On Optimal Scheduling in Duty-Cycled Industrial IoT A

IEEE Sensors Journal 13, 3655-3666 DOI: 10.1109/jsen.2013.2266417

Citation Report

#	Article	IF	CITATIONS
1	Towards a perpetual wireless sensor node. , 2013, , .		14
3	On the interdependency between multi-channel scheduling and tree-based routing for WSNs in smart grid environments. Computer Networks, 2014, 65, 1-20.	5.1	29
4	Superframe Planning and Access Latency of Slotted MAC for Industrial WSN in IoT Environment. IEEE Transactions on Industrial Informatics, 2014, 10, 1242-1251.	11.3	48
5	IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 2014, 54, 32-47.	5.1	175
6	Comparison of IEEE 802.15.4e MAC features. , 2014, , .		9
7	Energy Aware Transmission Control in Wireless Sensor Networks. , 2014, , .		0
8	Service Level Agreements for Wireless Sensor Networks: A WSN operator's point of view. , 2014, , .		12
9	Traffic Aware Multiple Slotframes scheduling algorithm in industrial IoT applications using IEEE802.15.4e TSCH. , 2015, , .		0
10	A Distributed Scheduling Algorithm for IEEE 802.15.4e Networks. , 2015, , .		6
12	A study on the architecture of manufacturing internet of things. International Journal of Modelling, Identification and Control, 2015, 23, 8.	0.2	10
13	ERDT: Energy-Efficient Reliable Decision Transmission for Intelligent Cooperative Spectrum Sensing in Industrial IoT. IEEE Access, 2015, 3, 2366-2378.	4.2	72
14	Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks, 2015, 26, 88-102.	5.5	50
15	Overview of 3GPP machine-type communication standardization., 2015,, 47-62.		2
16	An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial Wireless Sensor Networks. IEEE Access, 2015, 3, 1026-1035.	4.2	51
17	Mobility Aware Framework for Timeslotted Channel Hopping IEEE 802.15.4e Sensor Networks. IEEE Sensors Journal, 2015, 15, 7112-7125.	4.7	31
18	Decentralized Traffic Aware Scheduling in 6TiSCH Networks: Design and Experimental Evaluation. IEEE Internet of Things Journal, 2015, 2, 455-470.	8.7	91
19	Kausa: KPI-aware Scheduling Algorithm forÂMulti-flow in Multi-hop IoT Networks. Lecture Notes in Computer Science, 2016, , 47-61.	1.3	7
20	Goodbye, ALOHA!. IEEE Access, 2016, 4, 2029-2044.	4.2	101

TATION RED

#	Article	IF	CITATIONS
21	Secure routing in IoT with multi-objective simulated annealing. , 2016, , .		2
22	Physical Topology Discovery Scheme for Wireless Sensor Networks Using Random Walk Process. , 2016, , .		2
23	An Adaptive MAC Protocol for RF Energy Harvesting Wireless Sensor Networks. , 2016, , .		29
24	Designing Time Slotted Channel Hopping and Information - Centric Networking for IoT. , 2016, , .		3
25	High-reliability scheduling in deterministic wireless multi-hop networks. , 2016, , .		7
26	Application of multiple interfaces for balanced tree routing in low-delay convergecast under IEEE 802.15.4e TSCH M2M networks. , 2016, , .		0
27	HOLA: Heuristic and opportunistic link selection algorithm for energy efficiency in Industrial Internet of Things (IIoT) systems. , 2016, , .		16
28	IEEE 802.15.4e: A survey. Computer Communications, 2016, 88, 1-24.	5.1	142
29	A centralized scheduling algorithm for IEEE 802.15.4e TSCH based industrial low power wireless networks. , 2016, , .		52
30	Localized scheduling for end-to-end delay constrained Low Power Lossy networks with 6TiSCH. , 2016, , .		10
31	Scheduling for Data Collection in Multi-hop IEEE 802.15.4e TSCH Networks. , 2016, , .		4
32	An IoT-Based Online Monitoring System for Continuous Steel Casting. IEEE Internet of Things Journal, 2016, 3, 1355-1363.	8.7	73
33	STS_4e: Secure Time Synchronization in IEEE802.15.4e Networks. International Journal of Wireless Information Networks, 2016, 23, 283-296.	2.7	1
34	Evaluation of TSCH scheduling implementations for real WSN applications. , 2016, , .		6
35	A Priority-Aware Multichannel Adaptive Framework for the IEEE 802.15.4e-LLDN. IEEE Transactions on Industrial Electronics, 2016, 63, 6360-6370.	7.9	36
36	Ad-hoc, Mobile, and Wireless Networks. Lecture Notes in Computer Science, 2016, , .	1.3	2
37	Distributed Scheduling of Enhanced Beacons for IEEE802.15.4-TSCH Body Area Networks. Lecture Notes in Computer Science, 2016, , 3-16.	1.3	1
38	On-the-Fly Bandwidth Reservation for 6TiSCH Wireless Industrial Networks. IEEE Sensors Journal, 2016, 16, 550-560.	4.7	109

