High Stokes shift perylene dyes for luminescent solar co

Chemical Communications 49, 1618 DOI: 10.1039/c2cc38708e

Citation Report

#	Article	IF	CITATIONS
1	Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators. Solar Energy Materials and Solar Cells, 2013, 118, 36-42.	3.0	57
4	Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model. Proceedings of SPIE, 2013, , •	0.8	7
6	Interdependence of reabsorption and internal energy losses in luminescent solar concentrators. Proceedings of SPIE, 2014, , .	0.8	2
7	Anthracene/tetracene cocrystals as novel fluorophores in thin-film luminescent solar concentrators. RSC Advances, 2014, 4, 9893.	1.7	35
8	Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators. ACS Nano, 2014, 8, 3461-3467.	7.3	281
9	Acenaphtho[1,2- <i>j</i>]fluoranthene-4,5-dicarboxyimides: A New Monoimide Showing Self-aggregation in Chloroform. Chemistry Letters, 2014, 43, 1467-1469.	0.7	5
10	First Demonstration of the Applicability of the Latent Pigment Approach to Plastic Luminescent Solar Concentrators. European Journal of Organic Chemistry, 2015, 2015, 5723-5729.	1.2	9
11	Polyaromatic Profluorescent Nitroxide Probes with Enhanced Photostability. Chemistry - A European Journal, 2015, 21, 18258-18268.	1.7	20
12	A Transparent Planar Concentrator Using Aggregates of <i>gem</i> â€Pyrene Ethenes. Advanced Energy Materials, 2015, 5, 1500818.	10.2	26
13	New and Efficient Approach to the Versatile Building Block of 3,4-Perylenedicarboxylic Monoanhydride. Industrial & Engineering Chemistry Research, 2015, 54, 12699-12703.	1.8	7
14	Luminescent solar concentrator improvement by stimulated emission. , 2015, , .		0
15	Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. Journal of Materials Chemistry A, 2015, 3, 8045-8054.	5.2	57
16	A fast and effective procedure for the optical efficiency determination of luminescent solar concentrators. Solar Energy, 2015, 119, 452-460.	2.9	29
17	Highly fluorescent perylene dyes with large stokes shifts: synthesis, photophysical properties, and live cell imaging. Tetrahedron Letters, 2015, 56, 2749-2753.	0.7	16
18	Ray-trace simulation of CulnS(Se)_2 quantum dot based luminescent solar concentrators. Optics Express, 2015, 23, A858.	1.7	48
19	And yet they glow: thiazole based push–pull fluorophores containing nitro groups and the influence of regioisomerism. Methods and Applications in Fluorescence, 2015, 3, 025005.	1.1	16
20	Small-Molecule Fluorophores with Large Stokes Shifts: 9-Iminopyronin Analogues as Clickable Tags. Journal of Organic Chemistry, 2015, 80, 1299-1311.	1.7	100
21	A polystyrene bearing perylene diimide pendants with enhanced solid state emission for white hybrid light-emitting diodes. Dyes and Pigments, 2015, 114, 138-143.	2.0	36

CITATION REPORT

#	Article	IF	CITATIONS
22	Modeling of stimulated emission based luminescent solar concentrators. Optics Express, 2016, 24, A1546.	1.7	8
23	Colourless p -phenylene-spaced bis-azoles for luminescent concentrators. Dyes and Pigments, 2016, 134, 118-128.	2.0	23
24	Solution-Processable BODIPY-Based Small Molecules for Semiconducting Microfibers in Organic Thin-Film Transistors. ACS Applied Materials & amp; Interfaces, 2016, 8, 14077-14087.	4.0	66
25	Luminescent solar concentrators utilizing stimulated emission. Optics Express, 2016, 24, A497.	1.7	11
26	A structurally modified perylene dye for efficient luminescent solar concentrators. Solar Energy, 2016, 136, 668-674.	2.9	31
27	Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors. Journal of Organic Chemistry, 2016, 81, 11256-11267.	1.7	34
28	Perylene diimide derivatives as red and deep red-emitters for fully solution processable OLEDs. RSC Advances, 2016, 6, 61175-61179.	1.7	76
29	Synthesis of Octabromoperylene Dianhydride and Diimides: Evidence of Halogen Bonding and Semiconducting Properties. Organic Letters, 2016, 18, 472-475.	2.4	39
30	Enhancing optical efficiency of thin-film luminescent solar concentrators by combining energy transfer and stacked design. Journal of Luminescence, 2016, 171, 215-220.	1.5	41
31	"N-alkyl diketopyrrolopyrrole-based fluorophores for luminescent solar concentrators: Effect of the alkyl chain on dye efficiency― Dyes and Pigments, 2016, 135, 154-162.	2.0	32
32	Cost-effective solar concentrators based on red fluorescent Zn(<scp>ii</scp>)–salicylaldiminato complex. RSC Advances, 2016, 6, 17474-17482.	1.7	34
33	Limits of Visibly Transparent Luminescent Solar Concentrators. Advanced Optical Materials, 2017, 5, 1600851.	3.6	100
34	Epoxy resin doped with Coumarin 6: Example of accessible luminescent collectors. European Polymer Journal, 2017, 89, 23-33.	2.6	19
35	Facile Approach to Perylenemonoimide with Short Side Chains for Nonfullerene Solar Cells. Journal of Organic Chemistry, 2017, 82, 5926-5931.	1.7	19
36	General C–H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting Benzo[<i>a</i>]imidazo[2,1,5- <i>c</i> , <i>d</i>]indolizine Fluorophores. Journal of Organic Chemistry, 2017, 82, 5046-5067.	1.7	32
37	Polybenzofulvenes-based blends with benzothiadiazole and perylene diimide derivatives emitting from yellow to the deep-red by resonant energy transfer processes. Applied Physics Letters, 2017, 110, 183301.	1.5	12
38	Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators. Accounts of Chemical Research, 2017, 50, 49-57.	7.6	105
39	Novel fluorescent perylene liquid crystal with diphenylacrylonitrile groups: Observation of a large pseudo stokes shift based on AIE and FRET effects. Dyes and Pigments, 2017, 147, 343-349.	2.0	29

