Gelsolin: The tail of a molecular gymnast

Cytoskeleton 70, 360-384

DOI: 10.1002/cm.21117

Citation Report

#	Article	IF	CITATIONS
1	Guardians of the actin monomer. European Journal of Cell Biology, 2013, 92, 316-332.	3.6	62
2	The expanding superfamily of gelsolin homology domain proteins. Cytoskeleton, 2013, 70, 775-795.	2.0	39
3	Activation of cytosolic Slingshot-1 phosphatase by gelsolin-generated soluble actin filaments. Biochemical and Biophysical Research Communications, 2014, 454, 471-477.	2.1	4
4	The tumor-suppressing activity of the prenyl diphosphate synthase subunit 2 gene in lung cancer cells. Anti-Cancer Drugs, 2014, 25, 790-798.	1.4	6
5	Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin. Nature Communications, 2014, 5, 4623.	12.8	36
6	Mechanism of actin filament pointed-end capping by tropomodulin. Science, 2014, 345, 463-467.	12.6	107
7	Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological Reviews, 2014, 262, 193-215.	6.0	418
8	Capping protein regulators fine-tune actin assembly dynamics. Nature Reviews Molecular Cell Biology, 2014, 15, 677-689.	37.0	255
9	INF2-Mediated Severing through Actin Filament Encirclement and Disruption. Current Biology, 2014, 24, 156-164.	3.9	48
10	Gelsolin inhibits the proliferation and invasion of the 786-0 clear cell renal cell carcinoma cell line in vitro. Molecular Medicine Reports, 2015, 12, 6887-6894.	2.4	9
11	Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Frontiers in Cellular Neuroscience, 2015, 9, 99.	3.7	68
12	The role of actin-binding proteins in the control of endothelial barrier integrity. Thrombosis and Haemostasis, 2015, 113, 20-36.	3.4	111
13	Calcium-controlled conformational choreography in the N-terminal half of adseverin. Nature Communications, 2015, 6, 8254.	12.8	13
14	Plant villins: Versatile actin regulatory proteins. Journal of Integrative Plant Biology, 2015, 57, 40-49.	8.5	59
15	Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nature Structural and Molecular Biology, 2015, 22, 248-255.	8.2	47
16	An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Human Molecular Genetics, 2015, 24, 2492-2507.	2.9	38
17	Expression of Cytoplasmic Gelsolin in Rat Brain After Experimental Subarachnoid Hemorrhage. Cellular and Molecular Neurobiology, 2015, 35, 723-731.	3.3	3
18	Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Molecular Biology of the Cell, 2015, 26, 2279-2297.	2.1	18

#	Article	IF	CITATIONS
19	The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 2015, 128, 2009-2019.	2.0	247
20	Preclinical Alterations in the Serum of COL(IV)A3 ^{â€"} / ^{â€"} Mice as Early Biomarkers of Alport Syndrome. Journal of Proteome Research, 2015, 14, 5202-5214.	3.7	11
21	Reconstituting actomyosin-dependent mechanosensitive protein complexes in vitro. Nature Protocols, 2015, 10, 75-89.	12.0	20
22	The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2547-2575.	2.6	194
23	Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 189-197.	3.0	13
24	Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plasticity, 2016, 2016, 1-19.	2.2	20
25	Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. International Journal of Molecular Sciences, 2016, 17, 1116.	4.1	14
26	F-actin dampens NLRP3 inflammasome activity via Flightless-I and LRRFIP2. Scientific Reports, 2016, 6, 29834.	3.3	35
27	MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer, 2016, 16, 784.	2.6	32
28	Actin Assembly Dynamics and Its Regulation in Motile and Morphogenetic Processes. , 2016, , 548-568.		0
29	Actin-Induced Structure in the Beta-Thymosin Family of Intrinsically Disordered Proteins. Vitamins and Hormones, 2016, 102, 55-71.	1.7	7
30	A comprehensive genomeâ€wide analysis of melanoma Breslow thickness identifies interaction between <i>CDC42</i> and <i>SCIN</i> genetic variants. International Journal of Cancer, 2016, 139, 2012-2020.	5.1	8
31	Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Current Topics in Microbiology and Immunology, 2016, 399, 1-34.	1.1	20
32	Photorhabdus luminescens Toxins TccC3 and TccC5 Affect the Interaction of Actin with Actin-Binding Proteins Essential for Treadmilling. Current Topics in Microbiology and Immunology, 2016, 399, 53-67.	1.1	3
33	Gelsolin interacts with LamR, hnRNP U, nestin, Arp3 and \hat{l}^2 -tubulin in human melanoma cells as revealed by immunoprecipitation and mass spectrometry. European Journal of Cell Biology, 2016, 95, 26-41.	3.6	16
34	Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton, 2016, 73, 435-441.	2.0	84
35	Analysis of gelsolin expression pattern in developing chicken embryo reveals high GSN expression level in tissues of neural crest origin. Brain Structure and Function, 2016, 221, 515-534.	2.3	7
36	Plasma levels of F-actin and F:G-actin ratio as potential new biomarkers in patients with septic shock. Biomarkers, 2016, 21, 180-185.	1.9	10