#	Article	IF	CITATIONS
39	Effectively Collecting Data for the Location-Based Authentication in Internet of Things. IEEE Systems Journal, 2017, 11, 1403-1411.	4.6	32
40	REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Computer Communications, 2017, 101, 1-11.	5.1	34
41	A Distributed Scheduling Algorithm for IEEE 802.15.4e Wireless Sensor Networks. Computer Standards and Interfaces, 2017, 52, 63-70.	5.4	24
42	Self-healing distributed scheduling for end-to-end delay optimization in multihop wireless networks with 6TiSCh. Computer Communications, 2017, 110, 103-119.	5.1	25
43	A Survey on Reliability Protocols in Wireless Sensor Networks. ACM Computing Surveys, 2018, 50, 1-47.	23.0	42
44	Improving performance in industrial Internet of Things using multi-radio nodes and multiple gateways. , 2017, , .		3
45	A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 2017, 4, 1125-1142.	8.7	1,938
46	Energy harvested roadside IEEE 802.15.4 wireless sensor networks for IoT applications. Ad Hoc Networks, 2017, 56, 109-121.	5.5	31
47	<italic>DeAMON</italic> : A Decentralized Adaptive Multi-Hop Scheduling Protocol for 6TiSCH Wireless Networks. IEEE Sensors Journal, 2017, 17, 6825-6836.	4.7	35
48	EnergIoT: A solution to improve network lifetime of IoT devices. Pervasive and Mobile Computing, 2017, 42, 124-133.	3.3	32
49	Self-Synchronization in Duty-Cycled Internet of Things (IoT) Applications. IEEE Internet of Things Journal, 2017, 4, 2058-2069.	8.7	20
50	Enhanced time-slotted channel hopping scheduling with quick setup time for industrial Internet of Things networks. International Journal of Distributed Sensor Networks, 2017, 13, 155014771771362.	2.2	15
51	Industrial Internet of things at work: a case study analysis in roboticâ€ e ided environmental monitoring. IET Wireless Sensor Systems, 2017, 7, 155-162.	1.7	33
52	DIVA: a distributed divergecast scheduling algorithm for IEEE 802.15.4e TSCH networks. Wireless Networks, 2017, 25, 625.	3.0	6
53	Strengthening security and privacy in an ultra-dense green 5G Radio Access Network for the industrial and tactile Internet of Things. , 2017, , .		15
54	Energy-efficient distributed relay selection in wireless sensor network for Internet of Things. , 2017, ,		2
55	Smart city designing and planning based on big data analytics. Sustainable Cities and Society, 2017, 35, 271-279.	10.4	39
56	Development of an industrial Internet of things suite for smart factory towards re-industrialization. Advances in Manufacturing, 2017, 5, 335-343.	6.1	67

