peripheral immunity. European Journal of Immunology, 2022, 52, 204-221.	1.6	0
1754	Effects of a CCR2 antagonist on macrophages and Toll-like receptor 9 expression in a mouse model of diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2021, 321, F757-F770.	1.3	16
1756	Repetitively Hypoxic Preconditioning Attenuates Ischemia/Reperfusion-Induced Liver Dysfunction Through Upregulation of Hypoxia-Induced Factor-1 Alpha-Dependent Mitochondrial Bcl-xL in Rat. Chinese Journal of Physiology, 2020, 63, 68-76.	0.4	3
1759	Distinct immune regulatory receptor profiles linked to altered monocyte subsets in sarcoidosis. ERJ Open Research, 2021, 7, 00804-2020.	1.1	2

#	Article	IF	CITATIONS
1760	Attenuated CSFâ€1R signalling drives cerebrovascular pathology. EMBO Molecular Medicine, 2021, 13, e12889.	3.3	32
1763	Cancer Immunology and Immuno-Oncology (Innate vs. Adaptive Cell Immunity). Digestive Disease Interventions, 2021, 05, 032-049.	0.3	0
1764	Models for Monocytic Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 87-115.	0.8	8
1765	Core Concepts in Immunology: The Definition of Autoimmunity and Its Unique Application to the Seat of Tolerance, the Liver. , 2020, , 1-16.		Ο
1766	Macrophages Maintain Epithelial Barrier Integrity in the Distal Colon by Limiting the Absorption of Fluids Containing Fungal Products. SSRN Electronic Journal, 0, , .	0.4	0
1771	Intestinal Intervention Strategy Targeting Myeloid Cells to Improve Hepatic Immunity during Hepatocarcinoma Development. Biomedicines, 2021, 9, 1633.	1.4	5
1772	CCR2 Signaling Restricts SARS-CoV-2 Infection. MBio, 2021, 12, e0274921.	1.8	38
1773	Monocytes, Macrophages, and Their Potential Niches in Synovial Joints – Therapeutic Targets in Post-Traumatic Osteoarthritis?. Frontiers in Immunology, 2021, 12, 763702.	2.2	34
1774	Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds?. Frontiers in Immunology, 2021, 12, 771210.	2.2	75
1777	Critical Importance of the Perinatal Period in the Development of Obesity. , 2014, , 57-71.		Ο
1779	Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury. EXCLI Journal, 2014, 13, 67-81.	0.5	20
1780	Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Frontiers in Molecular Neuroscience, 2021, 14, 747770.	1.4	Ο
1781	Macrophages in endometriosis. , 2022, , 13-41.		0
1782	Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology, 2022, 165, 274-286.	2.0	7
1783	Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. , 2022, 234, 108031.		17
1784	3D Visualization of Dynamic Cellular Reaction of Pulpal CD11c+ Dendritic Cells against Pulpitis in Whole Murine Tooth. International Journal of Molecular Sciences, 2021, 22, 12683.	1.8	1
1785	COMMD10 is critical for Kupffer cell survival and controls Ly6Chi monocyte differentiation and inflammation in the injured liver. Cell Reports, 2021, 37, 110026.	2.9	5
1787	A growth factor–expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. Journal of Experimental Medicine, 2022, 219, .	4.2	31

#	Αρτιςι ε	IF	CITATIONS
1788	There Is Strength in Numbers: Quantitation of Fc Gamma Receptors on Murine Tissue-Resident Macrophages. International Journal of Molecular Sciences, 2021, 22, 12172.	1.8	4
1789	Modulation of the immune response by heterogeneous monocytes and dendritic cells in lung cancer. World Journal of Clinical Oncology, 2021, 12, 966-982.	0.9	12
1790	Anti-TLR7 Antibody Protects Against Lupus Nephritis in NZBWF1 Mice by Targeting B Cells and Patrolling Monocytes. Frontiers in Immunology, 2021, 12, 777197.	2.2	21
1791	å¿f血管ç−¾ç−…ä,的巨噬细èfž. Scientia Sinica Vitae, 2021, , .	0.1	0
1792	The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Science Immunology, 2021, 6, eabj2132.	5.6	23
1793	Hematopoietic Stem Cell Requirement for Macrophage Regeneration Is Tissue Specific. Journal of Immunology, 2021, 207, 3028-3037.	0.4	3
1796	A non-classical monocyte-derived macrophage subset provides a splenic replication niche for intracellular Salmonella. Immunity, 2021, 54, 2712-2723.e6.	6.6	21
1797	Pathogen Invasion Reveals the Differential Plasticity and Fate of Resident and Recruited Brain Macrophages During the Onset and Resolution of Disease. SSRN Electronic Journal, 0, , .	0.4	0
1798	Alveolar macrophages: novel therapeutic targets for respiratory diseases. Expert Reviews in Molecular Medicine, 2021, 23, e18.	1.6	10
1800	Zoonotic Visceral Leishmaniasis: New Insights on Innate Immune Response by Blood Macrophages and Liver Kupffer Cells to Leishmania infantum Parasites. Biology, 2022, 11, 100.	1.3	3
1801	Inflammation in obesity, diabetes, and related disorders. Immunity, 2022, 55, 31-55.	6.6	489
1802	Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity, 2022, 55, 159-173.e9.	6.6	52
1803	Hieroglyph: Hierarchical Glia Graph Skeletonization and Matching. , 2020, , .		0
1804	Toll-Like Receptors in Adaptive Immunity. Handbook of Experimental Pharmacology, 2021, , 95-131.	0.9	16
1805	Complement Inhibition Alleviates Cholestatic Liver Injury Through Mediating Macrophage Infiltration and Function in Mice. Frontiers in Immunology, 2021, 12, 785287.	2.2	8
1806	Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology, 2022, 7, eabf7777.	5.6	167
1808	CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. Journal of Experimental Medicine, 2022, 219, .	4.2	23
1809	Regression of Triple-Negative Breast Cancer in a Patient-Derived Xenograft Mouse Model by Monoclonal Antibodies against IL-12 p40 Monomer. Cells, 2022, 11, 259.	1.8	6

#	Article	IF	CITATIONS
1810	A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nature Communications, 2022, 13, 549.	5.8	21
1811	Aged Microglia in Neurodegenerative Diseases: Microglia Lifespan and Culture Methods. Frontiers in Aging Neuroscience, 2021, 13, 766267.	1.7	26
1812	Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. , 2022, 1, 67-84.		17
1813	Where the Action Is—Leukocyte Recruitment in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2021, 8, 813984.	1.1	24
1815	Mouse Modeling Dissecting Macrophage–Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. Advanced Science, 2022, 9, e2105696.	5.6	14
1816	Concurrent stimulation of monocytes with CSF1 and polarizing cytokines reveals phenotypic and functional differences with classical polarized macrophages. Journal of Leukocyte Biology, 2022, , .	1.5	2
1817	Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends in Parasitology, 2022, 38, 217-229.	1.5	11
1818	Influenza-Induced Activation of Recruited Alveolar Macrophages During the Early Inflammatory Phase Drives Lung Injury and Lethality. SSRN Electronic Journal, 0, , .	0.4	1
1820	Pathogenicity and virulence of Hepatitis B virus. Virulence, 2022, 13, 258-296.	1.8	28
1821	Mouse Microglial Calcitonin Receptor Knockout Impairs Hypothalamic Amylin Neuronal pSTAT3 Signaling but Lacks Major Metabolic Consequences. Metabolites, 2022, 12, 51.	1.3	2
1822	Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathologica, 2022, 143, 291-310.	3.9	23
1823	Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery. ACS Applied Materials & Interfaces, 2022, 14, 5066-5079.	4.0	8
1824	Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. Theranostics, 2022, 12, 512-529.	4.6	24
1826	Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Molecular Neurodegeneration, 2022, 17, 7.	4.4	34
1827	Hacking macrophages to combat cancer and inflammatory diseases – Current advances and challenges. Scandinavian Journal of Immunology, 2022, , e13140.	1.3	1
1828	Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight, 2022, 7, .	2.3	24
1829	Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells, 2022, 11, 442.	1.8	14
1830	Dendritic cell functions in vivo: A user's guide to current and next―generation mutant mouse models. European Journal of Immunology, 2022, 52, 1712-1749.	1.6	5

