Porphyrin-sensitized solar cells

Chemical Society Reviews 42, 291-304 DOI: 10.1039/c2cs35257e

Citation Report

#	Article	IF	CITATIONS
1	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 1990, , 277-288.	0.5	4
2	Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11553.	5.2	94
3	Click Chemistry Inspired Synthesis of Glycoporphyrin Dendrimers. Journal of Organic Chemistry, 2013, 78, 8184-8190.	1.7	76
4	Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Chemistry B, 2013, 117, 9288-9304.	1.2	36
5	D–π–A structured porphyrins for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 10008.	5.2	64
6	New Dual Donor–Acceptor (2Dâ€i€â€2A) Porphyrin Sensitizers for Stable and Costâ€Effective Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2144-2153.	1.7	49
7	Solvent dependent supramolecular self-assembly and surface reversal of a modified porphyrin. Physical Chemistry Chemical Physics, 2013, 15, 12510.	1.3	24
8	Synthesis of diphenylamino-carbazole substituted BODIPY dyes and their photovoltaic performance in dye-sensitized solar cells. RSC Advances, 2013, 3, 18099.	1.7	33
9	Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy and Environmental Science, 2013, 6, 2944.	15.6	297
10	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dyeâ€Sensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	1.7	60
11	Light harvesting with Earth abundant d-block metals: Development of sensitizers in dye-sensitized solar cells (DSCs). Coordination Chemistry Reviews, 2013, 257, 3089-3106.	9.5	162
12	3,4-Ethylenedioxythiophene as an electron donor to construct arylamine sensitizers for highly efficient iodine-free dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 15441.	1.3	16
13	Improving Pore Filling of Gel Electrolyte and Charge Transport in Photoanode for High-Efficiency Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8289-8293.	4.0	15
14	Non-aggregated hyperbranched phthalocyanines: single molecular nanostructures for efficient semi-opaque photovoltaics. RSC Advances, 2013, 3, 545-558.	1.7	38
15	Benzo[1,2-b:4,5-b′]difuran-based sensitizers for dye-sensitized solar cells. RSC Advances, 2013, 3, 19798.	1.7	14
16	Photophysics of Soret-Excited Tin(IV) Porphyrins in Solution. Journal of Physical Chemistry A, 2013, 117, 7833-7840.	1.1	15
17	Facile synthesis of highly stable BF3-induced meso-tetrakis (4-sulfonato phenyl) porphyrin (TPPS4)-J-aggregates: structure, photophysical and electrochemical properties. New Journal of Chemistry, 2013, 37, 3745.	1.4	11
18	Efficient Sensitization of Dye-Sensitized Solar Cells by Novel Triazine-Bridged Porphyrin–Porphyrin Dyads. Inorganic Chemistry, 2013, 52, 9813-9825.	1.9	51

TATION RED

#	Article	IF	CITATIONS
19	Highly Asymmetrical Porphyrins with Enhanced Push–Pull Character for Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 17075-17081.	1.7	129
20	Effects of surface-anchoring mode and aggregation state on electron injection from chalcogenorhodamine dyes to titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 264, 18-25.	2.0	16
21	Computational screening of functionalized zinc porphyrins for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 19478.	1.3	36
22	Effect of porphyrin loading on performance of dye sensitized solar cells based on iodide/tri-iodide and cobalt electrolytes. Journal of Materials Chemistry A, 2013, 1, 13640.	5.2	22
23	Recent Advances in Phthalocyanineâ€Based Sensitizers for Dyeâ€5ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 6475-6489.	1.2	211
24	Synthesis, Characterization, and Electron-Transfer Processes in Indium Ferrocenyl-Containing Porphyrins and Their Fullerene Adducts. Inorganic Chemistry, 2013, 52, 9496-9510.	1.9	54
25	Studies of a supramolecular photoelectrochemical cell using magnesium tetraphenylporphyrin as photosensitizer. Journal of Porphyrins and Phthalocyanines, 2013, 17, 733-741.	0.4	4
26	Field-Induced Fluorescence Quenching and Enhancement of Porphyrin Sensitizers on TiO ₂ Films and in PMMA Films. Journal of Physical Chemistry C, 2013, 117, 24761-24766.	1.5	24
27	Salicylic Acid As a Tridentate Anchoring Group for <i>azo</i> -Bridged Zinc Porphyrin in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 12631-12637.	4.0	52
28	A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Materials, 2013, 5, e68-e68.	3.8	143
29	Device Modeling of Dye-Sensitized Solar Cells. Topics in Current Chemistry, 2013, 352, 325-395.	4.0	26
30	Synthesis of new truxene based organic sensitizers for iodine-free dye-sensitized solar cells. Tetrahedron, 2013, 69, 10573-10580.	1.0	12
31	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Thiophene and Alkyl Substituents on Photovoltaic Performance. Journal of Physical Chemistry C, 2013, 117, 2059-2065.	1.5	37
32	Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(ii)-terpyridine dyes and graphene modified TiO2 photoanode. RSC Advances, 2013, 3, 22412.	1.7	67
33	Recent developments in sensitizers for mesoporous sensitized solar cells. Frontiers of Optoelectronics, 2013, 6, 373-385.	1.9	6
34	β-(Ethynylbenzoic acid)-substituted push–pull porphyrins: DSSC dyes prepared by a direct palladium-catalyzed alkynylation reaction. Chemical Communications, 2013, 49, 9164.	2.2	46
35	Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Materials Chemistry and Physics, 2013, 143, 296-304.	2.0	26
36	Understanding TiO ₂ Sizeâ€Dependent Electron Transport Properties of a Grapheneâ€TiO ₂ Photoanode in Dyeâ€Sensitized Solar Cells Using Conducting Atomic Force Microscopy. Advanced Materials, 2013, 25, 6900-6904.	11.1	43

#	Article	IF	CITATIONS
37	Novel expanded porphyrin sensitized solar cells using boryl oxasmaragdyrin as the sensitizer. Chemical Communications, 2013, 49, 6882.	2.2	40
38	Computational design of concomitant type-I and type-II porphyrin sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18471.	1.3	44
39	Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics. Physical Chemistry Chemical Physics, 2013, 15, 18562.	1.3	35
40	Novel D–̀–A structured porphyrin dyes with diphenylamine derived electron-donating substituents for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3977.	5.2	75
41	Attempt to Improve the Performance of Pyrrole-Containing Dyes in Dye Sensitized Solar Cells by Adjusting Isolation Groups. ACS Applied Materials & Interfaces, 2013, 5, 12469-12477.	4.0	45
42	Plasmonic Enhancement of Dye Sensitized Solar Cells in the Red-to-near-Infrared Region using Triangular Core–Shell Ag@SiO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 11044-11051.	4.0	102
43	Triarylamine‧ubstituted Imidazole―and Quinoxalineâ€Fused Push–Pull Porphyrins for Dye‧ensitized Solar Cells. ChemSusChem, 2013, 6, 508-517.	3.6	70
44	Highly efficient dye-sensitized solar cells: progress and future challenges. Energy and Environmental Science, 2013, 6, 1443.	15.6	596
45	Photodegradation of rhodamine B with molecular oxygen catalyzed by a novel unsymmetrical iron porphyrazine under simulated sunlight. Catalysis Science and Technology, 2013, 3, 1415.	2.1	16
46	A broad-band capturing and emitting molecular triad: synthesis and photochemistry. Chemical Communications, 2013, 49, 2867.	2.2	69
47	Formation of size-tunable dandelion-like hierarchical rutile titania nanospheres for dye-sensitized solar cells. RSC Advances, 2013, 3, 559-565.	1.7	22
48	The influence of electron injection and charge recombination kinetics on the performance of porphyrin-sensitized solar cells: effects of the 4-tert-butylpyridine additive. Physical Chemistry Chemical Physics, 2013, 15, 4651.	1.3	32
49	Formation, structure, and reactivity of meso-tetraaryl-chlorolactones, -porpholactams, and -chlorolactams, porphyrin and chlorin analogues incorporating oxazolone or imidazolone moieties. Organic and Biomolecular Chemistry, 2013, 11, 3616.	1.5	34
50	Squaraine Dyes for Dyeâ€Sensitized Solar Cells: Recent Advances and Future Challenges. Chemistry - an Asian Journal, 2013, 8, 1706-1719.	1.7	113
51	Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1570-1577.	2.1	50
52	Zinc Porphyrins with a Pyridineâ€Ringâ€Anchoring Group for Dyeâ€6ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 956-962.	1.7	67
53	β-Substituted ferrocenyl porphyrins: synthesis, structure, and properties. Dalton Transactions, 2013, 42, 5539.	1.6	47
54	Significant Enhancement of Open-Circuit Voltage in Indoline-Based Dye-Sensitized Solar Cells via Retarding Charge Recombination. Chemistry of Materials, 2013, 25, 1713-1722.	3.2	87

#	Article	IF	CITATIONS
55	Properties of Chromophores Determining Recombination at the TiO ₂ –Dye–Electrolyte Interface. Langmuir, 2013, 29, 8773-8781.	1.6	43
56	Enhanced Light Harvesting with a Reflective Luminescent Down-Shifting Layer for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5397-5402.	4.0	44
57	New triphenylamine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for iodine-free dye-sensitized solar cells. Chemical Communications, 2013, 49, 5748.	2.2	71
58	Azacalixphyrin: The Hidden Porphyrin Cousin Brought to Light. Angewandte Chemie - International Edition, 2013, 52, 6250-6254.	7.2	28
59	Porphyrins Fused with Strongly Electron-Donating 1,3-Dithiol-2-ylidene Moieties: Redox Control by Metal Cation Complexation and Anion Binding. Journal of the American Chemical Society, 2013, 135, 10852-10862.	6.6	58
60	Porphothionolactones: synthesis, structure, physical, and chemical properties of a chemodosimeter for hypochlorite. Organic and Biomolecular Chemistry, 2013, 11, 4613.	1.5	36
61	Novel D–π–A structured Zn(ii)–porphyrin dyes with bulky fluorenyl substituted electron donor moieties for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 9848.	5.2	43
62	Synthesis of Functionalized <i>trans</i> â€A ₂ B ₂ â€Porphyrins Using Donor–Acceptor Cyclopropaneâ€Đerived Dipyrromethanes. Advanced Synthesis and Catalysis, 2013, 355, 1409-1422.	2.1	19
63	Diketopyrrolopyrrole-zinc porphyrin, a tuned panchromatic association for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7572.	5.2	45
64	Photovoltaic performance of dye-sensitized solar cells based on D–π–A type BODIPY dye with two pyridyl groups. New Journal of Chemistry, 2013, 37, 2479.	1.4	74
65	Influence of the N-heterocycle substituent of the dithieno[3,2-b:2′,3′-d]pyrrole (DTP) spacer as well as sensitizer adsorption time on the photovoltaic properties of arylamine organic dyes. Journal of Materials Chemistry A, 2013, 1, 11809.	5.2	40
66	Improving efficiencies by modulating the central metal ion in porphyrin-oligothiophene-mediated P3HT/PCBM organic solar cells. Synthetic Metals, 2013, 178, 56-61.	2.1	31
67	Amination of <i>meso</i> â€Bromoporphyrins and 9â€Haloanthracenes with Diarylamines Catalyzed by a Palladium–PEPPSI Complex. Asian Journal of Organic Chemistry, 2013, 2, 1066-1071.	1.3	23
68	Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells. International Journal of Molecular Sciences, 2013, 14, 20171-20188.	1.8	54
69	Photoinduced Charge Separation in Zinc–Porphyrin/Tungsten–Alkylidyne Dyads: Generation of Reactive Porphyrin and Metallo Radical States. Chemistry - A European Journal, 2013, 19, 17082-17091.	1.7	12
70	A Highly Conjugated Benzimidazole Carbeneâ€Based Ruthenium Sensitizer for Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2196-2203.	1.7	9
71	Watching energy transfer in metalloporphyrin heterodimers using stimulated X-ray Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15597-15601.	3.3	42
73	Cosensitization of Ruthenium–Polypyridyl Dyes with Organic Dyes in Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 1328-1335.	0.7	30

#	Article	IF	CITATIONS
74	Anion-controlled Aggregation of a Porphyrin at Solid–Liquid Interfaces: A Distinguished Effect of Different Aggregates in Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 918-920.	0.7	3
75	Oxidative Fusion Reactions of mesoâ€(Diarylamino)porphyrins. Angewandte Chemie - International Edition, 2013, 52, 9728-9732.	7.2	84
76	Photoinduced electron injection between DFCP and TiO2 nanoparticles. Neuroscience of Decision Making, 2013, 1, 1-5.	1.3	0
80	First synthesis of <i>meso</i> -substituted pyrrolo[1,2- <i>a</i>]quinoxalinoporphyrins. Beilstein Journal of Organic Chemistry, 2014, 10, 808-813.	1.3	12
81	Effects of Coreâ€modification on Porphyrin Sensitizers to the Efficiencies of Dyeâ€sensitized Solar Cells. Journal of the Chinese Chemical Society, 2014, 61, 545-555.	0.8	13
82	Tautomerism and Atropisomerism in Freeâ€Base (<i>meso</i>)â€Strapped Porphyrins: Static and Dynamic Aspects. Chemistry - A European Journal, 2014, 20, 16337-16349.	1.7	15
83	Temperature dependant electrical properties of formyl- TIPPCu (II)/p- Si heterojunction diode. Modern Physics Letters B, 2014, 28, 1450100.	1.0	0
84	Nanofabrication of uniform and stabilizer-free self-assembled platinum monolayers as counter electrodes for dye-sensitized solar cells. NPG Asia Materials, 2014, 6, e118-e118.	3.8	14
85	N,S,Pâ€Hybrid Donor–ï€â€"Acceptor Organic Dyes for Dye‣ensitized Solar Cell: Synthesis, Optical Properties, and Photovoltaic Performances. Heteroatom Chemistry, 2014, 25, 533-547.	0.4	21
86	Effect of the anchoring group in porphyrin sensitizers: phosphonate versus carboxylate linkages. Turkish Journal of Chemistry, 2014, 38, 980-993.	0.5	14
87	Synthesis, characterization and electrochemical properties of <i>meso</i> -thiocarboxylate-substituted porphyrin derivatives. Journal of Porphyrins and Phthalocyanines, 2014, 18, 967-974.	0.4	13
88	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2014, 26, 573-595.	0.5	1
89	Development of D–π–A dyes with a pyrazine ring as an electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Advances, 2014, 4, 30225.	1.7	23
90	Diphenyldibenzofulveneâ€Based Sensitizers for Efficient Dyeâ€Sensitized Solar Cells: The Tuned Absorption Properties and Partially Suppressed Aggregation. Asian Journal of Organic Chemistry, 2014, 3, 176-184.	1.3	7
91	Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis. Chemistry - A European Journal, 2014, 20, 15587-15604.	1.7	35
92	Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 17561-17569.	6.6	55
93	Spectroscopic and photophysical study of the demetallation of a zinc porphyrin and the aggregation of its free base in a tetraalkylphosphonium ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 26252-26260.	1.3	12
94	Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chemical Communications, 2014, 50, 14885-14888	2.2	19

#	Article	IF	CITATIONS
95	Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 12330-12396.	23.0	839
96	Complete Photodynamics of the Efficient YD2-o-C8-Based Solar Cell. Journal of Physical Chemistry C, 2014, 118, 29674-29687.	1.5	35
98	Comparative Studies on Rigid ï€ Linkerâ€Based Organic Dyes: Structure–Property Relationships and Photovoltaic Performance. ChemSusChem, 2014, 7, 3396-3406.	3.6	7
99	β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
100	Exploring the Use of Dyeâ€Sensitisation by Visibleâ€Light as New Approach to Selfâ€Cleaning Textiles. Journal of the Chinese Chemical Society, 2014, 61, 757-762.	0.8	0
101	Survey of Synthetic Routes towards Phosphorus Substituted Porphyrins. Macroheterocycles, 2014, 7, 122-132.	0.9	4
102	Dye-sensitized photo-hydrogenation of aromatic ketones on titanium dioxide under visible light irradiation. Catalysis Communications, 2014, 43, 61-65.	1.6	29
103	Formation and thermodynamic stability of (polymer+porphyrin) supramolecular structures in aqueous solutions. Journal of Chemical Thermodynamics, 2014, 75, 119-127.	1.0	6
104	Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coordination Chemistry Reviews, 2014, 263-264, 65-85.	9.5	159
105	Ethynyl thiophene-appended unsymmetrical zinc porphyrin sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 14165-14175.	1.7	20
106	Joint Electrical, Photophysical, and Photovoltaic Studies on Truxene Dyeâ€5ensitized Solar Cells: Impact of Arylamine Electron Donors. ChemSusChem, 2014, 7, 795-803.	3.6	29
107	Kinetics versus Energetics in Dye-Sensitized Solar Cells Based on an Ethynyl-Linked Porphyrin Heterodimer. Journal of Physical Chemistry C, 2014, 118, 1426-1435.	1.5	13
108	A novel trigeminal zinc porphyrin and corresponding porphyrin monomers for dye-sensitized solar cells. RSC Advances, 2014, 4, 10439.	1.7	8
109	Two self-assembled N-heterocyclic-substituted zinc porphyrins and isonicotinic acid dyads and their applications in supramolecular solar cells. Inorganica Chimica Acta, 2014, 410, 126-130.	1.2	5
110	Physicochemical Investigation of the Panchromatic Effect on β-Substituted Zn ^{II} Porphyrinates for DSSCs: The Role of the π Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. Journal of Physical Chemistry C, 2014, 118, 7307-7320.	1.5	27
111	A New Approach for the Photosynthetic Antenna–Reaction Center Complex with a Model Organized Around an <i>s</i> â€Triazine Linker. Chemistry - A European Journal, 2014, 20, 2049-2057.	1.7	17
112	Novel Nearâ€Infrared Squaraine Sensitizers for Stable and Efficient Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2014, 24, 3059-3066.	7.8	77
113	Homomolecular non-coherent photon upconversion by triplet–triplet annihilation using a zinc porphyrin on wide bandgap semiconductors. Chemical Physics Letters, 2014, 598, 17-22.	1.2	14

#	Article	IF	CITATIONS
114	N-Aryl group influences on the properties of umbrella-shaped thiophene-(N-aryl)pyrrole-thiophene dyes. Synthetic Metals, 2014, 191, 141-150.	2.1	4
115	Molecular Engineering of New Thienylâ€Bodipy Dyes for Highly Efficient Panchromatic Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400085.	10.2	47
116	Fluorescence Enhancement of a Porphyrin–Viologen Dyad by Pseudorotaxane Formation with Cucurbit[7]uril. European Journal of Organic Chemistry, 2014, 2014, 2873-2877.	1.2	15
117	Metal–Porphyrin: A Potential Catalyst for Direct Decomposition of N ₂ O by Theoretical Reaction Mechanism Investigation. Environmental Science & Technology, 2014, 48, 7101-7110.	4.6	44
118	A Propellerâ€Shaped, Triazineâ€Linked Porphyrin Triad as Efficient Sensitizer for Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 1020-1033.	1.0	43
119	Ruthenium complexes with tridentate ligands for dye-sensitized solar cells. Polyhedron, 2014, 82, 37-49.	1.0	18
120	Status of Dye Solar Cell Technology as a Guideline for Further Research. ChemPhysChem, 2014, 15, 1076-1087.	1.0	40
121	Sterically Hindered Phthalocyanines for Dye‣ensitized Solar Cells: Influence of the Distance between the Aromatic Core and the Anchoring Group. ChemPhysChem, 2014, 15, 1033-1036.	1.0	49
122	Porphyrin Dyes on TiO ₂ Surfaces with Different Orientations: A Photophysical, Photovoltaic, and Theoretical Investigation. Journal of Physical Chemistry A, 2014, 118, 3410-3418.	1.1	22
123	<i>N</i> â€Annulated Perylene as a Coplanar Ï€â€Łinker Alternative to Benzene as a Low Energyâ€Gap, Metalâ€Free Dye in Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400244.	10.2	57
124	Functionalized porphyrin derivatives for solar energy conversion. Polyhedron, 2014, 82, 19-32.	1.0	45
125	Porphyrins for efficient dye-sensitized solar cells covering the near-IR region. Journal of Materials Chemistry A, 2014, 2, 991-999.	5.2	72
126	8-Hydroxylquinoline-conjugated porphyrins as broadband light absorbers for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 1565.	1.4	23
127	Redox couple related influences of bulky electron donor as well as spacer in organic dye-sensitized mesoscopic solar cells. Tetrahedron, 2014, 70, 6203-6210.	1.0	7
128	Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Chemistry B, 2014, 118, 1630-1647.	1.2	22
129	Highly efficient porphyrin-sensitized solar cells with enhanced light harvesting ability beyond 800 nm and efficiency exceeding 10%. Energy and Environmental Science, 2014, 7, 1392.	15.6	137
130	<i>N</i> -Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 265-272.	6.6	283
131	Design and Syntheses of Highly Emissive Aminobenzopyrano-xanthene Dyes in the Visible and Far-Red Regions. Organic Letters, 2014, 16, 258-261.	2.4	38

#	Article	IF	CITATIONS
132	Structural optimization of thiophene-(N-aryl)pyrrole-thiophene-based metal-free organic sensitizer for the enhanced dye-sensitized solar cell performance. Tetrahedron, 2014, 70, 371-379.	1.0	10
133	A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO ₂ -nanorods for high performance dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 1381-1385.	2.7	25
134	The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Physical Chemistry Chemical Physics, 2014, 16, 14435.	1.3	57
135	Three p-carboxyphenyl groups possessing zinc porphyrins: efficient, stable, and cost-effective sensitizers for dye-sensitized solar cells. Chemical Communications, 2014, 50, 725-727.	2.2	33
136	"Spider―Shaped Porphyrins with Conjugated Pyridyl Anchoring Groups as Efficient Sensitizers for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2014, 53, 11871-11881.	1.9	29
137	Rational modifications on champion porphyrin dye SM315 using different electron-withdrawing moieties toward high performance dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24994-25003.	1.3	40
138	Synthesis, Spectral, and Electrochemical Studies of Electronically Tunable β-Substituted Porphyrins with Mixed Substituent Pattern. Inorganic Chemistry, 2014, 53, 12706-12719.	1.9	61
139	Self-assembled Supramolecular Materials in Organic Electronics. RSC Smart Materials, 2014, , 1-52.	0.1	7
140	Triphenylamineâ€Substituted Metalloporphyrins for Solutionâ€Processed Bulk Heterojunction Solar Cells: The Effect of the Central Metal Ion on Device Performance. European Journal of Inorganic Chemistry, 2014, 2014, 4852-4857.	1.0	7
141	Cosensitizers for simultaneous filling up of both absorption valleys of porphyrins: a novel approach for developing efficient panchromatic dye-sensitized solar cells. Chemical Communications, 2014, 50, 15609-15612.	2.2	99
142	Development of D–π–Cat fluorescent dyes with a catechol group for dye-sensitized solar cells based on dye-to-TiO2 charge transfer. Journal of Materials Chemistry A, 2014, 2, 8500.	5.2	38
143	Construction of a photoanode with varied TiO2nanostructures for a Z907-sensitized solar cell with efficiency exceeding 10%. Journal of Materials Chemistry A, 2014, 2, 8749-8757.	5.2	8
144	New organic dyes based on a dibenzofulvene bridge for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14181-14188.	5.2	31
145	Enhanced performance of dye-sensitized solar cells using carbazole-substituted di-chromophoric porphyrin dyes. Journal of Materials Chemistry A, 2014, 2, 16963-16977.	5.2	30
146	Synthesis of carboxylate functionalized A ₃ B and A ₂ B ₂ thiaporphyrins and their application in dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 3960-3972.	1.4	17
147	Improvement of photovoltaic performance of DSSCs by modifying panchromatic zinc porphyrin dyes with heterocyclic units. Journal of Materials Chemistry A, 2014, 2, 20841-20848.	5.2	12
148	Controlled self-assembly and photovoltaic characteristics of porphyrin derivatives on a silicon surface at solid–liquid interfaces. Soft Matter, 2014, 10, 2612.	1.2	32
149	Spectroscopy and Dynamics of YD2-o-C8 in Solution and Interacting with Alumina Nanoparticles Electrode. Journal of Physical Chemistry C, 2014, 118, 11365-11376.	1.5	18

