Combining Results of Multiple Search Engines in Protect

Molecular and Cellular Proteomics 12, 2383-2393 DOI: 10.1074/mcp.r113.027797

Citation Report

#	Article	IF	CITATIONS
1	Bioinformatic Approaches to Increase Proteome Coverage. Comprehensive Analytical Chemistry, 2014, , 385-419.	1.3	1
2	JUMP: A Tag-based Database Search Tool for Peptide Identification with High Sensitivity and Accuracy. Molecular and Cellular Proteomics, 2014, 13, 3663-3673.	3.8	117
3	Machine learning applications in proteomics research: How the past can boost the future. Proteomics, 2014, 14, 353-366.	2.2	52
4	Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes. Free Radical Biology and Medicine, 2014, 71, 90-98.	2.9	15
5	<scp>MSDA</scp> , a proteomics software suite for inâ€depth <scp>M</scp> ass <scp>S</scp> pectrometry <scp>D</scp> ata <scp>A</scp> nalysis using grid computing. Proteomics, 2014, 14, 1014-1019.	2.2	51
6	State of the Human Proteome in 2013 as Viewed through PeptideAtlas: Comparing the Kidney, Urine, and Plasma Proteomes for the Biology- and Disease-Driven Human Proteome Project. Journal of Proteome Research, 2014, 13, 60-75.	3.7	115
7	Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Analytical Chemistry, 2014, 86, 176-195.	6.5	18
8	Proteogenomics: concepts, applications and computational strategies. Nature Methods, 2014, 11, 1114-1125.	19.0	641
9	A Turn-Key Approach for Large-Scale Identification of Complex Posttranslational Modifications. Journal of Proteome Research, 2014, 13, 1190-1199.	3.7	7
10	Proteomic analysis of threeBorrelia burgdorferisensu lato native species and disseminating clones: Relevance for Lyme vaccine design. Proteomics, 2015, 15, 1280-1290.	2.2	10
11	A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies. Proteomics, 2015, 15, 3648-3661.	2.2	24
12	Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. PLoS Computational Biology, 2015, 11, e1004325.	3.2	80
13	Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry*. Molecular and Cellular Proteomics, 2015, 14, 3105-3117.	3.8	188
14	Effective Leveraging of Targeted Search Spaces for Improving Peptide Identification in Tandem Mass Spectrometry Based Proteomics. Journal of Proteome Research, 2015, 14, 5169-5178.	3.7	20
15	Peptide identification in "shotgun―proteomics using tandem mass spectrometry: Comparison of search engine algorithms. Journal of Analytical Chemistry, 2015, 70, 1614-1619.	0.9	2
16	Quantitative Proteomic Analysis of Histone Modifications. Chemical Reviews, 2015, 115, 2376-2418.	47.7	306
17	PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature Biotechnology, 2015, 33, 22-24.	17.5	460
18	Building high-quality assay libraries for targeted analysis of SWATH MS data. Nature Protocols, 2015, 10, 426-441.	12.0	319