#	Article	IF	CITATIONS
37	Actin and Actin-Binding Proteins. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018226.	5 . 5	584
38	Regulators of actin filament barbed ends at a glance. Journal of Cell Science, 2016, 129, 1085-91.	2.0	80
39	The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro. Cell Stress and Chaperones, 2016, 21, 55-62.	2.9	18
40	The lens actin filament cytoskeleton: Diverse structures for complex functions. Experimental Eye Research, 2017, 156, 58-71.	2.6	46
41	Actin ADP-ribosylation at Threonine148 by <i>Photorhabdus luminescens</i> toxin TccC3 induces aggregation of intracellular F-actin. Cellular Microbiology, 2017, 19, e12636.	2.1	21
42	Mechanisms of Yersinia YopO kinase substrate specificity. Scientific Reports, 2017, 7, 39998.	3.3	10
43	Four paralog gelsolin genes are differentially expressed in the earthworm Lumbricus terrestris. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 208-209, 58-67.	1.6	0
44	A plague of actin disassembly. Journal of Biological Chemistry, 2017, 292, 8101-8102.	3.4	5
45	Flowâ€aligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
46	Yersinia effector protein (YopO)-mediated phosphorylation of host gelsolin causes calcium-independent activation leading to disruption of actin dynamics. Journal of Biological Chemistry, 2017, 292, 8092-8100.	3.4	13
47	Structural Basis for pH-mediated Regulation of F-actin Severing by Gelsolin Domain 1. Scientific Reports, 2017, 7, 45230.	3.3	7
48	Visualizing Temperature Mediated Activation of Gelsolin and Its Deactivation By Pip2: A Saxs Based Study. Scientific Reports, 2017, 7, 4670.	3.3	18
49	Gelsolin in Onychophora and Tardigrada with notes on its variability in the Ecdysozoa. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 203, 47-52.	1.6	2
50	Mitochondrial VDAC, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter in Ca2+ Dynamics and Signaling. Advances in Experimental Medicine and Biology, 2017, 981, 323-347.	1.6	29
51	Phagocytosis: A Fundamental Process in Immunity. BioMed Research International, 2017, 2017, 1-18.	1.9	360
52	Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLoS Pathogens, 2017, 13, e1006755.	4.7	26
53	Actin and Actin-Binding Proteins., 2017,, 575-591.		0
54	Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Human Molecular Genetics, 2018, 27, 53-65.	2.9	16