#	Article	IF	Citations
57	Development of the Industrial IoT Competences in the Areas of Organization, Process, and Interaction Based on the Learning Factory Concept. Procedia Manufacturing, 2017, 9, 254-261.	1.9	41
58	Efficient device-to-device association and data aggregation in industrial IoT systems. , 2017, , .		13
59	Linkâ€layer security in TSCH networks: effect on slot duration. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3089.	3.9	9
60	On the interest of opportunistic anycast scheduling for wireless low power lossy networks. Computer Communications, 2017, 104, 55-66.	5.1	14
61	Performance analysis and evaluation of REFIACC using queuing networks. Simulation Modelling Practice and Theory, 2017, 71, 15-26.	3.8	7
62	Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4 TSCH Networks. , 2017, , .		20
63	Enhanced secure time synchronisation protocol for IEEE802.15.4eâ€based industrial Internet of Things. IET Information Security, 2017, 11, 369-376.	1.7	10
64	Research on Time Synchronization Technology of Wireless Sensor Network. , 2017, , .		4
65	Optimal Scheduling of Multiple Sensors with Packet Length Constraint. IFAC-PapersOnLine, 2017, 50, 14430-14435.	0.9	10
66	Providing a cloud-based smart meter solution to control and monitor electrical quantities of industrial machines. , 2017, , .		0
67	A survey on the challenges and opportunities of the Internet of Things (IoT). , 2017, , .		51
68	Long-range wireless technologies for IoT applications: A review. , 2017, , .		29
69	Relayer-Enabled Retransmission Scheduling in 802.15.4e LLDN—Exploring a Reinforcement Learning Approach. Journal of Sensor and Actuator Networks, 2017, 6, 6.	3.9	9
70	Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz. Sensors, 2017, 17, 76.	3.8	16
71	Encryption standards for security system in energy harvesting for IoT requirements $\hat{a} \in$ " Review. , 2017, , .		3
72	Compensation of non-orthogonal ICI for SEFDM receivers. , 2017, , .		5
73	An efficient data packet scheduling scheme for Internet of Things networks. , 2018, , .		18
74	Dependable Interference-Aware Time-Slotted Channel Hopping for Wireless Sensor Networks. ACM Transactions on Sensor Networks, 2018, 14, 1-35.	3.6	19

#	Article	IF	Citations
75	Achieving Hybrid Wired/Wireless Industrial Networks With WDetServ: Reliability-Based Scheduling for Delay Guarantees. IEEE Transactions on Industrial Informatics, 2018, 14, 2307-2319.	11.3	27
77	Designing Smart Control Systems Based on Internet of Things and Big Data Analytics. Wireless Personal Communications, 2018, 99, 1683-1697.	2.7	35
78	Big Data for Internet of Things: A Survey. Future Generation Computer Systems, 2018, 87, 601-614.	7.5	215
79	FS-IIoTSim: a flexible and scalable simulation framework for performance evaluation of industrial Internet of things systems. Journal of Supercomputing, 2018, 74, 4385-4402.	3.6	9
80	Scheduling for Data Transmission in Multi-Hop IEEE 802.15.4e TSCH Networks. Mobile Networks and Applications, 2018, 23, 119-125.	3.3	11
81	Content Centric Cross-Layer Scheduling for Industrial IoT Applications Using 6TiSCH. IEEE Access, 2018, 6, 234-244.	4.2	18
82	Downlink Design for Spectrum Efficient IoT Network. IEEE Internet of Things Journal, 2018, 5, 3397-3404.	8.7	75
83	A virtual slotframe technique for reliable multi-hop IEEE 802.15.4e time-slotted channel hopping network. International Journal of Distributed Sensor Networks, 2018, 14, 155014771879075.	2.2	0
84	Modeling and Solving the Packet Routing Problem in Industrial IoT Networks. AIRO Springer Series, 2018, , 237-246.	0.6	1
85	Adaptive Multi-Channel Offset Assignment for Reliable IEEE 802.15.4 TSCH Networks. , 2018, , .		5
86	BOOST: Bringing Opportunistic ROuting and Effortless-Scheduling to TSCH MAC. , 2018, , .		6
87	Requirements Analysis for Machine to Machine Integration within Industry 4.0. , 2018, , .		6
88	Performance Evaluation of TSCH in Industrial WSN. , 2018, , .		1
90	Low-Power Wireless for the Internet of Things: Standards and Applications. IEEE Access, 2018, 6, 67893-67926.	4.2	80
91	Energy-Efficient Human Activity Detection in Smart Spaces. , 2018, , .		1
92	OntoProg: An ontology-based model for implementing Prognostics Health Management in mechanical machines. Advanced Engineering Informatics, 2018, 38, 746-759.	8.0	62
93	A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustainable Cities and Society, 2018, 43, 443-450.	10.4	82
94	Adaptive k-cast Scheduling for High-Reliability and Low-Latency in IEEE802.15.4-TSCH. Lecture Notes in Computer Science, 2018, , 3-14.	1.3	4