ARTICLE IF CITATIONS Computational and statistical methods for high-throughput analysis of post-translational 19 2.4 28 modifications of proteins. Journal of Proteomics, 2015, 129, 3-15. Food Proteins and Peptides. Comprehensive Analytical Chemistry, 2015, 68, 309-357. 1.3 9 Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends in 21 8.7 70 Pharmacological Sciences, 2015, 36, 579-586. Mining Missing Membrane Proteins by High-pH Reverse-Phase StageTip Fractionation and Multiple 24 Reaction Monitoring Mass Spectrométry. Journal of Proteome Research, 2015, 14, 3658-3669. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. 23 3.8 350 Molecular and Cellular Proteomics, 2015, 14, 2394-2404. PCTools: A Software Suite for Proteogenomic Data Analysis and Visualization. Journal of Proteome Research, 2015, 14, 2255-2266. 3.7 Navigating through metaproteomics data: A logbook of database searching. Proteomics, 2015, 15, 25 2.2 128 3439-3453. Most Highly Expressed Protein-Coding Genes Have a Single Dominant Isoform. Journal of Proteome 3.7 26 106 Research, 2015, 14, 1880-1887. Cell wall proteomic of <i>Brachypodium distachyon</i> grains: A focus on cell wall remodeling 27 2.2 26 proteins. Proteomics, 2015, 15, 2296-2306. Methionine to isothreonine conversion as a source of false discovery identifications of genetically 2.4 24 encoded variants in proteogenomics. Journal of Proteomics, 2015, 120, 169-178. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass 29 17 2.8 Spectra. Journal of the American Society for Mass Spectrometry, 2015, 26, 1837-1847. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein 3.7 Identification for High-Resolution Mass Data. Journal of Proteome Research, 2015, 14, 4662-4673. The potential clinical impact of the release of two drafts of the human proteome. Expert Review of $\mathbf{31}$ 3.0 26 Proteomics, 2015, 12, 579-593. Defining a Pipeline for Metaproteomic Analyses. Springer Protocols, 2015, , 99-110. 0.3 Proteomic Analysis of Engineered Cartilage. Methods in Molecular Biology, 2015, 1340, 263-278. 33 0.9 11 Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 14 2015, 14, 4959-4966. DIANAâ€"algorithmic improvements for analysis of data-independent acquisition MS data. 35 4.1 95 Bioinformatics, 2015, 31, 555-562. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages 34 with Altered Virulence. Frontiers in Microbiology, 2016, 7, 813.

#	Article	IF	CITATIONS
37	Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome. Proteomics, 2016, 16, 1980-1991.	2.2	28
38	Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome. Proteomics, 2016, 16, 554-563.	2.2	6
39	Visualizing and comparing results of different peptide identification methods. Briefings in Bioinformatics, 2018, 19, bbw115.	6.5	2
40	The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome, 2016, 4, 51.	11.1	124
41	Database Search Engines: Paradigms, Challenges and Solutions. Advances in Experimental Medicine and Biology, 2016, 919, 147-156.	1.6	18
42	TUBEs-Mass Spectrometry for Identification and Analysis of the Ubiquitin-Proteome. Methods in Molecular Biology, 2016, 1449, 177-192.	0.9	11
43	A multicenter study benchmarks software tools for label-free proteome quantification. Nature Biotechnology, 2016, 34, 1130-1136.	17.5	321
44	Origin of Disagreements in Tandem Mass Spectra Interpretation by Search Engines. Journal of Proteome Research, 2016, 15, 3481-3488.	3.7	6
45	Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics. Journal of Proteome Research, 2016, 15, 4091-4100.	3.7	24
46	A multi-model statistical approach for proteomic spectral count quantitation. Journal of Proteomics, 2016, 144, 23-32.	2.4	20
47	Bottom-Up Proteomics Methods for Strain-Level Typing and Identification of Bacteria. , 2016, , 83-146.		2
48	Snake Venom Proteopeptidomics: What Lies Behind the Curtain. , 2016, , 333-365.		3
49	A first dataset toward a standardized community-driven global mapping of the human immunopeptidome. Data in Brief, 2016, 7, 201-205.	1.0	8
50	The 5300-year-old <i>Helicobacter pylori</i> genome of the Iceman. Science, 2016, 351, 162-165.	12.6	200
51	Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrometry Reviews, 2017, 36, 475-498.	5.4	82
52	N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2017, 16, 1064-1080.	3.8	54
53	Identification of Immunogenic Epitopes by MS/MS. Cancer Journal (Sudbury, Mass), 2017, 23, 102-107.	2.0	19
54	A tool for integrating genetic and mass spectrometryâ€based peptide data: Proteogenomics Viewer. BioEssays, 2017, 39, 1700015.	2.5	7