#	ARTICLE	IF	Citations
55	Interaction Between a Gelsolin from Dendrorhynchus zhejiangensis with Three Gelsolin-Like Domains and Actin In Vitro. Protein Journal, 2018, 37, 144-150.	1.6	1
56	Plant Villin Headpiece Domain Demonstrates a Novel Surface Charge Pattern and High Affinity for F-Actin. Biochemistry, 2018, 57, 1690-1701.	2.5	4
57	The filamin-Bâ \in "refilin axis â \in " spatiotemporal regulators of the actin-cytoskeleton in development and disease. Journal of Cell Science, 2018, 131, .	2.0	13
58	Interaction of isolated crossâ€linked short actin oligomers with the skeletal muscle myosin motor domain. FEBS Journal, 2018, 285, 1715-1729.	4.7	8
59	Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 362-376.	1.7	38
60	Tropomyosins Regulate the Severing Activity of Gelsolin in Isoform-Dependent and Independent Manners. Biophysical Journal, 2018, 114, 777-787.	0.5	10
61	VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium, 2018, 69, 81-100.	2.4	100
62	Optically sensing phospholipid induced coil–helix transitions in the phosphoinositide-binding motif of gelsolin. Faraday Discussions, 2018, 207, 437-458.	3.2	5
63	Novel subfamilies of actin-regulating proteins. Marine Genomics, 2018, 37, 128-134.	1.1	5
64	Structure, regulation and related diseases of the actin-binding protein gelsolin. Expert Reviews in Molecular Medicine, 2018, 20, e7.	3.9	69
65	Potential involvement of <i>Drosophila </i> flightless-1 in carbohydrate metabolism. BMB Reports, 2018, 51, 462-467.	2.4	4
66	Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy. Journal of the American Heart Association, 2018, 7, e010404.	3.7	7
67	Latrunculin A Accelerates Actin Filament Depolymerization in Addition to Sequestering Actin Monomers. Current Biology, 2018, 28, 3183-3192.e2.	3.9	96
68	Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Seminars in Immunopathology, 2018, 40, 605-615.	6.1	24
69	Plasma gelsolin promotes re-epithelialization. Scientific Reports, 2018, 8, 13140.	3.3	16
70	ATP competes with PIP2 for binding to gelsolin. PLoS ONE, 2018, 13, e0201826.	2.5	15
71	Cyclic Stretching Exacerbates Tendinitis by Enhancing NLRP3 Inflammasome Activity via F-Actin Depolymerization. Inflammation, 2018, 41, 1731-1743.	3.8	10
72	Direct effects of Ca2+/calmodulin on actin filament formation. Biochemical and Biophysical Research Communications, 2018, 506, 355-360.	2.1	26

#	Article	IF	CITATIONS
73	Chemical LTD, but not LTP, induces transient accumulation of gelsolin in dendritic spines. Biological Chemistry, 2019, 400, 1129-1139.	2.5	5
74	Prognostic and clinicopathological significance of CapG in various cancers: Evidence from a meta-analysis. Pathology Research and Practice, 2019, 215, 152683.	2.3	9
75	CapG promotes resistance to paclitaxel in breast cancer through transactivation of PIK3R1/P50. Theranostics, 2019, 9, 6840-6855.	10.0	33
76	Gelsolin: a new biomarker of disease activity in SLE patients associated with HDL-c. Rheumatology, 2019, 59, 650-661.	1.9	5
77	High-resolution crystal structure of gelsolin domain 2 in complex with the physiological calcium ion. Biochemical and Biophysical Research Communications, 2019, 518, 94-99.	2.1	5
78	Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. International Journal of Molecular Sciences, 2019, 20, 1403.	4.1	39
79	Gelsolin expression in sheep milk somatic cells during lactation. Animal, 2019, 13, 2297-2304.	3.3	1
80	Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nature Communications, 2019, 10, 5320.	12.8	76
81	Serum Proteomic Analysis Reveals Vitamin D-Binding Protein (VDBP) as a Potential Biomarker for Low Bone Mineral Density in Mexican Postmenopausal Women. Nutrients, 2019, 11, 2853.	4.1	17
82	Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Experimental Eye Research, 2019, 179, 32-46.	2.6	40
83	The Actin Cytoskeleton in Myelinating Cells. Neurochemical Research, 2020, 45, 684-693.	3.3	30
84	The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties. European Biophysics Journal, 2020, 49, 11-19.	2.2	4
85	Novel inter-domain Ca2+-binding site in the gelsolin superfamily protein fragmin. Journal of Muscle Research and Cell Motility, 2020, 41, 153-162.	2.0	7
86	Towards a structural understanding of the remodeling of the actin cytoskeleton. Seminars in Cell and Developmental Biology, 2020, 102, 51-64.	5.0	63
87	Recombinant Human Plasma Gelsolin Improves Survival and Attenuates Lung Injury in a Murine Model of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia. Open Forum Infectious Diseases, 2020, 7, ofaa236.	0.9	11
88	The Activities of the Gelsolin Homology Domains of Flightless-I in Actin Dynamics. Frontiers in Molecular Biosciences, 2020, 7, 575077.	3.5	2
89	A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nature Communications, 2020, 11, 3457.	12.8	35
90	A novel Pezizomycotinaâ€specific protein with gelsolin domains regulates contractile actin ring assembly and constriction in perforated septum formation. Molecular Microbiology, 2020, 113, 964-982.	2.5	12