#	Article	IF	CITATIONS
95	Hybrid Schedule Management in 6TiSCH Networks: The Coexistence of Determinism and Flexibility. IEEE Access, 2018, 6, 33941-33952.	4.2	19
96	Analysis of Scientific Production of IoE Big Data Research. , 2018, , .		2
97	A cloud system to improve sensor availability and data reliability in remote monitoring. , 2018, , .		3
98	Beacon Synchronization and Duty-Cycling in IEEE 802.15.4 Cluster-Tree Networks: A Review. IEEE Internet of Things Journal, 2018, 5, 1765-1788.	8.7	27
99	Industrial Internet of Things: A Systematic Literature Review and Insights. IEEE Internet of Things Journal, 2018, 5, 4515-4525.	8.7	129
100	Experimental Analysis of the Efficiency of Shared Access in IEEE802.15.4-TSCH Networks with Sporadic Traffic. , 2018, , .		2
101	Modeling the Connectivity of Data-Channel-Based Bluetooth Low Energy Mesh Networks. IEEE Communications Letters, 2018, 22, 2124-2127.	4.1	18
102	LOST: Localized blacklisting aware scheduling algorithm for IEEE 802.15.4-TSCH networks. , 2018, , .		17
103	A Novel Auction Based Scheduling Algorithm in Industrial Internet of Things Networks. Communications in Computer and Information Science, 2018, , 103-114.	0.5	1
104	An analytical model for wireless mesh networks with collision-free TDMA and finite queues. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	2.4	2
105	Performance evaluation of TSCH-minimal and orchestra scheduling in IEEE 802.15.4e networks. , 2018, , .		4
106	Priority based Adaptive Scheduling Algorithm for IoT Sensor Systems. , 2019, , .		7
107	Industrial wireless sensor and actuator networks in industry 4.0: Exploring requirements, protocols, and challenges—A MAC survey. International Journal of Communication Systems, 2019, 32, e4074.	2.5	33
108	Dependable Wireless Industrial IoT Networks: Recent Advances and Open Challenges. , 2019, , .		13
109	The Rudiments of Energy Conservation and IoT. Studies in Systems, Decision and Control, 2019, , 1-17.	1.0	7
110	Transmission Scheduling of Periodic Real-Time Traffic in IEEE 802.15.4e TSCH-Based Industrial Mesh Networks. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	1.2	6
111	Modeling time-triggered service intermittence in network calculus. , 2019, , .		0
112	Packet Aggregation-Based Scheduling in 6TiSCH Networks. , 2019, , .		3