CITATION REPORT

#	Article	IF	CITATIONS
40	A push–pull silafluorene fluorophore for highly efficient luminescent solar concentrators. RSC Advances, 2017, 7, 37302-37309.	1.7	27
41	Combining stereolithography and replica molding: On the way to superhydrophobic polymeric devices for photovoltaics. Materials and Design, 2017, 133, 143-153.	3.3	14
42	Luminescent solar concentrators for building-integrated photovoltaics. Nature Reviews Materials, 2017, 2, .	23.3	303
43	Impact of curvature on the optimal configuration of flexible luminescent solar concentrators. Optics Letters, 2017, 42, 2695.	1.7	14
44	Molecular weight variations in peryleneâ€doped poly(methyl methacrylate) for luminescent solar concentrators. Polymer International, 2018, 67, 1179-1185.	1.6	5
45	Surface functionalized silica nanoparticles for the off–on fluorogenic detection of an improvised explosive, TATP, in a vapour flow. Journal of Materials Chemistry A, 2018, 6, 4416-4423.	5.2	27
46	Aggregation-induced emission-mediated spectral downconversion in luminescent solar concentrators. Materials Chemistry Frontiers, 2018, 2, 615-619.	3.2	40
47	Luminescent solar concentrators based on PMMA films obtained from a red-emitting ATRP initiator. Polymer Chemistry, 2018, 9, 1168-1177.	1.9	43
48	Solar collectors based on luminescent 2,5-diarylimidazoles. Dyes and Pigments, 2018, 157, 334-341.	2.0	8
49	Green/Yellowâ€Emitting Conjugated Heterocyclic Fluorophores for Luminescent Solar Concentrators. European Journal of Organic Chemistry, 2018, 2018, 2657-2666.	1.2	27
50	A joint experimental and theoretical study on the electro-optical properties of 1,6- and 1,7-fluorenyl disubstituted perylene diimide isomers. New Journal of Chemistry, 2018, 42, 1061-1066.	1.4	7
51	Construction of J-type aggregates as multi-functional interlayers for nonfullerene polymer solar cells. Organic Chemistry Frontiers, 2018, 5, 3324-3330.	2.3	7
52	Optimization of energy transfer in a polymer composite with perylene chromophores. Journal of Materials Chemistry C, 2018, 6, 7333-7342.	2.7	7
53	Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators. Applied Optics, 2018, 57, 2459.	0.9	2
54	Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renewable and Sustainable Energy Reviews, 2018, 94, 835-852.	8.2	97
55	Ultrabright Redâ€Emitting Photostable Perylene Bisimide Dyes: New Indicators for Ratiometric Sensing of High pH or Carbon Dioxide. Chemistry - A European Journal, 2018, 24, 10711-10720.	1.7	27
56	Luminescent Solar Concentrators Based on Aggregation Induced Emission. Israel Journal of Chemistry, 2018, 58, 837-844.	1.0	43
57	Luminescent solar concentrators performing under different light conditions. Solar Energy, 2019, 188, 1248-1255.	2.9	29