#	Article	IF	CITATIONS
150	Palladium atalyzed Amination of Aryl Sulfides with Anilines. Angewandte Chemie - International Edition, 2014, 53, 9329-9333.	7.2	103
151	Stability of ruthenium/organic dye co-sensitized solar cells: a joint experimental and computational investigation. RSC Advances, 2014, 4, 57620-57628.	1.7	14
152	Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells. RSC Advances, 2014, 4, 31759-31763.	1.7	11
153	Advances in phthalocyanine-sensitized solar cells (PcSSCs). Journal of Materials Chemistry A, 2014, 2, 15672-15682.	5.2	113
154	A new class of Zn ^{II} and Cr ^{III} porphyrins incorporated into porous polymer matrices via an atmospheric pressure plasma enhanced CVD to form gas sensing layers. Journal of Materials Chemistry A, 2014, 2, 1560-1570.	5.2	11
155	Dye-sensitized solar cells based on triazine-linked porphyrin dyads containing one or two carboxylic acid anchoring groups. Inorganic Chemistry Frontiers, 2014, 1, 256-270.	3.0	21
156	A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2014, 50, 6540-6542.	2.2	65
157	Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production. Physical Chemistry Chemical Physics, 2014, 16, 4106.	1.3	71
158	Co-Sensitization of Zinc and Free-Base Porphyrins with an Organic Dye for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 27801-27807.	1.5	44
159	Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications. Physical Chemistry Chemical Physics, 2014, 16, 21496-21505.	1.3	30
160	Porphyrins with β-acetylene-bridged functional groups for efficient dye-sensitized solar cells. RSC Advances, 2014, 4, 13201.	1.7	25
161	Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion. Physical Chemistry Chemical Physics, 2014, 16, 19781-19789.	1.3	25
162	Fine Tuning of Fluorene-Based Dye Structures for High-Efficiency <i>p</i> -Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 10614-10622.	4.0	64
163	Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring triphenylamine donor antennas. Journal of Materials Chemistry A, 2014, 2, 4945-4953.	5.2	54
164	Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 3521.	2.7	26
165	Synthesis and properties of a meso- tris–ferrocene appended zinc(ii) porphyrin and a critical evaluation of its dye sensitised solar cell (DSSC) performance. RSC Advances, 2014, 4, 22733-22742.	1.7	45
166	Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Advances, 2014, 4, 26621-26634.	1.7	119
167	Fluorene functionalized porphyrins as broadband absorbers for TiO ₂ nanocrystalline solar cells. Journal of Materials Chemistry A, 2014, 2, 13667.	5.2	20

ARTICLE IF CITATIONS Ecofriendly Porphyrin Synthesis by using Water under Microwave Irradiation. ChemSusChem, 2014, 7, 168 3.6 44 2821-2824. Influence of Porphyrinic Structure on Electron Transfer Processes at the Electrolyte/Dye/TiÓ₂ Interface in PSSCs: a Comparison between meso Push–Pull and β-Pyrrolic Architectures. ACS Applied Materials & amp; Interfaces, 2014, 6, 15841-15852. Exceptional Stability of Azacalixphyrin and Its Dianion. Journal of Physical Chemistry A, 2014, 118, 170 14 1.1 8883-8888. Synthesis and Characterization of Donorâ€"Ĩ€â€Acceptorâ€Based Porphyrin Sensitizers: Potential 171 Ápplication of Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 14074-14083. Influence of Structural Variations in Pushâ€"Pull Zinc Porphyrins on Photovoltaic Performance of 172 3.6 39 Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 1107-1113. A Near-Infrared Dithieno[2,3-<i>a</i>:3â€²,2â€²-<i>c</i>]phenazine-Based Organic Co-Sensitizer for Highly Efficient and Stable Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & amp; 4.0 Interfaces, 2014, 6, 19308-19317. NIR Dual Luminescence from an Extended Porphyrin. Spectroscopy, Photophysics and Theory. Journal 174 1.1 11 of Physical Chemistry A, 2014, 118, 3616-3624. Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO₂ Nanoparticles: Dissecting the Complex Electronic Coupling Dependent Dynamics. Journal of Physical Chemistry C, 2014, 118, 20209-20221. 1.5 Unraveling the Pivotal Impacts of Electron-Acceptors on Light Absorption and Carrier 176 3.2 34 Photogeneration in Perylene Dye Sensitized Solar Cells. ACS Photonics, 2014, 1, 710-717. A cyclopenta[1,2-b:5,4-bâ€2]dithiophene–porphyrin conjugate for mesoscopic solar cells: a D–̀–D–A 1.3 approach. Physical Chemistry Chemical Physics, 2014, 16, 24755-24762. Bis(9,9-dihexyl-9H-fluorene-7-yl)amine (BDFA) as a new donor for porphyrin-sensitized solar cells. 178 7 1.4 Organic Electronics, 2014, 15, 2448-2460. Impact of Metal Ions in Porphyrinâ€Based Applied Materials for Visibleâ€Light Photocatalysis: Key Information from Ultrafast Electronic Spectroscopy. Chemistry - A European Journal, 2014, 20, 179 36 10475-10483. Correlating Multichannel Charge Transfer Dynamics with Tilt Angles of Organic Donorâ€"Acceptor 181 1.5 13 Dyes Anchored on Titania. Journal of Physical Chemistry C, 2014, 118, 16441-16446. Synthesis, optical and electrochemical properties of new ferrocenyl substituted triphenylamine based donor $\hat{a} \in \hat{a}$ cceptor dyes for dye sensitized solar cells. RSC Advances, 2014, 4, 34904-34911. 1.7 Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free 183 5.221 ruthenium sensitizers. Journal of Materials Chemistry A, 2014, 2, 19556-19565. Panchromatic absorbers for solar light-harvesting. Chemical Communications, 2014, 50, 14512-14515. 184 2.2 34 Efficient Solar Cells Sensitized by Porphyrins with an Extended Conjugation Framework and a 185 Carbazole Donor: From Molecular Design to Cosensitization. Angewandte Chemie - International 229 7.2 Edition, 2014, 53, 10779-10783. Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer. Journal of Materials Chemistry A, 2014, 2, 17495-17501.

		15	0
#	ARTICLE Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account	IF	CITATIONS
187	of optical and photovoltaic studies. RSC Advances, 2014, 4, 53588-53601.	1.7	35
188	Probing the Steric and Electronic Characteristics of a New Bis-Pyrrolide Pincer Ligand. Inorganic Chemistry, 2014, 53, 1361-1369.	1.9	46
189	Cyclo[8]pyrrole: An Androgynous Expanded Porphyrin That Acts as Both an Electron Donor and Acceptor in Anion-Bound Supramolecular Electron Donor–Acceptor Complexes. Journal of Physical Chemistry C, 2014, 118, 18436-18444.	1.5	16
190	Common approaches to the synthesis of tetrapyrrole macroheterocyclic compounds: Promising materials for photovoltaic devices. Polymer Science - Series C, 2014, 56, 84-103.	0.8	5
191	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics, 2014, 16, 9713.	1.3	319
192	New layer-by-layer Nb ₂ O ₅ –TiO ₂ film as an effective underlayer in dye-sensitised solar cells. RSC Advances, 2014, 4, 10310-10316.	1.7	19
193	Femtosecond Infrared Transient Absorption Dynamics of Benzimidazole-Based Ruthenium Complexes on TiO ₂ Films for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16904-16911.	1.5	20
194	Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Interfaces, 2014, 6, 8715-8722.	4.0	59
195	Optimizing porphyrins for dye sensitized solar cells using large-scale <i>ab initio</i> calculations. Physical Chemistry Chemical Physics, 2014, 16, 16246-16254.	1.3	29
196	TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells. Nanoscale Research Letters, 2014, 9, 93.	3.1	10
197	Electronic tuning effects via π-linkers in tetrathiafulvalene-based dyes. New Journal of Chemistry, 2014, 38, 3269.	1.4	23
198	D–π–A Structured Zn ^{II} â€Porphyrin Dyes with Thiophene Moiety for Highly Efficient Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2014, 1, 637-644.	1.7	13
199	Modulated Charge Injection in p-Type Dye-Sensitized Solar Cells Using Fluorene-Based Light Absorbers. ACS Applied Materials & Interfaces, 2014, 6, 3448-3454.	4.0	48
200	Design of Efficient Metal-Free Organic Dyes Having an Azacyclazine Scaffold as the Donor Fragment for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 20763-20771.	1.5	42
201	The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Advances, 2014, 4, 21379-21404.	1.7	125
202	Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells. Chemical Communications, 2014, 50, 13952-13955.	2.2	64
203	Development of a D–Ĩ€â€"A dye with benzothienopyridine as the electron-withdrawing anchoring group for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3293-3296.	5.2	46
204	Promising alkoxy-wrapped porphyrins with novel push–pull moieties for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14883-14889.	5.2	17

#	Article	IF	Citations
" 205	The role of terminal groups in electronic structures and related properties: The case of push–pull		12
200	porphyrin dye sensitizers for solar cells. Computational and Theoretical Chemistry, 2014, 1039, 62-70.		
206	Efficient photoluminescence from the encumbered platinum(II) porphyrins. Inorganic Chemistry Communication, 2014, 45, 124-126.	1.8	1
207	Organic Sensitizers Featuring 9,10-Diaryl-Substituted Anthracene Unit. ACS Sustainable Chemistry and Engineering, 2014, 2, 1776-1784.	3.2	24
208	Immobilisation of Zinc porphyrins on mesoporous SBA-15: Effect of bulky substituents on the surface interaction. Microporous and Mesoporous Materials, 2014, 193, 103-110.	2.2	10
209	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. Computational and Theoretical Chemistry, 2014, 1030, 59-66.	1.1	38
210	Surface-assisted Dehydrogenative Homocoupling of Porphine Molecules. Journal of the American Chemical Society, 2014, 136, 9346-9354.	6.6	140
211	Strategy to Improve Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid as a Tridentate Anchoring Group. ACS Applied Materials & amp; Interfaces, 2014, 6, 6697-6703.	4.0	60
212	Highly Efficient Dyeâ€sensitized Solar Cells by Coâ€sensitization of Organic Dyes and Coâ€adsorbent Chenodeoxycholic Acid. Chinese Journal of Chemistry, 2014, 32, 474-478.	2.6	10
213	2-Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 3227-3235.	1.4	47
214	Dye-sensitized solar cells using ethynyl-linked porphyrin trimers. Physical Chemistry Chemical Physics, 2014, 16, 4551.	1.3	24
215	Selfâ€Organization of Polar Porphyrinoids. ChemPlusChem, 2014, 79, 895-906.	1.3	28
216	Tunable optical constants of thermally grown thin porphyrin films on silicon for photovoltaic applications. Solar Energy Materials and Solar Cells, 2014, 127, 169-173.	3.0	14
217	Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 477-484.	2.0	40
218	Excited state electron transfer reactions of ProtoporphyrinIX with fullerene. Synthetic Metals, 2014, 194, 77-81.	2.1	5
219	Dâ~'π–A Porphyrin Sensitizers with Ï€-Extended Conjugation for Mesoscopic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14739-14748.	1.5	26
220	Printable Highly Catalytic Pt- and TCO-Free Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 2224-2229.	4.0	32
221	Dual Binding Site Assisted Chromogenic and Fluorogenic Recognition and Discrimination of Fluoride and Cyanide by a Peripherally Borylated Metalloporphyrin: Overcoming Anion Interference in Organoboron Based Sensors. Analytical Chemistry, 2014, 86, 3616-3624.	3.2	81
222	Dye-sensitized Solar Cells Using Supramolecular Porphyrin Arrays Inspired by π-Stacking Structures of Photosynthetic Light-harvesting Complexes. Chemistry Letters, 2014, 43, 207-209.	0.7	5

#	Article	IF	CITATIONS
223	Dye-sensitized Solar Cells Using Ethynyl-linked Porphyrin Trimers with an Anchoring Group at Long-axis End or Short-axis End. Chemistry Letters, 2014, 43, 655-657.	0.7	9
224	Controlling the Rotation of Porphyrin Units in Ethynyl-linked Porphyrin Trimers for Dye-sensitized Solar Cells by Anchoring onto TiO2 Surface. Chemistry Letters, 2014, 43, 796-798.	0.7	4
225	Electrospinning of Tetraphenylporphyrin Compounds into Wires. Particle and Particle Systems Characterization, 2014, 31, 88-93.	1.2	27
226	Push–Pull Bacteriochlorin: Panchromatic Sensitizer for Dye-sensitized Solar Cell. Chemistry Letters, 2015, 44, 1395-1397.	0.7	6
227	Selective Halogenation of C–H Bonds on Porphyrin Rings Using NaX/H2O2. Chemistry Letters, 2015, 44, 1383-1385.	0.7	2
228	Indolylindolinone: Easily Accessible, Tunable, and Wide-range Absorbing Dyes. Chemistry Letters, 2015, 44, 1703-1705.	0.7	5
229	Fluorenâ€9â€ylideneâ€Based Dyes for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 5537-5545.	1.2	5
230	Insights into the Synthesis and the Solution Behavior of <i>meso</i> â€Aryloxy―and Alkoxy‧ubstituted Porphyrins. European Journal of Organic Chemistry, 2015, 2015, 5610-5619.	1.2	14
231	Synthesis and Characterization of Carbazoleâ€Linked Porphyrin Tweezers. Chemistry - A European Journal, 2015, 21, 12018-12025.	1.7	3
232	Indachlorins: Nonplanar Indanoneâ€Annulated Chlorin Analogues with Panchromatic Absorption Spectra between 300 and 900â€nm. Chemistry - A European Journal, 2015, 21, 11118-11128.	1.7	28
233	Azobenzeneâ€Bridged Porphyrin Nanorings: Syntheses, Structures, and Photophysical Properties. Chemistry - A European Journal, 2015, 21, 15328-15338.	1.7	20
234	Similar or Totally Different: the Adjustment of the Twist Conformation Through Minor Structural Modification, and Dramatically Improved Performance for Dye‧ensitized Solar Cell. Advanced Energy Materials, 2015, 5, 1500846.	10.2	51
235	Zn(II)â€Protoporphyrin IXâ€Based Photosensitizerâ€Imprinted Auâ€Nanoparticleâ€Modified Electrodes for Photoelectrochemical Applications. Advanced Functional Materials, 2015, 25, 6470-6477.	7.8	5
236	Trifunctional TiO ₂ Nanoparticles with Exposed {001} Facets as Additives in Cobaltâ€Based Porphyrinâ€ S ensitized Solar Cells. Advanced Functional Materials, 2015, 25, 6093-6100.	7.8	15
237	Tropolone as a Highâ€Performance Robust Anchoring Group for Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9052-9056.	7.2	99
238	Ultrafast Photoinduced Charge Separation Leading to Highâ€Energy Radical Ionâ€Pairs in Directly Linked Corrole–C ₆₀ and Triphenylamine–Corrole ₆₀ Donor–Acceptor Conjugates. Chemistry - an Asian Journal, 2015, 10, 2708-2719.	1.7	27
239	Fieldâ€Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)–Porphyrin Complex. Chemistry - A European Journal, 2015, 21, 17299-17307.	1.7	50
240	Molecular Engineering of Organic Dyes with a Holeâ€Extending Donor Tail for Efficient Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 2529-2536.	3.6	18

CITATION REPORT ARTICLE IF CITATIONS A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized 1.3 12 solar cells. Beilstein Journal of Organic Chemistry, 2015, 11, 1052-1059. Synthesis and spectroscopic properties of β-triazoloporphyrin–xanthone dyads. Beilstein Journal of 1.3 Órganic Chemistry, 2015, 11, 1434-1440. Covalently Linked Free-Base and Metallo-Bis-Porphyrins: Chemistry and Diversity. Current Organic 0.9 7 Chemistry, 2015, 19, 599-651. The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers. International Journal of Molecular Sciences, 2015, 16, 1.8 27707-27720. Optical Absorption and Electron Injection of 4-(Cyanomethyl)benzoic Acid Based Dyes: A DFT Study. 0.9 2 Journal of Chemistry, 2015, 2015, 1-9. Zinc(II) Tetraphenylporphyrin Adsorption on Au(111): An Interplay Between Molecular Self-Assembly and Surface Stress. Journal of Physical Chemistry C, 2015, 119, 6101-6110. 1.5 Effects of heterocycles containing different atoms as i€-bridges on the performance of dye-sensitized 1.3 28 solar cells. Physical Chemistry Chemical Physics, 2015, 17, 16334-16340. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium. Physical Chemistry Chemical Physics, 2015, 17, 16699-16704. 1.3 Picolinic acid as an efficient tridentate anchoring group adsorbing at Lewis acid sites and BrÃ, nsted acid sites of the TiO₂ surface in dye-sensitized solar cells. Journal of Materials Chemistry 5.2 30 A, 2015, 3, 14809-14816. Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and 1.7 Chemicals. Molecules, 2015, 20, 6739-6793. Thiazolo[5,4-d]thiazole-based organic sensitizers with strong visible light absorption for 1.7 42 transparent, efficient and stable dye-sensitized solar cells. RŠC Advances, 2015, 5, 32657-32668. A Metalâ€Free Nâ€Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for 196 Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 5994-5998. TiO2 nanotube structures for the enhancement of photon utilization in sensitized solar cells. 2.6 5 Nanotechnology Reviews, 2015, 4, . Importance of the Reorganization Energy Barrier in Computational Design of Porphyrin-Based Solar 1.5 23 Cells with Cobalt-Based Redox Mediators. Journal of Physical Chemistry C, 2015, 119, 12792-12800. Co-sensitization of free-base and zinc porphyrins: An effective approach to improve the photon-to-current conversion efficiency of dye-sensitized solar cells. Journal of Porphyrins and 0.4 6 Phthalocyanines, 2015, 19, 695-707. Introduction of carboxylic ester and acid functionalities to meso-tetrakis(pentafluorophenyl)porphyrin and their limited electronic effects on the chromophore. Dyes and Pigments, 2015, 121, 159-169. Recent Advances in Phthalocyanine-Based Functional Molecular Materials. Structure and Bonding, 1.0 15 2015, , 159-199.

258Investigating Interfacial Electron Transfer in Highly Efficient Porphyrin-Sensitized Solar Cells. ACS0.50Symposium Series, 2015, , 169-188.

241

242

243

244

245

247

249

251

253

254

255

#	Article	IF	CITATIONS
259	High Photoabsorption and Photostability of Photosesitizers for Kaolinite-Bixin Solar Cells. Applied Mechanics and Materials, 0, 780, 7-15.	0.2	0
260	Adatoms underneath Single Porphyrin Molecules on Au(111). Journal of the American Chemical Society, 2015, 137, 1844-1849.	6.6	56
261	New generation solar cells: concepts, trends and perspectives. Chemical Communications, 2015, 51, 3957-3972.	2.2	170
262	Molecular Engineering of Boryl Oxasmaragdyrins through Peripheral Modification: Structure–Efficiency Relationship. Chemistry - A European Journal, 2015, 21, 4825-4841.	1.7	15
263	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	1.7	207
264	Local Energy Gap Opening Induced by Hemin Dimerization in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 3058-3062.	1.2	11
265	Catalytic C–H Imidation of Aromatic Cores of Functional Molecules: Ligand-Accelerated Cu Catalysis and Application to Materials- and Biology-Oriented Aromatics. Journal of the American Chemical Society, 2015, 137, 2460-2463.	6.6	136
266	Synthesis of π-A-porphyrins and their photoelectric performance for dye-sensitized solar cells. Renewable Energy, 2015, 77, 579-585.	4.3	12
267	Visible/Near-Infrared-Light-Induced H ₂ Production over g-C ₃ N ₄ Co-sensitized by Organic Dye and Zinc Phthalocyanine Derivative. ACS Catalysis, 2015, 5, 504-510.	5.5	203
268	Enhancement of the Yield of Photoinduced Charge Separation in Zinc Porphyrin–Quantum Dot Complexes by a Bis(dithiocarbamate) Linkage. Journal of Physical Chemistry C, 2015, 119, 5195-5202.	1.5	22
269	Synthesis of Zinc Tetraphenylporphyrin Rigid Rods with a Built-In Dipole. Journal of Physical Chemistry B, 2015, 119, 7522-7530.	1.2	9
270	Theoretical Studies on Understanding the Feasibility of Porphyrin-Sensitized Graphene Quantum Dot Solar Cell. Journal of Physical Chemistry C, 2015, 119, 3400-3407.	1.5	60
271	A meso–meso directly linked porphyrin dimer-based double D–π–A sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2015, 51, 3782-3785.	2.2	34
272	The effect of porphyrins suspended with different electronegative moieties on the photovoltaic performance of monolithic porphyrin-sensitized solar cells with carbon counter electrodes. New Journal of Chemistry, 2015, 39, 2889-2900.	1.4	11
273	<i>N</i> -Annulated Perylene-Based Push–Pull-Type Sensitizers. Organic Letters, 2015, 17, 724-727.	2.4	43
274	Effects of Number and Position of Meta and Para Carboxyphenyl Groups of Zinc Porphyrins in Dye-Sensitized Solar Cells: Structure–Performance Relationship. ACS Applied Materials & Interfaces, 2015, 7, 1879-1891.	4.0	38
275	Synthesis and properties of push–pull porphyrins as sensitizers for NiO based dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 3908-3917.	5.2	44
276	DFT and TD-DFT calculations of axially substituted tin porphyrins and an ethynyl-linked tin porphyrin dimer. Journal of Porphyrins and Phthalocyanines, 2015, 19, 610-621.	0.4	8

#	Article	IF	CITATIONS
277	Synthesis of push–pull porphyrin with two electron-donating and two electron-withdrawing groups and its application to dye-sensitized solar cell. Journal of Porphyrins and Phthalocyanines, 2015, 19, 140-149.	0.4	15
278	Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1681-1686.	3.3	133
279	Nâ€Annulated Peryleneâ€Substituted and Fused Porphyrin Dimers with Intense Nearâ€Infrared Oneâ€Photon and Twoâ€Photon Absorption. Chemistry - A European Journal, 2015, 21, 3708-3715.	1.7	18
280	Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties. Physical Chemistry Chemical Physics, 2015, 17, 6347-6358.	1.3	28
281	Noncovalent assemblies of cationic porphyrins with cage macrocycles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 35-48.	0.9	15
282	The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells. New Journal of Chemistry, 2015, 39, 3736-3746.	1.4	21
283	Design of organic dyes for dye-sensitized solar cells: Extending ï€-conjugation backbone via â€~Click' reaction to improve photovoltaic performances. Dyes and Pigments, 2015, 117, 108-115.	2.0	7
284	A theoretical perspective on charge transfer in photocatalysis. The example of Ir-based systems. Coordination Chemistry Reviews, 2015, 304-305, 133-145.	9.5	43
285	Alkyl-thiophene Functionalized D-Ï€-A Porphyrins for Mesoscopic Solar Cells. Electrochimica Acta, 2015, 179, 187-196.	2.6	13
286	Dichromophoric Zinc Porphyrins: Filling the Absorption Gap between the Soret and Q Bands. Journal of Physical Chemistry C, 2015, 119, 5350-5363.	1.5	19
287	βâ€Functionalized Push–Pull Porphyrin Sensitizers in Dyeâ€Sensitized Solar Cells: Effect of Ï€â€Conjugated Spacers. ChemSusChem, 2015, 8, 2967-2977.	3.6	34
288	New approach for post-functionalization of meso-formylporphyrins. RSC Advances, 2015, 5, 67242-67246.	1.7	13
289	Influence of position of auxiliary acceptor in D–A–̀–A photosensitizes on photovoltaic performances of dye-sensitized solar cells. Journal of Materials Science, 2015, 50, 7333-7342.	1.7	12
290	Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics. Chemical Communications, 2015, 51, 14439-14442.	2.2	66
291	Two viologen-based crystalline photoactive complexes constructed by zinc chloride and N-(3-cyanophenyl)-4,4′-bipyridinium units: Structural arrangement of donor–acceptor units and photoresponsive characteristics. Inorganic Chemistry Communication, 2015, 57, 58-61.	1.8	10
292	A quantum chemistry study on the performance of porphyrin-based solar cell sensitisers; Zinc and anchor group position effects. Molecular Physics, 2015, 113, 3815-3825.	0.8	14
293	Photoelectrochemical Cells Utilizing Tunable Corroles. ACS Applied Materials & Interfaces, 2015, 7, 16124-16130.	4.0	37
294	Surface chemistry of porphyrins and phthalocyanines. Surface Science Reports, 2015, 70, 259-379.	3.8	534

#	Article	IF	CITATIONS
295	Click made porphyrin–corrole dyad: a system for photo-induced charge separation. Dalton Transactions, 2015, 44, 13473-13479.	1.6	21
296	Push–pull type porphyrin based sensitizers: The effect of donor structure on the light-harvesting ability and photovoltaic performance. Dyes and Pigments, 2015, 122, 199-205.	2.0	27
297	Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye. Organic Electronics, 2015, 25, 295-307.	1.4	47
298	Solventless metallation of low melting porphyrins synthesized by the water/microwave method. RSC Advances, 2015, 5, 64902-64910.	1.7	18
299	Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton Transactions, 2015, 44, 14697-14706.	1.6	26
300	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	1.3	10
301	A triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy)porphyrin triad for sensitizers in DSSCs. Dalton Transactions, 2015, 44, 13550-13564.	1.6	16
302	Development of a functionally separated D–Ĩ€-A fluorescent dye with a pyrazyl group as an electron-accepting group for dye-sensitized solar cells. Organic Chemistry Frontiers, 2015, 2, 552-559.	2.3	19
303	A new co-sensitization method employing D–π–A dye with pyridyl group and D–π–Cat dye with catechol unit for dye-sensitized solar cells. Dyes and Pigments, 2015, 122, 40-45.	2.0	18
304	The cis-isomer performs better than the trans-isomer in porphyrin-sensitized solar cells: interfacial electron transport and charge recombination investigations. Physical Chemistry Chemical Physics, 2015, 17, 20134-20143.	1.3	15
305	A–Ĩ€â€"D–Ĩ€â€"A based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301.	5.2	47
306	Electroabsorption spectra of push–pull porphyrins in solution and in solid films. Journal of Porphyrins and Phthalocyanines, 2015, 19, 527-534.	0.4	Ο
307	Insight into D–Aâ~'π–A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9307-9318.	4.0	278
308	Energy Transfer from Colloidal Quantum Dots to Near-Infrared-Absorbing Tetraazaporphyrins for Enhanced Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 9754-9761.	1.5	20
309	"Scorpion―shaped mono(carboxy)porphyrin-(BODIPY) ₂ , a novel triazine bridged triad: synthesis, characterization and dye sensitized solar cell (DSSC) applications. Journal of Materials Chemistry C, 2015, 3, 5652-5664.	2.7	43
310	Rigid triarylamine donor–ï€â€"acceptor porphyrin dyes and their application in dye-sensitized solar cells. RSC Advances, 2015, 5, 41193-41202.	1.7	8
311	Effect of electronic-insulating oxides overlayer on the performance of zinc oxide based dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 305, 37-44.	2.0	7
312	Effects of π-linker, anchoring group and capped carbazole at meso-substituted zinc-porphyrins on conversion efficiency of DSSCs. Dyes and Pigments, 2015, 118, 64-75.	2.0	35