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
55	Analyzing trapped protein complexes by Virotrap and SFINX. Nature Protocols, 2017, 12, 881-898.	12.0	15
56	A multidimensional liquid chromatography–tandem mass spectrometry platform to improve protein identification in high-throughput shotgun proteomics. Journal of Chromatography A, 2017, 1498, 176-182.	3.7	14
57	Methods to Calculate Spectrum Similarity. Methods in Molecular Biology, 2017, 1549, 75-100.	0.9	18
58	Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nature Communications, 2017, 8, 1171.	12.8	92
59	Misidentification of transthyretin and immunoglobulin variants by proteomics due to methyl lysine formation in formalin-fixed paraffin-embedded amyloid tissue. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 229-237.	3.0	8
60	An Accessible Proteogenomics Informatics Resource for Cancer Researchers. Cancer Research, 2017, 77, e43-e46.	0.9	27
61	In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Journal of Proteomics, 2017, 150, 170-182.	2.4	56
62	Deep learning-based MSMS spectra reduction in support of running multiple protein search engines on cloud. , 2017, 2017, 1909-1914.		0
63	Towards Centralized MS/MS Spectra Preprocessing: An Empirical Evaluation of Peptides Search Engines using Ground Truth Datasets. , 2017, , .		1
64	IdentiPy: An Extensible Search Engine for Protein Identification in Shotgun Proteomics. Journal of Proteome Research, 2018, 17, 2249-2255.	3.7	52
65	New In-Depth Analytical Approach of the Porcine Seminal Plasma Proteome Reveals Potential Fertility Biomarkers. Journal of Proteome Research, 2018, 17, 1065-1076.	3.7	50
66	Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines. Analytical Chemistry, 2018, 90, 6594-6600.	6.5	7
67	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	14.5	119
68	Identification of Single Amino Acid Substitutions in Proteogenomics. Biochemistry (Moscow), 2018, 83, 250-258.	1.5	10
69	Proteomic Cinderella: Customized analysis of bulky MS/MS data in one night. Journal of Bioinformatics and Computational Biology, 2018, 16, 1740011.	0.8	7
70	Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiological Genomics, 2018, 50, 1036-1050.	2.3	15
71	Global Identification of Post-Translationally Spliced Peptides with Neo-Fusion. Journal of Proteome Research, 2018, 18, 349-358.	3.7	32
72	Fast Open Modification Spectral Library Searching through Approximate Nearest Neighbor Indexing. Journal of Proteome Research, 2018, 17, 3463-3474.	3.7	69

CITATION REPORT

#	Article	IF	CITATIONS
73	SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines. Journal of Proteome Research, 2018, 17, 2552-2555.	3.7	154
74	Comparative Metaproteomics to Study Environmental Changes. , 2018, , 327-363.		19
75	Future Prospects of Spectral Clustering Approaches in Proteomics. Proteomics, 2018, 18, e1700454.	2.2	15
76	Proteomics Mass Spectrometry Data Analysis Tools. , 2019, , 84-95.		3
77	Comparative Analysis of the Performаnce of Mascot and IdentiPy Algorithms on a Benchmark Dataset Obtained by Tandem Mass Spectrometry Analysis of Testicular Biopsies. Molecular Biology, 2019, 53, 147-155.	1.3	2
78	Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification. Journal of Proteome Research, 2019, 18, 4167-4179.	3.7	21
79	Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nature Communications, 2019, 10, 4964.	12.8	94
80	Applications and challenges of forensic proteomics. Forensic Science International, 2019, 297, 350-363.	2.2	39
81	Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Communication and Signaling, 2019, 17, 66.	6.5	9
82	In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Neglected Tropical Diseases, 2019, 13, e0007362.	3.0	31
83	Hidden "Digestome― Current Analytical Approaches Provide Incomplete Peptide Inventories of Food Digests. Journal of Agricultural and Food Chemistry, 2019, 67, 7775-7782.	5.2	18
84	Proteomic Analysis for the Diagnosis ofÂFibrinogen Aα-chain Amyloidosis. Kidney International Reports, 2019, 4, 977-986.	0.8	11
85	Quantitative Proteomics Data in theÂPublic Domain: Challenges and Opportunities. Methods in Molecular Biology, 2019, 1977, 217-235.	0.9	5
86	Identification and characterization of the zebra finch (Taeniopygia guttata) sperm proteome. Journal of Proteomics, 2019, 193, 192-204.	2.4	10
87	The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrometry Reviews, 2019, 38, 253-264.	5.4	32
88	Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows. Mass Spectrometry Reviews, 2020, 39, 292-306.	5.4	97
89	Visualizing the agreement of peptide assignments between different search engines. Journal of Mass Spectrometry, 2020, 55, e4471.	1.6	5
90	Challenges in Peptide-Spectrum Matching: A Robust and Reproducible Statistical Framework for Removing Low-Accuracy, High-Scoring Hits. Journal of Proteome Research, 2020, 19, 161-173.	3.7	10