#	Article	IF	CITATIONS
1831	The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biology, 2022, 20, e3001526.	2.6	21
1833	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
1834	Beneficial and detrimental functions of microglia during viral encephalitis. Trends in Neurosciences, 2022, 45, 158-170.	4.2	33
1836	Ischemic-Trained Monocytes Improve Arteriogenesis in a Mouse Model of Hindlimb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 175-188.	1.1	5
1837	PlexinD1 Deficiency in Lung Interstitial Macrophages Exacerbates House Dust Mite–Induced Allergic Asthma. Journal of Immunology, 2022, 208, 1272-1279.	0.4	6
1838	Inflammatory Monocyte Counts Determine Venous Blood Clot Formation and Resolution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 145-155.	1.1	17
1839	Innate and adaptive immune mechanisms regulating central nervous system remyelination. Current Opinion in Pharmacology, 2022, 63, 102175.	1.7	2
1840	<i>Csf1r+;Cd68</i> + Macrophages Uniquely Express <i>Lactotransferrin</i> and <i>Vegfc</i> During Complex Tissue Regeneration in Spiny Mice. SSRN Electronic Journal, 0, , .	0.4	0
1841	<scp>LRRC8A</scp> is dispensable for a variety of microglial functions and response to acute stroke. Glia, 2022, 70, 1068-1083.	2.5	7
1842	DNA Damage in Circulating Hematopoietic Progenitor Stem Cells as Promising Biological Sensor of Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1279-1286.	1.7	5
1843	Trained immunity against diseases in domestic animals. Acta Tropica, 2022, 229, 106361.	0.9	0
1845	Macrophages, Metabolism and Heterophagy in the Heart. Circulation Research, 2022, 130, 418-431.	2.0	21
1846	CCR2+ Macrophages Promote Orthodontic Tooth Movement and Alveolar Bone Remodeling. Frontiers in Immunology, 2022, 13, 835986.	2.2	5
1847	Systemic Influences of Mammary Cancer on Monocytes in Mice. Cancers, 2022, 14, 833.	1.7	5
1848	Macrophages promote cartilage regeneration in a time―and phenotypeâ€dependent manner. Journal of Cellular Physiology, 2022, 237, 2258-2270.	2.0	9
1849	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
1850	NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron, 2021, 109, 4094-4108.e5.	3.8	49
1851	Large Peritoneal Macrophages and Transitional Premonocytes Promote Survival during Abdominal Sepsis. ImmunoHorizons, 2021, 5, 994-1007.	0.8	8

#	ARTICLE Role of NR44 family members in myeloid cells and leukemia. Current Research in Immunology, 2022, 3	IF	CITATIONS
1852	23-36.	1.2	6
1853	Macrophage control of Crohn's disease. International Review of Cell and Molecular Biology, 2022, 367, 29-64.	1.6	1
1854	Heart and circulatory system. , 2022, , 229-254.		0
1855	Defining Microglial States and Nomenclature: A Roadmap to 2030. SSRN Electronic Journal, 0, , .	0.4	21
1856	Developmental programming of macrophages by early life adversity. International Review of Cell and Molecular Biology, 2022, , .	1.6	2
1859	Minimizing the <i>Ex Vivo</i> Confounds of Cell-Isolation Techniques on Transcriptomic and Translatomic Profiles of Purified Microglia. ENeuro, 2022, 9, ENEURO.0348-21.2022.	0.9	27
1860	Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Experimental Biology and Medicine, 2022, 247, 958-971.	1.1	9
1862	Traditional Mongolian medicine (HHQG) attenuates CCl4-induced acute liver injury through inhibiting monocyte/macrophage infiltration via the p-P38/p-JNK pathway. Journal of Ethnopharmacology, 2022, 293, 115152.	2.0	4
1863	Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plasticity, 2022, 2022, 1-13.	1.0	19
1864	Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. Journal of Experimental Medicine, 2022, 219, .	4.2	94
1865	Role of Base Excision Repair in Innate Immune Cells and Its Relevance for Cancer Therapy. Biomedicines, 2022, 10, 557.	1.4	1
1866	Autoimmune Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1016-1035.	2.5	28
1867	Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. Journal of Cardiovascular Development and Disease, 2022, 9, 63.	0.8	6
1868	Derivation of extra-embryonic and intra-embryonic macrophage lineages from human pluripotent stem cells. Development (Cambridge), 2022, 149, .	1.2	2
1870	Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases. Seminars in Immunopathology, 2022, 44, 259-268.	2.8	3
1871	Transcriptional switch of hepatocytes initiates macrophage recruitment and T-cell suppression in endotoxemia. Journal of Hepatology, 2022, 77, 436-452.	1.8	18
1872	Macrophage: A Key Player of Teleost Immune System. , 0, , .		0
1873	Analysis of Mononuclear Phagocytes Disclosed the Establishment Processes of Two Macrophage Subsets in the Adult Murine Kidney. Frontiers in Immunology, 2022, 13, 805420.	2.2	2

	Сіта	CITATION REPORT	
#	Article	IF C	Citations
1874	Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nature Immunology, 2022, 23, 568-580.	7.0 1	.8
1875	Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity, 2022, 55, 442-458.e8.	6.6 1	2
1879	Genotoxic stress signalling as a driver of macrophage diversity. Cell Stress, 2022, 6, 30-44.	1.4 5	5
1880	Efficacy of Disease Modifying Therapies in Progressive MS and How Immune Senescence May Explain Their Failure. Frontiers in Neurology, 2022, 13, 854390.	1.1 9)
1882	One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells, 2022, 11, 1061.	1.8 7	,
1883	A kinase-dead <i>Csf1r</i> mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development (Cambridge), 2022, 149, .	1.2 9)
1884	Different Spatial and Temporal Roles of Monocytes and Monocyte-Derived Cells in the Pathogenesis of an Imiquimod Induced Lupus Model. Frontiers in Immunology, 2022, 13, 764557.	2.2 3	3
1885	Circulating immune cell landscape in patients who had mild ischaemic stroke. Stroke and Vascular Neurology, 2022, 7, 319-327.	1.5 7	,
1886	No Major Impact of Two Homologous Proteins Ly6C1 and Ly6C2 on Immune Homeostasis. ImmunoHorizons, 2022, 6, 202-210.	0.8 2	2
1887	Neuroinflammation, Microglia and Implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Frontiers in Immunology, 2022, 13, 860070.	2.2 2	26
1888	Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Scientific Reports, 2022, 12, 4542.	1.6 1	.2
1889	Astrocytes and Microglia Exhibit Cell-Specific Ca2+ Signaling Dynamics in the Murine Spinal Cord. Frontiers in Molecular Neuroscience, 2022, 15, 840948.	1.4 7	,
1890	Diet–Microbiota Interplay: An Emerging Player in Macrophage Plasticity and Intestinal Health. International Journal of Molecular Sciences, 2022, 23, 3901.	1.8 8	3
1891	Surveying the Epigenetic Landscape of Tuberculosis in Alveolar Macrophages. Infection and Immunity, 2022, 90, e0052221.	1.0 8	3
1892	Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontology 2000, 2022, 89, 215-230.	6.3 1	.3