#	Article	IF	CITATIONS
313	Palladium atalyzed Amination of Aryl Sulfides with Aliphatic Amines. European Journal of Organic Chemistry, 2015, 2015, 2678-2682.	1.2	32
314	Molecular design of corroleâ€based Dâ€ï€â€A sensitizers for dyeâ€sensitized solar cell applications. International Journal of Quantum Chemistry, 2015, 115, 745-752.	1.0	17
315	Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 4-13.	1.7	9
316	Theoretical Study of WS-9-Based Organic Sensitizers for Unusual Vis/NIR Absorption and Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 9782-9790.	1.5	121
317	Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells. Nanoscale Research Letters, 2015, 10, 63.	3.1	11
318	New acceptor–Ĩ€-porphyrin–Ĩ€-acceptor systems for solution-processed small molecule organic solar cells. Dyes and Pigments, 2015, 121, 109-117.	2.0	32
319	Dye-sensitized solar cells with hole-stabilizing surfaces: "inorganic―versus "organic―strategies. RSC Advances, 2015, 5, 37906-37915.	1.7	10
320	The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry, 2015, 116, 193-363.	0.9	12
321	Modulation of photovoltaic behavior of dye-sensitized solar cells by electron donors of porphyrin dyes and cosensitization. Chinese Chemical Letters, 2015, 26, 899-904.	4.8	22
323	Push–pull porphyrins with different anchoring group orientations for fully printable monolithic dye-sensitized solar cells with mesoscopic carbon counter electrodes. New Journal of Chemistry, 2015, 39, 5231-5239.	1.4	19
324	Enhanced performance of quasi-solid-state dye-sensitized solar cells by tuning the building blocks in D–(π)–A′–π–A featured organic dyes. Journal of Materials Chemistry A, 2015, 3, 9869-9881.	5.2	43
325	Polyfunctional Lewis Acids: Intriguing Solidâ€State Structure and Selective Detection and Discrimination of Nitroaromatic Explosives. Chemistry - A European Journal, 2015, 21, 8874-8882.	1.7	19
326	Porphyrinâ€Based Bulk Heterojunction Organic Photovoltaics: The Rise of the Colors of Life. Advanced Energy Materials, 2015, 5, 1500218.	10.2	167
327	Stimulated emission in cryogenic samples doped with free-base tetraazaporphine. Physical Chemistry Chemical Physics, 2015, 17, 14931-14942.	1.3	2
328	Design of two-photon molecular tandem architectures for solar cells by ab initio theory. Chemical Science, 2015, 6, 3018-3025.	3.7	9
329	Development of D–π–A Fluorescent Dyes with a 3â€Pyridyl Group as Electronâ€Withdrawing Anchoring Group for Dye‧ensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 3713-3720.	1.2	15
330	Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 8417-8430.	1.5	22
331	Influence of phenyl-attached substituents on the vibrational and electronic spectra of meso-tetraphenylporphyrin: A DFT study. Computational and Theoretical Chemistry, 2015, 1062, 1-10.	1.1	8

#	Article	IF	CITATIONS
332	Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 3799-3802.	6.6	528
333	Cosensitization of D-A-Ï€-A Quinoxaline Organic Dye: Efficiently Filling the Absorption Valley with High Photovoltaic Efficiency. ACS Applied Materials & Interfaces, 2015, 7, 5296-5304.	4.0	102
334	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
336	A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis – towards the understanding of dye sensitized solar cell performances. Physical Chemistry Chemical Physics, 2015, 17, 28647-28657.	1.3	20
337	Exploiting novel process windows for the synthesis of meso-substituted porphyrins under continuous flow conditions. RSC Advances, 2015, 5, 84350-84355.	1.7	20
338	Synthesis, spectroscopic, electrochemical redox, solvatochromism and anion binding properties of β-tetra- and -octaphenylethynyl substituted <i>meso</i> -tetraphenylporphyrins. RSC Advances, 2015, 5, 82237-82246.	1.7	18
339	Highly efficient cosensitization of D–A–π–A benzotriazole organic dyes with porphyrin for panchromatic dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 11144-11150.	2.7	43
340	Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for Non-Ruthenium Solar Cells Based on Iodine Electrolyte. Journal of the American Chemical Society, 2015, 137, 14055-14058.	6.6	302
341	Can silicon substituted metal-free organic dyes achieve better efficiency compared to silicon free organic dyes? A computational study. Physical Chemistry Chemical Physics, 2015, 17, 31093-31100.	1.3	22
342	Photon Upconversion from Chemically Bound Triplet Sensitizers and Emitters on Mesoporous ZrO ₂ : Implications for Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 25792-25806.	1.5	27
343	Bromine–lithium exchange as a straightforward method to obtain meso-tetrakis(4-formylphenyl)porphyrin: a versatile intermediate. Tetrahedron Letters, 2015, 56, 5157-5160.	0.7	9
344	Substituent effect of Ru(ii)-based sensitizers bearing a terpyridine anchor and a pyridyl azolate ancillary for dye sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 18422-18431.	5.2	8
345	Photophysical Processes Occurring in a Zn-phthalocyanine in Ethanol Solution and on TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2015, 119, 20256-20264.	1.5	10
346	Interaction of LD14 and TiO2 in dye-sensitized solar-cells (DSSC): A density functional theory study. Computational and Theoretical Chemistry, 2015, 1070, 117-125.	1.1	15
347	Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 18689-18696.	4.0	18
348	Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus aureus. RSC Advances, 2015, 5, 71228-71239.	1.7	27
349	Synergistic "ping-pong―energy transfer for efficient light activation in a chromophore–catalyst dyad. Physical Chemistry Chemical Physics, 2015, 17, 24166-24172.	1.3	8
351	Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. Journal of Physical Chemistry C, 2015, 119, 24282-24289.	1.5	60

		CITATION RE	EPORT	
# 352	ARTICLE Iron sensitizer converts light to electrons with 92% yield. Nature Chemistry, 2015, 7, 88	33-889.	IF 6.6	CITATIONS
353	Intermolecular bonding of hemin in solution and in solid state probed by N K-edge X-ray spectroscopies. Physical Chemistry Chemical Physics, 2015, 17, 29000-29006.		1.3	9
354	A supramolecular assembling of zinc porphyrin with a π-conjugated oligo(phenylenevin molecular wire for dye sensitized solar cell. RSC Advances, 2015, 5, 88508-88519.	ylene) (oPPV)	1.7	18
355	Synthesis and investigation of donor–porphyrin–acceptor triads with long-lived pho charge-separate states. Chemical Science, 2015, 6, 6468-6481.	oto-induced	3.7	24
356	A new route for visible/near-infrared-light-driven H2 production over titania: Co-sensitize surface charge transfer complex and zinc phthalocyanine. Journal of Power Sources, 20		4.0	35
357	Transition metal complexes containing a ditopic redox active ligand featuring very inter absorption bands. Dyes and Pigments, 2015, 123, 212-217.	ise visible	2.0	7
358	Development of D–Ĩ€â€"A dye with (pyridiniumyl)alkanesulfonate as electron-withdra group for dye-sensitized solar cell. Dyes and Pigments, 2015, 123, 349-354.	awing anchoring	2.0	9
359	MOF as a syringe pump for the controlled release of iodine catalyst in the synthesis of r dipyrromethanes. Chemical Communications, 2015, 51, 15526-15529.	neso-thienyl	2.2	16
360	Heteroleptic copper(<scp>i</scp>) sensitizers with one versus two hole-transporting un functionalized 2,9-dimethyl-1,10-phenanthroline ancillary ligands. RSC Advances, 2015,	nits in 5, 69430-69440.	1.7	15
361	Non-innocent adsorption of Co-pyrphyrin on rutile(110). Physical Chemistry Chemical P 22846-22854.	hysics, 2015, 17,	1.3	22
362	Interaction of YD2 and TiO2 in dye-sensitized solar cells (DSSCs): a density functional t Journal of Molecular Modeling, 2015, 21, 226.	neory study.	0.8	13
363	Effect of the functionalized π-bridge on porphyrin sensitizers for dye-sensitized solar ce in-depth analysis of electronic structure, spectrum, excitation, and intramolecular elect Journal of Materials Chemistry C, 2015, 3, 10129-10139.	lls: an on transfer.	2.7	25
364	Artificial evolution of coumarin dyes for dye sensitized solar cells. Physical Chemistry Ch Physics, 2015, 17, 27672-27682.	iemical	1.3	29
366	Novel π-Conjugated Systems Based on N-Confused Porphyrinoids. , 2015, , 201-221.			1
367	Abrupt versus Gradual Spin-Crossover in Fe ^{II} (phen) ₂ (NCS) <s Fe^{III}(dedtc)₃ Compared by X-ray Absorption and Emission Sp Quantum-Chemical Calculations. Inorganic Chemistry, 2015, 54, 11606-11624.</s 	ub>2 and ectroscopy and	1.9	24
368	Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and H Bonds. Journal of the American Chemical Society, 2015, 137, 15795-15808.	vdrogen	6.6	51
369	β-Functionalized Push–Pull <i>opp</i> -Dibenzoporphyrins. Journal of Organic Chemis 12076-12087.	stry, 2015, 80,	1.7	32
370	Porphyrins Containing a Triphenylamine Donor and up to Eight Alkoxy Chains for Dye-S Cells: A High Efficiency of 10.9%. ACS Applied Materials & Interfaces, 2015, 7, 279	ensitized Solar 76-27985.	4.0	137

#	Article	IF	CITATIONS
371	Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials. Electrochimica Acta, 2015, 154, 273-277.	2.6	60
372	Enhancing the Stability of Porphyrin Dyeâ€Sensitized Solar Cells by Manipulation of Electrolyte Additives. ChemSusChem, 2015, 8, 255-259.	3.6	18
373	Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. Journal of Materials Chemistry A, 2015, 3, 1417-1420.	5.2	79
374	Effective co-sensitization using D–π–A dyes with a pyridyl group adsorbing at BrÃ,nsted acid sites and Lewis acid sites on a TiO ₂ surface for dye-sensitized solar cells. RSC Advances, 2015, 5, 2531-2535.	1.7	23
375	Highly improved performance of ZnII tetraarylporphyrinates in DSSCs by the presence of octyloxy chains in the aryl rings. Journal of Materials Chemistry A, 2015, 3, 2954-2959.	5.2	31
376	Mono- and Bisquinoline-Annulated Porphyrins from Porphyrin β,β′-Dione Oximes. Journal of Organic Chemistry, 2015, 80, 499-511.	1.7	35
377	Multifunctional Luminescent Downâ€Shifting Fluoropolymer Coatings: A Straightforward Strategy to Improve the UVâ€Light Harvesting Ability and Longâ€Term Outdoor Stability of Organic Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401312.	10.2	103
378	CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. Electrochimica Acta, 2015, 151, 21-26.	2.6	53
379	Electronic Properties of Mono‣ubstituted Tetraferrocenyl Porphyrins in Solution and on a Gold Surface: Assessment of the Influencing Factors for Photoelectrochemical Applications. Chemistry - A European Journal, 2015, 21, 269-279.	1.7	40
380	Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Transactions, 2015, 44, 448-463.	1.6	529
381	A "click-chemistry―approach for the synthesis of porphyrin dyads as sensitizers for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 1734-1747.	1.6	29
382	Synthesis, optical and electrochemical properties of the A–΀-D–΀-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. Nanoscale, 2015, 7, 179-189.	2.8	48
383	Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.	8.3	609
384	The effect of the number, position, and shape of methoxy groups in triphenylamine donors on the performance of dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 390-401.	2.0	46
385	Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania. Beilstein Journal of Nanotechnology, 2016, 7, 1642-1653.	1.5	14
386	Photon Conversion and Radiation Synergism in Eu/Tb Complexes Incorporated Poly Methyl Methacrylate. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.0	3
387	Zinc Porphyrins Possessing Three p-Carboxyphenyl Groups: Effect of the Donor Strength of Push-Groups on the Efficiency of Dye Sensitized Solar Cells. Energies, 2016, 9, 513.	1.6	6
388	Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices. Nanomaterials, 2016, 6, 35.	1.9	20

#	Article	IF	CITATIONS
389	Traumatic Brain Injury Imaging in the Second Nearâ€Infrared Window with a Molecular Fluorophore. Advanced Materials, 2016, 28, 6872-6879.	11.1	311
390	An In Situ Oneâ€Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie - International Edition, 2016, 55, 6471-6475.	7.2	119
391	An In Situ Oneâ€Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie, 2016, 128, 6581-6585.	1.6	26
392	Regioregular Polythiophene–Porphyrin Supramolecular Copolymers for Optoelectronic Applications. Macromolecular Chemistry and Physics, 2016, 217, 445-458.	1.1	14
393	Effects of structural optimization on the performance of dye-sensitized solar cells: spirobifluorene as a promising building block to enhance V _{oc} . Journal of Materials Chemistry A, 2016, 4, 11782-11788.	5.2	35
394	Strongly Coupled Cyclometalated Ruthenium Triarylamine Chromophores as Sensitizers for DSSCs. Chemistry - A European Journal, 2016, 22, 8915-8928.	1.7	18
395	Linkers with Optical Functionality. , 2016, , 463-489.		1
396	Weakly Conjugated Hybrid Zinc Porphyrin Sensitizers for Solid‣tate Dye‣ensitized Solar Cells. Advanced Functional Materials, 2016, 26, 5550-5559.	7.8	31
397	Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells. Chemical Record, 2016, 16, 1274-1297.	2.9	30
398	Panchromatic Ï€â€Extended Porphyrins from Conjugation with Quinones. ChemPlusChem, 2016, 81, 477-488.	1.3	14
399	Heteroleptic Ruthenium Sensitizers with Hydrophobic Fusedâ€ThioÂphenes for Use in Efficient Dyeâ€ÂSensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 1214-1224.	1.0	20
400	Impact of the molecular structure and adsorption mode of D–π–A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO ₂ surface. Physical Chemistry Chemical Physics, 2016, 18, 32992-32998.	1.3	10
401	Synthesis and anion binding properties of porphyrins and related compounds. Journal of Porphyrins and Phthalocyanines, 2016, 20, 950-965.	0.4	19
402	Engendering Long-Term Air and Light Stability of a TiO ₂ -Supported Porphyrinic Dye via Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 34863-34869.	4.0	3
403	Color Change Effect in an Organic–Inorganic Hybrid Material Based on a Porphyrin Diacid. Journal of Physical Chemistry C, 2016, 120, 28363-28373.	1.5	34
404	Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111). Journal of Chemical Physics, 2016, 144, 024701.	1.2	23
405	Two new bulky substituted Zn porphyrins bearing carboxylate anchoring groups as promising dyes for DSSCs. New Journal of Chemistry, 2016, 40, 5930-5941.	1.4	12
406	Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 167, 72-77.	2.0	2

щ		IF	CITATIONS
#		IF	CITATIONS
407	One-pot sequential functionalizations of meso-tetrathienylporphyrins via Heck–Mizoroki cross-coupling reactions. Tetrahedron Letters, 2016, 57, 3016-3020.	0.7	4
408	Benzoporphyrins bearing pyridine or pyridine-N-oxide anchoring groups as sensitizers for dye-sensitized solar cell. Journal of Porphyrins and Phthalocyanines, 2016, 20, 542-555.	0.4	7
409	Ultrafast deactivation of bilirubin: dark intermediates and two-photon isomerization. Physical Chemistry Chemical Physics, 2016, 18, 7148-7155.	1.3	12
410	Impact of neutral and anion anchoring groups on the photovoltaic performance of triphenylamine sensitizers for dye-sensitized solar cells. RSC Advances, 2016, 6, 26559-26567.	1.7	23
411	Self-assembling of Zn porphyrins on a (110) face of rutile TiO2–The anchoring role of carboxyl groups. Applied Surface Science, 2016, 379, 277-281.	3.1	36
412	Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 14279-14285.	1.3	41
413	High performance dye-sensitized solar cell from a cocktail solution of a ruthenium dye and metal free organic dye. RSC Advances, 2016, 6, 41151-41155.	1.7	15
414	N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 8428-8434.	5.2	46
415	Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study. Journal of Molecular Modeling, 2016, 22, 121.	0.8	12
416	Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods. Physical Chemistry Chemical Physics, 2016, 18, 13332-13345.	1.3	41
417	Synthesis of new dithieno[3,2-b:2′,3′-d]pyrrole (DTP) dyes for dye-sensitized solar cells: effect of substituent on photovoltaic properties. Tetrahedron, 2016, 72, 3204-3212.	1.0	14
418	Visible light driven reduction of CO 2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer. Applied Catalysis A: General, 2016, 522, 145-151.	2.2	46
419	Synthesis of <i>meso</i> -substituted porphyrins using sustainable chemical processes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 45-60.	0.4	32
420	Synthesis, characterization and optical properties of β -substituted pyrrolo- and indolo[1,2-a]quinoxalinoporphyrins. Dyes and Pigments, 2016, 132, 194-203.	2.0	17
421	Visibleâ€Lightâ€Induced Direct Oxidative Câ^'H Amidation of Heteroarenes with Sulfonamides. Chemistry - A European Journal, 2016, 22, 15669-15673.	1.7	68
422	Influence of ethynyl position on benzothiadiazole based D–A–̀–A dye-sensitized solar cells: spectral response and photovoltage performance. Journal of Materials Chemistry C, 2016, 4, 9203-9211.	2.7	34
423	Interfacial self-assembly, characterization, electrochemical, and photo-catalytic properties of porphyrin-ruthenium complex/polyoxomelate triad hybrid multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 1-10.	2.3	6
424	Boron Subphthalocyanine Based Molecular Triad Systems for the Capture of Solar Energy. Journal of Physical Chemistry A, 2016, 120, 7694-7703.	1.1	10

ARTICLE IF CITATIONS # Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids 425 13 1.6 prepared thereof. Dalton Transactions, 2016, 45, 16211-16220. Inhomogeneous and Complex Interfacial Electron-Transfer Dynamics: A Single-Molecule Perspective. 426 8.8 ACS Energy Letters, 2016, 1, 773-791. Ferrocenyl chalcones with phenolic and pyridyl anchors as potential sensitizers in dye-sensitized 427 1.7 28 solar cells. RSC Advances, 2016, 6, 97664-97675. Calculations of the light absorption spectra of porphyrinoid chromophores for dye-sensitized solar 428 cells. Physical Chemistry Chemical Physics, 2016, 18, 27877-27884. $4D\hat{a} \in \tilde{C} = 1 \text{ type } \hat{C}^{2} \text{ substituted } Zn < up > ll < sup > porphyrins: ideal green sensitizers for building-integrated$ 429 2.2 27 photovoltaics. Chemical Communications, 2016, 52, 12642-12645. Nâ€Substituted Azacalixphyrins: Synthesis, Properties, and Selfâ€Assembly. Chemistry - A European Journal, 1.7 2016, 22, 17820-17832. Studies on D-A-Ï€-A structured porphyrin sensitizers with different additional electron-withdrawing 431 4.0 25 unit. Journal of Power Sources, 2016, 333, 1-9. Recent advances in mixed \hat{l}^2 -pyrrole substituted meso-tetraphenylporphyrins. Tetrahedron Letters, 2016, 26 57, 5150-5167. Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. ACS 433 4.0 70 Applied Materials & amp; Interfaces, 2016, 8, 27438-27443. Modular Synthetic Route to Monofunctionalized Porphyrin Architectures. Organic Letters, 2016, 18, 434 2.4 5228-5231. Twisted Fused-Ring Thiophene Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 435 1.5 30 2016, 120, 22822-22830. Triindole-modified push–pull type porphyrin dyes for dye-sensitized solar cells. Dyes and Pigments, 2.0 2016, 134, 434-441. Optimizing the Photovoltaic Properties of CdTe Quantum Dot–Porphyrin Nanocomposites: A 437 1.5 24 Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 17878-17886. Observing single-atom diffusion at a molecule-metal interface. Physical Review B, 2016, 94, . 1.1 Low-Cost Electricity Production from Sunlight: Third-Generation Photovoltaics and the 439 0 Dye-Sensitized Solar Cell., 2016, , 93-153. "Porphine,―the Fully Unsubstituted Porphyrin: A Comprehensive Overview. , 2016, , 75-231. 440 Ultrafast Time-Resolved Emission and Absorption Spectra of <i>meso</i>-Pyridyl Porphyrins upon 441 Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy. 1.2 37 Journal of Physical Chemistry B, 2016, 120, 9410-9421. Molecular-structure control of electron transfer dynamics of push–pull porphyrins as sensitizers 442 for NiO based dye sensitized solar cells. RSC Advances, 2016, 6, 77184-77194.

#	Article	IF	CITATIONS
443	A Nanosystem Capable of Releasing a Photosensitizer Bioprecursor under Twoâ€Photon Irradiation for Photodynamic Therapy. Advanced Science, 2016, 3, 1500254.	5.6	41
444	Monobenzoporphyrins as Sensitizers for Dye‧ensitized Solar Cells: Observation of Significant Spacerâ€Group Effect. ChemSusChem, 2016, 9, 2239-2249.	3.6	16
445	Phthalocyanine–Perylenediimide Cart Wheels. Journal of the American Chemical Society, 2016, 138, 12963-12974.	6.6	44
446	The memory-driven order–disorder transition of a 3D-supramolecular architecture based on calix[5]arene and porphyrin derivatives. Chemical Communications, 2016, 52, 11681-11684.	2.2	11
447	Push–pull type alkoxy-wrapped N-annulated perylenes for dye-sensitized solar cells. RSC Advances, 2016, 6, 81184-81190.	1.7	7
448	Nucleophilic Aromatic Substitution on Pentafluorophenylâ€6ubstituted Dipyrranes and Tetrapyrroles as a Route to Multifunctionalized Chromophores for Potential Application in Photodynamic Therapy. Chemistry - A European Journal, 2016, 22, 13953-13964.	1.7	23
449	Synthesis and photophysical properties of orthogonal rhodium(<scp>iii</scp>)–carbon bonded porphyrin–aza-BODIPY conjugates. Journal of Materials Chemistry C, 2016, 4, 8422-8428.	2.7	13
450	Influence of the Central Metal Ion on the Desorption Kinetics of a Porphyrin from the Solution/HOPG Interface. Journal of Physical Chemistry C, 2016, 120, 18140-18150.	1.5	18
451	A toolset of functionalized porphyrins with different linker strategies for application in bioconjugation. Organic and Biomolecular Chemistry, 2016, 14, 9114-9132.	1.5	11
452	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	6.6	317
453	A Dye-sensitized Solar Cell Using an Anthraquinone Bearing Anion Recognition Moieties. Chemistry Letters, 2016, 45, 881-883.	0.7	1
454	A Push–Pull Porphyrin Dimer with Multiple Electron-donating Groups for Dye-sensitized Solar Cells: Excellent Light-harvesting in Near-infrared Region. Chemistry Letters, 2016, 45, 1126-1128.	0.7	10
455	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	5.2	75
456	Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 12865-12877.	5.2	66
457	Highly efficient near IR photosensitizers based-on Ir–C bonded porphyrin-aza-BODIPY conjugates. RSC Advances, 2016, 6, 72115-72120.	1.7	13
458	π-Extended diketopyrrolopyrrole–porphyrin arrays: one- and two-photon photophysical investigations and theoretical studies. Physical Chemistry Chemical Physics, 2016, 18, 21954-21965.	1.3	30
459	Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[<i>c</i>][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes. ACS Applied Materials & Interfaces, 2016, 8, 18292-18300.	4.0	20
460	Theoretical study of an asymmetric A-ï€-D-ï€-A′ tribranched organic sensitizer for dye-sensitized solar cells. Journal of the Korean Physical Society, 2016, 69, 381-385.	0.3	3

ARTICLE IF CITATIONS Zinc Porphyrinâ€"Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar 8.8 87 461 Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical 23.0 418 Reviéws, 2016, 116, 14675-14725. Optical absorption and electronic spectra of chlorophylls a and b. RSC Advances, 2016, 6, 463 1.7 21 109778-109785. Identifying the Assembly Configuration and Fluorescence Spectra of Nanoscale Zinc-Tétraphenylporphyrin Aggregates with Scanning Tunneling Microscopy. Scientific Reports, 2016, 464 6,22756. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chemical Reviews, 2016, 116, 465 23.0 472 13043-13233. Theoretical Investigation on Porphyrin-Based Small Molecules as Donor Materials for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 27148-27158. 1.5 Novel metal-free organic dyes possessing fused heterocyclic structural motifs for efficient 467 1.3 8 molecular photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 30105-30116. A comparative study of porphyrin dye sensitizers YD2-o-C8, SM315 and SM371 for solar cells: the 0.6 10 electronic structures and excitation-related properties. European Physical Journal D, 2016, 70, 1. Engineering the optoelectronic properties of MoS₂ photodetectors through reversible 469 2.2 37 noncovalent functionalization. Chemical Communications, 2016, 52, 14365-14368. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Scientific Reports, 2016, 6, 18756. 1.6 Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2016, 471 1.3 24 18, 30662-30676. A Strategy for Enhancing the Performance of Borondipyrromethene Dye-Sensitized Solar Cells. 1.5 Journal of Physical Chemistry C, 2016, 120, 25657-25667. Stark Spectroscopy of Absorption and Emission of Indoline Sensitizers: A Correlation with the 473 1.5 26 Performance of Photovoltaic Cells. Journal of Physical Chemistry C, 2016, 120, 26206-26216. The Influence of Substituent Orientation on the Photovoltaic Performance of 474 1.7 Phthalocyanineâ€Sensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 4369-4373. Effects of Bulky Substituents of Pushâ€"Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized 475 4.0 61 Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 15379-15390. Three horizontal anchor porphyrins for dye-sensitized solar cells: An optical, electrochemical and photovoltaic investigation. Polyhedron, 2016, 117, 155-160. Predicting light absorption properties of anthocyanidins in solution: a multi-level computational 477 0.5 16 approach. Theoretical Chemistry Accounts, 2016, 135, 1. Molecular engineering of Ni–/Co–porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chemical Science, 2016, 478 7, 5640-5646.