#	ARTICLE	IF	CITATIONS
113	Scheduling in 6TiSCH Networks via Max-Product Message-Passing. , 2019, , . Bittransfer: Mitigating Reactive Jamming in Electronic Warfare Scenarios. IEEE Access, 2019, 7,		3
114	156175-156190.	4.2	14
115	TESLA: Traffic-Aware Elastic Slotframe Adjustment in TSCH Networks. IEEE Access, 2019, 7, 130468-130483.	4.2	34
116	Frame-Type-Aware Static Time Slotted Channel Hopping Scheduling Scheme for Large-Scale Smart Metering Networks. IEEE Access, 2019, 7, 2200-2209.	4.2	8
117	Study and Design of a Fast Start-Up Crystal Oscillator Using Precise Dithered Injection and Active Inductance. IEEE Journal of Solid-State Circuits, 2019, 54, 2543-2554.	5.4	11
118	Multipath aware scheduling for high reliability and fault tolerance in low power industrial networks. Journal of Network and Computer Applications, 2019, 142, 25-36.	9.1	17
119	Energy Conservation for IoT Devices. Studies in Systems, Decision and Control, 2019, , .	1.0	19
120	User Behavior Driven MAC Scheduling for Body Sensor Networks: A Cross-Layer Approach. IEEE Sensors Journal, 2019, 19, 7755-7765.	4.7	9
121	Framework of an IoT-based Industrial Data Management for Smart Manufacturing. Journal of Sensor and Actuator Networks, 2019, 8, 25.	3.9	69
122	Whitelisting Without Collisions for Centralized Scheduling in Wireless Industrial Networks. IEEE Internet of Things Journal, 2019, 6, 5713-5721.	8.7	14
123	Blacklisting-Based Channel Hopping Approaches in Low-Power and Lossy Networks. IEEE Communications Magazine, 2019, 57, 48-53.	6.1	18
124	Scheduling of Dedicated and Shared Links for Fast and Reliable Data Delivery in IEEE 802.15.4 TSCH Networks. , 2019, , .		1
125	Performance Analysis of the Traffic Aware Scheduling Algorithm with Local Information. , 2019, , .		1
126	TLS-VaD: A New Tool for Developing Centralized Link-Scheduling Algorithms on the IEEE802.15.4e TSCH Network. Electronics (Switzerland), 2019, 8, 1555.	3.1	0
127	lloT-based Motion Control Efficiency in Automated Warehouses. , 2019, , .		4
128	Mobile Based Electronic Home Appliance Remote Control and Power Consumption Monitoring Using Internet of Things. , 2019, , .		4
129	Conceptual model of real-time IoT systems. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 1457-1464.	2.6	6
130	Using the Cloud to Improve Sensor Availability and Reliability in Remote Monitoring. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1522-1532.	4.7	13