	Сітатіс	on Report	
#	Article	IF	CITATIONS
58	Synthesis and characterization of bent fluorine-containing donorâ€″Ì€-acceptor molecules as intense luminophores with large Stokes shifts. Organic and Biomolecular Chemistry, 2019, 17, 6911-6919.	1.5	7
59	Design and synthesis of disubstituted and trisubstituted thiazoles as multifunctional fluorophores with large Stokes shifts. Dyes and Pigments, 2019, 166, 60-71.	2.0	23
60	Nanostructured photovoltaics. Nano Futures, 2019, 3, 012002.	1.0	9
61	First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Chemical Communications, 2019, 55, 3160-3163.	2.2	39
62	Review on the Role of Polymers in Luminescent Solar Concentrators. Journal of Polymer Science Part A, 2019, 57, 201-215.	2.5	83
63	Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials, 2019, 2, 305-311.	2.5	16
64	External stokes shift of perovskite nanocrystals enlarged by photon recycling. Applied Physics Letters, 2019, 114, .	1.5	36
65	Chemically Sustainable Large Stokes Shift Derivatives for High-Performance Large-Area Transparent Luminescent Solar Concentrators. Joule, 2020, 4, 1988-2003.	11.7	32
66	Luminescent Solar Collectors: Quo Vadis?. Advanced Energy Materials, 2020, 10, 2001907.	10.2	96
67	Ultra-High Stokes Shift in Polycyclic Chromeno[2,3- <i>b</i>]Indoles. Polycyclic Aromatic Compounds, 2022, 42, 1710-1727.	1.4	3
68	High-Performance Luminescent Solar Concentrators Based on Poly(Cyclohexylmethacrylate) (PCHMA) Films. Polymers, 2020, 12, 2898.	2.0	14
69	Boosting the cost-effectiveness of luminescent solar concentrators through subwavelength sanding treatment. Solar Energy, 2020, 198, 151-159.	2.9	13
70	Regional measurements to analyze large-area luminescent solar concentrators. Renewable Energy, 2020, 160, 127-135.	4.3	10
71	Synthesis, Photophysical and Electronic Properties of Monoâ€, Diâ€, and Triâ€Aminoâ€Substituted Orthoâ€Perylenes, and Comparison to the Tetraâ€Substituted Derivative. Chemistry - A European Journal, 2020, 26, 12050-12059.	1.7	8
72	Development of structure and tuning ability of the luminescence of lead-free halide perovskite nanocrystals (NCs). Chemical Engineering Journal, 2021, 420, 127603.	6.6	18
73	Solid state structure and properties of phenyl diketopyrrolopyrrole derivatives. CrystEngComm, 2021, 23, 1796-1814.	1.3	13
74	Highâ€performance hybrid luminescentâ€scattering solar concentrators based on a luminescent conjugated polymer. Polymer International, 2021, 70, 475-482.	1.6	10
75	Enhanced luminescent solar concentrator efficiency by Foster resonance energy transfer in a tunable sixâ€dye absorber. International Journal of Energy Research, 2021, 45, 11294-11304.	2.2	10

CITATION REPORT

#	Article	IF	CITATIONS
76	Silylethynyl Substitution for Preventing Aggregate Formation in Perylene Diimides. Journal of Physical Chemistry C, 2021, 125, 13041-13049.	1.5	15
77	Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 14815-14826.	2.7	13
78	First demonstration of the use of open-shell derivatives as organic luminophores for transparent luminescent solar concentrators. Materials Advances, 2021, 2, 7369-7378.	2.6	12
79	1,7â€Ðiazaperylene in Organic Field Effect Transistors. Israel Journal of Chemistry, 2022, 62, .	1.0	1
80	Recent Development in the Synthesis of Thiazoles. Current Organic Synthesis, 2022, 19, 702-730.	0.7	6
81	Measured power conversion efficiencies of bifacial luminescent solar concentrator photovoltaic devices of the mosaic series. Progress in Photovoltaics: Research and Applications, 2022, 30, 726-739.	4.4	13
82	Redâ€emitting tetraphenylethylene derivative with aggregationâ€induced enhanced emission for luminescent solar concentrators: A combined experimental and density functional theory study. Aggregate, 2022, 3, .	5.2	14
83	Quantum Dot–Block Copolymer Hybrids for Low Scattering Luminescent Solar Concentrators. ACS Applied Polymer Materials, 2022, 4, 3283-3293.	2.0	4
84	Shape engineered Y2O3: Eu3+ nanodots for Stokes shifting high-efficiency PMMA based transparent luminescent solar concentrator. Journal of Luminescence, 2022, 248, 118955.	1.5	4
85	An efficient Buchwald–Hartwig amination protocol enables the synthesis of new branched and polymeric hole transport materials for perovskite solar cells. Energy Advances, 0, , .	1.4	3
86	Optical center of a luminescent solar concentrator. Optics Letters, 2022, 47, 4985.	1.7	1
87	Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. Journal of Physical Chemistry Letters, 2022, 13, 9177-9185.	2.1	5
88	Universal measure of photon collection efficiency of dye luminescent solar concentrators. Solar Energy Materials and Solar Cells, 2023, 250, 112101.	3.0	1
89	Luminescence solar concentrators: A technology update. Nano Energy, 2023, 109, 108269.	8.2	23