#	Article	IF	CITATIONS
479	Crystal structures of unsymmetrically mixed β-pyrrole substituted nickel(II)-meso-tetraphenylporphyrins. Journal of Chemical Sciences, 2016, 128, 1047-1055.	0.7	4
480	A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A, 2016, 4, 11878-11887.	5.2	83
481	Simultaneous Spectroscopic and Topographic Imaging of Single-Molecule Interfacial Electron-Transfer Reactivity and Local Nanoscale Environment. Journal of Physical Chemistry Letters, 2016, 7, 2221-2227.	2.1	9
482	Improved efficiency of polymer-fullerene bulk heterojunction solar cells by the addition of Cu(II)-porphyrin-oligothiophene conjugates. Synthetic Metals, 2016, 218, 1-8.	2.1	2
483	Synthesis of Free-Base 10-Azacorroles. Organic Letters, 2016, 18, 2978-2981.	2.4	18
484	Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, 2016, 40, 1303-1320.	2.2	176
485	Porphyrins with intense absorptivity: highly efficient sensitizers with a photovoltaic efficiency of up to 10.7% without a cosensitizer and a coabsorbate. Journal of Materials Chemistry A, 2016, 4, 11829-11834.	5.2	56
486	Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells. Applied Surface Science, 2016, 364, 573-578.	3.1	10
487	Synthesis and characterization of simple cost-effective trans-A ₂ BC porphyrins with various donor groups for dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 5704-5713.	1.4	14
488	On-Surface Synthesis. Advances in Atom and Single Molecule Machines, 2016, , .	0.0	21
489	Enhanced performance of dye-sensitized solar cells with Y-shaped organic dyes containing di-anchoring groups. New Journal of Chemistry, 2016, 40, 2799-2805.	1.4	24
490	Phosphonate-Derivatized Porphyrins for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 3853-3860.	4.0	29
491	Star-shaped and star-block polymers with a porphyrin core: from LCST–UCST thermoresponsive transition to tunable self-assembly behaviour and fluorescence performance. RSC Advances, 2016, 6, 6802-6810.	1.7	18
492	Phenothiazine-functionalized push–pull Zn porphyrin photosensitizers for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 9057-9065.	1.7	20
493	Influence of the donor size in panchromatic D–Ĩ€-A–Ĩ€-A dyes bearing 5-phenyl-5H-dibenzo-[b,f]azepine units for dye-sensitized solar cells. Dyes and Pigments, 2016, 127, 204-212.	2.0	18
494	Shifting UV-vis absorption spectrum through rational structural modifications of zinc porphyrin photoactive compounds. RSC Advances, 2016, 6, 15345-15353.	1.7	17
495	Ultrafast and fast charge separation processes in real dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 26, 1-30.	5.6	92
496	Significant improvement of photocurrent in dye-sensitized solar cells by incorporation thiophene into electrolyte as an inexpensive and efficient additive. Organic Electronics, 2016, 29, 57-65.	1.4	15

		CITATION REP	PORT	
#	Article		IF	CITATIONS
497	Artificial hemes for DSSC and/or BHJ applications. Dalton Transactions, 2016, 45, 1111-1126.		1.6	35
498	Catalytic Methods for Aromatic C–H Amination: An Ideal Strategy for Nitrogen-Based Functior Molecules. ACS Catalysis, 2016, 6, 610-633.	al	5.5	456
499	Crystal structures of meso-tetrakis(2′,6′/3′,5′-difluorophenyl)porphyrins and their me Influence of position of the fluoro groups on their structural properties. Journal of Chemical Sciences, 2016, 128, 501-509.	tal complexes:	0.7	2
500	Ultrafast photoinduced carrier dynamics at ZnO nanohybrid interfaces for light-harvesting applications. Nanotechnology Reviews, 2016, 5, .		2.6	19
501	Structural and electronic properties of dye-sensitized TiO ₂ for solar cell application from single molecules to self-assembled monolayers. Journal of Materials Chemistry C, 2016, 4, 4346-4373.	5:	2.7	46
502	meso-Mono-[4-(1,4,7-triazacyclononanyl)]-tri(phenyl)]porphyrin and the respective zinc(ii)-comp complete characterization and biomolecules binding abilities. Photochemical and Photobiologica Sciences, 2016, 15, 564-579.	lex: I	1.6	14
503	Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spec Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins. Journal of Chemical The and Computation, 2016, 12, 2324-2334.	tra and Pory	2.3	9
504	Zinc(II) Tetraphenylporphyrin on Ag(100) and Ag(111): Multilayer Desorption and Dehydrogenat Journal of Physical Chemistry C, 2016, 120, 7575-7585.	ion.	1.5	33
505	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.		1.7	18
506	Synthesis and conformation of a novel fluorescein–Zn-porphyrin dyad and intramolecular ener transfer. New Journal of Chemistry, 2016, 40, 3843-3856.	gy	1.4	17
507	Novel porphyrin-preparation, characterization, and applications in solar energy conversion. Physi Chemistry Chemical Physics, 2016, 18, 6885-6892.	cal	1.3	44
508	Organic Photovoltaics for Energy Efficiency in Buildings. , 2016, , 321-355.			2
509	Dye-sensitized solar cell based on an inclusion complex of a cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene C ₆₀ . RSC Advances, 2016, 6, 16150-16158.		1.7	18
510	An electronic aromaticity index for large rings. Physical Chemistry Chemical Physics, 2016, 18, 11839-11846.		1.3	110
511	Influence of Phenylethynylene of Push–Pull Zinc Porphyrins on the Photovoltaic Performance. Applied Materials & Interfaces, 2016, 8, 3418-3427.	ACS	4.0	49
512	From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(1 Nanoscale, 2016, 8, 7958-7968.	11).	2.8	29
513	Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 9577-95	i85.	1.3	29
514	Molecular On-Surface Synthesis: Metal Complexes, Organic Molecules, and Organometallic Compounds. Advances in Atom and Single Molecule Machines, 2016, , 131-165.		0.0	1

		REPORT	
#	ARTICLE The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron	IF	CITATIONS
515	Photo-Injection Mechanism in DSSCs. Journal of Physical Chemistry A, 2016, 120, 1613-1624.	1.1	41
516	Synthesis and Characterization of Porphyrin-Based GUMBOS and NanoGUMBOS as Improved Photosensitizers. Journal of Physical Chemistry C, 2016, 120, 5155-5163.	1.5	26
517	Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra. Journal of Physical Chemistry A, 2016, 120, 1933-1943.	1.1	38
518	Organic dyes based on triphenylamine for dye-sensitized solar cells: Structure–property relationships. Journal of Energy Chemistry, 2016, 25, 615-620.	7.1	6
519	Self-assembly of polyoxometalates, Pt nanoparticles and metal–organic frameworks into a hybrid material for synergistic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 5952-5957.	5.2	89
520	Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Organic Chemistry, 2016, 81, 640-653.	1.7	58
521	Metalloporphyrins for Medical Imaging Applications. Advances in Inorganic Chemistry, 2016, , 141-221.	0.4	24
522	Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale, 2016, 8, 5884-5891.	2.8	36
523	Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand. Journal of Materials Chemistry A, 2016, 4, 1762-1770.	5.2	59
524	Dye mixture promoted light harvesting for organic dye-sensitized solar cells using triphenylamine dyes with various numbers of anchoring groups. Organic Electronics, 2016, 30, 40-44.	1.4	17
525	An ionic charge-transfer dyad prepared cost-effectively from a tetrathiafulvalene carboxylate anion and a TMPyP cation. Physical Chemistry Chemical Physics, 2016, 18, 2940-2948.	1.3	6
526	Porphyrins bearing a consolidated anthryl donor with dual functions for efficient dye-sensitized solar cells. Energy and Environmental Science, 2016, 9, 200-206.	15.6	54
527	Benefits of using BODIPY–porphyrin dyads for developing deep-red lighting sources. Chemical Communications, 2016, 52, 1602-1605.	2.2	60
528	Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Physical Chemistry Chemical Physics, 2016, 18, 932-938.	1.3	56
529	Novel D–π–A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells. Dyes and Pigments, 2016, 125, 116-123.	2.0	17
530	Facile synthesis of arylthiophenyl-functionalized diketopyrrolopyrrole derivatives via direct C–H arylation: characterization and utilization in organic electronic devices. New Journal of Chemistry, 2016, 40, 385-392.	1.4	17
531	A NIR dye with high-performance n-type semiconducting properties. Chemical Science, 2016, 7, 499-504.	3.7	48
532	Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor. Journal of Physical Chemistry B, 2016, 120, 1685-1697	1.2	9

#	Article	IF	CITATIONS
533	A new method for the synthesis of Î ² -cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices. Journal of Materials Chemistry A, 2016, 4, 2976-2985.	5.2	26
534	Unprecedentedly targeted customization of molecular energy levels with auxiliary-groups in organic solar cell sensitizers. Chemical Science, 2016, 7, 544-549.	3.7	90
535	Artificial zinc chlorin dyes for dye sensitized solar cell. Inorganica Chimica Acta, 2016, 439, 30-34.	1.2	6
536	Ruthenium(<scp>ii</scp>)-polypyridyl zirconium(<scp>iv</scp>) metal–organic frameworks as a new class of sensitized solar cells. Chemical Science, 2016, 7, 719-727.	3.7	129
537	The influence of inserted thiophene into the (Ï€-A'-Ï€)-bridge on photovoltaic performances of dye-sensitized solar cells. Materials Chemistry and Physics, 2017, 191, 121-128.	2.0	19
538	Donor–acceptor type A ₂ B ₂ porphyrins: synthesis, energy transfer, computational and electrochemical studies. Inorganic Chemistry Frontiers, 2017, 4, 618-638.	3.0	33
539	1,3-Dipolar cycloadditions with meso-tetraarylchlorins – site selectivity and mixed bisadducts. Organic Chemistry Frontiers, 2017, 4, 534-544.	2.3	13
540	Porphyrin-cored dendrimers consisting of novel siloxane-poly (amido amine) dendron-like arms: Synthesis, characterization, and photophysical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 222-230.	2.3	14
541	Porphyrin–BODIPY-based hybrid model compounds forÂartificial photosynthetic reaction centers. Comptes Rendus Chimie, 2017, 20, 314-322.	0.2	25
542	Cocktail co-sensitization of porphyrin dyes with additional donors and acceptors for developing efficient dye-sensitized solar cells. Dyes and Pigments, 2017, 140, 36-46.	2.0	41
543	D–π–A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2017, 90, 441-450.	2.0	25
544	Directing the Selfâ€Assembly Behaviour of Porphyrinâ€Based Supramolecular Systems. Chemistry - A European Journal, 2017, 23, 3773-3783.	1.7	67
545	Photoinduced bimolecular electron transfer from aromatic amines to pentafluorophenyl porphyrin combined with ultrafast charge recombination persistence with Marcus inverted region. Physical Chemistry Chemical Physics, 2017, 19, 5658-5673.	1.3	3
546	Panchromatic Sensitizer for Dye-Sensitized Solar Cells: Unsymmetrical Squaraine Dyes Incorporating Benzodithiophene ï€-Spacer with Alkyl Chains to Extend Conjugation, Control the Dye Assembly on TiO ₂ , and Retard Charge Recombination. Journal of Organic Chemistry, 2017, 82, 1920-1930.	1.7	41
547	Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO ₂ . ACS Omega, 2017, 2, 128-135.	1.6	7
548	Selective C(sp 2)â^'H Functionalization of Arenes for Amination Reactions by Using Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 469-474.	1.3	15
549	Adsorption Structure of Cobalt Tetraphenylporphyrin on Ag(100). Journal of Physical Chemistry C, 2017, 121, 5667-5674.	1.5	18
550	Access to Aminated Saturated Oxygen Heterocycles via Copper-Catalyzed Aminooxygenation of Alkenes. Organic Letters, 2017, 19, 1148-1151.	2.4	57

# 551	ARTICLE Evolution of Molecular Design of Porphyrin Chromophores for Photovoltaic Materials of Superior Lightâ€ŧoâ€Electricity Conversion Efficiency. Solar Rrl, 2017, 1, 1600002.	IF 3.1	CITATIONS
552	Quantitative characterization of exciton fromGW+Bethe-Salpeter calculation. Journal of Chemical Physics, 2017, 146, 044303.	1.2	12
553	Synthesis, optical and electrochemical properties, and photovoltaic performance of a panchromatic and near-infrared (D) ₂ –l€â€"A type BODIPY dye with pyridyl group or cyanoacrylic acid. RSC Advances, 2017, 7, 13072-13081.	1.7	23
554	Ethynylâ€Linked Donorâ€ï€â€Acceptor Boron Dipyrromethenes for Panchromatic Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2017, 6, 758-767.	1.3	13
555	Polypyridyl-hydrazone based Ruthenium(II) complexes: Spectral and computational analysis. Inorganica Chimica Acta, 2017, 461, 35-44.	1.2	8
556	Unsymmetrically Substituted Donor–ï€â€"Acceptorâ€Type 5,15â€Diazaporphyrin Sensitizers: Synthesis, Optical and Photovoltaic Properties. ChemPlusChem, 2017, 82, 695-704.	1.3	8
557	Melamine and Spermine Mediated Supramolecular self–assembly of Octaphosphonate Tetraphenyl Porphyrin. ChemistrySelect, 2017, 2, 1573-1577.	0.7	5
558	Comparative Synthetic Strategies for the Generation of 5,10―and 5,15â€6ubstituted <i>Pushâ€Pull</i> Porphyrins. European Journal of Organic Chemistry, 2017, 2017, 3565-3583.	1.2	13
559	Donor-ï€â€"Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of Ï€-Conjugated Spacers. Journal of Physical Chemistry C, 2017, 121, 6464-6477.	1.5	101
560	The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters. Chemical Physics Letters, 2017, 683, 393-397.	1.2	8
561	Molecular design of porphyrin dyes for dye sensitized solar cells: A quantitative structure property relationship study. International Journal of Quantum Chemistry, 2017, 117, e25385.	1.0	9
562	Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis. ACS Applied Materials & Mat	4.0	11
563	Characterization of photo-induced electron and hole transfer in a porphyrin based ambipolar organic molecule with cascade energy levels. Journal of Molecular Structure, 2017, 1142, 226-238.	1.8	1
564	Investigation of the push–pull effects on β-functionalized benzoporphyrins bearing an ethynylphenyl bridge. Physical Chemistry Chemical Physics, 2017, 19, 13182-13188.	1.3	13
565	Copper-catalyzed oxidative amidation of α,β-unsaturated ketones via selective C–H or C–C bond cleavage. Organic Chemistry Frontiers, 2017, 4, 1420-1424.	2.3	13
566	Insight into Electron-Donating Ancillary Ligands in Ruthenium Terpyridyl Complexes Configuration on Performances of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 8752-8759.	1.5	9
567	New Acetyleneâ€Bridged 9,10â€Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‧ensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
568	Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal-organic frameworks: A look toward solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 64-77.	2.0	55

#	Article	IF	CITATIONS
569	Direct Coupling of Naphthalene and Sulfonimides Promoted by DDQ and Blue Light. Chemistry Letters, 2017, 46, 1014-1016.	0.7	19
570	Intriguing Influence of â^'COOH-Driven Intermolecular Aggregation and Acid–Base Interactions with <i>N</i> , <i>N</i> -Dimethylformamide on the Second-Order Nonlinear-Optical Response of 5,15 Push–Pull Diarylzinc(II) Porphyrinates. Inorganic Chemistry, 2017, 56, 6438-6450.	1.9	16
571	Effect of Donors on Photophysical, Electrochemical and Photovoltaic Properties of Benzimidazoleâ€Branched Dyes. ChemistrySelect, 2017, 2, 2807-2814.	0.7	4
572	Electronic structure of tetra(4-aminophenyl)porphyrin studied by photoemission, UV–Vis spectroscopy and density functional theory. Journal of Electron Spectroscopy and Related Phenomena, 2017, 218, 40-45.	0.8	12
573	Effect of TiO2 modification on urchin-like orthorhombic Nb2O5 nanospheres as photoelectrodes in dye-sensitized solar cells. Solar Energy, 2017, 153, 584-589.	2.9	14
574	Enhancing the reactivity of nickel(<scp>ii</scp>) in hydrogen evolution reactions (HERs) by β-hydrogenation of porphyrinoid ligands. Chemical Science, 2017, 8, 5953-5961.	3.7	64
576	Substituted and Anchoring Groups Improve the Efficiency of Dye-Sensitized Solar Cells. ChemistrySelect, 2017, 2, 4084-4091.	0.7	7
577	Structural and Optical Properties of Subporphyrinoids: A TD-DFT Study. Journal of Physical Chemistry A, 2017, 121, 4306-4317.	1.1	18
578	Artificial Photosynthesis Based on 1,10-Phenanthroline Complexes. , 2017, , 389-405.		0
579	Highâ€Performance Ruthenium Sensitizers Containing Imidazolium Counterions for Efficient Dye Sensitization in Water. ChemSusChem, 2017, 10, 2914-2921.	3.6	4
580	Unusual reactivity of trifluoromethyl groups in meso-tetrakis(trifluoromethyl)porphyrin. Journal of Fluorine Chemistry, 2017, 203, 75-80.	0.9	8
581	Heterogeneous Integration of Carbon-Nanotube-Graphene for High-Performance, Flexible, and Transparent Photodetectors. Small, 2017, 13, 1700918.	5.2	47
582	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	1.7	39
583	Fullâ€Spectrum Solarâ€Lightâ€Activated Photocatalysts for Light–Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700473.	10.2	213
584	Interrelationship between TiO ₂ nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 11187-11196.	1.3	12
585	Copper–Porphyrin–Metal–Organic Frameworks as Oxidative Heterogeneous Catalysts. ChemCatChem, 2017, 9, 2939-2945.	1.8	25
586	Electrochemical generation of a molecular heterojunction. A new Zn-Porphyrin-Fullerene C60 Polymeric Film. Electrochimica Acta, 2017, 238, 81-90.	2.6	17
587	The revival of dye-sensitized solar cells. Current Opinion in Electrochemistry, 2017, 2, 111-119.	2.5	35

#	Article	IF	CITATIONS
588	Molecular Docking toward Panchromatic Dye Sensitizers for Solar Cells Based upon Tetraazulenylporphyrin and Tetraanthracenylporphyrin. Journal of Physical Chemistry A, 2017, 121, 2655-2664.	1,1	17
589	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	4.0	97
590	Novel self-assembly with zinc porphyrin <i>via</i> axial coordination for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2017, 21, 116-121.	0.4	1
591	Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/Water Interface. Langmuir, 2017, 33, 3694-3701.	1.6	8
592	Effective suppression of interfacial charge recombination by a 12-crown-4 substituent on a double-anchored organic sensitizer and rotating disk electrochemical evidence. Journal of Materials Chemistry A, 2017, 5, 7586-7594.	5.2	36
593	Catalytic Dehydrogenative C–H Imidation of Arenes Enabled by Photo-generated Hole Donation to Sulfonimide. CheM, 2017, 2, 383-392.	5.8	86
594	Luminescent Iridium(III) Complexes Supported by a Tetradentate Trianionic Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, Photophysical Properties, and Material Applications. Organometallics, 2017, 36, 1331-1344.	1.1	18
595	Highâ€Performance Porphyrinâ€Based Dyeâ€Sensitized Solar Cells with Iodine and Cobalt Redox Shuttles. ChemSusChem, 2017, 10, 938-945.	3.6	15
596	Organic sensitizers featuring thiophene derivative based donors with improved stability and photovoltaic performance. Physical Chemistry Chemical Physics, 2017, 19, 1927-1936.	1.3	19
597	Pyrrolo[3,2,1-kl]phenothiazine-based D- π -A type organic dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2017, 139, 292-299.	2.0	15
598	Characterization techniques for dye-sensitized solar cells. Energy and Environmental Science, 2017, 10, 672-709.	15.6	136
599	Copper atalyzed Remote Câ^'H Amination of Quinolines with <i>N</i> â€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2017, 359, 1037-1042.	2.1	51
600	Smaragdyrins and Sapphyrins Analogues. Chemical Reviews, 2017, 117, 3329-3376.	23.0	117
601	Synthesis of TiO ₂ -Polythiophene Hybrid Nanotubes and Their Porphyrin Composites. Chemistry Letters, 2017, 46, 354-356.	0.7	1
602	Real-Time Visualization of the Precipitation and Phase Behavior of Octaethylporphyrin in Lipid Microparticles. Journal of Pharmaceutical Sciences, 2017, 106, 1025-1041.	1.6	4
603	One-pot synthesis of new isatin-porphyrin conjugates by the palladium Buchwald-Hartwig methodology involving β-aminoporphyrinatonickel(II) and 3-ketal isatin derivatives. Dyes and Pigments, 2017, 139, 247-254.	2.0	6
604	Influence of the additional electron-withdrawing unit in β-functionalized porphyrin sensitizers on the photovoltaic performance of dye-sensitized solar cells. Dyes and Pigments, 2017, 139, 255-263.	2.0	26
605	Self-Assembly and External Modulation of a Flexible Porphyrin Derivative on Highly Oriented Pyrolytic Graphite. Langmuir, 2017, 33, 400-406.	1.6	13

#	Article	IF	CITATIONS
606	Synthesis, characterization and aggregation behavior of room temperature ionic liquid based on porphyrin- trihexyl(tetradecyl)phosphonium adduct. Journal of Molecular Liquids, 2017, 229, 51-57.	2.3	8
607	BODIPYs for Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 39873-39889.	4.0	149
608	The role of electronic donor moieties in porphyrin dye sensitizers for solar cells: Electronic structures and excitation related properties. Journal of Renewable and Sustainable Energy, 2017, 9, 053505.	0.8	9
609	Luminescent Spectral Conversion to Improve the Performance of Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2017, 18, 3292-3308.	1.0	15
610	Efficient Solar Cells Based on Porphyrin Dyes with Flexible Chains Attached to the Auxiliary Benzothiadiazole Acceptor: Suppression of Dye Aggregation and the Effect of Distortion. ACS Applied Materials & Interfaces, 2017, 9, 36875-36885.	4.0	84
611	New Rh ₂ (II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity. Journal of the American Chemical Society, 2017, 139, 14724-14732.	6.6	36
612	Coupling of Zinc Porphyrin Dyes and Copper Electrolytes: A Springboard for Novel Sustainable Dye-Sensitized Solar Cells. Inorganic Chemistry, 2017, 56, 14189-14197.	1.9	30
613	Synthesis and Characterization of a Binuclear Copper(II) Naphthoisoamethyrin Complex Displaying Weak Antiferromagnetic Coupling. Inorganic Chemistry, 2017, 56, 12665-12669.	1.9	13
614	Structurally Simple and Easily Accessible Perylenes for Dye-Sensitized Solar Cells Applicable to Both 1 Sun and Dim-Light Environments. ACS Applied Materials & Interfaces, 2017, 9, 37786-37796.	4.0	33
615	A detailed experimental and theoretical investigation of the role of cyano groups in the π-bridged acceptor of sensitizers for use in dye-sensitized solar cells (DSCs). Physical Chemistry Chemical Physics, 2017, 19, 28867-28875.	1.3	5
616	Molecular Road Map to Tuning Ground State Absorption and Excited State Dynamics of Long-Wavelength Absorbers. Journal of the American Chemical Society, 2017, 139, 16946-16958.	6.6	30
617	Construction of a Noble-Metal-Free Photocatalytic H ₂ Evolution System Using MoS ₂ /Reduced Graphene Oxide Catalyst and Zinc Porphyrin Photosensitizer. Journal of Physical Chemistry C, 2017, 121, 24452-24462.	1.5	81
618	Photovoltaic Properties and Long-Term Durability of Porphyrin-Sensitized Solar Cells with Silicon-Based Anchoring Groups. ACS Omega, 2017, 2, 6958-6967.	1.6	22
619	Probing Charge Carrier Dynamics in Porphyrin-Based Organic Semiconductor Thin Films by Time-Resolved THz Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 10157-10165.	1.2	25
620	Synthesis and Lightâ€Harvesting Potential of Cyanovinyl βâ€Substituted Porphyrins and Dyads. European Journal of Organic Chemistry, 2017, 2017, 5750-5762.	1.2	3
621	Embedding heteroatoms: an effective approach to create porphyrin-based functional materials. Dalton Transactions, 2017, 46, 13322-13341.	1.6	42
622	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	5.2	90
623	Optical and magnetic properties of antiaromatic porphyrinoids. Physical Chemistry Chemical Physics, 2017, 19, 25979-25988.	1.3	19