#	Article	IF	CITATIONS
131	Distributed scheduling with efficient collision detection for end-to-end delay optimization in 6TiSCH multi-hop wireless networks. Annales Des Telecommunications/Annals of Telecommunications, 2019, 74, 239-255.	2.5	5
132	Optimal routing approaches for IEEE 802.15.4 TSCH networks. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3538.	3.9	3
133	A survey on network formation and scheduling algorithms for time slotted channel hopping in in industrial networks. Journal of Network and Computer Applications, 2019, 126, 59-87.	9.1	41
134	Distributed Dynamic Packet Scheduling Framework for Handling Disturbances in Real-Time Wireless Networks. IEEE Transactions on Mobile Computing, 2019, 18, 2502-2517.	5.8	14
135	Interference graphs to monitor and control schedules in low-power WPAN. Future Generation Computer Systems, 2019, 93, 111-120.	7.5	2
136	Throughput Maximizing and Fair Scheduling Algorithms in Industrial Internet of Things Networks. IEEE Transactions on Industrial Informatics, 2019, 15, 3400-3410.	11.3	17
137	A Survey of Limitations and Enhancements of the IPv6 Routing Protocol for Low-Power and Lossy Networks: A Focus on Core Operations. IEEE Communications Surveys and Tutorials, 2019, 21, 1607-1635.	39.4	92
138	Fuzzy based priority aware scheduling technique for dense industrial IoT networks. Journal of Network and Computer Applications, 2019, 125, 17-27.	9.1	14
139	IEEE 802.15.4.e TSCH-Based Scheduling for Throughput Optimization: A Combinatorial Multi-Armed Bandit Approach. IEEE Sensors Journal, 2020, 20, 525-537.	4.7	21
140	SA-RPL: a scheduling-aware forwarding mechanism in RPL/TSCH-operated networks. International Journal of Ad Hoc and Ubiquitous Computing, 2020, 34, 35.	0.5	1
141	Wireless Sensor Networks and TSCH: A Compromise Between Reliability, Power Consumption, and Latency. IEEE Access, 2020, 8, 167042-167058.	4.2	21
142	Dynamic Scheduling for Delay-Critical Packets in a Networked Control System Using WirelessHART. , 2020, , .		1
143	Towards Slot Bonding for Adaptive MCS in IEEE 802.15.4e TSCH Networks. , 2020, , .		3
144	Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wireless Personal Communications, 2020, 114, 1687-1762.	2.7	221
145	Adaptive Resource Allocation Method Based on Deep Q Network for Industrial Internet of Things. IEEE Access, 2020, 8, 27426-27434.	4.2	16
146	Industrial internet of things over IEEE 802.15.4 TSCH networks: design and challenges. International Journal of Internet Technology and Secured Transactions, 2020, 10, 61.	0.4	3
147	A secure IoT sensors communication in industry 4.0 using blockchain technology. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 533-545.	4.9	100
148	Optimizing IoT Energy Efficiency on Edge (EEE): A Cross-Layer Design in a Cognitive Mesh Network. IEEE Transactions on Wireless Communications, 2021, 20, 2472-2486.	9.2	4

#	Article	IF	CITATIONS
149	Fully Distributed Packet Scheduling Framework for Handling Disturbances in Lossy Real-Time Wireless Networks. IEEE Transactions on Mobile Computing, 2021, 20, 502-518.	5.8	9
150	Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks. IEEE Access, 2021, 9, 127576-127594.	4.2	4
151	Machine Learning Modelling-Powered IoT Systems for Smart Applications. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 185-212.	0.7	1
152	Enhancing SDN WISE with Slicing Over TSCH. Sensors, 2021, 21, 1075.	3.8	14
153	6DYN : 6TiSCH with Heterogeneous Slot Durations. Sensors, 2021, 21, 1611.	3.8	7
154	Enhanced Hole arrier Selectivity in Wide Bandgap Halide Perovskite Photovoltaic Devices for Indoor Internet of Things Applications. Advanced Functional Materials, 2021, 31, 2008908.	14.9	31
155	Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks. , 2021, , .		8
156	Application Domains, Evaluation Data Sets, and Research Challenges of IoT: A Systematic Review. IEEE Internet of Things Journal, 2021, 8, 8774-8798.	8.7	48
157	Slot Bonding for Adaptive Modulations in IEEE 802.15.4e TSCH Networks. IEEE Internet of Things Journal, 2021, 8, 10714-10730.	8.7	1
158	A Link Quality Estimation Model for a Joint Deployment of Unmanned Aerial Vehicles and Wireless Sensor Networks. , 2021, , .		2
159	DIGEST: a decentralized divergecast scheduling algorithm for IEEE 802.15.4e TSCH in the internet of things. Wireless Networks, 2021, 27, 4535-4550.	3.0	5
160	On the Secure Spectral Efficiency of URLLC With Randomly Located Colluding Eavesdroppers. IEEE Internet of Things Journal, 2021, 8, 14672-14682.	8.7	8
161	Energy-Efficient Intelligent Routing Scheme for IoT-Enabled WSNs. IEEE Internet of Things Journal, 2021, 8, 11440-11449.	8.7	68
162	IOT: The Theoretical Fundamentals and Practical Applications. Services and Business Process Reengineering, 2021, , 1-16.	0.3	2
163	Real-Time Communication Model Based on OPC UA Wireless Network for Intelligent Production Line. IEEE Access, 2021, 9, 102312-102326.	4.2	4
164	6TiSCH Wireless Industrial Networks: Determinism Meets IPv6. Smart Sensors, Measurement and Instrumentation, 2014, , 111-141.	0.6	39
165	Evaluating and Modeling IEEE 802.15.4 TSCH Resilience against Wi-Fi Interference in New-Generation Highly-Dependable Wireless Sensor Networks. Ad Hoc Networks, 2020, 106, 102199.	5.5	17
166	The Sensitivity Design of Piezoresistive Acceleration Sensor in Industrial IoT. IEEE Access, 2019, 7, 16952-16963.	4.2	15