1894	Loss of Microglial Insulin Receptor Leads to Sex-Dependent Metabolic Disorders in Obese Mice. International Journal of Molecular Sciences, 2022, 23, 2933.	1.8	4
1895	GATA6+ Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Frontiers in Pharmacology, 2022, 13, 866993.	1.6	10

PLX5622 Reduces Disease Severity in Lethal CNS Infection by Off-Target Inhibition of Peripheral Inflammatory Monocyte Production. Frontiers in Immunology, 2022, 13, 851556.

99

#	Article	IF	CITATIONS
1896	Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Science Advances, 2022, 8, eabj0112.	4.7	15
1898	Macrophage network dynamics depend on haptokinesis for optimal local surveillance. ELife, 2022, 11, .	2.8	19
1899	Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochemical Society Transactions, 2022, 50, 935-950.	1.6	7
1900	Identification of the Transgene Integration Site and Host Genome Changes in MRP8-Cre/ires-EGFP Transgenic Mice by Targeted Locus Amplification. Frontiers in Immunology, 2022, 13, 875991.	2.2	4
1901	Gene therapy of Csf2ra deficiency in mouse fetal monocyte precursors restores alveolar macrophage development and function. JCI Insight, 2022, 7, .	2.3	7
1902	Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annual Review of Biomedical Engineering, 2022, 24, 249-274.	5.7	20
1904	The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. Journal of Oncology, 2022, 2022, 1-19.	0.6	4
1905	Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. ELife, 2022, 11, .	2.8	9
1906	Gingival monocytes: Lessons from other barriers. International Journal of Biochemistry and Cell Biology, 2022, 145, 106194.	1.2	0
1907	Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis?. Thrombosis Research, 2022, 213, 179-194.	0.8	17
1909	Editorial: Assessing Microglial Function and Identity. Frontiers in Immunology, 2021, 12, 824866.	2.2	0
1910	Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers, 2022, 14, 141.	1.7	8
1911	GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell Reports, 2021, 37, 110178.	2.9	16
1912	Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells, 2022, 11, 82.	1.8	6
1913	Macrophages play a role in inflammatory transformation of colorectal cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 2013-2028.	0.8	6
1914	Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proceedings of the United States of America, 2021, 118, .	3.3	10
1917	Hepatic Macrophage as a Key Player in Fatty Liver Disease. Frontiers in Immunology, 2021, 12, 708978.	2.2	33
1918	White matter microglia heterogeneity in the CNS. Acta Neuropathologica, 2022, 143, 125-141.	3.9	48

#	Article	IF	CITATIONS
1919	Macrophage Heterogeneity in the Intestinal Cells of Salmon: Hints From Transcriptomic and Imaging Data. Frontiers in Immunology, 2021, 12, 798156.	2.2	1
1920	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	3.9	82
1921	Differences in Cell-Intrinsic Inflammatory Programs of Yolk Sac and Bone Marrow Macrophages. Cells, 2021, 10, 3564.	1.8	4
1922	DNMT1 Deficiency Impacts on Plasmacytoid Dendritic Cells in Homeostasis and Autoimmune Disease. Journal of Immunology, 2022, 208, 358-370.	0.4	5
1923	Liver regeneration biology: Implications for liver tumour therapies. World Journal of Clinical Oncology, 2021, 12, 1101-1156.	0.9	5
1924	Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials Science, 2022, 10, 3029-3053.	2.6	24
1925	The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Frontiers in Immunology, 2022, 13, 884126.	2.2	12
1926	Role of Type I Interferon Signaling and Microglia in the Abnormal Long-term Potentiation and Object Place Recognition Deficits of Male Mice With a Mutation of the Tuberous Sclerosis 2 Gene. Biological Psychiatry Global Open Science, 2023, 3, 451-459.	1.0	0
1927	Bone Marrow Granulocytes Downregulate IL- $1\hat{l}^2$ and TNF Production and the Microbicidal Activity of Inflammatory Macrophages. Biochemistry and Cell Biology, 2022, , .	0.9	0
1928	Maternal vaccination against group B Streptococcus glyceraldehyde-3-phosphate dehydrogenase leads to gut dysbiosis in the offspring. Brain, Behavior, and Immunity, 2022, 103, 186-201.	2.0	3
1929	Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nature Reviews Rheumatology, 2022, 18, 398-414.	3.5	21
1930	Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. Journal of Reproductive Immunology, 2022, 151, 103627.	0.8	14
1931	The macrophage: a key player in the pathophysiology of peripheral neuropathies. Journal of Neuroinflammation, 2022, 19, 97.	3.1	28
1932	CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Annals of the Rheumatic Diseases, 2022, 81, 1162-1172.	0.5	10
1933	Monocytes augment inflammatory responses in human aortic valve interstitial cells via β2-integrin/ICAM-1-mediated signaling. Inflammation Research, 2022, 71, 681-694.	1.6	5
2001	Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Frontiers in Molecular Neuroscience, 2021, 14, 747770.	1.4	9
2002	Roles of heterogenous hepatic macrophages in the progression of liver diseases BMB Reports, 2022, , .	1.1	0
2003	Macrophages as key regulators of liver health and disease. International Review of Cell and Molecular Biology, 2022, , 143-212.	1.6	18

#	Article	IF	CITATIONS
2004	Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. Advances in Experimental Medicine and Biology, 2022, , 1-22.	0.8	4
2006	Microglia in brain development and regeneration. Development (Cambridge), 2022, 149, .	1.2	22
2007	Tissue Immunity in the Bladder. Annual Review of Immunology, 2022, 40, 499-523.	9.5	7
2008	Synovial Macrophage and Fibroblast Heterogeneity in Joint Homeostasis and Inflammation. Frontiers in Medicine, 2022, 9, 862161.	1.2	16
2009	Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Reports, 2022, 55, 166-174.	1.1	6
2010	Macrophage functional diversity in NAFLD — more than inflammation. Nature Reviews Endocrinology, 2022, 18, 461-472.	4.3	73
2011	Airway Macrophages Encompass Transcriptionally and Functionally Distinct Subsets Altered by Smoking. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 241-252.	1.4	12
2012	Early life host-microbe interactions in skin. Cell Host and Microbe, 2022, 30, 684-695.	5.1	14
2013	Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity, 2022, 55, 862-878.e8.	6.6	24
2014	Inner ear immunity. Hearing Research, 2022, 419, 108518.	0.9	15
2015	Abnormal innate and learned behavior induced by neuron–microglia miscommunication is related to CA3 reconfiguration. Glia, 2022, 70, 1630-1651.	2.5	7
2016	VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Frontiers in Immunology, 2022, 13, .	2.2	6
2017	Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Frontiers in Immunology, 2022, 13,	2.2	35
2018	Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathogens, 2022, 18, e1010474.	2.1	6
2019	Establishment of tissue-resident immune populations in the fetus. Seminars in Immunopathology, 2022, 44, 747-766.	2.8	5
2020	Antigen Presentation in the Lung. Frontiers in Immunology, 2022, 13, .	2.2	19
2021	Peripheral monocyte–derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. Journal of Clinical Investigation, 2022, 132, .	3.9	25
2022	Signal Pathways Involved in the Interaction Between Tumor-Associated Macrophages/TAMs and Glioblastoma Cells. Frontiers in Oncology, 2022, 12, .	1.3	7