#	Article	IF	Citations
624	Voltage Dependence of Molecule–Electrode Coupling in Biased Molecular Junctions. Journal of Physical Chemistry C, 2017, 121, 21136-21144.	1.5	24
625	Synthesis, structure and catalysis of organometallic porphyrin–pincer hybrids: a review. Dalton Transactions, 2017, 46, 14062-14082.	1.6	19
626	Bis-tridentate Ru(ii) sensitizers with a spatially encumbered 2,6-dipyrazolylpyridine ancillary ligand for dye-sensitized solar cells. RSC Advances, 2017, 7, 42013-42023.	1.7	13
627	A Hydroxamic Acid Anchoring Group for Durable Dyeâ€Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle. ChemSusChem, 2017, 10, 3347-3351.	3.6	35
628	Planar D–Dâ^'Ï€-A Organic Sensitizers for Thin-Film Photoanodes. ACS Energy Letters, 2017, 2, 1810-1817.	8.8	34
629	Development of a high quantum yield dye for tumour imaging. Chemical Science, 2017, 8, 6322-6326.	3.7	51
630	Near-infrared absorption bacteriochlorophyll derivatives as biomaterial electron donor for organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 49-54.	2.0	18
631	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	7.2	58
632	Carbonâ€Dot/Naturalâ€Dye Sensitizer for TiO ₂ Solar Cells Prepared by a Oneâ€Step Treatment of Celery Leaf Extract. ChemPhotoChem, 2017, 1, 470-478.	1.5	11
633	Facile synthesis of β-functionalized "push-pull―Zn(II) porphyrins for DSSC applications. Dyes and Pigments, 2017, 147, 56-66.	2.0	16
634	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie, 2017, 129, 12265-12269.	1.6	16
635	βâ€Functionalized Push–Pull <i>opp</i> â€Dibenzoporphyrins as Sensitizers for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 2749-2762.	1.7	24
636	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
637	Femtosecond-Resolved Excited State Relaxation Dynamics of Copper (II) Tetraphenylporphyrin (CuTPP) After Soret Band Excitation. Scientific Reports, 2017, 7, 16865.	1.6	10
638	Stereoelectronic control of oxidation potentials of 3,7-bis(diarylamino)phenothiazines. RSC Advances, 2017, 7, 56144-56152.	1.7	10
639	Organic Photosensitizers Incorporating Rigid Benzo[1,2- <i>b</i> :6,5- <i>b</i> ′]dithiophene Segment for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43739-43746.	4.0	24
640	Theoretical study of tribranched organic sensitizer for Efficient Dye-sensitized solar cells. Molecular Crystals and Liquid Crystals, 2017, 653, 260-266.	0.4	0
641	<i>t</i> BuLiâ€Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo Compounds as Nâ€Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European Journal of Organic Chemistry, 2017, 2017, 6137-6145.	1.2	11

	CITATION	Report	
#	Article	IF	CITATIONS
642	Aromatic C–H amination: a radical approach for adding new functions into biology- and materials-oriented aromatics. Organic and Biomolecular Chemistry, 2017, 15, 6071-6075.	1.5	37
643	Photovoltaic performances of type-II dye-sensitized solar cells based on catechol dye sensitizers: retardation of back-electron transfer by PET (photo-induced electron transfer). Materials Chemistry Frontiers, 2017, 1, 2243-2255.	3.2	20
644	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
645	Oxidation-induced C–H amination leads to a new avenue to build C–N bonds. Chemical Communications, 2017, 53, 8984-8987.	2.2	16
646	Asymmetric 8H-Thieno[2′,3′:4,5]thieno[3,2- <i>b</i>]thieno[2,3- <i>d</i>]pyrrole-Based Sensitizers: Synthesis and Application in Dye-Sensitized Solar Cells. Organic Letters, 2017, 19, 3711-3714.	2.4	29
647	Azafluorene Ornamented Thiazine Based Novel Fused Heterocyclic Organic Dyes for Competent Molecular Photovoltaics. Electrochimica Acta, 2017, 246, 1052-1064.	2.6	15
648	Quinone-fused porphyrins as contrast agents for photoacoustic imaging. Chemical Science, 2017, 8, 6176-6181.	3.7	44
649	Push–Pull Distyryl Boron Dipyrromethenes as Nearâ€Infrared Sensitizers for Dyeâ€5ensitized Solar Cells. Asian Journal of Organic Chemistry, 2017, 6, 1476-1485.	1.3	9
650	A Strong Donor–Acceptor System Based on a Metal Chalcogenide Cluster and Porphyrin. Inorganic Chemistry, 2017, 56, 8036-8044.	1.9	9
651	Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polymer Journal, 2017, 49, 85-111.	1.3	124
652	Branched and linear alkoxy chains-wrapped push-pull porphyrins for developing efficient dye-sensitized solar cells. Dyes and Pigments, 2017, 137, 421-429.	2.0	34
653	Theoretical study of YD2-o-C8-based derivatives as promising sensitizers for dye-sensitized solar cells. Journal of Materials Science, 2017, 52, 1235-1245.	1.7	18
654	Cu-Catalyzed aromatic C–H imidation with N-fluorobenzenesulfonimide: mechanistic details and predictive models. Chemical Science, 2017, 8, 988-1001.	3.7	57
655	Understanding the Role of Electron Donor in Truxene Dye Sensitized Solar Cells with Cobalt Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 97-104.	3.2	29
656	Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: A DFT/TD-DFT study. Computational Materials Science, 2017, 126, 514-527.	1.4	17
657	Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photoâ€Bioelectrochemical Cells. Advanced Materials Interfaces, 2017, 4, 1600619.	1.9	25
658	Theoretical design of push-pull porphyrin dyes with π-bridge modification for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 232-240.	2.0	18
659	Synthesis and photovoltaic performance of the porphyrin based sensitizers with 2H-[1,2,3]triazolo[4,5-c]pyridine and benzotriazole as auxiliary acceptors. Dyes and Pigments, 2017, 137, 143-151.	2.0	23

		CITATION REPORT		
#	Article		IF	Citations
660	50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding	, 2017, , .	1.0	2
661	Role of the Bulky Aryloxy Group at the Nonâ€Peripheral Position of Phthalocyanines for Solar Cells. ChemPlusChem, 2017, 82, 132-135.	Dye Sensitized	1.3	11
662	Synthesis and photoelectric property of N-confused porphyrins bearing an ethynylbenze benzoic acid moiety. Research on Chemical Intermediates, 2017, 43, 2921-2929.	pic and	1.3	4
663	Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonand technologies: Synthesis and applications. Coordination Chemistry Reviews, 2017, 333,		9.5	66
664	Heme: From quantum spin crossover to oxygen manager of life. Coordination Chemistr 344, 363-374.	y Reviews, 2017,	9.5	45
665	Electronic and optical properties of metalloporphyrins of zinc on TiO ₂ clus dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7, 4	ter in 42677-42684.	1.7	29
666	Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell. Opt Express, 2017, 7, 2069.	ical Materials	1.6	25
667	Copper 5,10,15,20-Tetrakis-(3,4-dibenzyloxyphenyl)porphyrin. MolBank, 2017, 2017, N	1931.	0.2	1
668	A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Ze Inorganic Acid Catalyst. Molecules, 2017, 22, 741.	eolite as an	1.7	15
669	β-Formyl- and β-Vinylporphyrins: Magic Building Blocks for Novel Porphyrin Derivatives 22, 1269.	Molecules, 2017,	1.7	25
670	First Principle Modelling of Materials and Processes in Dye-Sensitized Photoanodes for a and Solar Fuels. Computation, 2017, 5, 5.	Solar Energy	1.0	15
671	DFT-based Theoretical Simulations for Photocatalytic Applications Using TiO2. , 0, , .			3
672	IMPROVING STABILITY OF CHLOROPHYLL AS NATURAL DYE FOR DYE-SENSITIZED SOLA Teknologi (Sciences and Engineering), 2017, 80, .	R CELLS. Jurnal	0.3	4
673	Third-Generation-Sensitized Solar Cells. , 0, , .			9
674	Biomimetic Assembly of Porphyrinoids. , 2017, , 593-613.			0
675	Nonradiative Energy Transfer between Porphyrin and Copolymer in Films Processed by 6 Solvent and Water-Dispersible Nanoparticles with Photovoltaic Applications. Journal of Chemistry C, 2018, 122, 5796-5804.		1.5	10
676	Increased Efficiency of Dye‣ensitized Solar Cells by Incorporation of a ï€ Spacer in Do Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group. European Journal of I Chemistry, 2018, 2018, 2369-2379.	onor–Acceptor norganic	1.0	8
677	Porphyrin sensitizers with modified indoline donors for dye-sensitized solar cells. Journa Materials Chemistry C, 2018, 6, 3927-3936.	l of	2.7	48

.

#	Article	IF	CITATIONS
678	Excitation Energy Transfer Supported Amplified Charge-Transfer Emission in an Anthracenedicarboxylate- and Bipyridophenazine-Based Coordination Complex. Inorganic Chemistry, 2018, 57, 2953-2956.	1.9	10
679	Organic dyes festooned with fluorene and fused thiazine for efficient dye-sensitized solar cells. Electrochimica Acta, 2018, 268, 347-357.	2.6	11
680	<i>^î²</i> â€Functionalized Imidazoleâ€Fused Porphyrinâ€Donorâ€Based Dyes: Effect of Ï€â€Łinker and Acceptor of Optoelectronic and Photovoltaic Properties. ChemistrySelect, 2018, 3, 2558-2564.	on 0.7	11
681	New Metalâ^'Free Porphyrins as Holeâ^'Transporting Materials in Mesoporous Perovskite Solar Cells ChemistrySelect, 2018, 3, 2536-2541.	0.7	10
682	Adsorption behavior of Zn porphyrins on a (1 0 1) face of anatase TiO2. Applied Surface Science, 2018, 443, 452-457.	3.1	2
683	Computational and Spectroscopic Analysis of β-Indandione Modified Zinc Porphyrins. Journal of Physical Chemistry A, 2018, 122, 4448-4456.	1.1	6
684	Exploring function activated chlorins using MCD spectroscopy and DFT methods: design of a chlorin with a remarkably intense, red Q band. Physical Chemistry Chemical Physics, 2018, 20, 12470-12482.	1.3	5
685	Molecular Engineering of Zincâ€Porphyrin Sensitisers for pâ€Type Dyeâ€Sensitised Solar Cells. ChemPlusChem, 2018, 83, 711-720.	1.3	16
686	Biomimetic Interfacial Electron-Induced Electrochemiluminesence. Analytical Chemistry, 2018, 90, 5272-5279.	3.2	25
687	Tunable Rh ₂ (II,II) Light Absorbers as Excited-State Electron Donors and Acceptors Accessible with Red/Near-Infrared Irradiation. Journal of the American Chemical Society, 2018, 140, 5161-5170.	6.6	31
688	Enhanced Donor–ï€â€"Acceptor Character of a Porphyrin Dye Incorporating Naphthobisthiadiazole for Efficient Nearâ€Infrared Light Absorption. European Journal of Organic Chemistry, 2018, 2018, 2537-2547.	1.2	16
689	The dye-sensitized solar cell database. Journal of Cheminformatics, 2018, 10, 18.	2.8	47
690	Semiempirical configuration interaction calculations for ru entered dyes*. Journal of Computational Chemistry, 2018, 39, 1259-1266.	1.5	1
691	Covalent Anchoring and Interfacial Reactions of Adsorbed Porphyrins on Rutile TiO ₂ (110). Journal of Physical Chemistry C, 2018, 122, 4480-4487.	1.5	27
692	Direct and Regioselective Amination of βâ€Unsubstituted 5,15â€Diazaporphyrins with Amines: A Convenient Route to Nearâ€Infraredâ€Responsive Diazaporphyrin Sensitizers. Angewandte Chemie, 2018, 130, 3859-3862.	1.6	2
693	Unusual solvent polarity dependent excitation relaxation dynamics of a bis[<i>p</i> -ethynyldithiobenzoato]Pd-linked bis[(porphinato)zinc] complex. Molecular Systems Design and Engineering, 2018, 3, 275-284.	1.7	1
694	Sterically induced distortions of nickel(II) porphyrins – Comprehensive investigation by DFT calculations and resonance Raman spectroscopy. Coordination Chemistry Reviews, 2018, 360, 1-16.	9.5	35
695	Effect of Jeffamine [®] â€Modified Phosphotungstic Acid on Porphyrin Synthesis in Water. ChemistrySelect, 2018, 3, 1275-1281.	0.7	3

#	Article	IF	CITATIONS
696	Direct and Regioselective Amination of βâ€Unsubstituted 5,15â€Diazaporphyrins with Amines: A Convenient Route to Nearâ€Infraredâ€Responsive Diazaporphyrin Sensitizers. Angewandte Chemie - International Edition, 2018, 57, 3797-3800.	7.2	15
697	Coupling of a Copper Dye with a Copper Electrolyte: A Fascinating Springboard for Sustainable Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 751-756.	2.5	50
698	Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics. Physical Chemistry Chemical Physics, 2018, 20, 5117-5127.	1.3	16
699	Design and Synthesis of Novel Indole and Carbazole Based Organic Dyes for Dye Sensitized Solar Cells: Theoretical Studies by DFT/TDDFT. ChemistrySelect, 2018, 3, 1623-1628.	0.7	5
700	Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale, 2018, 10, 4987-5034.	2.8	108
701	Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and cosensitization. Chemical Communications, 2018, 54, 1811-1824.	2.2	138
702	Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 8151-8159.	1.4	10
703	Investigation of the push–pull effects on β-functionalized zinc porphyrin coordinated to C60 donor–acceptor conjugates. Canadian Journal of Chemistry, 2018, 96, 881-889.	0.6	8
704	Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2391-2399.	4.0	56
705	Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell. Journal of Materials Science, 2018, 53, 5140-5150.	1.7	14
706	Detecting Mechanochemical Atropisomerization within an STM Break Junction. Journal of the American Chemical Society, 2018, 140, 710-718.	6.6	38
707	Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore–Ru(II) Water Oxidation Catalyst Assembly on SnO ₂ Electrodes. Journal of Physical Chemistry C, 2018, 122, 13455-13461.	1.5	11
708	A rational design of high efficient and low-cost dye sensitizer with exceptional absorptions: Computational study of cyanidin based organic sensitizer. Solar Energy, 2018, 161, 83-89.	2.9	23
709	β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows. Coordination Chemistry Reviews, 2018, 358, 153-177.	9.5	85
710	Theoretical investigations on the unsymmetrical effect of β-link Zn–porphyrin sensitizers on the performance for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2018, 20, 3741-3751.	1.3	24
711	Photocatalytic Generation of Hydrogen Using Dinuclear Ï€â€Extended Porphyrin–Platinum Compounds. Chemistry - A European Journal, 2018, 24, 3225-3233.	1.7	31
712	Bio-inspired model of photosystem II: supramolecular assembly of an electron mediator into an SnO ₂ photoanode co-sensitized by a porphyrin photosensitizer and ruthenium molecular catalyst. Sustainable Energy and Fuels, 2018, 2, 545-548.	2.5	10
713	Effect of electron-donating and -withdrawing substitutions in naphthoquinone sensitizers: The structure engineering of dyes for DSSCs. Journal of Molecular Structure, 2018, 1167, 274-279.	1.8	18

	CITATION	i Report	
#	Article	IF	CITATIONS
714	In Situ Observations of UV-Induced Restructuring of Self-Assembled Porphyrin Monolayer on Liquid/Au(111) Interface at Molecular Level. Langmuir, 2018, 34, 6003-6009.	1.6	11
715	Tuning the Photovoltaic Performance of DSSCs by Appending Various Donor Groups on <i>trans</i> -Dimesityl Porphyrin Backbone. ACS Applied Energy Materials, 2018, 1, 2793-2801.	2.5	25
716	Supramolecular Complexation between Porphyrinâ€Viologen Dyad and Cucurbit[7]uril. ChemistrySelect, 2018, 3, 256-261.	0.7	11
717	Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes. Optical Materials, 2018, 79, 435-445.	1.7	15
718	Porphyrin sensitizers containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of steric hindrance and cosensitization. Dyes and Pigments, 2018, 155, 323-331.	2.0	35
719	Tuning pentacene based dye-sensitized solar cells. Nanoscale, 2018, 10, 8515-8525.	2.8	9
720	Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC). Journal of Electronic Materials, 2018, 47, 3657-3665.	1.0	17
721	Bis(1,10-phenanthroline) copper complexes with tailored molecular architecture: from electrochemical features to application as redox mediators in dye-sensitized solar cells. Electrochimica Acta, 2018, 271, 180-189.	2.6	18
722	Energy conversion process of substituted phthalocyanines with potential application to DSSC: a theoretical study. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	11
723	Locking the Coplanar Conformation of π onjugated Molecules and Macromolecules Using Dynamic Noncovalent Bonds. Macromolecular Rapid Communications, 2018, 39, 1700241.	2.0	61
724	Enhancement of the photovoltaic performance in D 3 A porphyrin-based DSCs by incorporating an electron withdrawing triazole spacer. Polyhedron, 2018, 140, 9-18.	1.0	16
725	Adsorption orientation effects of porphyrin dyes on the performance of DSSC: Comparison of benzoic acid and tropolone anchoring groups binding onto the TiO 2 anatase (101) surface. Applied Surface Science, 2018, 433, 1137-1147.	3.1	20
726	A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. Journal of Materials Chemistry A, 2018, 6, 1995-2003.	5.2	71
727	Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angewandte Chemie - International Edition, 2018, 57, 7958-7985.	7.2	277
728	Hyperbranched Polyglycerol Loaded with (Zinc-)Porphyrins: Photosensitizer Release Under Reductive and Acidic Conditions for Improved Photodynamic Therapy. Biomacromolecules, 2018, 19, 222-238.	2.6	34
729	Improved conversion efficiency in dye-sensitized solar cells based on porphyrin dyes with dithieno[3,2-b:2′,3′- d]pyrrole donor. Dyes and Pigments, 2018, 150, 223-230.	2.0	20
730	Dimeric Porphyrin Small Molecules for Efficient Organic Solar Cells with High Photoelectron Response in the Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 668-675.	4.0	32
731	Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle. Physical Chemistry Chemical Physics, 2018, 20, 1993-2008.	1.3	12

#	Article	IF	CITATIONS
732	Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angewandte Chemie, 2018, 130, 8086-8116.	1.6	51
733	Novel Iron-Based Polynuclear Metal Complexes [FeII(L)(CN)4]2–[FeIII(H2O)3Cl]2: Synthesis and Study of Photovoltaic Properties for Dye-Sensitized Solar Cell. Russian Journal of Electrochemistry, 2018, 54, 1164-1175.	0.3	3
734	Highly efficient stereoscopic phenothiazine dyes with different anchors for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 18702-18707.	1.4	20
735	9. Complexes between core-modified porphyrins ZnP(X) ₄ (X = P and S) and small semiconductor nanoparticle Zn ₆ S ₆ : are they possible?. , 2018, , 135-146.		3
736	Hybrid renewable energy: future of the world. IOP Conference Series: Materials Science and Engineering, 2018, 377, 012073.	0.3	2
737	Push-Pull Zinc Porphyrins as Light-Harvesters for Efficient Dye-Sensitized Solar Cells. Frontiers in Chemistry, 2018, 6, 541.	1.8	59
738	Electrochemistry of zinc tetraarylporphyrins containing fused butano and benzo groups. Effect of solvent and substituents on spectra, potentials and mechanism in nonaqueous media. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1129-1142.	0.4	6
739	Synthesis, spectral and electrochemical redox properties of N-methyl fused nickel(II) porphyrin. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1106-1110.	0.4	2
740	Visible and near-infrared photoluminescence enhanced by Ag nanoparticles in Sm3+-doped aluminoborate glass. Optical Materials, 2018, 86, 611-616.	1.7	15
741	Comparative Study of Resins and Asphaltenes of Heavy Oils as Sources for Obtaining Pure Vanadyl Porphyrins by the Sulfocationite-Based Chromatographic Method. Energy & Fuels, 2018, 32, 12435-12446.	2.5	19
742	One-Pot Approach to Chlorins, Isobacteriochlorins, Bacteriochlorins, and Pyrrocorphins. Organic Letters, 2018, 20, 7879-7883.	2.4	16
743	Ni-Porphyrin-based small molecule for efficient organic solar cells (>9.0%) with a high open circuit voltage of over 1.0 V and low energy loss. Chemical Communications, 2018, 54, 14144-14147.	2.2	19
744	Selective Extraction of C ₇₀ by a Tetragonal Prismatic Porphyrin Cage. Journal of the American Chemical Society, 2018, 140, 13835-13842.	6.6	105
745	Biosurfactant-functionalized porphyrin chromophore that forms <i>J</i> -aggregates. Organic and Biomolecular Chemistry, 2018, 16, 7178-7190.	1.5	12
746	The Diradicalâ€Dication Strategy for BODIPY―and Porphyrinâ€Based Dyes with Nearâ€Infrared Absorption Maxima from 1070 to 2040 nm. Chemistry - A European Journal, 2018, 24, 19341-19347.	1.7	9
747	The researcher's guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11903-11942.	2.7	87
748	RuHCl(CO)(PPh ₃) ₃ -Catalyzed Direct Amidation of Arene C–H Bond with Azides. Journal of Organic Chemistry, 2018, 83, 13811-13820.	1.7	23
749	Synthesis and Studies of New Fluoresceinâ€Porphyrin Dyads: A Theoretical and Experimental Approach. ChemistrySelect, 2018, 3, 10959-10970.	0.7	1

#	Article	IF	CITATIONS
750	Density functional theory study of promising polyene-diphenylaniline organic chromophores for dye-sensitized solar cell applications. Cogent Engineering, 2018, 5, 1532778.	1.1	1
751	Influence of External Electric Fields on Photoluminescence and Charge Carrier Dynamics of Ï€-Conjugated Polymer P3HT in Multilayer Films with Heterojunctions to TiO ₂ and Sb ₂ S ₃ . ACS Applied Energy Materials, 2018, 1, 6136-6151.	2.5	4
752	Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	9
753	A New Tool in the Quest for Biocompatible Phthalocyanines: Palladium Catalyzed Aminocarbonylation for Amide Substituted Phthalonitriles and Illustrative Phthalocyanines Thereof. Catalysts, 2018, 8, 480.	1.6	3
754	Synthesis and Characterization of Novel β-Bis(<i>N</i> , <i>N</i> -diarylamino)-Substituted Porphyrin for Dye-Sensitized Solar Cells under 1 sun and Dim Light Conditions. ACS Applied Materials & Interfaces, 2018, 10, 39970-39982.	4.0	36
755	Effect of the second chromophore energy gap on photo-induced electron injection in di-chromophoric porphyrin-sensitized solar cells. Royal Society Open Science, 2018, 5, 181218.	1.1	3
756	Anchoring of carboxyl-functionalized porphyrins on MgO, TiO ₂ , and Co ₃ O ₄ nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 24858-24868.	1.3	25
757	Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules. Chemical Research in Chinese Universities, 2018, 34, 772-780.	1.3	3
758	Origin of Panchromaticity in Multichromophore–Tetrapyrrole Arrays. Journal of Physical Chemistry A, 2018, 122, 7181-7201.	1.1	20
759	Copper-catalyzed C–N bond formation with imidazo[1,2- <i>a</i>]pyridines. Organic and Biomolecular Chemistry, 2018, 16, 6655-6658.	1.5	28
760	Effect of Side Groups on the Photovoltaic Performance Based on Porphyrin–Perylene Bisimide Electron Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 32454-32461.	4.0	21
761	Effects of the terminal donor unit in dyes with D–D–Ĩ€â€"A architecture on the regeneration mechanism in DSSCs: a computational study. Physical Chemistry Chemical Physics, 2018, 20, 23564-23577.	1.3	15
762	Effect of the triazole ring in zinc porphyrin-fullerene dyads on the charge transfer processes in NiO-based devices. Physical Chemistry Chemical Physics, 2018, 20, 24477-24489.	1.3	13
763	The effect of <i>cis</i> – <i>trans</i> configurational difference on the performance of pyridylimine-based ruthenium sensitizers. Dalton Transactions, 2018, 47, 8356-8363.	1.6	2
764	Visible and near-infrared organic photosensitizers comprising isoindigo derivatives as chromophores: synthesis, optoelectronic properties and factors limiting their efficiency in dye solar cells. Journal of Materials Chemistry A, 2018, 6, 10074-10084.	5.2	27
765	Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials & Interfaces, 2018, 10, 20728-20739.	4.0	22
766	Thermally Activated Selfâ€metalation of Carboxyâ€functionalized Porphyrin Films on MgO Nanocubes. ChemPhysChem, 2018, 19, 2272-2280.	1.0	7
767	Tailoring the benzotriazole (BTZ) auxiliary acceptor in a D-A′-π-A type sensitizer for high performance dye-sensitized solar cells (DSSCs). Dyes and Pigments, 2018, 158, 195-203.	2.0	15