#	Article	IF	CITATIONS
91	The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Molecular and Cellular Proteomics, 2020, 19, 31-49.	3.8	65
92	Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence. BioMed Research International, 2020, 2020, 1-9.	1.9	0
93	Modelling of pathogen-host systems using deeper ORF annotations and transcriptomics to inform proteomics analyses. Computational and Structural Biotechnology Journal, 2020, 18, 2836-2850.	4.1	7
94	Comprehensive analysis of the secreted proteome of adult Necator americanusÂhookworms. PLoS Neglected Tropical Diseases, 2020, 14, e0008237.	3.0	25
95	The Power of Three in Cannabis Shotgun Proteomics: Proteases, Databases and Search Engines. Proteomes, 2020, 8, 13.	3.5	3
96	Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics, 2020, 36, 3148-3155.	4.1	155
97	Diagnostic amyloid proteomics: experience of the UK National Amyloidosis Centre. Clinical Chemistry and Laboratory Medicine, 2020, 58, 948-957.	2.3	20
98	ProtyQuant: Comparing label-free shotgun proteomics datasets using accumulated peptide probabilities. Journal of Proteomics, 2021, 230, 103985.	2.4	2
99	Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data. Methods in Molecular Biology, 2021, 2228, 1-20.	0.9	5
100	Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal. Journal of Proteome Research, 2021, 20, 1986-1996.	3.7	8
101	Bottom-Up Community Proteome Analysis of Samples and Swabs by Data-Dependent Acquisition Nano LC-MS/MS Mass Spectrometry. Methods in Molecular Biology, 2021, 2327, 221-238.	0.9	2
102	Multi-Q 2 software facilitates isobaric labeling quantitation analysis with improved accuracy and coverage. Scientific Reports, 2021, 11, 2233.	3.3	3
104	PIONEER: Pipeline for Generating Highâ€Quality Spectral Libraries for DIAâ€MS Data. Current Protocols, 2021, 1, e69.	2.9	4
106	A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). Clinical Proteomics, 2021, 18, 15.	2.1	7
108	DDASSQ: An openâ€source, multiple peptide sequencing strategy for label free quantification based on an OpenMS pipeline in the KNIME analytics platform. Proteomics, 2021, 21, e2000319.	2.2	10
110	Proteogenomic Analysis Provides Novel Insight into Genome Annotation and Nitrogen Metabolism in <i>Nostoc</i> sp. PCC 7120. Microbiology Spectrum, 2021, 9, e0049021.	3.0	5
111	Comparing Peptide Spectra Matches Across Search Engines. Methods in Molecular Biology, 2020, 2051, 133-143.	0.9	3
112	Chapter 12. OpenMS: A Modular, Open-Source Workflow System for the Analysis of Quantitative Proteomics Data. New Developments in Mass Spectrometry, 2016, , 259-288.	0.2	1