#	Article	IF	CITATIONS
2024	Integrated computational and in vivo models reveal Key Insights into macrophage behavior during bone healing. PLoS Computational Biology, 2022, 18, e1009839.	1.5	7
2025	A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nature Reviews Cardiology, 2022, 19, 395-413.	6.1	6
2026	Novel insights into embryonic cardiac macrophages. Developmental Biology, 2022, 488, 1-10.	0.9	3
2027	The zinc finger transcription factor Sall1 is required for the early developmental transition of microglia in mouse embryos. Glia, 2022, 70, 1720-1733.	2.5	4
2028	Estradiol suppresses psoriatic inflammation in mice by regulating neutrophil and macrophage functions. Journal of Allergy and Clinical Immunology, 2022, 150, 909-919.e8.	1.5	21
2029	Alveolar Macrophage Heterogeneity Goes Up in Smoke?. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	1.4	2
2030	Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental and Molecular Medicine, 2022, 54, 639-652.	3.2	4
2031	Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. Journal of Leukocyte Biology, 2022, 112, 313-331.	1.5	8
2032	Proton-gated anion transport governs macropinosome shrinkage. Nature Cell Biology, 2022, 24, 885-895.	4.6	23
2033	Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. International Review of Cell and Molecular Biology, 2022, , 123-147.	1.6	8
2034	HIV Latency in Myeloid Cells: Challenges for a Cure. Pathogens, 2022, 11, 611.	1.2	11
2035	The Interactive Role of Macrophages in Innate Immunity. , 0, , .		0
2037	Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Frontiers in Oncology, 2022, 12, .	1.3	11
2038	Self-Renewing Macrophages in Dorsal Root Ganglia Contribute to Promote Nerve Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
2039	Occurrences and Functions of Ly6Chi and Ly6Clo Macrophages in Health and Disease. Frontiers in Immunology, 0, 13, .	2.2	15
2040	The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	25
2041	Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
2043	Phase 1 and preâ€clinical profiling of ESMâ€HDAC391, a myeloidâ€ŧargeted histone deacetylase inhibitor, shows enhanced pharmacology and monocytopaenia. British Journal of Clinical Pharmacology, 0, , .	1.1	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2044	CNS border-associated macrophages in the homeostatic and ischaemic brain. , 2022, 2	240, 108220.		18
2045	The Dynamic Role of Cardiac Macrophages in Aging and Disease. Current Cardiology R 925-933.	eports, 2022, 24,	1.3	5
2047	Macrophage Fate Mapping. Current Protocols, 2022, 2, .		1.3	4
2049	Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell 39, 110949.	Reports, 2022,	2.9	13
2050	The Combination Treatment of Fosmanogepix and Liposomal Amphotericin B Is Superi Monotherapy in Treating Experimental Invasive Mold Infections. Antimicrobial Agents a Chemotherapy, 2022, 66, .	or to and	1.4	28
2051	Osteoclasts and Macrophages—Their Role in Bone Marrow Cavity Formation During Development. Journal of Bone and Mineral Research, 2020, 37, 1761-1774.	Mouse Embryonic	3.1	9
2053	Lungs—Inflammatory and respiratory system. , 2022, , 231-242.			0
2054	Macrophage differentiation. , 2022, , 19-48.			0
2055	Specialized Subsets of Tissue Resident Macrophages in Secondary Lymphoid Organs. ,	2022, , .		0
2056	Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1 muscular dystrophy therapeutics. Science Translational Medicine, 2022, 14, .	R inhibitors as	5.8	29
2057	Plasticity of monocytes and macrophages in cirrhosis of the liver. Frontiers in Network 2, .	Physiology, 0,	0.8	2
2058	Monocytic Subsets Impact Cerebral Cortex and Cognition: Differences Between Health Patients With First-Episode Schizophrenia. Frontiers in Immunology, 0, 13, .	ny Subjects and	2.2	7
2059	Monocyte-derived alveolar macrophages autonomously determine severe outcome of viral infection. Science Immunology, 2022, 7, .	respiratory	5.6	39
2060	Isolation and immortalization of macrophages derived from fetal porcine small intestir susceptibility to porcine viral pathogen infections. Frontiers in Veterinary Science, 0, 9	e and their , .	0.9	4
2061	Restorative therapy using microglial depletion and repopulation for central nervous system and diseases. Frontiers in Immunology, 0, 13, .	stem injuries	2.2	7
2063	Turnover Kinetics of Pancreatic Macrophages in Lean and Obese Diabetic Mice. Frontie Endocrinology, 0, 13, .	ers in	1.5	1
2064	Single transcription factor efficiently leads human induced pluripotent stem cells to fu microglia. Inflammation and Regeneration, 2022, 42, .	nctional	1.5	10
2065	Towards an artificial human lung: modelling organ-like complexity to aid mechanistic u European Respiratory Journal, 2022, 60, 2200455.	nderstanding.	3.1	6

# 2066	ARTICLE ScRNA-seq expression of <i>IFI27</i> and <i>APOC2</i> identifies four alveolar macrophage superclusters in healthy BALF. Life Science Alliance, 2022, 5, e202201458.	IF 1.3	CITATIONS
2067	Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. International Immunopharmacology, 2022, 110, 108937.	1.7	9
2068	Inhibition of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by geniposidic acid alleviates cholestatic liver inflammatory injury. Redox Biology, 2022, 55, 102404.	3.9	11
2069	Activation of circulating monocytes by low-density lipoprotein—a risk factor for osteoarthritis?. Rheumatology, 2022, 62, 42-51.	0.9	2
2070	A Human CD68 Promoter-Driven Inducible Cre-Recombinase Mouse Line Allows Specific Targeting of Tissue Resident Macrophages. Frontiers in Immunology, 0, 13, .	2.2	1
2071	Biomaterialâ€Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. Chemical Record, 2022, 22, .	2.9	3
2072	Erythroblastic islands foster granulopoiesis in parallel to terminal erythropoiesis. Blood, 2022, 140, 1621-1634.	0.6	13
2073	Myeloperoxidase as a Marker to Differentiate Mouse Monocyte/Macrophage Subsets. International Journal of Molecular Sciences, 2022, 23, 8246.	1.8	8
2074	Therapeutic effect of NLRP3 inhibition on hearing loss induced by systemic inflammation in a CAPS-associated mouse model. EBioMedicine, 2022, 82, 104184.	2.7	11
2075	SENP6 induces microglial polarization and neuroinflammation through de-SUMOylation of Annexin-A1 after cerebral ischaemia–reperfusion injury. Cell and Bioscience, 2022, 12, .	2.1	10
2076	Monocyte biology conserved across species: Functional insights from cattle. Frontiers in Immunology, 0, 13, .	2.2	13
2077	Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. ELife, 0, 11, .	2.8	11
2078	The Properties of Proinflammatory Ly6Chi Monocytes Are Differentially Shaped by Parasitic and Bacterial Liver Infections. Cells, 2022, 11, 2539.	1.8	2
2079	Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Frontiers in Immunology, 0, 13, .	2.2	10
2080	Granulocyte colonyâ€stimulating factor attenuates liver damage by M2 macrophage polarization and hepatocyte proliferation in alcoholic hepatitis in mice. Hepatology Communications, 2022, 6, 2322-2339.	2.0	7
2081	Peritoneal resident macrophages in tumor metastasis and immunotherapy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
2082	Increased monocyte distribution width in <scp>COVID</scp> â€19 and sepsis arises from a complex interplay of altered monocyte cellular size and subset frequency. International Journal of Laboratory Hematology, 2022, 44, 1029-1039.	0.7	9
2083	Case report: Single-cell mapping of peripheral blood mononuclear cells from a patient with both Crohn's disease and isolated congenital asplenia. Frontiers in Immunology, 0, 13, .	2.2	0