#	ARTICLE	IF	CITATIONS
768	Redox-driven porphyrin based systems for new luminescent molecular switches. Dalton Transactions, 2018, 47, 8364-8374.	1.6	13
769	Conjugated systems of porphyrin–carbon nanoallotropes: a review. New Journal of Chemistry, 2018, 42, 12328-12348.	1.4	35
770	Photoinduced electron transfer in a molecular dyad by nanosecond pump—pump—probe spectroscopy. Photochemical and Photobiological Sciences, 2018, 17, 903-909.	1.6	11
771	Assemblies of porphyrin and phthalocyanine derivatives studied by STM. Journal of Porphyrins and Phthalocyanines, 2018, 22, 717-725.	0.4	14
772	Interfacing porphyrins and carbon nanotubes through mechanical links. Chemical Science, 2018, 9, 6779-6784.	3.7	29
773	Modular Preparation of Grapheneâ€Based Functional Architectures through Twoâ€Step Organic Reactions: Towards Highâ€Performance Energy Storage. Chemistry - A European Journal, 2018, 24, 18518-18528.	1.7	21
774	Picosecond dynamic of aqueous sodium-copper chlorophyllin solution: An excited state absorption study. Chemical Physics Letters, 2018, 706, 652-657.	1.2	7
775	Introduction and Importance of Synthetic Organic Dyes. , 2018, , 1-7.		6
776	Porphyrin–Coumarin Dyads: Investigation of Photophysical Properties and DNA Interactions. Journal of Physical Chemistry B, 2018, 122, 7797-7810.	1.2	9
777	Fused Fluorenylindolenine-Donor-Based Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26335-26347.	4.0	24
778	Conjugated double helices <i>via</i> self-dimerization of α,α′-dianilinotripyrrins. Chemical Science, 2018, 9, 6853-6859.	3.7	26
779	Palladium-Catalyzed C–H Amination of C(sp ²) and C(sp ³)–H Bonds: Mechanism and Scope for N-Based Molecule Synthesis. ACS Catalysis, 2018, 8, 5732-5776.	5.5	127
780	Theoretical study of dianchoring dual D-Ï€-A structure of sensitizers for efficient dye-sensitized solar cells. Molecular Crystals and Liquid Crystals, 2018, 660, 42-47.	0.4	1
781	Photophysical and Electrochemical Properties and Anticancer Activities of Porphyrin-Cored Fluorenodendrimers Synthesized by Click Chemistry. Synlett, 2018, 29, 1995-2000.	1.0	2
782	Novel indoline dye tetrabutylammonium carboxylates attached with a methyl group on the cyclopentane ring for dye-sensitized solar cells. Tetrahedron, 2018, 74, 5867-5878.	1.0	2
783	Synthesis and characterization of carbene-pyridyl anchoring Ru(ii) dyes with various binding functionalities for photoelectrochemical cells. New Journal of Chemistry, 2018, 42, 15245-15252.	1.4	5
784	Indenoquinaldineâ€Based Unsymmetrical Squaraine Dyes for Nearâ€Infrared Absorption: Investigating the Steric and Electronic Effects in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2018, 24, 16368-16378.	1.7	7
785	Synthesis, Photophysical, Electrochemical Properties, DFT Studies and DSSC Performance of BODIPY Cored Triazole Bridged 3,6â€Đitertiary Butyl Carbazole Decorated Dendrimers. ChemistrySelect, 2018, 3, 9222-9231.	0.7	9

#	Article	IF	CITATIONS
786	Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nature Communications, 2018, 9, 3442.	5.8	169
787	Efficiency difference between furan- and thiophene-based D–π–A dyes in DSSCs explained by theoretical calculations. RSC Advances, 2018, 8, 29917-29923.	1.7	10
788	Functionalized Zinc Porphyrins with Various Peripheral Groups for Interfacial Electron Injection Barrier Control in Organic Light Emitting Diodes. ACS Omega, 2018, 3, 10008-10018.	1.6	11
789	Development of iridium porphyrin arrays by axial coordination through N-bidentate ligand: Synthesis and evaluation of the optical, electrochemical and thermal properties. Polyhedron, 2018, 154, 302-308.	1.0	5
790	Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 3216-3229.	2.5	33
791	Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. Nanoscale, 2018, 10, 12683-12694.	2.8	25
792	Trans-A2B2 Zn(II) porphyrin dyes with various donor groups and their Co-sensitization for highly efficient dye-sensitized solar cells. Dyes and Pigments, 2019, 160, 386-394.	2.0	23
793	Theoretical study of the asymmetric organic dye with heteroleptic dual acceptors for dye-sensitized solar cells. Molecular Crystals and Liquid Crystals, 2019, 679, 23-29.	0.4	0
794	Porphyrin synthesis using mechanochemistry: Sustainability assessment. Journal of Porphyrins and Phthalocyanines, 2019, 23, 889-897.	0.4	11
795	Solar cells sensitized with porphyrin dyes with a carbazole donor: The effects of an auxiliary benzothiadiazole acceptor and bulky substituents on the donor. Dyes and Pigments, 2019, 171, 107776.	2.0	13
796	Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells. Materials Chemistry Frontiers, 2019, 3, 2357-2362.	3.2	16
797	Porpholactone Chemistry: An Emerging Approach to Bioinspired Photosensitizers with Tunable Near-Infrared Photophysical Properties. Accounts of Chemical Research, 2019, 52, 2620-2633.	7.6	69
798	Photoinduced electron transfer upon supramolecular complexation of (porphyrinato) Sn-viologen with cucurbit[7]uril. Photochemical and Photobiological Sciences, 2019, 18, 1996-2002.	1.6	16
799	Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode. Chinese Journal of Catalysis, 2019, 40, 1222-1230.	6.9	32
800	Electronic–Vibrational Coupling and Electron Transfer. Journal of Physical Chemistry C, 2019, 123, 23760-23772.	1.5	9
801	Theoretical design and characterization of NIR porphyrin-based sensitizers for applications in dye-sensitized solar cells. Solar Energy, 2019, 188, 1031-1040.	2.9	15
802	A near-infrared thienyl-BODIPY co-sensitizer for high-efficiency dye-sensitized solar cells. Sustainable Energy and Fuels, 2019, 3, 2983-2989.	2.5	12
803	Effect of structural engineering of ï€-spacers on anti-aggregation of D–A–ï€â€"A dyes. Journal of Materials Chemistry C, 2019, 7, 10379-10388.	2.7	25

ARTICLE IF CITATIONS Introduction of an isoxazoline unit to the \hat{l}^2 -position of porphyrin via regioselective 1,3-dipolar 804 1.3 5 cycloaddition reaction. Beilstein Journal of Organic Chemistry, 2019, 15, 1434-1440. Synthesis, spectroscopic and DFT studies of copper(I) complexes inserting the electron-donating groups into pyridine-imidazole ligands vis an acetylide linker. Inorganica Chimica Acta, 2019, 498, 119155. 806 1.2 Progress on Nanomaterials for Photoelectrochemical Solar Cells: from Titania to Perovskites. E3S 807 0.2 1 Web of Conferences, 2019, 125, 14015. Photoactive Porphyrinâ€Based Metalâ€Organic Framework Nanosheets. European Journal of Inorganic 808 Chemistry, 2019, 2019, 4815-4819. Aligned carbon nanotube/carbon (CNT/C) composites with exceptionally high electrical conductivity 809 0.8 10 at elevated temperature to 400 ŰC. Materials Research Express, 2019, 6, 116302. Effect of the meso/beta halogenation in the photoelectronic properties and aromaticity of expanded porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112052. Effect of new asymmetrical Zn(<scp>ii</scp>) phthalocyanines on the photovoltaic performance of a 811 1.4 28 dye-sensitized solar cell. New Journal of Chemistry, 2019, 43, 14390-14401. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective 5.8 121 electroreduction of carbon dioxide. Nature Communications, 2019, 10, 3844. UV-vis absorption spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins on the basis of axial ligation and 813 0.8 4 pyridine protonation. Journal of Molecular Modeling, 2019, 25, 294. Unsymmetrical nonplanar â€~pushâ€"pull' β-octasubstituted porphyrins: facile synthesis, structural, 814 1.6 photophysical and electrochemical redox properties. Dalton Transactions, 2019, 48, 15002-15011. On the potential for nanoscale metal–organic frameworks for energy applications. Journal of 815 5.2 88 Materials Chemistry A, 2019, 7, 21545-21576. Coordination chemistry of expanded porphyrins. Coordination Chemistry Reviews, 2019, 401, 213063. 816 9.5 38 Efficient solar cells sensitized by a promising new type of porphyrin: dye-aggregation suppressed by 817 3.7 116 double strapping. Chemical Science, 2019, 10, 2186-2192. An imidazolium iodide salt as a bifunctional co-adsorbent for quasi-solid-state dye-sensitized solar cells: improvements of electron lifetime and charge collection efficiency. Journal of Materials 5.2 Chemistry A, 2019, 7, 2702-2708. Carbonâ€bridged Oligo(phenylenevinylene)s as Lightâ€harvesting Antenna for Porphyrins. Chemistry - an 819 1.7 4 Asian Journal, 2019, 14, 1672-1675. Theoretical screening of promising donor and π-linker groups for POM-based Zn–porphyrin dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 3822-3831. 14 Intermolecular electronic and photochromic behaviors of halocadmate hybrids. Dyes and Pigments, 821 2.0 12 2019, 162, 815-820. The influence of antenna and anchoring moieties on the improvement of photoelectronic properties in Zn(<scp>ii</scp>)–porphyrin–TiO₂ as potential dye-sensitized solar cells. Physical 1.3 Chemistry Chemical Physics, 2019, 21, 4339-4348.

#	Article	IF	CITATIONS
823	Nickel-promoted C(2)–H amidation of quinoline <i>N</i> -oxides with <i>N</i> -fluorobenzenesulfonimide. Organic Chemistry Frontiers, 2019, 6, 830-834.	2.3	18
824	Improving energy transfer efficiency of dye-sensitized solar cell by fine tuning of dye planarity. Solar Energy, 2019, 187, 274-280.	2.9	24
825	Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coordination Chemistry Reviews, 2019, 395, 46-62.	9.5	187
826	Dâ~'ï€â€"A-Structured Porphyrins with Extended Auxiliary ï€-Spacers for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 24067-24077.	4.0	46
827	Formation Reaction, Spectroscopy, and Photoelectrochemistry of the Donor–Acceptor Complex (5,10,15,20-Tetraphenyl-21,23H-porphinato)cobalt(II) with Pyridyl-Substituted Fullero[60]pyrrolidine. Russian Journal of Inorganic Chemistry, 2019, 64, 605-614.	0.3	18
828	Tuning electronic properties of molecular acceptor-ï€-porphyrin-ï€-acceptor donors via ï€-linkage structural engineering. Organic Electronics, 2019, 73, 146-151.	1.4	8
829	Merging photoredox catalysis with transition metal catalysis: Direct C4-H amination of 8-hydroxyquinoline derivatives. Tetrahedron, 2019, 75, 3904-3910.	1.0	3
830	Thiazolocatechol: Electronâ€Withdrawing Catechol Anchoring Group for Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2019, 20, 2689-2695.	1.0	5
831	Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS Omega, 2019, 4, 10108-10120.	1.6	8
832	Metal-free C–H amination of arene with <i>N</i> -fluorobenzenesulfonimide catalysed by nitroxyl radicals at room temperature. Chemical Communications, 2019, 55, 7331-7334.	2.2	21
833	<i>meso</i> -Aryl substituted stable unorthodox 5,10-porphodimethenes with α,β and β,β- <i>N</i> -methyl pyrrole connectivities: synthesis and spectroscopic, solid state and theoretical characterization. Organic and Biomolecular Chemistry, 2019, 17, 6131-6135.	1.5	8
834	Ï€-Expanded dibenzo-BODIPY with near-infrared light absorption: Investigation of photosensitizing properties of NiO-based p-type dye-sensitized solar cells. Dyes and Pigments, 2019, 170, 107613.	2.0	19
835	New type of ferrocene group substituted porphyrin axial coordinate self-assembly for dye-sensitized solar cells. Organic Electronics, 2019, 71, 290-295.	1.4	8
836	Porphine Homocoupling on Au(111). Journal of Physical Chemistry C, 2019, 123, 16690-16698.	1.5	11
837	Renaissance of Fused Porphyrins: Substituted Methylene-Bridged Thiophene-Fused Strategy for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2019, 141, 9910-9919.	6.6	176
838	Efficient solar cells based on cosensitizing porphyrin dyes containing a wrapped donor, a wrapped Ï€-framework and a substituted benzothiadiazole unit. Science China Chemistry, 2019, 62, 994-1000.	4.2	27
839	Design of atomically dispersed catalytic sites for photocatalytic CO ₂ reduction. Nanoscale, 2019, 11, 11064-11070.	2.8	57
840	On the spectral profile change in the Q band absorption spectra of metalloporphyrins (Mg, Zn, and) Tj ETQq1 1 ().784314 r 1.2	gBT /Overloc

#	Article	IF	CITATIONS
841	Synthetic aspects of carbazole containing porphyrins and porphyrinoids. Journal of Porphyrins and Phthalocyanines, 2019, 23, 367-409.	0.4	11
842	Theoretical insight on the nanocomposite of tetraphenylporphyrin- graphene oxide quantum dot as a sensitizer of DSSC. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 24-31.	2.0	15
843	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	11.8	117
844	Improving the efficiency of copper-dye-sensitized solar cells by manipulating the electrolyte solution. Dalton Transactions, 2019, 48, 9818-9823.	1.6	21
845	Novel 4,4′-bis(alkylphenyl/alkyloxyphenyl)-2,2′-bithiophene bridged cyclic thiourea functionalized triphenylamine sensitizers for efficient dye-sensitized solar cells. Solar Energy, 2019, 186, 1-8.	2.9	21
846	Cs ₂ SnI ₆ -Encapsulated Multidye-Sensitized All-Solid-State Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 21424-21434.	4.0	35
847	Theoretical analysis of the electronic properties in Zinc-porphyrins derivatives. Journal of Molecular Structure, 2019, 1191, 259-270.	1.8	9
848	Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 2019, 48, 2738-2766.	18.7	165
849	Electronically Tuned Asymmetric <i>meso</i> â€Substituted Porphyrins for pâ€Type Solar Cells. ChemPlusChem, 2019, 84, 766-771.	1.3	8
850	[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-Ï€-A Organic Sensitizers for Dye-Sensitized Solar Cells. Molecules, 2019, 24, 1588.	1.7	21
851	PhotoleitfŤigkeit in Dünnfilmen Metallâ€organischer Gerüste. Angewandte Chemie, 2019, 131, 9691-9696.	1.6	16
852	Photoconductivity in Metal–Organic Framework (MOF) Thin Films. Angewandte Chemie - International Edition, 2019, 58, 9590-9595.	7.2	118
853	Improved solubility of asymmetric tetraethynylporphyrin derivatives for solution-processed organic solar cells. Organic Electronics, 2019, 71, 50-57.	1.4	6
855	Dye-sensitized solar cell (DSSC) coated with energy down shift layer of nitrogen-doped carbon quantum dots (N-CQDs) for enhanced current density and stability. Applied Surface Science, 2019, 483, 425-431.	3.1	79
856	Porphyrin based hole transport layers for enhanced charge transport and stability in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 7866-7872.	1.1	5
857	Solar Cells Sensitized with Porphyrin Dyes Containing Oligo(Ethylene Glycol) Units: A High Efficiency Beyond 12 %. ChemSusChem, 2019, 12, 2802-2809.	3.6	36
858	Effect of co-sensitization in solar exfoliated TiO2 functionalized rGO photoanode for dye-sensitized solar cell applications. Materials Science in Semiconductor Processing, 2019, 96, 104-115.	1.9	41
859	β-Functionalized push–pull opp-dibenzoporphyrins as sensitizers for dye-sensitized solar cells: the role of the phenylethynyl bridge. Journal of Materials Chemistry A, 2019, 7, 10712-10722.	5.2	33

#	Article	IF	Citations
860	Study of the photoresponse of a titanium anode coated with solution-processed fullerene-containing metal porphyrin/phthalocyanine films. Journal of Molecular Liquids, 2019, 280, 382-388.	2.3	18
861	Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic Ĩ€-Conjugated Systems. Chemical Reviews, 2019, 119, 8291-8331.	23.0	446
862	Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. ChemBioChem, 2019, 20, 1871-1897.	1.3	79
863	Microenvironment control of porphyrin binding, organization, and function in peptide nanofiber assemblies. Nanoscale, 2019, 11, 5412-5421.	2.8	6
864	Self-Assembly by Coordination with Organic Antenna Chromophores for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 15845-15852.	4.0	8
865	Efficient Sunlight Harvesting by A4 β-Pyrrolic Substituted Znll Porphyrins: A Mini-Review. Frontiers in Chemistry, 2019, 7, 177.	1.8	26
866	Bridging the Green Gap: Metal–Organic Framework Heteromultilayers Assembled from Porphyrinic Linkers Identified by Using Computational Screening. Chemistry - A European Journal, 2019, 25, 7847-7851.	1.7	23
867	Synthesis of (<i>trans</i> â€A ₂)BCâ€Type Porphyrins with Acceptor Diethoxyphosphoryl and Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of Organic Chemistry, 2019, 2019, 3146-3162.	1.2	7
868	Towards efficient sustainable full-copper dye-sensitized solar cells. Dalton Transactions, 2019, 48, 9703-9711.	1.6	43
869	Iridium(III)-Catalyzed C–H Amidation of Nitrones with Dioxazolones. Journal of Organic Chemistry, 2019, 84, 5305-5312.	1.7	27
870	Synthesis of Redoxâ€switchable 5,15â€Dialkylâ€10,20â€diarylâ€5,15â€diazaporphyrins and Diversification of the <i>N</i> â€Alkyl Groups. Asian Journal of Organic Chemistry, 2019, 8, 352-355.	eir 1.3	17
871	Telluraporphyrinoids: an interesting class of core-modified porphyrinoids. Dalton Transactions, 2019, 48, 4444-4459.	1.6	20
872	Synthesis and Band Gap Analysis of Designed Porphyrin Derivatives Containing Electron Donating and Accepting Group. Bulletin of the Korean Chemical Society, 2019, 40, 173-179.	1.0	3
873	Axial coordination reactions with nitrogenous bases and determination of equilibrium constants for zinc tetraarylporphyrins containing four β,β′-fused butano and benzo groups in nonaqueous media. Journal of Porphyrins and Phthalocyanines, 2019, 23, 196-205.	0.4	7
874	New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage. Advanced Materials, 2019, 31, e1806599.	11.1	64
875	Cyclohexadienone core 3,6-di-tert-butylcarbazole decorated triazole bridged dendrimers: synthesis, photophysical and electrochemical properties and application as an additive in dye-sensitized solar cells. New Journal of Chemistry, 2019, 43, 4036-4048.	1.4	3
876	Design of an LED-based solar spectrum simulator for porphyrin dye-sensitized solar cell characterization. , 2019, , .		0
877	Prediction of magnesium tetraethynylporphyrin's solubility by theoretical calculation. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1144-1148.	0.4	4

#	Article	IF	CITATIONS
878	Characterization of binary self-assembled monolayers formed from the sequential deposition of 2-naphthalenethiol and octanethiol. Surface Science, 2019, 679, 117-127.	0.8	8
879	Tropylium and Porphyrinoid Character in Carbaporphyrinoid Systems. Relative Stability and Aromatic Characteristics of Azuliporphyrin and Tropiporphyrin Tautomers, Protonated Species, and Related Structures. Journal of Physical Chemistry A, 2019, 123, 230-246.	1.1	13
880	Conductive Fused Porphyrin Tapes on Sensitive Substrates by a Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2019, 58, 2103-2108.	7.2	29
881	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	2.0	18
882	ABC–ABCâ€Type Directly <i>meso</i> – <i>meso</i> Linked Porphyrin Dimers. Chemistry - A European Journal, 2019, 25, 538-547.	1.7	11
883	Synthesis and DSSC Applications of Ru(II) Complexes Bearing Benzimidazole Type Ligands. Journal of Electronic Materials, 2019, 48, 642-648.	1.0	13
884	Metalloporphyrins-sensitized titania-silica-iron oxide nanocomposites with high photocatalytic and bactericidal activities under visible light irradiation. Journal of Magnetism and Magnetic Materials, 2019, 475, 602-610.	1.0	19
885	Complexes between core-modified porphyrins ZnP(X) ₄ (X = P and S) and small semiconductor nanoparticle Zn ₆ S ₆ : are they possible?. Physical Sciences Reviews, 2019, 4, .	0.8	3
886	Conductive Fused Porphyrin Tapes on Sensitive Substrates by a Chemical Vapor Deposition Approach. Angewandte Chemie, 2019, 131, 2125-2130.	1.6	6
887	Multiply Wrapped Porphyrin Dyes with a Phenothiazine Donor: A High Efficiency of 11.7% Achieved through a Synergetic Coadsorption and Cosensitization Approach. ACS Applied Materials & Interfaces, 2019, 11, 5046-5054.	4.0	83
888	Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates. Journal of Porphyrins and Phthalocyanines, 2019, 23, 34-45.	0.4	22
889	Templating Porphyrin Anisotropy via Magnetically Aligned Carbon Nanotubes. ChemPlusChem, 2019, 84, 1270-1278.	1.3	9
890	Transformations of <i>meso</i> â€lminofunctionalized Pd(II) and Ni(II)â€Complexes of βâ€Alkylsubstituted Porphyrins. European Journal of Organic Chemistry, 2019, 2019, 1508-1522.	1.2	6
891	Investigation into the Oxygen-Involved Electrochemiluminescence of Porphyrins and Its Regulation by Peripheral Substituents/Central Metals. Analytical Chemistry, 2019, 91, 2319-2328.	3.2	45
892	Indolenine – dibenzotetraaza [14] annulene Ni (II) complexes as sensitizers for dye - sensitized solar cells. Dyes and Pigments, 2019, 164, 112-118.	2.0	13
893	Orange-red fluorescent polymer nanocomposite films with large stokes shift: An opto-electronic exercise. Journal of Luminescence, 2019, 208, 488-494.	1.5	15
894	Olefin-accelerated solid-state C–N cross-coupling reactions using mechanochemistry. Nature Communications, 2019, 10, 111.	5.8	107
895	Porphyrins on mica: Atomic force microscopy imaging in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 194-200.	2.3	2