#	Article	IF	CITATIONS
91	Cytoskeletal Remodeling in Cancer. Biology, 2020, 9, 385.	2.8	77
92	Gelsolin-mediated actin filament severing in crowded environments. Biochemical and Biophysical Research Communications, 2020, 532, 548-554.	2.1	12
93	Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Frontiers in Cell and Developmental Biology, 2020, 8, 603508.	3.7	19
94	Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19904-19913.	7.1	38
95	Safety and Pharmacokinetics of Recombinant Human Plasma Gelsolin in Patients Hospitalized for Nonsevere Community-Acquired Pneumonia. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	6
96	Changes in expressions of genes involved in the regulation of cellular processes in mucopolysaccharidoses as assessed by fibroblast culture-based transcriptomic analyses. Metabolic Brain Disease, 2020, 35, 1353-1360.	2.9	13
97	Structure and assembly of double-stranded RNA mycoviruses. Advances in Virus Research, 2020, 108, 213-247.	2.1	9
98	Phagocytosis: Our Current Understanding of a Universal Biological Process. Frontiers in Immunology, 2020, 11, 1066.	4.8	295
99	The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Current Biology, 2020, 30, R521-R526.	3.9	31
100	Identification of a novel premature stop codon and other recurrent variations in the porcine gelsolin gene. Gene, 2020, 754, 144879.	2.2	0
101	Superficial and deep zone articular chondrocytes exhibit differences in actin polymerization status and actin-associated molecules in vitro. Osteoarthritis and Cartilage Open, 2020, 2, 100071.	2.0	3
102	Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers, 2020, 12, 1531.	3.7	7
103	APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin. Cell Reports, 2020, 30, 3821-3836.e13.	6.4	50
104	Comprehensive analysis of the cardiac proteome in a rat model of myocardial ischemia-reperfusion using a TMT-based quantitative proteomic strategy. Proteome Science, 2020, 18, 2.	1.7	9
105	Linking murine resistance to secondary cystic echinococcosis with antibody responses targeting Echinococcus granulosus tegumental antigens. Immunobiology, 2020, 225, 151916.	1.9	7
106	Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. International Journal of Molecular Sciences, 2020, 21, 1204.	4.1	41
107	Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine and Growth Factor Reviews, 2021, 57, 93-111.	7.2	18
108	The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Developmental Biology, 2021, 469, 12-25.	2.0	17