#	Article	IF	CITATIONS
2084	Ginsenoside Rd Promotes Cardiac Repair After Myocardial Infarction by Modulating Monocytes/Macrophages Subsets Conversion. Drug Design, Development and Therapy, 0, Volume 16, 2767-2782.	2.0	5
2086	Respiratory and systemic monocytes, dendritic cells, and myeloidâ€derived suppressor cells in COVIDâ€19: Implications for disease severity. Journal of Internal Medicine, 2023, 293, 130-143.	2.7	16
2087	ls LysM-Cre a good candidate Cre for knocking out Atg5 gene in mice?. Frontiers in Immunology, 0, 13, .	2.2	0
2089	Oncofetal reprogramming in tumour development and progression. Nature Reviews Cancer, 2022, 22, 593-602.	12.8	22
2090	Spleen Macrophages: Population Composition and Functions. Cell and Tissue Biology, 2022, 16, 291-301.	0.2	1
2091	Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends in Immunology, 2022, 43, 718-727.	2.9	1
2092	Xanthones from Securidaca inappendiculata Hassk. attenuate collagen-induced arthritis in rats by inhibiting the nicotinamide phosphoribosyltransferase/glycolysis pathway and macrophage polarization. International Immunopharmacology, 2022, 111, 109137.	1.7	6
2093	CD11b+CD43hiLy6Clo splenocyteâ€derived macrophages exacerbate liver fibrosis via spleen–liver axis. Hepatology, 2023, 77, 1612-1629.	3.6	5
2094	IFN-Î ³ transforms the transcriptomic landscape and triggers myeloid cell hyperresponsiveness to cause lethal lung injury. Frontiers in Immunology, 0, 13, .	2.2	2
2095	Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis. Frontiers in Immunology, 0, 13, .	2.2	4
2096	Hepatic Ly6CLo Non-Classical Monocytes Have Increased Nr4a1 (Nur77) in Murine Biliary Atresia. Journal of Clinical Medicine, 2022, 11, 5290.	1.0	2
2097	Enteric glial cells favor accumulation of anti-inflammatory macrophages during the resolution of muscularis inflammation. Mucosal Immunology, 2022, 15, 1296-1308.	2.7	14
2098	Sustained TNF signaling is required for the synaptic and anxiety-like behavioral response to acute stress. Molecular Psychiatry, 2022, 27, 4474-4484.	4.1	11
2099	Spliceosomal GTPase Eftud2 regulates microglial activation and polarization. Neural Regeneration Research, 2023, 18, 856.	1.6	2
2100	General and Emerging Concepts of Immunity. , 2022, , .		0
2101	Microglia in antiviral immunity of the brain and spinal cord. Seminars in Immunology, 2022, 60, 101650.	2.7	1
2102	Hyalocyte origin, structure, and imaging. Expert Review of Ophthalmology, 2022, 17, 233-248.	0.3	4
2103	Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1–Notch1. Acta Pharmaceutica Sinica B, 2023, 13, 128-141.	5.7	7

#	Article	IF	CITATIONS
2104	An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. International Journal of Molecular Sciences, 2022, 23, 9868.	1.8	10
2105	Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunology, 2022, 15, 1363-1374.	2.7	8
2106	Brain endothelial STING1 activation by <i>Plasmodium</i> -sequestered heme promotes cerebral malaria via type I IFN response. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
2107	Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunology, 2022, 15, 1114-1126.	2.7	4
2108	A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. International Journal of Molecular Sciences, 2022, 23, 9749.	1.8	0
2109	The Yin-Yang functions of macrophages in metabolic disorders. , 2022, 1, 319-332.		1
2110	Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-β1 pathway in mice induced with aldosterone. Frontiers in Immunology, 0, 13, .	2.2	7
2111	Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis. PLoS Pathogens, 2022, 18, e1010637.	2.1	6
2112	MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3-AP1S2 axis. Gut, 2023, 72, 882-895.	6.1	8
2113	The growing field of immunometabolism and exercise: Key findings in the last 5 years. Journal of Cellular Physiology, 2022, 237, 4001-4020.	2.0	4
2114	Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia, 2023, 71, 168-186.	2.5	15
2115	Phenotypic and functional heterogeneity of monocytes in health and cancer in the era of high dimensional technologies. Blood Reviews, 2022, , 101012.	2.8	1
2116	p27kip1 Modulates the Morphology and Phagocytic Activity of Microglia. International Journal of Molecular Sciences, 2022, 23, 10432.	1.8	0
2117	Chronic suppurative otitis media causes macrophage-associated sensorineural hearing loss. Journal of Neuroinflammation, 2022, 19, .	3.1	9
2118	Biology of lung macrophages in health and disease. Immunity, 2022, 55, 1564-1580.	6.6	126
2120	A Novel MIP-1 Expressing Macrophage Subtype in Bronchoalveolar Lavage Fluid from Healthy Volunteers. American Journal of Respiratory Cell and Molecular Biology, 0, , .	1.4	1
2121	Macrophages in the gut: Masters in multitasking. Immunity, 2022, 55, 1530-1548.	6.6	34
2122	Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Research and Therapy, 2022, 13, .	2.4	4