#	Article	IF	CITATIONS
167	LDSF: Low-Latency Distributed Scheduling Function for Industrial Internet of Things. IEEE Internet of Things Journal, 2020, 7, 8688-8699.	8.7	26
168	A Centralized Controller for Reliable and Available Wireless Schedules in Industrial Networks. , 2020, , .		1
169	TSCH Networks for Health IoT. ACM Transactions on Internet of Things, 2020, 1, 1-27.	4.6	20
170	Speed Improvement of Centralized Scheduling Algorithm on IEEE 802.15.4e TSCH Netwok Using Heuristic Method. Journal of Communications, 2017, , 661-667.	1.6	4
172	Emergency Evacuation System for Clogging-Free and Shortest-Safe Path Navigation With IoT-Enabled WSNs. IEEE Internet of Things Journal, 2022, 9, 10424-10433.	8.7	7
173	Multicast Scheduling in SDN WISE to Support Mobile Nodes in Industrial Wireless Sensor Networks. IEEE Access, 2021, 9, 141651-141666.	4.2	8
174	Security and Interoperability Issues with Internet of Things (IoT) in Healthcare Industry: A Survey. Studies in Big Data, 2022, , 159-189.	1.1	5
175	An Efficient Transmission Scheduling and Synchronization Algorithm for Border Node Problem in Wireless Sensor Network. International Journal of Computer Applications, 2014, 96, 36-41.	0.2	0
176	A Novel Two-way Time Synchronization Protocol for Fusion Application. International Journal of Future Generation Communication and Networking, 2016, 9, 381-392.	0.7	0
177	Development of IEEE 802.15.4e Based Industrial Wireless Sensor Network System for Intelligent Plant Construction. The Journal of Korean Institute of Communications and Information Sciences, 2018, 43, 319-326.	0.1	0
178	TRUST BASED ROUTING ALGORITHM IN INTERNET OF THINGS (IoT). IRO Journal on Sustainable Wireless Systems, 2019, 01, 42-61.	1.6	3
179	Internet of Things: Service-Oriented Architecture Opportunities and Challenges. Lecture Notes in Networks and Systems, 2020, , 71-78.	0.7	6
180	On the suitability of 6TiSCH for industrial wireless communication. Technologien Ful̀ r Die Intelligente Automation, 2020, , 34-48.	0.5	4
181	Certain Investigation on the Challenges and Prospects of Internet of Things (IoT). , 2020, , 201-204.		0
182	Dynamic Resource Management in Real-Time Wireless Networks. , 2021, , 131-156.		1
183	IoT Based AI and its Implementations in Industries. , 2020, , .		3
184	Optimal Link Scheduling Based on Attributes of Nodes in 6TiSCH Wireless Networks. The Journal of Korean Institute of Information Technology, 2020, 18, 77-92.	0.3	1
185	Performance Evaluation of 6TiSCH Network with Multiple Physical Layers. , 2021, , .		0