#	Article	IF	CITATIONS
896	Organic sensitizers featuring 9H-thieno[2′,3':4,5]thieno[3,2-b]thieno[2′,3':4,5]thieno[2,3-d]pyrrole core for high performance dye-sensitized solar cells. Dyes and Pigments, 2019, 162, 126-135.	2.0	19
897	Quantum chemical studies of porphyrin―and expanded porphyrinâ€based systems and their potential applications in nanoscience.Latin America research review. International Journal of Quantum Chemistry, 2019, 119, e25821.	1.0	7
898	Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, 2019, 381, 1-64.	9.5	269
899	Modulation of photophysical properties of copper(I) complexes containing pyridyl-imidazole (PyIm) ligands functionalized by naphthyl, phenanthryl, and anthryl groups. Inorganica Chimica Acta, 2019, 484, 237-244.	1.2	12
900	A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2020, 24, 401-409.	0.4	6
901	Efficient preparation of 5,10,15,20-tetrakis(4-bromophenyl)porphyrin. Microwave assisted v/s conventional synthetic method, X-ray and hirshfeld surface structural analysis. Journal of Molecular Structure, 2020, 1201, 127139.	1.8	9
902	A series of porphyrins as interfacial materials for inverted perovskite solar cells. Organic Electronics, 2020, 77, 105522.	1.4	18
903	Effects of <i>meso</i> -diarylamino group of porphyrins on optical and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 67-74.	0.4	7
904	Porphyrin sensitizers involving a fluorine-substituted benzothiadiazole as auxiliary acceptor and thiophene as π bridge for use in dye-sensitized solar cells (DSSCs). Dyes and Pigments, 2020, 174, 107984.	2.0	22
905	Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews, 2020, 407, 213157.	9.5	127
906	Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids. Journal of the American Chemical Society, 2020, 142, 1895-1903.	6.6	30
907	Boosting Photoelectric Conductivity in Porphyrin-Based MOFs Incorporating C ₆₀ . Journal of Physical Chemistry C, 2020, 124, 1878-1887.	1.5	27
908	A Comprehensive Study on Tetraaryltetrabenzoporphyrins. Chemistry - A European Journal, 2020, 26, 3287-3296.	1.7	17
909	Insights into the role of Dâ€Aâ€Ï€â€A type proâ€aromatic organic dyes with thieno[3,4â€b]pyrazine as A accept group into dyeâ€sensitized solarâ€cells. A TDâ€DFT/periodic DFT study. International Journal of Quantum Chemistry, 2020, 120, e26108.	or 1.0	6
910	Efficient Polymer Solar Cells Based on New Random Copolymers with Porphyrinâ€Incorporated Side Chains. Macromolecular Chemistry and Physics, 2020, 221, 1900446.	1.1	2
911	The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coordination Chemistry Reviews, 2020, 406, 213143.	9.5	50
912	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Interfaces, 2020, 12, 1120-1131.	4.0	27
913	Alkyl-Group-Wrapped Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Branched Alkyl Chains Modulate the Aggregation of Dyes and Charge Recombination Processes. ACS Applied Materials & Interfaces, 2020, 12, 2555-2565.	4.0	31

#	Article	IF	CITATIONS
914	Zinc titanate nanomaterials—photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye. Nano Structures Nano Objects, 2020, 21, 100412.	1.9	18
915	Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4478.	1.7	30
916	Wide-low energy coupled semi-conductor layers of TiO2 – CdX boosting the performance of DSSC. Solar Energy, 2020, 208, 674-687.	2.9	14
917	A Glove-Box- and Schlenk-Line-Free Protocol for Solid-State C–N Cross-Coupling Reactions Using Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2020, 8, 16577-16582.	3.2	44
918	A conjugated porphyrin as a red-light sensitizer for near-infrared emission of ytterbium(<scp>iii</scp>) ion. New Journal of Chemistry, 2020, 44, 18756-18762.	1.4	3
919	Synthesis and Spectral Properties of Unsymmetrically Substituted Mn(II) and Mn(III) Octaethylporphyrins. Russian Journal of Organic Chemistry, 2020, 56, 1374-1382.	0.3	0
920	Self-Assembly of a Flexible Porphyrin Derivative Containing Tetra Isophthalic Acids and Host–Guest Interaction at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2020, 124, 23237-23242.	1.5	9
921	Plasmon-enhanced photocatalytic hydrogen production by dual dye sensitized ternary composite of MoS3/ Au core-Ag shell nanoparticles/ graphene. Journal of Power Sources, 2020, 477, 229033.	4.0	19
922	Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the construction of complex macrocycles and metallo-supramolecules. Chemical Science, 2020, 11, 12249-12268.	3.7	34
923	Synthesis and Spectral Properties of meso-Nitro-Substituted Octaethylporphyrins and Their Co(II) Complexes. Russian Journal of General Chemistry, 2020, 90, 1878-1883.	0.3	0
924	Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 12460-12467.	2.5	16
925	Influence of the Composition of the Sulfuric Acid Cation Exchanger on the Efficiency of Chromatographic Purification of Petroleum Vanadyl Porphyrins. Russian Journal of Applied Chemistry, 2020, 93, 888-896.	0.1	4
926	Acid–Base Properties of Polyhalogenated Tetraphenylporphyrins. Russian Journal of Organic Chemistry, 2020, 56, 1054-1061.	0.3	5
927	A DVD-MoS2/Ag2S/Ag Nanocomposite Thiol-Conjugated with Porphyrins for an Enhanced Light-Mediated Hydrogen Evolution Reaction. Nanomaterials, 2020, 10, 1266.	1.9	3
928	Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(I/II) Redox Shuttles toward High-performance Dye-sensitized Solar Cells. Chemistry Letters, 2020, 49, 936-939.	0.7	10
929	The great performance of TiO2 nanotubes electrodes modified by copper(II)porphyrin in the reduction of carbon dioxide to alcohol. Journal of CO2 Utilization, 2020, 41, 101261.	3.3	22
930	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
931	Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Position of the Anchoring Group Controls the Orientation and Self-Assembly of Sensitizers on the TiO ₂ Surface and Modulates Its Flat Band Potential. Journal of Physical Chemistry C, 2020, 124, 18436-18451.	1.5	14

#	Article	IF	CITATIONS
932	Imine–carbene-based ruthenium complexes for dye-sensitized solar cells: the effect of isomeric mixture on the photovoltaic performance. New Journal of Chemistry, 2020, 44, 20568-20573.	1.4	4
933	Porphyrin-sensitized quasi-solid solar cells with MOF composited titania aerogel photoanodes. Materials Today Energy, 2020, 18, 100511.	2.5	11
934	Efficient Photoinduced Energy Transfer in Porphyrin-Based Nanomaterials. Journal of Physical Chemistry C, 2020, 124, 24533-24541.	1.5	10
935	Synthesis and Redox Properties of Superbenzene Porphyrin Conjugates. Inorganic Chemistry, 2020, 59, 16168-16177.	1.9	5
936	Control of Porphyrin Planarity and Aggregation by Covalent Capping: Bissilyloxy Porphyrin Silanes. Inorganic Chemistry, 2020, 59, 13533-13541.	1.9	4
937	Efficient light harvesting using simple porphyrin-oxide perovskite system. Scientific Reports, 2020, 10, 14121.	1.6	5
938	3,6,13,16-Tetrasubstituted Porphycene: The Missing Link in Porphycene Chemistry. Organic Letters, 2020, 22, 7175-7180.	2.4	6
939	Surface Structure Controls Self-Metalation: In-Situ IR Studies of Anchored Porphyrins on Atomically-Defined Cobalt Oxide Surfaces. Journal of Physical Chemistry C, 2020, 124, 21538-21548.	1.5	10
940	Formation of Supramolecular Polymers from Porphyrin Tripods. Macromolecules, 2020, 53, 8060-8067.	2.2	4
941	Synthesis of meso-substituted corroles and porphyrins using iodine as a catalyst. Journal of Chemical Sciences, 2020, 132, 1.	0.7	4
942	Design and synthesis of organic dyes with various donor groups: promising dyes for dye-sensitized solar cells. Bulletin of Materials Science, 2020, 43, 1.	0.8	3
943	Electrodeposited mixed ZnS–CdS photoelectrode for natural dye-sensitized solar cells (NDSSC). Indian Journal of Physics, 2021, 95, 2349-2357.	0.9	2
944	Synthesis and Spectral and Coordination Properties of Perhalogenated Tetraphenylporphyrins. Russian Journal of General Chemistry, 2020, 90, 2098-2104.	0.3	1
945	Light-Absorbing Pyridine Derivative as a New Electrolyte Additive for Developing Efficient Porphyrin Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57017-57024.	4.0	35
946	Fused Nickel(II) Porphyrins—Sensing of Toxic Anions and Selected Metal Ions Through Supramolecular Interactions. Frontiers in Chemistry, 2020, 8, 595177.	1.8	8
947	Perovskite Puzzle for Revolutionary Functional Materials. Frontiers in Chemistry, 2020, 8, 550625.	1.8	5
948	Tuning on and off chemical- and photo-activity of exfoliated MoSe ₂ nanosheets through morphologically selective "soft―covalent functionalization with porphyrins. Journal of Materials Chemistry A, 2020, 8, 11019-11030.	5.2	16
949	Highlyâ€Transparent and Trueâ€Colored Semitransparent Indoor Photovoltaic Cells. Small Methods, 2020, 4, 2000136.	4.6	28

#	Article	IF	CITATIONS
950	Highly Efficient Dye-Sensitized Solar Cells with Composited Food Dyes. Industrial & Engineering Chemistry Research, 2020, 59, 10457-10463.	1.8	13
951	Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 2020, 95, 439-446.	1.1	8
952	Rhenium in the core of porphyrin and rhenium bound to the periphery of porphyrin: synthesis and applications. Dalton Transactions, 2020, 49, 8419-8432.	1.6	11
953	New Oxindole-Bridged Acceptors for Organic Sensitizers: Substitution and Performance Studies in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 2159.	1.7	6
954	Investigations of Low-Symmetrical Tetraaryltetrabenzoporphyrins Produced by Mixed Condensation Reactions. Journal of Organic Chemistry, 2020, 85, 7781-7792.	1.7	8
955	Configuration effect in polyoxometalate-based dyes on the performance of DSSCs: an insight from a theoretical perspective. Physical Chemistry Chemical Physics, 2020, 22, 16032-16039.	1.3	3
956	Synthesis of Cationic Pyridinium–Chlorin Conjugates with Various Counter Anions and Effects of the Anions on Their Photophysical Properties. Bulletin of the Chemical Society of Japan, 2020, 93, 467-476.	2.0	6
957	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	9.5	191
958	Bulky Phenanthroimidazole–Phenothiazine Dâ^"i€â€"A Based Organic Sensitizers for Application in Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 6758-6767.	2.5	51
959	Investigation of Ferrocene Linkers in β-Substituted Porphyrins. Journal of Physical Chemistry A, 2020, 124, 5513-5522.	1.1	6
960	A Modified Vilsmeier–Haack Strategy to Construct β-Pyridine-Fused 5,10,15,20-Tetraarylporphyrins. SynOpen, 2020, 04, 44-50.	0.8	5
961	Theoretical analysis of the absorption spectrum, electronic structure, excitation, and intramolecular electron transfer of D–A′–΀–A porphyrin dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2020, 22, 14846-14856.	1.3	8
962	Remote C–H Functionalization of 8-Aminoquinoline Ring. Topics in Current Chemistry, 2020, 378, 42.	3.0	13
963	Dipolar Nanocars Based on a Porphyrin Backbone. Chemistry - A European Journal, 2020, 26, 12010-12018.	1.7	11
964	Switching protein metalloporphyrin binding specificity by design from iron to fluorogenic zinc. Chemical Communications, 2020, 56, 4308-4311.	2.2	4
965	Effect of Side Substituents Incorporated into Ï€â€Bridges of Quinoxalineâ€Based Sensitizers for Dye‧ensitized Solar Cells. Energy Technology, 2020, 8, 2000032.	1.8	5
966	Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy and Environmental Science, 2020, 13, 1617-1657.	15.6	178
967	Synthesis of a Black Dye with Absorption Capabilities Across the Visible-to-Near-Infrared Region: A MO-Mixing Approach via Heterometal Coordination of Expanded Porphyrinoid. Journal of the American Chemical Society, 2020, 142, 6807-6813.	6.6	40

#	Article	IF	CITATIONS
968	Effect of Electron-Withdrawing/-Donating Groups on the Sensitizing Action of the Novel Organic Dye "3-(5-(4-(Diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic Acid―for N-Type Dye-Sensitized Solar Cells: A Theoretical Study. Journal of Physical Chemistry C, 2020, 124, 8526-8540.	1.5	26
969	Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells. Journal of Materials Chemistry A, 2020, 8, 12361-12369.	5.2	17
970	Comparison between Benzothiadizole–Thiophene- and Benzothiadizole–Furan-Based D–Aâ^'π–A Dyes Applied in Dye-Sensitized Solar Cells: Experimental and Theoretical Insights. ACS Omega, 2020, 5, 16856-16864.	1.6	21
971	Bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for conversion of light energy to electricity. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1189-1197.	0.4	3
972	Addressing the Origin of Photocurrents and Fuel Production Activities in Catalyst-Modified Semiconductor Electrodes. ACS Applied Energy Materials, 2020, 3, 7512-7519.	2.5	6
973	Nanoscale integration of porphyrin in GroEL protein cage: Photophysical and photochemical investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118596.	2.0	1
974	14.2% Efficiency Dyeâ€Sensitized Solar Cells by Coâ€sensitizing Novel Thieno[3,2â€ <i>b</i>]indoleâ€Based Organic Dyes with a Promising Porphyrin Sensitizer. Advanced Energy Materials, 2020, 10, 2000124.	10.2	216
975	Benchmark of Simplified Timeâ€Dependent Density Functional Theory for UV–Vis Spectral Properties of Porphyrinoids. Advanced Theory and Simulations, 2020, 3, 1900192.	1.3	13
976	Influence of the meso-substituents of zinc porphyrins in dye-sensitized solar cell efficiency with improved performance under short periods of white light illumination. Dyes and Pigments, 2020, 177, 108280.	2.0	5
977	Porphyrin dyes bearing heterocyclic anchoring groups for dye-sensitized solar cells with enhanced efficiency and long-term stability: Further optimization of champion porphyrin dye SM315. Applied Surface Science, 2020, 513, 145844.	3.1	8
978	Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules. Accounts of Chemical Research, 2020, 53, 662-675.	7.6	66
979	Synthesis, properties and photovoltaic performance in dye-sensitized solar cells of three meso-diphenylbacteriochlorins bearing a dual-function electron-donor. RSC Advances, 2020, 10, 6172-6178.	1.7	5
980	Efficient Solar Cells Based on Concerted Companion Dyes Containing Two Complementary Components: An Alternative Approach for Cosensitization. Journal of the American Chemical Society, 2020, 142, 5154-5161.	6.6	172
981	Molecular flattening effect to enhance the conductivity of fused porphyrin tape thin films. RSC Advances, 2020, 10, 7048-7057.	1.7	19
982	CsPbBr3 Quantum Dots as Artificial Antennas to Enhance the Light-Harvesting Efficiency and Photoresponse of Zinc Porphyrin. Journal of Physical Chemistry C, 2020, 124, 5069-5078.	1.5	6
983	Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 2020, 24, 303-320.	2.4	41
984	Atropisomers of meso Tetra(N â€Mesyl Pyrrolâ€2â€yl) Porphyrins: Synthesis, Isolation and Characterization of Allâ€Pyrrolic Porphyrins. Chemistry - A European Journal, 2020, 26, 4232-4235.	1.7	3
985	On-Surface Synthesis of Nonmetal Porphyrins. Journal of the American Chemical Society, 2020, 142, 1871-1881.	6.6	19

#	Article	IF	Citations
" 987	Synthetic Strategies for Trapping the Elusive <i>trans</i> -Dirhodium(II,II) Formamidinate Isomer: Effects of Cis versus Trans Geometry on the Photophysical Properties. Inorganic Chemistry, 2020, 59, 2255-2265.	1.9	1
988	Structure, Properties, and Reactivity of Porphyrins on Surfaces and Nanostructures with Periodic DFT Calculations. Applied Sciences (Switzerland), 2020, 10, 740.	1.3	18
989	Comprehensive investigation of the triplet state electronic structure of free-base 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin by a combined advanced EPR and theoretical approach. Journal of Chemical Physics, 2020, 152, 034201.	1.2	24
990	Unsymmetrical β-functionalized â€~push–pull' porphyrins: synthesis and photophysical, electrochemical and nonlinear optical properties. Dalton Transactions, 2020, 49, 3198-3208.	1.6	34
991	Panchromatic Light Harvesting and Stabilizing Chargeâ€Separated States in Corrole–Phthalocyanine Conjugates through Coordinating a Subphthalocyanine. Chemistry - A European Journal, 2020, 26, 13451-13461.	1.7	10
992	Preparative-scale purification of petroleum vanadyl porphyrins by sulfuric acid loaded macroporous silica. Journal of Porphyrins and Phthalocyanines, 2020, 24, 528-537.	0.4	7
993	Porphyrinâ€basierte Metallâ€organische Gerüste für biomedizinische Anwendungen. Angewandte Chemie, 2021, 133, 5064-5091.	1.6	19
994	Porphyrinâ€Based Metal–Organic Frameworks for Biomedical Applications. Angewandte Chemie - International Edition, 2021, 60, 5010-5035.	7.2	311
995	Synthesis, crystal structures and photo-thermal properties of five naphthyl-functionalized Copper(II) coordination compounds. Inorganica Chimica Acta, 2021, 514, 120018.	1.2	5
996	Electrochemical Câ^'H Amidation of Heteroarenes with <i>N</i> â€Alkyl Sulfonamides in Aqueous Medium. Chemistry - A European Journal, 2021, 27, 242-246.	1.7	32
997	Photoelectrochemical properties of dyads composed of porphyrin/ruthenium catalyst grafted on metal oxide semiconductors. Dyes and Pigments, 2021, 185, 108908.	2.0	9
998	New approaches in component design for dye-sensitized solar cells. Sustainable Energy and Fuels, 2021, 5, 367-383.	2.5	32
999	Controlling Solar Hydrogen Production by Organizing Porphyrins. ChemSusChem, 2021, 14, 961-970.	3.6	15
1000	Synthesis and characterization of a conjugated porphyrin dyad entangled with carboxyl functionalized benzimidazolium: an efficient metal free sensitizer for DSSCs. New Journal of Chemistry, 2021, 45, 1430-1445.	1.4	9
1001	Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coordination Chemistry Reviews, 2021, 429, 213561.	9.5	30
1002	Synthesis, characterization and nanoparticle formation of polyarylene poly(amic acid)s and polyimides containing fluorescent dye moieties. Polymer International, 2021, 70, 759-767.	1.6	2
1003	Recent Development of Porous Porphyrinâ€based Nanomaterials for Photocatalysis. ChemCatChem, 2021, 13, 140-152.	1.8	48
1004	Revealing the high-resolution structures and electronic properties of ZnTPP and its derivatives formed by thermally induced cyclodehydrogenation on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 18930-18935.	1.3	2

#	Article	IF	Citations
1005	Covalent functionalization of two-dimensional black phosphorus nanosheets with porphyrins and their photophysical characterization. Materials Chemistry Frontiers, 2021, 5, 2824-2831.	3.2	21
1006	Magnetically induced ring currents in naphthalene-fused heteroporphyrinoids. Physical Chemistry Chemical Physics, 2021, 23, 16629-16634.	1.3	2
1007	Recent development on the synthesis, properties and applications of luminescent oxidized phenothiazine derivatives. Journal of Materials Chemistry C, 2021, 9, 7508-7531.	2.7	25
1008	Copper Complexes as Alternative Redox Mediators in Dye-Sensitized Solar Cells. Molecules, 2021, 26, 194.	1.7	32
1009	Recent developments in metalâ€free organic sensitizers derived from carbazole, triphenylamine, and phenothiazine for dyeâ€sensitized solar cells. International Journal of Energy Research, 2021, 45, 6584-6643.	2.2	51
1010	Promising DSSCs Involving Organic D–π–A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach. Challenges and Advances in Computational Chemistry and Physics, 2021, , 127-165.	0.6	1
1011	The electronic structure and deexcitation pathways of an isolated metalloporphyrin ion resolved by metal L-edge spectroscopy. Chemical Science, 2021, 12, 3966-3976.	3.7	3
1012	Cationic Pyrrolidine/Pyrroline-Substituted Porphyrins as Efficient Photosensitizers against E. coli. Molecules, 2021, 26, 464.	1.7	10
1013	Photoelectric conversion based on peptide–porphyrin conjugates assembled hydrogel. New Journal of Chemistry, 2021, 45, 7052-7055.	1.4	5
1014	Photoenergy Conversion (Dye-Sensitized Solar Cells). , 2021, , 469-540.		1
1015	Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chemical Science, 2021, 12, 4925-4930.	3.7	11
1016	Chapter 11. Porphyrinoids in Association with Nanomaterials for Water Purification. RSC Smart Materials, 2021, , 328-351.	0.1	0
1017	Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. Journal of Physical Chemistry Letters, 2021, 12, 1612-1630.	2.1	55
1018	Hot Electron Transfer from CdTe Quantum Dot (QD) to Porphyrin and Ultrafast Electron Transfer from Porphyrin to CdTe QD in CdTe QD–Tetrakis(4-carboxyphenyl)porphyrin Nanocomposites. Journal of Physical Chemistry C, 2021, 125, 4750-4763.	1.5	14
1019	Surface Reactions and Electronic Structure of Carboxylic Acid Porphyrins Adsorbed on TiO ₂ (110). Journal of Physical Chemistry C, 2021, 125, 6708-6715.	1.5	8
1020	Novel Cationic Meso-Arylporphyrins and Their Antiviral Activity against HSV-1. Pharmaceuticals, 2021, 14, 242.	1.7	8
1021	Comparative Studies on the Structure–Performance Relationships of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells. ACS Omega, 2021, 6, 6817-6823.	1.6	16
1022	Study of geometric, electronic structures and vibrations of 4, 4′, 4′′, 4′′′.(porphine-5,10,15,20 to tetrakis (benzene sulfonic acid) compound by computational and experimental techniques. Journal of Porphyrins and Phthalocyanines, 2021, 25, 343-358.	etrayl) 0.4	0

#	Article	IF	CITATIONS
1023	Performable enhancement of C220-based dyes via inserting auxiliary electron acceptors for dye-sensitized solar cells: a theoretical investigation. Journal of Computational Electronics, 2021, 20, 1277-1288.	1.3	2
1024	Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. Journal of Electronic Materials, 2021, 50, 3187-3206.	1.0	80
1025	The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. International Journal of Molecular Sciences, 2021, 22, 4121.	1.8	32
1026	Effects of side substituents in bithiophene spacer on the performance of dye-sensitized solar cells with cobalt electrolyte. Solar Energy, 2021, 218, 503-511.	2.9	9
1027	Porphyrin-based compounds and their applications in materials and medicine. Dyes and Pigments, 2021, 188, 109136.	2.0	68
1028	Star-shaped small molecular donors based on a Zn-Porphyrin core and DPP arms via different linkers for organic solar cells. Dyes and Pigments, 2021, 188, 109216.	2.0	11
1029	Metal complexes of 5,10,15-tris(pentafluorophenyl)-20-pyrrolyl N-confused porphyrin and its meso-pyrrolyl-bridged dimers: Synthesis and optical properties. Journal of Porphyrins and Phthalocyanines, 2021, 25, 447-455.	0.4	3
1030	Molecular Structure Effects on the Aggregation Motif of Porphyrins: Computational Insights. Advanced Theory and Simulations, 2021, 4, 2100050.	1.3	1
1031	Chlorophylls derivatives: Photophysical properties, assemblies, nanostructures and biomedical applications. Materials Today, 2021, 45, 77-92.	8.3	46
1032	Neo-Porphyrinoids: New Members of the Porphyrinoid Family. Topics in Current Chemistry, 2021, 379, 26.	3.0	19
1033	The role of inorganic electrolyte (salt) in cellulosic fibre dyeing: Part 2 theories of how inorganic electrolyte promotes dye uptake. Coloration Technology, 2021, 137, 547-586.	0.7	8
1034	Tailoring the antifouling agent titanium dioxide in the visible range of solar spectrum for photoelectrochemical activity with hybrid DFT & DFT + U approach. Materials Today Communications, 2021, 27, 102366.	0.9	4
1035	A novel porphyrin dye with phenoxazine as donor unit for efficient dye-sensitized solar cells. Dyes and Pigments, 2021, 190, 109308.	2.0	7
1036	Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO ₂ Cluster from Embedded Multiconfigurational Excited-State Theory. Journal of Physical Chemistry A, 2021, 125, 4998-5013.	1.1	5
1037	Porphyrin-based heterogeneous photocatalysts for solar energy conversion. Chinese Chemical Letters, 2022, 33, 33-60.	4.8	49
1038	Fluorescence of CoTPP Mediated by the Plasmon–Exciton Coupling Effect in the Tunneling Junction. Journal of Physical Chemistry Letters, 2021, 12, 5349-5356.	2.1	3
1039	Calix[3]pyrrole: A Missing Link in Porphyrin-Related Chemistry. Journal of the American Chemical Society, 2021, 143, 12355-12360.	6.6	30
1040	Mixed Metals Slow Down Nonradiative Recombination in Saddle-Shaped Porphyrin Nanorings: A Time-Domain Atomistic Simulation. Journal of Physical Chemistry C, 2021, 125, 16620-16628.	1.5	7

ARTICLE IF CITATIONS Ionization and Photofragmentation of Isolated Metalloporphyrin Cations Investigated by VUV Action 1041 1.7 1 Spectroscopy**. Chemistry - A European Journal, 2021, 27, 12371-12379. Copper and Rhodium Relay Catalysis for Selective Access to cis-2,3-Dihydroazepines. Organic Letters, 1042 2.4 2021, 23, 6450-6454. Effect of the Spatial Configuration of Donors on the Photovoltaic Performance of Double Dâ^{~7}Ĩ€â€"A 1043 4.0 13 Organic Dyes. ACS Applied Materials & amp; Interfaces, 2021, 13, 40648-40655. Multi-(phenylthio)porphyrinato Ni(II) compounds: Synthesis, structures and properties. Chinese 1044 4.8 Chemical Letters, 2021, 32, 2562-2566. A Molecular Engineering Strategy of Phenylamine-Based Zinc-Porphyrin Dyes for Dye-Sensitized Solar Cells: Synthesis, Characteristics, and Structureâ€"Performance Relationships. ACS Applied Energy 1045 2.5 17 Materials, 2021, 4, 9267-9275. Effect of different aromatic groups on photovoltaic performance of 1,1â€2â€<i>bis</i> (diphenylphosphino)ferrocene functionalized Ni (II) dithiolates as sensitizers in dye sensitized solar cells. Applied Organometallic Chemistry, 2021, 35, e6402. 1046 1.7 Exploring the screening of perylene based organic sensitizers with different lengths and functional groups of acceptors via computational spectroscopic analysis. Chemical Data Collections, 2021, 34, 100729. 1047 1.1 5 Nonlinear Optical Properties of Porphyrin, Fullerene and Ferrocene Hybrid Materials. Materials, 2021, 1048 1.3 14, 4404. Impact of Asphaltenes on the Adsorption Behavior of Petroleum Vanadyl Porphyrins: Kinetic and 1049 2.5 9 Thermodynamic Aspects. Energy & amp; Fuels, 2021, 35, 14527-14541. Wavelength-selective porphyrin photodiodes via control of Soret- and Q-band absorption. Dyes and 1050 Pigments, 2021, 193, 109531. En route to the transformation of porphyrin molecules for PDT: Theoretical insights on the reactive oxygen generation of 1D nano-wires and 2D covalent organic frameworks. Chemical Physics, 2021, 549, 1051 0.9 1 111278. Regulation of a Porphyrin Derivative Containing Two Symmetric Benzoic Acids by Different Pyridines. Langmuir, 2021, 37, 11544-11551. 1.6 Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science, 1053 2.0 23 2022, 60, 865-916. A New Generation of Energy Harvesting Devices., 0,,. 1054 Optimal Dye Sensitized Solar Cell and Photocapacitor Performance with Efficient Electrocatalytic 1055 2.514 SWCNH Assisted Carbon Electrode. ACS Applied Energy Materials, 2021, 4, 11225-11233. Metalloporphyrins substituted with <i>N</i>-carbazolyl groups quadruply at <i>meso</i> positions. 0.4 Journal of Porphyrins and Phthalocyanines, 2022, 26, 140-146. Immersion solvent dependent photophysical and photovoltaic properties of Porphyrin/TiO2 interface. 1057 1.2 1 Chemical Physics Letters, 2021, 781, 138963. Double-layer novel zinc porphyrin based on axial coordination self-assembly for dye-sensitized solar 1058 1.8 cells. Journal of Molecular Structure, 2021, 1242, 130819.