#	Article	IF	CITATIONS
2123	Reactive morphology of dividing microglia following kainic acid administration. Frontiers in Neuroscience, 0, 16, .	1.4	9
2124	Distinct spatial distribution and roles of Kupffer cells and monocyte-derived macrophages in mouse acute liver injury. Frontiers in Immunology, 0, 13, .	2.2	5
2125	Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity, 2022, 55, 1549-1563.	6.6	27
2126	Interleukinâ€4 receptor alpha signaling regulates monocyte homeostasis. FASEB Journal, 2022, 36, .	0.2	3
2127	Specific detection and deletion of the sigmaâ€1 receptor widely expressed in neurons and glial cells in vivo. Journal of Neurochemistry, 2023, 164, 764-785.	2.1	6
2129	Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19. Frontiers in Immunology, 0, 13, .	2.2	2
2130	Iron regulatory protein (IRP)–mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. Science Advances, 2022, 8, .	4.7	23
2131	Plasma iron controls neutrophil production and function. Science Advances, 2022, 8, .	4.7	21
2132	Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Frontiers in Oncology, 0, 12, .	1.3	1
2133	How cell migration helps immune sentinels. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
2134	The alarmin interleukin- $1\hat{l}\pm$ triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nature Communications, 2022, 13, .	5.8	14
2135	From structure to function – Ligand recognition by myeloid C-type lectin receptors. Computational and Structural Biotechnology Journal, 2022, 20, 5790-5812.	1.9	13
2136	Development and Function of Macrophages. , 2022, , .		0
2137	Persistent Antigen Harbored by Alveolar Macrophages Enhances the Maintenance of Lung-Resident Memory CD8+ T Cells. Journal of Immunology, 2022, 209, 1778-1787.	0.4	7
2138	Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice. Nature Communications, 2022, 13, .	5.8	28
2140	Genome-wide Mendelian randomization and single-cell RNA sequencing analyses identify the causal effects of COVID-19 on 41 cytokines. Briefings in Functional Genomics, 2022, 21, 423-432.	1.3	3
2141	Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity, 2022, 55, 2085-2102.e9.	6.6	40
2142	Self-Renewal of Macrophages: Tumor-Released Factors and Signaling Pathways. Biomedicines, 2022, 10, 2709.	1.4	6
#	Article	IF	Citations
------	---	------	-----------
2143	Erythropoietin Receptor (EPOR) Signaling in the Osteoclast Lineage Contributes to EPO-Induced Bone Loss in Mice. International Journal of Molecular Sciences, 2022, 23, 12051.	1.8	4
2144	After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 337-359.	9.6	4
2146	Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients. Arthritis and Rheumatology, 0, , .	2.9	3
2147	Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Frontiers in Immunology, 0, 13, .	2.2	6
2148	Kinetics of monocyte subpopulations during experimental cerebral malaria and its resolution in a model of late chloroquine treatment. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
2150	Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences, 2022, 23, 13251.	1.8	4
2151	Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders. Cells, 2022, 11, 3364.	1.8	4
2152	"â€~ELO, world!â€â€"Early-life origins of B cells. Immunity, 2022, 55, 1753-1755.	6.6	1
2153	A novel monocyte differentiation pattern in pristane-induced lupus with diffuse alveolar hemorrhage. ELife, 0, 11, .	2.8	4
2154	TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell, 2022, 185, 4153-4169.e19.	13.5	92
2155	Role of Macrophages in Air Pollution Exposure Related Asthma. International Journal of Molecular Sciences, 2022, 23, 12337.	1.8	6
2156	Reduction of donor mononuclear phagocytes with clodronate-liposome during exÂvivo lung perfusion attenuates ischemia-reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2023, 165, e181-e203.	0.4	1
2157	Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
2158	Cutting edges and therapeutic opportunities on tumor-associated macrophages in lung cancer. Frontiers in Immunology, 0, 13, .	2.2	11
2159	The CNS mononuclear phagocyte system in health and disease. Neuron, 2022, 110, 3497-3512.	3.8	16
2160	Microglia states and nomenclature: A field at its crossroads. Neuron, 2022, 110, 3458-3483.	3.8	459
2161	Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. International Journal of Molecular Sciences, 2022, 23, 13328.	1.8	7
2162	Exosomal NAMPT from chronic lymphocytic leukemia cells orchestrate monocyte survival and phenotype under endoplasmic reticulum stress. Hematological Oncology, 2023, 41, 61-70.	0.8	3

#	Article	IF	CITATIONS
2163	Altered M1/M2 polarization of alveolar macrophages is involved in the pathological responses of acute silicosis in rats in vivo. Toxicology and Industrial Health, 2022, 38, 810-818.	0.6	6
2164	Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Autoimmunity Reviews, 2022, 21, 103211.	2.5	16
2165	Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioactive Materials, 2023, 22, 404-422.	8.6	10
2166	Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina. Immunity, 2022, 55, 2318-2335.e7.	6.6	11
2168	Macrophages at the Crossroad of Meta-Inflammation and Inflammaging. Genes, 2022, 13, 2074.	1.0	9
2169	Microglial TNFα orchestrates protein phosphorylation in the cortex during the sleep period and controls homeostatic sleep. EMBO Journal, 2023, 42, .	3.5	11
2170	Mechanosensing in macrophages and dendritic cells in steady-state and disease. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	13
2171	Notch signaling dependent monocyte conversion alleviates immune-mediated neuropathies by regulating RBP-J/NR4A1 axis. Journal of Autoimmunity, 2022, 133, 102945.	3.0	3
2172	How can the adult zebrafish and neonatal mice teach us about stimulating cardiac regeneration in the human heart?. Regenerative Medicine, 2023, 18, 85-99.	0.8	1
2173	More than meets the eye: The role of microglia in healthy and diseased retina. Frontiers in Immunology, 0, 13, .	2.2	12
2174	Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death. Nature Communications, 2022, 13, .	5.8	4
2175	Thymic macrophages consist of two populations with distinct localization and origin. ELife, 0, 11, .	2.8	6
2176	Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
2178	Deciphering the heterogeneity of the Lyve1+ perivascular macrophages in the mouse brain. Nature Communications, 2022, 13, .	5.8	12
2179	Specificity of CD200/CD200R pathway in LPS-induced lung inflammation. Frontiers in Immunology, 0, 13,	2.2	0
2180	Extracellular traps formation following cervical spinal cord injury. European Journal of Neuroscience, 2023, 57, 692-704.	1.2	4
2181	Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1. Journal of Neuroinflammation, 2022, 19, .	3.1	11
2182	The mechanisms and cross-protection of trained innate immunity. Virology Journal, 2022, 19, .	1.4	3