#	Article	IF	CITATIONS
186	Energy Efficiency for Green Internet of Things (IoT) Networks: A Survey. Network, 2021, 1, 279-314.	2.4	18
188	Experimental Assessment of IEEE 802.15.4e LLDN Mode Using COTS Wireless Sensor Network Nodes. IEEE Access, 2022, 10, 12829-12837.	4.2	1
189	Duty-Cycling Techniques in IoT: Energy-Efficiency Perspective. Lecture Notes in Electrical Engineering, 2022, , 505-512.	0.4	3
190	Energy-Efficient Mobile Sink-Based Intelligent Data Routing Scheme for Wireless Sensor Networks. IEEE Sensors Journal, 2022, 22, 9881-9891.	4.7	13
191	Intelligent Fault-Tolerance Data Routing Scheme for IoT-Enabled WSNs. IEEE Internet of Things Journal, 2022, 9, 16332-16342.	8.7	26
192	Deep Learning-Based Scheduling Scheme for IEEE 802.15.4e TSCH Network. Wireless Communications and Mobile Computing, 2022, 2022, 1-17.	1.2	1
193	ATRIA: Autonomous Traffic-Aware Scheduling for Industrial Wireless Sensor-Actuator Networks. , 2021, , .		5
194	TSCH Multiflow Scheduling with QoS Guarantees: A Comparison of SDN with Common Schedulers. Applied Sciences (Switzerland), 2022, 12, 119.	2.5	5
195	ECTS: Enhanced Centralized TSCH Scheduling with Packet Aggregation for Industrial IoT. , 2021, , .		0
196	A Survey of 802.15.4 TSCH Schedulers for a Standardized Industrial Internet of Things. Sensors, 2022, 22, 15.	3.8	23
197	From Wired to Wireless BMS in Electric Vehicles. , 2021, , .		1
198	Using Integer Compositions to Model End-To-End Delay in Wireless Sensor Networks under 6TiSCH. , 2022, , .		0
199	Traffic-Aware 6TiSCH Routing Method for IIoT Wireless Networks. IEEE Internet of Things Journal, 2022, 9, 22709-22722.	8.7	3
200	SmarTiSCH: An Interference-Aware Engine for IEEE 802.15.4e-based Networks. , 2022, , .		4
201	Scalability Enhancement on Software Defined Industrial Wireless Sensor Networks Over TSCH. IEEE Access, 2022, 10, 107137-107151.	4.2	4
202	Autonomous Traffic-Aware Scheduling for Industrial Wireless Sensor-Actuator Networks. ACM Transactions on Sensor Networks, 2023, 19, 1-25.	3.6	2
203	VariBan: A Variable Bandwidth channel allocation algorithm for IEEE 802.15.4e-based networks. Computer Networks, 2023, 231, 109774.	5.1	0
204	Assessing the Effectiveness of Channel Hopping in IEEE 802.15.4 TSCH Networks. IEEE Open Journal of the Industrial Electronics Society, 2023, , 1-17.	6.8	3

#	Article	IF	CITATIONS
205	Internet of Things in Education: Opportunities and Challenges. Communications in Computer and Information Science, 2023, , 104-117.	0.5	0
206	Enabling Centralized Scheduling Using Software Defined Networking in Industrial Wireless Sensor Networks. IEEE Internet of Things Journal, 2023, 10, 20675-20685.	8.7	0
207	Enabling Direct Message Dissemination in Industrial Wireless Networks via Cross-Technology Communication. , 2023, , .		0
208	An Efficient Anycast Mechanism for 802.15.4-TSCH to Improve QoS in IIoT. Journal of Sensors, 2023, 2023, 1-16.	1.1	0
209	Optimization of packet transmission scheduling and node parent selection for 802.15.4e Time Slotted Channel Hopping (TSCH). ICT Express, 2023, , .	4.8	0
210	Priority-aware scheduling method based on linguistic interval type 2 fuzzy logic systems for dense industrial IoT networks employing soft computing. Results in Control and Optimization, 2024, 14, 100391.	2.3	0