#	Article	IF	CITATIONS
109	Mythical origins of the actin cytoskeleton. Current Opinion in Cell Biology, 2021, 68, 55-63.	5.4	27
110	Systemic amyloidosis from A (AA) to T (ATTR): a review. Journal of Internal Medicine, 2021, 289, 268-292.	6.0	133
111	Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. Journal of Biological Chemistry, 2021, 296, 100181.	3.4	11
112	Innate immune receptor clustering and its role in immune regulation. Journal of Cell Science, 2021, 134, .	2.0	15
113	Gene Expression-Related Changes in Morphologies of Organelles and Cellular Component Organization in Mucopolysaccharidoses. International Journal of Molecular Sciences, 2021, 22, 2766.	4.1	20
114	The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. BioEssays, 2021, 43, e2100058.	2.5	10
115	A novel <i>GSN</i> variant outside the G2 calciumâ€binding domain associated with Amyloidosis of the Finnish type. Human Mutation, 2021, 42, 818-826.	2.5	5
116	The actinâ€binding protein Adseverin mediates neutrophil polarization and migration. Cytoskeleton, 2021, 78, 206-213.	2.0	1
117	Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. Analytical Cellular Pathology, 2021, 2021, 1-15.	1.4	17
118	Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Scientific Reports, 2021, 11, 13197.	3.3	5
119	Gelsolin Contributes to the Motility of A375 Melanoma Cells and This Activity Is Mediated by the Fibrous Extracellular Matrix Protein Profile. Cells, 2021, 10, 1848.	4.1	7
120	Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 2021, 19, 142.	3.8	18
121	Comparison of actin- and microtubule-based motility systems for application in functional nanodevices. New Journal of Physics, 2021, 23, 075007.	2.9	18
122	Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. Journal of Chemical Physics, 2021, 155, 075101.	3.0	6
123	The structure of the actin filament uncapping complex mediated by twinfilin. Science Advances, 2021, 7,	10.3	29
124	Cardiovascular toxicity of PI3Kα inhibitors. Clinical Science, 2020, 134, 2595-2622.	4.3	11
127	DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs. JCI Insight, 2017, 2, .	5.0	31
128	Module 4: Sensors and Effectors. Cell Signalling Biology, 2014, 6, csb0001004.	1.0	2

#	Article	IF	CITATIONS
129	Cytoskeletal Signaling by Src Homology Domain-Containing Adaptor Proteins., 2015, , 187-207.		0
130	Actin Organizing Proteins in Regulation of Osteoclast Function. , 2015, , 337-361.		O
131	Single molecule force spectroscopy study of calcium regulated mechanical unfolding of the A6 domain of adseverin. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 196201.	0.5	1
134	Formation of an Algorithm for Diagnosing Syndromes of Exercise-Induced Muscle Damage and Delayed Onset of Muscle Soreness in Athletes. UkraĀʿnsʹkij žurnal Medicini B¬olog¬Āʿ Ta Sportu, 2020, 5, 414-425.	0.2	1
138	Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophysical Journal, 2022, 121, 327-335.	0.5	5
139	Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harbor Perspectives in Biology, 2022, , a041235.	5.5	5
140	Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cellular and Molecular Life Sciences, 2022, 79, 100.	5.4	28
141	Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. International Journal of Molecular Sciences, 2022, 23, 2118.	4.1	27
142	Gelsolin impairs barrier function in pancreatic ductal epithelial cells by actin filament depolymerization in hypertriglyceridemiaâ€ʻinduced pancreatitis ⟨i⟩inÂvitro⟨/i⟩. Experimental and Therapeutic Medicine, 2022, 23, 290.	1.8	3
143	Transcriptomic and Proteomic Analysis of Marine Nematode Litoditis marina Acclimated to Different Salinities. Genes, 2022, 13, 651.	2.4	5
144	Targeting AVIL, a New Cytoskeleton Regulator in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 13635.	4.1	4
145	Cellular substructures, actin dynamics, and actin-binding proteins regulating cell migration., 2022,, 25-50.		O
146	Adjunctive Recombinant Human Plasma Gelsolin for Severe COVID-19 Pneumonia. Open Forum Infectious Diseases, 0, , .	0.9	1
148	Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Communications Biology, 2022, 5, .	4.4	4
149	Exosomal Plasma Gelsolin Is an Immunosuppressive Mediator in the Ovarian Tumor Microenvironment and a Determinant of Chemoresistance. Cells, 2022, 11, 3305.	4.1	3
151	C/EBPδ Suppresses Motility-Associated Gene Signatures and Reduces PDAC Cell Migration. Cells, 2022, 11, 3334.	4.1	3
153	Mesenchymal βâ€catenin signaling affects palatogenesis by regulating αâ€actininâ€4 and Fâ€actin. Oral Disease: 2023, 29, 3493-3502.	S3.0	2
154	The morphological and functional diversity of apical microvilli. Journal of Anatomy, 2023, 242, 327-353.	1.5	10