ARTICLE IF CITATIONS S100A6 Activates Kupffer Cells via the p-P38 and p-JNK Pathways to Induce Inflammation, 2183 4 1.7 Mononuclear/macrophage Infiltration Sterile Liver Injury in Mice. Inflammation, 2023, 46, 534-554. Highlights of the ERS Lung Science Conference 2022. Breathe, 2022, 18, 220212. 2184 0.6 Trends in perivascular macrophages research from 1997 to 2021: A bibliometric analysis. CNS 2185 1.9 3 Neuroscience and Therapeutics, 2023, 29, 816-830. A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical 2186 1.2 models. DMM Disease Models and Mechanisms, 2023, 16, . Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic 2187 4.2 12 circuits in mice. Journal of Experimental Medicine, 2023, 220, . Houttuynia cordata polysaccharides alleviate ulcerative colitis by restoring intestinal homeostasis. 2188 Chinese Journal of Natural Medicines, 2022, 20, 914-924. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate 2189 7.0 15 commitment. Nature Immunology, 2023, 24, 84-95. Cognate microgliaâ \in T cell interactions shape the functional regulatory T cell pool in experimental 2190 autoimmune encephalomyelitis pathology. Nature Immunology, 2022, 23, 1749-1762. Explaining the polarized macrophage pool during murine allergic lung inflammation. Frontiers in 2191 2.2 4 Immunology, 0, 13, . Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues. European 1.6 Journal of Immunology, 2023, 53, . The Phylogeny, Ontogeny, and Organ-specific Differentiation of Macrophages in the Developing 2193 2 Intestine., 2022, 1, 340-355. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver 2194 6.6 inflammation and NASH development. Immunity, 2023, 56, 58-77.e11. The mononuclear phagocyte system in hepatocellular carcinoma. World Journal of 2195 1.4 2 Gastroenterology, 0, 28, 6345-6355. Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. Future Journal of Pharmaceutical Sciences, 2022, 8, . 1.1 Mouse placenta fetal macrophages arise from endothelial cells outside the placenta. Developmental 2198 7 3.1Cell, 2022, 57, 2652-2660.e3. Gata6+ large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in Immunology, 2023, 44, 129-145. 2199 2.9 Macrophages in cardiac remodelling after myocardial infarction. Nature Reviews Cardiology, 2023, 20, 2201 6.1 28 373-385.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2205	Monocyte-neutrophil entanglement in glioblastoma. Journal of Clinical Investigation, 20)23, 133, .	3.9	14
2206	Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. International Molecular Sciences, 2023, 24, 1526.	Journal of	1.8	65
2207	Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice. Neu Bulletin, O, , .	iroscience	1.5	1
2208	Classical DC2 subsets and monocyteâ€derived DC: Delineating the developmental and relationship. European Journal of Immunology, 2023, 53, .	functional	1.6	5
2210	MicroRNAs induced by Listeria monocytogenes and their role in cells. Microbial Pathog 175, 105997.	enesis, 2023,	1.3	4
2211	The intestinal microenvironment shapes macrophage and dendritic cell identity and fur Immunology Letters, 2023, 253, 41-53.	iction.	1.1	5
2212	Activation of β2-Adrenergic Receptors in Microglia Alleviates Neuropathic Hypersensiti Cells, 2023, 12, 284.	vity in Mice.	1.8	4
2214	Innate immunity in pancreatic cancer: Lineage tracing and function. Frontiers in Immur	ology, 0, 13, .	2.2	1
2215	Inflammatory and immune etiology of type 2 diabetes. Trends in Immunology, 2023, 44	4, 101-109.	2.9	7
2216	Functional Potassium Channels in Macrophages. Journal of Membrane Biology, 0, , .		1.0	1
2217	Alginate-based biomaterial-mediated regulation of macrophages in bone tissue enginee International Journal of Biological Macromolecules, 2023, 230, 123246.	ring.	3.6	13
2218	A Novel CD135+ Subset of Mouse Monocytes with a Distinct Differentiation Pathway a Antigen-Presenting Properties. Journal of Immunology, 2022, 209, 498-509.	ind	0.4	1
2219	The characteristic of resident macrophages and their therapeutic potential for myocarc Current Problems in Cardiology, 2022, , 101570.	lial infarction.	1.1	0
2220	Macrophage P2Y6 Receptor Signaling Selectively Activates NFATC2 and Suppresses All Inflammation. Journal of Immunology, 2022, 209, 2293-2303.	ergic Lung	0.4	3
2221	Inhibition of autophagy in microglia and macrophages exacerbates innate immune resp worsens brain injury outcomes. Autophagy, 2023, 19, 2026-2044.	onses and	4.3	11
2222	Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF thro SNX25–Nrf2 pathway. Nature Immunology, 2023, 24, 439-451.	ugh an	7.0	10
2223	Myeloid masquerade: Microglial transcriptional signatures in retinal development and c Frontiers in Cellular Neuroscience, 0, 17, .	lisease.	1.8	2
2224	SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoieti Myeloid Leukemia. Cancer Research, 2023, 83, 983-996.	c Cells and Acute	0.4	12

#	Article	IF	CITATIONS
2225	Kupffer Cells Contested as Early Drivers in the Pathogenesis of Primary Sclerosing Cholangitis. American Journal of Pathology, 2023, 193, 366-379.	1.9	4
2226	Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages. Theranostics, 2023, 13, 991-1009.	4.6	2
2227	Protective Efficacy of Anti-Hyr1p Monoclonal Antibody against Systemic Candidiasis Due to Multi-Drug-Resistant Candida auris. Journal of Fungi (Basel, Switzerland), 2023, 9, 103.	1.5	3
2228	Impaired iron recycling from erythrocytes is an early hallmark of aging. ELife, 0, 12, .	2.8	8
2229	MHCII expression on gut macrophages supports T cell homeostasis and is regulated by microbiota and ontogeny. Scientific Reports, 2023, 13, .	1.6	3
2230	Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Translational Stroke Research, 2024, 15, 69-86.	2.3	1
2231	TGF-β Activated Kinase 1 (TAK1) Is Activated in Microglia After Experimental Epilepsy and Contributes to Epileptogenesis. Molecular Neurobiology, 2023, 60, 3413-3422.	1.9	3
2232	Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. International Immunopharmacology, 2023, 116, 109569.	1.7	12
2233	Fateâ€mapping studies in inbred mice: A model for understanding macrophage development and homeostasis?. European Journal of Immunology, 2023, 53, .	1.6	1
2234	Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma. Nature Communications, 2023, 14, .	5.8	9
2235	Myeloid cell-mediated drug delivery: From nanomedicine to cell therapy. Advanced Drug Delivery Reviews, 2023, 197, 114827.	6.6	9
2236	Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain, Behavior, and Immunity, 2023, 110, 245-259.	2.0	4
2237	Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Neurobiology of Disease, 2023, 181, 106114.	2.1	3
2240	Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Scientific Reports, 2023, 13, .	1.6	0
2241	Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Scientific Reports, 2023, 13, .	1.6	2
2243	The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Progress in Retinal and Eye Research, 2023, 96, 101157.	7.3	5
2244	Trained immunity and epigenetic memory in long-term self-renewing hematopoietic cells. Experimental Hematology, 2023, 121, 6-11.	0.2	1
2245	Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	18

#	Article	IF	CITATIONS
2246	Mechanisms of myeloid cell entry to the healthy and diseased central nervous system. Nature Immunology, 2023, 24, 393-407.	7.0	10
2247	Early-life peripheral infections reprogram retinal microglia and aggravate neovascular age-related macular degeneration in later life. Journal of Clinical Investigation, 2023, 133, .	3.9	2
2248	A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity, 2023, 56, 1027-1045.e8.	6.6	17
2249	CX ₃ CR ₁ + Macrophage Facilitates the Resolution of Allergic Lung Inflammation via Interacting CCL26. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	3
2250	Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Research Bulletin, 2023, 195, 157-171.	1.4	4
2251	Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discovery, 2023, 9, .	2.0	18
2252	Lipocalin-2 deletion attenuates lipopolysaccharide-induced acute lung inflammation via downregulating chemotaxis-related genes. Biochemical and Biophysical Research Communications, 2023, 652, 14-21.	1.0	1
2253	Modulation of haematopoiesis by protozoal and helminth parasites. Parasite Immunology, 2023, 45, .	0.7	1
2255	Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nature Immunology, 2023, 24, 700-713.	7.0	13
2256	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257.	12.8	83
2256 2258	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7.	12.8 6.6	83 33
2256 2258 2259	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32.	12.8 6.6	83 33 0
2256 2258 2259 2260	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32. Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0, , 89-101.	12.8 6.6 0.5	83 33 0 2
2256 2258 2259 2260 2261	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32. Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0, , 89-101. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L536-L549.	12.8 6.6 0.5 1.3	83 33 0 2 9
2256 2258 2259 2260 2261 2262	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32. Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0, , 89-101. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L536-L549. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis. Cell Reports, 2023, 42, 112171.	12.8 6.6 0.5 1.3 2.9	 83 33 0 2 9 6
2256 2258 2259 2260 2261 2262 2263	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56, 783-796.e7. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32. Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0, , 89-101. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L536-L549. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis. Cell Reports, 2023, 42, 112171. Integrated transcriptional analysis reveals macrophage heterogeneity and macrophage-tumor cell interactions in the progression of pancreatic ductal adenocarcinoma. BMC Cancer, 2023, 23, .	12.8 6.6 0.5 1.3 2.9	 83 33 0 2 9 6 9
2256 2258 2259 2260 2261 2262 2263	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32. Macrophages as potential targets in gene therapy for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 0, , 89-101. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L536-L549. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis. Cell Reports, 2023, 42, 112171. Integrated transcriptional analysis reveals macrophage heterogeneity and macrophage-tumor cell interactions in the progression of pancreatic ductal adenocarcinoma. BMC Cancer, 2023, 23, . Apoptotic cell fragments locally activate tingible body macrophages in the germinal center. Cell, 2023, 186, 1144-1161.e18.	12.8 6.6 0.5 1.3 2.9 1.1 13.5	 83 33 0 2 9 6 9 12

