Industrial and brackish water treatment with closed cir

Desalination and Water Treatment 51, 1124-1130 DOI: 10.1080/19443994.2012.699341

Citation Report

#	ARTICLE	IF	CITATIONS
1	CCD Series No-10: small compact BWRO closed-circuit desalination (CCD) units of high-recovery, low-energy and reduced fouling for supplied water upgrade to industry, irrigation, domestic, and medical applications. Desalination and Water Treatment, 0, , 1-17.	1.0	1
2	Comparative study of brine management technologies for desalination plants. Desalination, 2014, 336, 32-49.	8.2	280
3	The benefits of hybridising electrodialysis with reverse osmosis. Journal of Membrane Science, 2014, 469, 326-335.	8.2	55
4	Closed-Concentrate Circulation for High Recovery and Energy Efficiency in Small-Scale Brackish Reverse Osmosis. Journal of Environmental Engineering, ASCE, 2014, 140, 04014012.	1.4	2
5	Hybrid Reverse Osmosis apacitive Deionization versus Two‧tage Reverse Osmosis: A Comparative Analysis. Chemical Engineering and Technology, 2014, 37, 1137-1145.	1.5	18
6	Closed circuit desalination series no-9: theoretical model assessment of the flexible BWRO-CCD technology for high recovery, low energy and reduced fouling applications. Desalination and Water Treatment, 2015, 53, 1755-1779.	1.0	6
7	Closed circuit desalination series no-12: the use of 4, 5 and 6 element modules with the BWRO-CCD technology for high recovery, low energy and reduced fouling applications. Desalination and Water Treatment, 2015, 53, 1780-1804.	1.0	5
8	CCD series no-13: illustrating low-energy SWRO-CCD of 60% recovery and BWRO-CCD of 92% recovery with single element modules without energy recovery means—a theoretical extreme case study. Desalination and Water Treatment, 2016, 57, 9148-9165.	1.0	4
9	Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Research, 2016, 106, 272-282.	11.3	136
10	CCD series no-20: high-flux low-energy upgrade of municipal water supplies with 96% recovery for boiler-feed and related applications. Desalination and Water Treatment, 2016, 57, 20219-20227.	1.0	3
11	A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. Journal of Membrane Science, 2016, 497, 430-449.	8.2	277
12	Membrane Engineering for Green Process Engineering. Engineering, 2017, 3, 290-298.	6.7	69
13	Kinetics and energetics trade-off in reverse osmosis desalination with different configurations. Desalination, 2017, 401, 42-52.	8.2	61
14	A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 2018, 81, 209-237.	24.7	483
15	Inorganic fouling mitigation by salinity cycling in batch reverse osmosis. Water Research, 2018, 137, 384-394.	11.3	73
16	Split-feed counterflow reverse osmosis for brine concentration. Desalination, 2018, 445, 280-291.	8.2	50
17	Design and operation of membrane distillation with feed recirculation for high recovery brine concentration. Desalination, 2018, 445, 51-62.	8.2	33
18	Energy Savings in Desalination Technologies: Reducing Entropy Generation by Transport Processes. Journal of Heat Transfer, 2019, 141, .	2.1	10

CITATION REPORT

#	Article	IF	CITATIONS
19	How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination, 2019, 470, 114064.	8.2	119
20	Gypsum scaling propensity in semi-batch RO (SBRO) and steady-state RO with partial recycle (SSRO-PR). Journal of Membrane Science, 2019, 588, 117106.	8.2	23
21	The state of desalination and brine production: A global outlook. Science of the Total Environment, 2019, 657, 1343-1356.	8.0	1,052
22	Hybrid technologies: The future of energy efficient desalination – A review. Desalination, 2020, 495, 114659.	8.2	129
23	Design, modelling and optimisation of a batch reverse osmosis (RO) desalination system using a free piston for brackish water treatment. Desalination, 2020, 494, 114625.	8.2	32
24	Energy efficiency of staged reverse osmosis (RO) and closed-circuit reverse osmosis (CCRO) desalination: a model-based comparison. Water Science and Technology: Water Supply, 2020, 20, 3096-3106.	2.1	9
25	An analysis of the effects of pressure-assisted osmotic backwashing on the high recovery reverse osmosis system. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 298-318.	1.4	5
26	Pulse Flow RO - The new RO technology for waste and brackish water applications. Desalination, 2020, 479, 114336.	8.2	22
27	Functionalized carbon dots composite cation exchange membranes: Improved electrochemical performance and salt removal efficiency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125677.	4.7	8
28	Analytical study of optimum operating conditions in semi-batch closed-circuit reverse osmosis (CCRO). Separation and Purification Technology, 2021, 264, 118421.	7.9	12
29	Managing and treating per―and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Science, 2021, 3, 1-23.	2.1	28
30	A spatiotemporal model for dynamic RO simulations. Desalination, 2021, 516, 115229.	8.2	9
31	Centrifugal reverse osmosis (CRO) â^ a novel energy-efficient membrane process for desalination near local thermodynamic equilibrium. Journal of Membrane Science, 2021, 637, 119630.	8.2	6
32	Reclaiming wastewater with increasing salinity for potable water reuse: Water recovery and energy consumption during reverse osmosis desalination. Desalination, 2021, 520, 115316.	8.2	26
33	An Air Operated Domestic Brackish Water Reverse Osmosis Plant: Economically Sustainable Solution for Safe Drinking Water Supply for Chronic Kidney Disease of Unknown Etiology Affected Areas in Sri Lanka. Journal of Water Resource and Protection, 2020, 12, 911-920.	0.8	0
34	Modeling the energy consumption of potable water reuse schemes. Water Research X, 2021, 13, 100126.	6.1	25
35	Energy and resourceâ€efficient reverse osmosis system with tunable recovery for brackish water desalination and heavy metal removal. Water and Environment Journal, 2022, 36, 579-589.	2.2	5
37	Energy Recovery in Membrane Process. , 0, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
38	Hybrid semi-batch/batch reverse osmosis (HSBRO) for use in zero liquid discharge (ZLD) applications. Desalination, 2022, 544, 116126.	8.2	9
39	Cyclic simulation and energy assessment of closed-circuit RO (CCRO) of brackish water. Desalination, 2023, 545, 116149.	8.2	6
40	An improved Closed-Circuit RO (CCRO) system: Design and cyclic simulation. Desalination, 2023, 554, 116519.	8.2	5
41	Effect of cylinder sizing on performance of improved closed-circuit RO (CCRO). Desalination, 2023, 561, 116688.	8.2	2
42	Membrane-assisted potable water reuses applications: benefits and drawbacks. , 2023, , 289-309.		0
43	Rejection of perfluoroalkyl acids by nanofiltration and reverse osmosis in a high-recovery closed-circuit membrane filtration system. Separation and Purification Technology, 2023, 326, 124867.	7.9	3
45	Current progress in semi-batch reverse osmosis for brackish water desalination. Desalination, 2024, 578, 117434.	8.2	0
46	Transfer learning and pretraining enhanced physics-informed machine learning for closed-circuit reverse osmosis modeling. Desalination, 2024, 580, 117557.	8.2	Ο