#	Article	IF	CITATIONS
1059	Lead-free Rudorffite-type Cs3Bi2Br9 nanoparticles for photocatalytic degradation of rhodamine B and methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113460.	2.0	13
1060	Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coordination Chemistry Reviews, 2021, 445, 214050.	9.5	57
1061	Dependent excited state absorption and dynamic of β-BF2 substituted metalloporphyrins: The metal ion effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119911.	2.0	1
1062	Influence of progressive halogenation of Zn(II)-tetraarylporphyrins and their free bases on the structure and spectral-fluorescence properties of tetrapyrrolic macrocycle. Inorganica Chimica Acta, 2021, 528, 120620.	1.2	1
1063	Porphyrin silanes. Coordination Chemistry Reviews, 2021, 449, 214183.	9.5	9
1064	Dye sensitized solar cell action of Sn(IV)tetrakis(4-pyridyl) porphyrins as a function of axial ligation and pyridine protonation. Journal of the Iranian Chemical Society, 2021, 18, 1523-1536.	1.2	1
1065	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	4.6	37
1066	Well-dispersed Te-doped mesoporous carbons as Pt-free counter electrodes for high-performance dye-sensitized solar cells. Dalton Transactions, 2021, 50, 9399-9409.	1.6	15
1067	Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells. , 2019, , 351-381.		4
1068	The fabrication of supramolecular assembly with quadruple switchable fluorescence by ionic self-assembly strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124708.	2.3	3
1069	Synthesis of novel panchromatic porphyrin-squaraine dye and application towards TiO2 combined photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112595.	2.0	10
1070	Fabrication of dye-sensitized solar cells based on push-pull asymmetrical substituted zinc and copper phthalocyanines and reduced graphene oxide nanosheets. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112612.	2.0	13
1071	New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Journal of Power Sources, 2020, 451, 227776.	4.0	47
1072	Zn(II)-Porphyrin–Squaraine Dyads as Potential Components for Dye-Sensitized Solar Cells: A Quantum Chemical Study of Optical and Charge Transport Properties. Journal of Physical Chemistry C, 2020, 124, 12968-12981.	1.5	9
1073	Photopolymers for Third-generation Solar Cells. RSC Polymer Chemistry Series, 2018, , 504-523.	0.1	1
1074	Targeted synthesis of meso-aryl substituted aromatic trans-doubly N-confused dithia/diselena [18] porphyrins (1.1.1.1) with NIR absorption: spectroscopic and theoretical characterization. Organic and Biomolecular Chemistry, 2020, 18, 6058-6062.	1.5	8
1075	Co-sensitization of N719 with an Organic Dye for Dye-sensitized Solar Cells Application. Bulletin of the Korean Chemical Society, 2014, 35, 1449-1454.	1.0	30
1076	Development of D-ï€-A Dye Sensitizers with Azine Ring and Their Photovoltaic Performances of Dye-Sensitized Solar Cells. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 760-780.	0.0	2

#	Article	IF	CITATIONS
1077	Rationalization of excited state energy transfer in D–ï€â€"A porphyrin sensitizers enhancing efficiency in dye-sensitized solar cells. Materials Advances, 0, , .	2.6	2
1078	Synthesis, Characterization and Spectroscopic Studies of Bis-(Meso-4- Methoxyphenyl)-Benziporphyrin and Its Pd-Metal Complex. SSRN Electronic Journal, 0, , .	0.4	0
1079	Extended porphyrinoid chromophores: heteroporphyrins fused to phenanthrene and acenaphthylene. Tetrahedron, 2021, 100, 132481.	1.0	6
1080	Fluorenyl Indoline as an Efficient Electron Donor for Concerted Companion Dyes: Enhanced Light-Harvesting and Photocurrent. ACS Applied Materials & Interfaces, 2021, 13, 49828-49839.	4.0	18
1081	1.3 V Inorganic Sequential Redox Chain with an All-Anionic Couple 1–/2– in a Single Framework. Inorganic Chemistry, 2021, 60, 16168-16177.	1.9	5
1082	Terminal π-group engineering of organic co-sensitizers for thiourea dye based dye-sensitized solar cells. Solar Energy, 2021, 230, 312-320.	2.9	8
1083	Control of Porphyrin Dye Aggregation Using Bis(4-pyridyl)Alkanes in Dye Sensitized Solar Cells. Eurasian Chemico-Technological Journal, 2019, , 63.	0.3	0
1085	Halogenation of Fluoro-Substituted Zinc(II) Tetraphenylporphyrins at the β-Position. Russian Journal of Organic Chemistry, 2020, 56, 2132-2136.	0.3	Ο
1086	Novel anthracene-based organic dyes as co-sensitizers of porphyrins for developing efficient dye-sensitized solar cells. New Journal of Chemistry, 0, , .	1.4	2
1087	Architectural design of new conjugated systems carrying donor-Ï€-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC's applications. Journal of Molecular Structure, 2022, 1250, 131689.	1.8	2
1088	Noble Metal Substrate Identity Effects on the Self-Assembly, Dynamics, and Dehydrocyclization Reaction of Octaethylporphyrin Molecules. Journal of Physical Chemistry C, 2021, 125, 23680-23687.	1.5	2
1089	Review of research of nanocomposites based on graphene quantum dots. ChemistrySelect, 2022, 7, 605-628.	0.7	0
1090	Porphyrins containing a tetraphenylethylene-substituted phenothiazine donor for fabricating efficient dye sensitized solar cells with high photovoltages. Journal of Materials Chemistry A, 2022, 10, 1320-1328.	5.2	31
1091	A new sterically hindered asymmetric zinc phthalocyanine as an efficient sensitizer for dye-sensitized solar cells. New Journal of Chemistry, 2022, 46, 714-725.	1.4	16
1092	Chain-transfer-catalyst: strategy for construction of site-specific functional CO2-based polycarbonates. Science China Chemistry, 2022, 65, 162-169.	4.2	8
1093	Amphiphilic Indoline-Based Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Modulating the Dye-TiO2/Electrolyte Interface for Nonaqueous and Aqueous Electrolytes. ACS Applied Energy Materials, 0, , .	2.5	10
1094	Near-Infrared to Visible Photon Upconversion by Palladium(II) Octabutoxyphthalocyanine and Rubrene in the Solid State. Journal of Physical Chemistry C, 2021, 125, 25643-25650.	1.5	8
1095	Rational Design and Synthesis of OEP and TPP Centered Phosphorus(V) Porphyrin–Naphthalene Conjugates: Triplet Formation via Rapid Charge Recombination. Inorganic Chemistry, 2021, 60, 17952-17965.	1.9	6

#	Article	IF	CITATIONS
1096	Atomicâ€Scale Observations of the Manganese Porphyrin/Au Catalyst Interface Under the Electrocatalytic Process Revealed with Electrochemical Scanning Tunneling Microscopy. Advanced Materials Interfaces, 2021, 8, 2100873.	1.9	6
1097	Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science, 2022, 13, 1225-1262.	3.7	35
1098	β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coordination Chemistry Reviews, 2022, 453, 214312.	9.5	24
1099	Adsorption-Extrographic Preconcentration of Petroleum Vanadyl Porphyrins from Dimethylformamide Extract of Heavy Petroleum Asphaltenes. Russian Journal of Applied Chemistry, 2021, 94, 1324-1333.	0.1	1
1100	Noncovalent functionalization of Ti ₃ C ₂ T _{<i>X</i>} using cationic porphyrins with enhanced stability against oxidation. Materials Chemistry Frontiers, 2022, 6, 561-569.	3.2	9
1101	Synthesis of a Series of Tropone-Fused Porphyrinoids. Journal of Organic Chemistry, 2022, 87, 952-962.	1.7	6
1102	Metal Complexes of Singly, Doubly and Triply Linked Porphyrins and Corroles: An Insight into the Physicochemical Properties. Chemistry - A European Journal, 2022, 28, .	1.7	9
1103	Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of <i>N</i> -Containing Molecules from Alkenes and Alkynes. Journal of the American Chemical Society, 2022, 144, 648-661.	6.6	83
1104	Nitrogen-bridged Ni(II) porphyrinoid trimers with a central quinodiimine unit. Chinese Chemical Letters, 2022, 33, 4545-4548.	4.8	7
1105	A Comparative Analysis of Vanadyl Porphyrins Isolated from Heavy Oil Asphaltenes with High and Low Vanadium Content. Petroleum Chemistry, 2022, 62, 83-93.	0.4	2
1106	Molecular modeling and simulation for the design of dye sensitizers with mono- and di-substituted donor moieties. Journal of Computational Electronics, 2022, 21, 52-60.	1.3	3
1107	Magnetically induced ring currents in metallocenothiaporphyrins. Physical Chemistry Chemical Physics, 2022, 24, 1666-1674.	1.3	9
1108	3,6,13,16-Tetrapropylporphycene: Rational Synthesis, Complexation, and Halogenation. Journal of Organic Chemistry, 2022, , .	1.7	5
1109	Photomedicine based on heme-derived compounds. Advanced Drug Delivery Reviews, 2022, 182, 114134.	6.6	20
1110	Bio-based porphyrins pyropheophorbide <i>a</i> and its Zn-complex as visible-light photosensitizers for free-radical photopolymerization. Polymer Chemistry, 2022, 13, 1658-1671.	1.9	4
1111	Biocompatible 2D Cu-TCPP Nanosheets Derived from Cu ₂ O Nanocubes as Multifunctional Nanoplatforms for Combined Anticancer Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 1074-1086.	2.6	11
1112	Choice of Functional for Iron Porphirin Density Functional Theory Studies: Geometry, Spin-State, and Binding Energy Analysis. SSRN Electronic Journal, 0, , .	0.4	0
1113	Synthesis, structure, and properties of palladium(<scp>ii</scp>) complex of α-formyl pyrrolyl dipyrromethene. Dalton Transactions, 2022, 51, 5587-5595.	1.6	4

#	Article	IF	CITATIONS
1114	Graphene quantum dot-porphyrin/phthalocyanine multifunctional hybrid systems: from interfacial dialogue to application. Biomaterials Science, 2022, 10, 1647-1679.	2.6	10
1115	Study of the Metal Exchange Reaction of Cadmium(II) 5,15-Dinitro-2,3,7,8,12,13,17,18-octaethylporphyrinate with d-Metal Salts in Organic Solvents. Russian Journal of General Chemistry, 2022, 92, 256-260.	0.3	1
1116	Physicochemical Basis for the Creation of Liquid-Phase Sensor Materials Based on Tetraaryldithiaporphyrins. Russian Journal of General Chemistry, 2022, 92, 231-240.	0.3	0
1117	Lowâ€Valent Zirconoceneâ€Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angewandte Chemie, 2022, 134, .	1.6	2
1118	Metal Complexes of Porphyrinoids Containing Nonpyrrolic Heterocycles. Chemical Reviews, 2022, 122, 7990-8052.	23.0	26
1119	Lowâ€Valent Zirconoceneâ€Mediated Synthesis of Porphyrin(2.1.2.1)s and Its Extension to Synthesis of a Porphyrin(2.1.2.1) Nanobarrel. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1120	Anchoring of phthalic acid on MgO(100). Surface Science, 2022, 720, 122007.	0.8	1
1121	Photocatalytic activity of pyrazinoporphyrin in the presence of gold nanoparticles and nanoclusters. Russian Chemical Bulletin, 2021, 70, 2100-2109.	0.4	6
1122	A Comparative Analysis of Vanadyl Porphyrins Isolated from Resins of Heavy Oils with High and Low Vanadium Content. Processes, 2021, 9, 2235.	1.3	5
1123	Terpyridyl Ruthenium Complexes Functionalized with Conjugated Heterocycles for Panchromatic Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 13461-13470.	2.5	3
1124	Self-Assembly-Directed Exciton Diffusion in Solution-Processable Metalloporphyrin Thin Films. Molecules, 2022, 27, 35.	1.7	1
1125	Synthesis, Characterization, and Spectroscopic Studies of Bis-(meso-4-methoxyphenyl)-Benziporphyrin and Its Pd-Metal Complex. Journal of Chemistry, 2021, 2021, 1-6.	0.9	1
1131	Choice of functional for iron porphyrin density functional theory studies: Geometry, spin-state, and binding energy analysis. Computational and Theoretical Chemistry, 2022, 1213, 113726.	1.1	3
1132	Coverage-dependent study of nickel tetraphenyl-porphyrin on Au(332) and Au(788). Surface Science, 2022, 723, 122105.	0.8	1
1133	Ant-like small molecule metal-free dimeric porphyrin sensitizer for true energy-generating DSSC with 9.3% efficiency. Journal of Materials Science: Materials in Electronics, 2022, 33, 14305-14322.	1.1	3
1134	Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates. Molecules, 2022, 27, 3456.	1.7	6
1135	Star-type melamine based conjugated carboxy functionalized porphyrin trimer for DSSCs: An efficient approach to clean, aggregation free and true energy generation. Materials Chemistry and Physics, 2022, 287, 126312.	2.0	4
1136	3,6,13,16-Tetraalkylporphycenes: Synthesis and Exploration of Effect of Alkyl Groups on Structure, Photophysical Properties, and Basicity. New Journal of Chemistry, 0, , .	1.4	2

#	Article	IF	CITATIONS
1138	Preparation of dipolar Y(III)-based monoporphyrinate complexes: conventional vs microwave-assisted reaction and theoretical IR study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , .	0.9	0
1140	Adsorption of meso-tetra(3-pyridyl)porphyrin on InP/ZnS colloidal quantum dots. Journal of Nanoparticle Research, 2022, 24, .	0.8	4
1141	Cobalt(II)-Catalyzed C–H and N–H Functionalization of 1-Arylpyrazolidinones with Dioxazolones as Bifunctional Synthons. Organic Letters, 2022, 24, 4650-4655.	2.4	5
1143	Zn(II) porphyrin sensitized (TiO2@Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye. Optical Materials, 2022, 132, 112558.	1.7	25
1144	Chlorophyll-a functionalised Zn-Cd-S thin film fabricated by SILAR technique for dye sensitised solar cells. Inorganic Chemistry Communication, 2022, 142, 109670.	1.8	5
1145	Applications of metal-organic framework based membranes in energy storage and conversion. , 2022, , 259-272.		0
1146	Synthesis and Characterization of Supramolecular Nanotubes of Tetraphenylethylene-Porphyrin Conjugates. Science of Advanced Materials, 2022, 14, 560-568.	0.1	0
1147	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5
1148	Effective Photosensitization in Excitedâ€6tate Equilibrium: Brilliant Luminescence of Tb ^{III} Coordination Polymers Through Ancillary Ligand Modifications. ChemPlusChem, 2022, 87, .	1.3	3
1149	Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	6.6	15
1150	Electropolymerized chlorophyll derivative biopolymers for supercapacitors. Chemical Engineering Journal, 2022, 450, 138000.	6.6	6
1151	Click Chemistry ―Inspired Synthesis of Porphyrin Hybrid Glycodendrimers as Fluorescent Sensor for Cu(II) Ions. ChemistrySelect, 2022, 7, .	0.7	6
1152	Photo-generation of H ₂ by heterometallic complexes. Dalton Transactions, 2022, 51, 14022-14031.	1.6	5
1153	Synthesis and Properties of Stable 20Ï€ Porphyrinoids. Chemical Record, 2022, 22, .	2.9	5
1154	New metal free organic dyes incorporating heterocyclic Benzofuran core as conjugated spacer: Synthesis, Optoâ€electrochemical, <scp>DFT</scp> and <scp>DSSC</scp> studies. Journal of Heterocyclic Chemistry, 2023, 60, 63-73.	1.4	4
1155	Electric field tuning of magnetic states in single magnetic molecules. Physical Review B, 2022, 106, .	1.1	1
1156	Porphyrinatonickel(II)–Cyclopentene and Porphyrinatonickel(II)–Cyclopentadiene Hybrids: Zirconacyclopentadiene-Mediated Syntheses, Structures, and Mechanistic Study. Organic Letters, 2022, 24, 6128-6132.	2.4	3
1157	Efficacy assessment of metalloporphyrins as functional materials for photodetection applications: role of central tetrapyrrole metal ions. Journal of Materials Science, 2022, 57, 15413-15439.	1.7	4

#	Article	IF	CITATIONS
1158	Performance of dye-sensitized solar cells extracted dye from wood apple leaves. Journal of Physics Communications, 2022, 6, 085012.	0.5	1
1159	Experimental investigation to check the relation of third order optical nonlinearities of Dawson polyoxometalate-porphyrin hybrids with excited state dynamics by using ultrafast life time decay technique. Inorganic Chemistry Communication, 2022, 143, 109712.	1.8	0
1160	Evaluating the photoelectric performance of D-π-A dyes with different π-conjugated bridges for DSSCs. Chemical Physics Letters, 2022, 806, 140035.	1.2	6
1161	Synthesis, single crystal, electrochemical and study of fluorogenic dibenzodiaza-crown-appended with bis(ZnTPP) azo-tweezer and spectroscopic elucidation of photo-induced macrocycle-deformation-based chromotropism. Polyhedron, 2022, 227, 116143.	1.0	1
1162	Synthesis, Single Crystal, Electrochemical of Fluorogenic Dibenzodiaza-Crown-Appended with Bis(Zntpp) Azo-Tweezer and Spectroscopic Elucidation of Photo-Induced Macrocycle-Deformation-Based Chromotropism. SSRN Electronic Journal, 0, , .	0.4	0
1163	Searching for correlations between geometric and spectroscopic parameters of intramolecular hydrogen bonds in porphyrin-like macrocycles. Physical Chemistry Chemical Physics, 2022, 24, 22319-22329.	1.3	0
1164	d-d and charge transfer photochemistry of 3d metal complexes. , 2022, , .		4
1165	Chemical Bonding and Aromaticity Analyses of Petroporphyrins with Vanadium or Nickel. SSRN Electronic Journal, 0, , .	0.4	0
1166	Multicomponent Molecular Systems Based on Porphyrins, 1,3,5-Triazine and Carboranes: Synthesis and Characterization. Molecules, 2022, 27, 6200.	1.7	1
1167	Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview. Topics in Current Chemistry, 2022, 380, .	3.0	8
1168	Top sensitizers for highly efficient dye-sensitized solar cells. Radiation Effects and Defects in Solids, 0, , 1-11.	0.4	0
1169	Effect of deoxycholic acid co-sensitization in porphyrin dye on quasi-solid dye-sensitized solar cells comprising titania aerogel with a large surface area. Solid-State Electronics, 2022, 198, 108480.	0.8	0
1170	Chemical bonding and aromaticity analyses of petroporphyrins with vanadium or nickel. Fuel, 2023, 333, 126344.	3.4	3
1171	Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N ₂ O: insight from DFT calculations. New Journal of Chemistry, 2022, 47, 421-427.	1.4	4
1172	Investigation and design of efficient intramolecular charge transfer dyes with DBTP-based dual-electron-donor structure. Materials Science in Semiconductor Processing, 2023, 154, 107203.	1.9	0
1173	Solvent dependent triplet state delocalization in a co-facial porphyrin heterodimer. Physical Chemistry Chemical Physics, 2022, 24, 30051-30061.	1.3	2
1174	A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives. Communications Chemistry, 2022, 5, .	2.0	2
1175	Solvent-Dependent Functional Aggregates of Unsymmetrical Squaraine Dyes on TiO ₂ Surface for Dye-Sensitized Solar Cells. Langmuir, 2022, 38, 14808-14818.	1.6	9

#	Article	IF	CITATIONS
1176	Computational Screening of D-Ï€-A Structured with Acceptor Tuned Metal-Free Organic Dye Molecules for DSSCs. Journal of Computational Biophysics and Chemistry, 0, , .	1.0	1
1177	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1178	Energy level tuning of push-pull porphyrin sensitizer by trifluoromethyl group for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2023, 27, 145-156.	0.4	1
1179	Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 2023, 7, 91-105.	13.8	54
1180	Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework. ACS Nano, 2022, 16, 21565-21575.	7.3	24
1181	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie, 0, , .	1.6	1
1182	Recent progress of indoor organic photovoltaics - From device performance to multifunctional applications. Organic Electronics, 2023, 114, 106736.	1.4	5
1183	Advances in flexible hydrogels for light-thermal-electricity energy conversion and storage. Journal of Energy Storage, 2023, 60, 106618.	3.9	7
1184	Copper-Catalyzed Electrophilic Amination: An Umpolung Strategy for New C–N Bond Formations. Bulletin of the Chemical Society of Japan, 2023, 96, 198-207.	2.0	6
1185	Novel triphenylamine-based porphyrins: Synthesis, structural characterization, and theoretical investigation for dye-sensitized solar cell applications. Journal of Molecular Structure, 2023, 1281, 135147.	1.8	2
1186	Cyanide detecting porphyrin fluorescent sensors: Effects of electron-donating/withdrawing substituents. Dyes and Pigments, 2023, 215, 111243.	2.0	2
1187	Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Advances, 2023, 13, 5473-5482.	1.7	0
1188	Unraveling Structure–Performance Relationships in Porphyrin-Sensitized TiO2 Photocatalysts. Nanomaterials, 2023, 13, 1097.	1.9	9
1189	Molecular designs, synthetic strategies, and properties for porphyrins as sensitizers in dye-sensitized solar cells. Journal of Materials Chemistry A, 2023, 11, 12659-12680.	5.2	14
1190	Osmium ester-hinged chlorin dimers. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
1191	Synthetic Model for FRET Constructed from Covalently Linked Porphyrin Dimers through a Pyrene Bridge. Journal of Organic Chemistry, 0, , .	1.7	1
1206	Advances and prospects of porphyrin derivatives in the energy field. RSC Advances, 2023, 13, 24699-24730.	1.7	0
1216	Panchromatic porphyrin-based dye-sensitized solar cells: from cosensitization to concerted companion dye approaches. Materials Chemistry Frontiers, 0, , .	3.2	0

#	Article	IF	CITATIONS
1221	Visualizing and characterizing excited states from time-dependent density functional theory. Physical Chemistry Chemical Physics, 2024, 26, 3755-3794.	1.3	2
1225	Continuous flow synthesis of meso-substituted porphyrins with inline UV–Vis analysis. Journal of Flow Chemistry, 2024, 14, 23-31.	1.2	0
1227	Nature of ultrafast dynamics in the lowest-lying singlet excited state of [Ru(bpy) ₃] ²⁺ . Physical Chemistry Chemical Physics, 2024, 26, 6524-6531.	1.3	0