#	Article	IF	CITATIONS
2266	The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Frontiers in Neuroendocrinology, 2023, 70, 101064.	2.5	2
2267	Microglia specific deletion of miR-155 in Alzheimer's disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures. Journal of Neuroinflammation, 2023, 20, .	3.1	7
2269	Phagocytosis increases an oxidative metabolic and immune suppressive signature in tumor macrophages. Journal of Experimental Medicine, 2023, 220, .	4.2	7
2270	Pulmonary and Nonpulmonary Sepsis Differentially Modulate Lung Immunity toward Secondary Bacterial Pneumonia: A Critical Role for Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2023, 68, 689-701.	1.4	3
2271	Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation. Acta Neuropathologica Communications, 2023, 11, .	2.4	10
2273	NeurofibromatosisÂtype 1-dependent alterations in mouse microglia function are not cell-intrinsic. Acta Neuropathologica Communications, 2023, 11, .	2.4	1
2276	The diverse roles of macrophages in metabolic inflammation and its resolution. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
2277	A comparative gene expression matrix in Apoe-deficient mice identifies unique and atherosclerotic disease stage-specific gene regulation patterns in monocytes and macrophages. Atherosclerosis, 2023, 371, 1-13.	0.4	1
2278	Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nature Communications, 2023, 14, .	5.8	5
2279	Tissue-specific macrophages: how they develop and choreograph tissue biology. Nature Reviews Immunology, 2023, 23, 563-579.	10.6	65
2280	Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nature Neuroscience, 2023, 26, 555-569.	7.1	13
2281	MafB-restricted local monocyte proliferation precedes lung interstitial macrophage differentiation. Nature Immunology, 2023, 24, 827-840.	7.0	11
2283	Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infection and Immunity, 2023, 91, .	1.0	2
2284	Mixed-Culture Propagation of Uterine-Tissue-Resident Macrophages and Their Expression Properties of Steroidogenic Molecules. Biomedicines, 2023, 11, 985.	1.4	1
2285	Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nature Communications, 2023, 14, .	5.8	6
2286	Multifaceted microglia during brain development: Models and tools. Frontiers in Neuroscience, 0, 17, .	1.4	3
2288	Stunning of neutrophils accounts for the anti-inflammatory effects of clodronate liposomes. Journal of Experimental Medicine, 2023, 220, .	4.2	19
2290	Droplet-based forward genetic screening of astrocyte–microglia cross-talk. Science, 2023, 379, 1023-1030.	6.0	35

#	Article	IF	CITATIONS
2292	Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR. Nature Communications, 2023, 14, .	5.8	4
2293	Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	0
2295	Shaping of the alveolar landscape by respiratory infections and long-term consequences for lung immunity. Frontiers in Immunology, 0, 14, .	2.2	2
2296	Alveolar Macrophages During Inflammation: A Balancing Act. American Journal of Respiratory Cell and Molecular Biology, 0, , .	1.4	0
2297	ATP-releasing SWELL1 channel in spinal microglia contributes to neuropathic pain. Science Advances, 2023, 9, .	4.7	15
2298	Toll-like receptor 2 activation in monocytes contributes to systemic inflammation and alcohol-associated liver disease in humans. Hepatology Communications, 2023, 7, .	2.0	2
2299	Intraperitoneal transfer of wildâ€ŧype bone marrow repopulates tissue macrophages in the <i>Csf1r</i> knockout rat without contributing to monocytopoiesis. European Journal of Immunology, 2023, 53, .	1.6	1
2300	The Alzheimer's disease risk factor <i>INPP5D</i> restricts neuroprotective microglial responses in amyloid betaâ€mediated pathology. Alzheimer's and Dementia, 2023, 19, 4908-4921.	0.4	9
2302	Myocardial Immune Cells: The Basis of Cardiac Immunology. Journal of Immunology, 2023, 210, 1198-1207.	0.4	7
2304	The generation, activation, and polarization of monocyte-derived macrophages in human malignancies. Frontiers in Immunology, 0, 14, .	2.2	8
2305	Modulation of macrophage polarization by iron-based nanoparticles. Medical Review, 2023, 3, 105-122.	0.3	1
2306	Bumetanide induces post-traumatic microglia–interneuron contact to promote neurogenesis and recovery. Brain, 2023, 146, 4247-4261.	3.7	2
2314	Cancer and the science of innate immunity. , 2024, , 61-90.e11.		0
2316	Case Report: FDG-PET/CT findings in co-infection of visceral leishmaniasis and chronic hepatitis B. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	0
2328	Physiology and diseases of tissue-resident macrophages. Nature, 2023, 618, 698-707.	13.7	40
2345	Brain macrophage development, diversity and dysregulation in health and disease. , 2023, 20, 1277-1289.		10
2346	Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia. Molecular Psychiatry, 2023, 28, 2857-2871.	4.1	2
2381	Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. Methods in Molecular Biology, 2024, , 481-503.	0.4	0

		CITATION REP	ation Report		
#	Article		IF	CITATIONS	
2382	Fate-Mapping Macrophages: From Ontogeny to Functions. Methods in Molecular Biology, 2024, , 1	1-43.	0.4	0	
2383	Isolation and Flow Cytometry Analysis of Macrophages from the Dermis. Methods in Molecular Biology, 2024, , 159-169.		0.4	0	
2385	Combined Host-Pathogen Fate Mapping to Investigate Lung Macrophages in Viral Infection. Metho Molecular Biology, 2024, , 347-361.	ds in	0.4	0	
2400	Macrophage polarization and metabolism in atherosclerosis. Cell Death and Disease, 2023, 14, .		2.7	9	
2440	How chemokines organize the tumour microenvironment. Nature Reviews Cancer, 2024, 24, 28-50.		12.8	0	
2491	Hematopoietic Stem Cell Development in Mammalian Embryos. Advances in Experimental Medicine Biology, 2023, , 1-16.	and	0.8	0	
2494	Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clinica and Experimental Metastasis, 0, , .	l	1.7	0	