#	ARTICLE	IF	Citations
155	Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals, 2022, 15, 1369.	3.8	2
156	Actin Assembly Dynamics and Its Regulation in Motile and Morphogenetic Processes. , 2016, , 34-55.		0
157	HIV-1 Vpr Induces Degradation of Gelsolin, a Myeloid Cell-Specific Host Factor That Reduces Viral Infectivity by Inhibiting the Expression and Packaging of the HIV-1 Env Glycoprotein. MBio, 0, , .	4.1	1
158	Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. Journal of Ovarian Research, 2023, 16, .	3.0	2
159	Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. Journal of Cellular Physiology, 0, , .	4.1	2
160	Behavior of Biopolymers, Cytoskeleton, DNA, and Phospholipids, that Exert Self-organization, Shown in the Liquid-Liquid Phase Separation. Seibutsu Butsuri, 2023, 63, 5-11.	0.1	0
161	Role and therapeutic potential of gelsolin in atherosclerosis. Journal of Molecular and Cellular Cardiology, 2023, 178, 59-67.	1.9	4
162	Gelsolin inhibits autophagy by regulating actin depolymerization in pancreatic ductal epithelial cells in acute pancreatitis. Brazilian Journal of Medical and Biological Research, 0, 56, .	1.5	0
163	Actin Bundles Dynamics and Architecture. Biomolecules, 2023, 13, 450.	4.0	12
164	Fusion of the High-mobility Group AT-Hook 2 (<i>HMGA2</i>) and the Gelsolin (<i>GSN</i>) Genes in Lipomas With t(9;12)(q33;q14) Chromosomal Translocation. In Vivo, 2023, 37, 524-530.	1.3	0
165	Isotherm kinetics of PIP2 bound gelsolin inactivation. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	0
166	Hereditary gelsolin amyloidosis: a rare cause of cranial, peripheral and autonomic neuropathies linked to D187N and Y447H substitutions. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 0, , 1-7.	3.0	0
167	Isolation and identification of a novel toxin in scallop mantle tissue. Frontiers in Marine Science, 0, 10, .	2.5	1
169	Super-enhancer-associated gene CAPG promotes AML progression. Communications Biology, 2023, 6, .	4.4	3
170	Clathrin light chain A facilitates small extracellular vesicle uptake to promote hepatocellular carcinoma progression. Hepatology International, 2023, 17, 1490-1499.	4.2	2
171	mTORC2 interactome and localization determine aggressiveness of high-grade glioma cells through association with gelsolin. Scientific Reports, 2023, 13 , .	3.3	2
172	Structures of the free and capped ends of the actin filament. Science, 2023, 380, 1287-1292.	12.6	15
174	Bi-allelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization. JCI Insight, 0, , .	5.0	1

#	Article	IF	CITATIONS
175	Coupled Electrostatic and Hydrophobic Destabilisation of the Gelsolin-Actin Complex Enables Facile Detection of Ovarian Cancer Biomarker Lysophosphatidic Acid. Biomolecules, 2023, 13, 1426.	4.0	0
176	Actin polymerization and depolymerization in developing vertebrates. Frontiers in Physiology, 0, 14, .	2.8	1
177	The Potential for Targeting AVIL and Other Actin-Binding Proteins in Rhabdomyosarcoma. International Journal of Molecular Sciences, 2023, 24, 14196.	4.1	0
180	Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations. Journal of Chemical Theory and Computation, 2023, 19, 8401-8413.	5.3	0
181	Mechanisms of actin disassembly and turnover. Journal of Cell Biology, 2023, 222, .	5.2	2
182	Tunnelling nanotube formation is driven by Eps8/IRSp53â€dependent linear actin polymerization. EMBO Journal, 2023, 42, .	7.8	3
183	Bsp1, a fungal CPI motif protein, regulates actin filament capping in endocytosis and cytokinesis. Molecular Biology of the Cell, 0 , , .	2.1	0
184	The regulation of plasma gelsolin by DNA methylation in ovarian cancer chemo-resistance. Journal of Ovarian Research, 2024, 17 , .	3.0	0