#	Δρτιςι ε	IF	CITATIONS
11.6	Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary		CHAHONS
116	gland sporozoites. PLoS Neglected Tropical Diseases, 2017, 11, e0005791.	3.0	73
117	Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease. PLoS ONE, 2016, 11, e0150672.	2.5	77
118	Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. PLoS ONE, 2016, 11, e0160653.	2.5	110
119	High Altitude Illness and Adaptation: Hints from Proteomics. Journal of Proteomics and Bioinformatics, 0, s3, .	0.4	1
120	An open-source computational and data resource to analyze digital maps of immunopeptidomes. ELife, 2015, 4, .	6.0	107
121	An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. PeerJ, 2015, 3, e1401.	2.0	20
122	Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry. Frontiers in Genetics, 2021, 12, 728900.	2.3	1
124	Advances in Mass Spectrometry-Based Proteomics and Its Application in Cancer Research. , 2019, , 89-112.		0
126	Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector. MBio, 2021, 12, e0257521.	4.1	26
127	Data-Independent Acquisition-Based Proteome and Phosphoproteome Profiling Reveals Early Protein Phosphorylation and Dephosphorylation Events in Arabidopsis Seedlings upon Cold Exposure. International Journal of Molecular Sciences, 2021, 22, 12856.	4.1	10
128	Acetylproteomics analyses reveal critical features of lysine-Îμ-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biology, 2022, 2, .	3.1	7
130	Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows. Nature Communications, 2021, 12, 7305.	12.8	34
131	Unsupervised Mining of HLA-I Peptidomes Reveals New Binding Motifs and Potential False Positives in the Community Database. Frontiers in Immunology, 2022, 13, 847756.	4.8	5
132	A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. Journal of Proteomics, 2022, 261, 104576.	2.4	8
133	Comparative Proteomic Profiling of Secreted Extracellular Vesicles from Breast Fibroadenoma and Malignant Lesions: A Pilot Study. International Journal of Molecular Sciences, 2022, 23, 3989.	4.1	6
134	Managing of Unassigned Mass Spectrometric Data by Neural Network for Cancer Phenotypes Classification. Journal of Personalized Medicine, 2021, 11, 1288.	2.5	3
135	Proteomic Comparison of Ivermectin Sensitive and Resistant Staphylococcus aureus Clinical Isolates Reveals Key Efflux Pumps as Possible Resistance Determinants. Antibiotics, 2022, 11, 759.	3.7	2
136	Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacological Reviews, 2022, 74, 662-679.	16.0	5

IF ARTICLE CITATIONS Snake Venom Proteopeptidomics: What Lies Behind the Curtain., 2014, , 1-30. 138 0 Purification and Isolation of Proteins from Hyaline Cartilage. Methods in Molecular Biology, 2023, 217-225. The critical role that spectral libraries play in capturing the metabolomics community knowledge. 140 3.0 24 Metabolomics, 2022, 18, . Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite. Journal of 142 Proteome Research, 2023, 22, 615-624. MetaProD: A Highly-Configurable Mass Spectrometry Analyzer for Multiplexed Proteomic and 143 3.7 0 Metaproteomic Data. Journal of Proteome Research, 2023, 22, 442-453. Assessment and Comparison of Database Search Engines for Peptidomic Applications. Journal of 3.7 Proteome Research, 2023, 22, 3123-3134. Identification of novel smORFs and microprotein acting in response to rehydration of <i>Nostoc 145 2.2 1 flagelliforme</i>. Proteomics, 2023, 23, . Extracellular vesicles from the trematodes <i>Fasciola hepatica</i> and <i>Dicrocoelium dendriticum</i> trigger different responses in human THPâ€1 macrophages. Journal of Extracellular 146 Vesicles, 2023, 12, Comparing Top-Down Proteoform Identification: Deconvolution, PrSM Overlap, and PTM Detection. 147 3.7 7 Journal of Proteome Research, 2023, 22, 2199-2217. Computer simulation in industrial product application based on intelligent recommendation 148 2.4 algorithm. International Journal of Systems Assurance Engineering and Management, 0, , . <i>Leishmania (L.) amazonensis</i> LaLRR17 increases parasite entry in macrophage by a mechanism 149 1 1.5 dependent on GRP78. Parasitology, 0, , 1-40. IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics. Journal of Próteome Research, 2023, 22, 2827-2835. A comprehensive spectral assay library to quantify the Halobacterium salinarum NRC-1 proteome by 151 5.3 0 DIA/SWATH-MS. Scientific Data, 2023, 10, . Differential Expression of Proteins Associated with Bipolar Disorder as Identified Using the 4.1 PeptideShaker Software. International Journal of Molecular Sciences, 2023, 24, 15250 Metabolomic, Proteomic, and Single-Cell Proteomic Analysis of Cancer Cells Treated with the 154 3.7 2 KRAS^{G12D} Inhibitor MRTX1133. Journal of Proteome Research, 2023, 22, 3703-3713.