GenomeTools: A Comprehensive Software Library for E Genome Annotations

IEEE/ACM Transactions on Computational Biology and Bioinfo 10, 645-656

DOI: 10.1109/tcbb.2013.68

Citation Report

#	Article	IF	CITATIONS
1	LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons. Mobile DNA, 2012, 3, 18.	3.6	10
2	Long-Range Genomic Enrichment, Sequencing, and Assembly to Determine Unknown Sequences Flanking a Known microRNA. PLoS ONE, 2013, 8, e83721.	2.5	4
3	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	2.8	262
4	A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Research, 2014, 24, 1180-1192.	5.5	421
5	The genome of the sparganosis tapeworm Spirometra erinaceieuropaeiisolated from the biopsy of a migrating brain lesion. Genome Biology, 2014, 15, 510.	8.8	47
6	FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research. Journal of Clinical Bioinformatics, 2014, 4, 5.	1.2	5
7	Highâ€ŧhroughput parallel proteogenomics: A bacterial case study. Proteomics, 2014, 14, 2780-2789.	2.2	21
8	Community-driven development for computational biology at Sprints, Hackathons and Codefests. BMC Bioinformatics, 2014, 15, S7.	2.6	42
9	At RTD – a comprehensive reference transcript dataset resource forÂaccurate quantification of transcriptâ€specific expression in Arabidopsis thaliana. New Phytologist, 2015, 208, 96-101.	7.3	50
10	Characterization of the Avian Trojan Gene Family Reveals Contrasting Evolutionary Constraints. PLoS ONE, 2015, 10, e0121672.	2.5	3
11	Transcriptome analysis of HIV-1 virus in understanding the effect of antiretroviral drugs (cART) and methamphetamine on the virus. , 2015, , .		0
12	GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments. Conservation Genetics Resources, 2015, 7, 851-857.	0.8	5
13	A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics, 2016, 17, 688.	2.8	35
14	An Improved microRNA Annotation of the Canine Genome. PLoS ONE, 2016, 11, e0153453.	2.5	20
15	A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR. PLoS ONE, 2016, 11, e0164463.	2.5	6
16	Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics, 2016, 17, 901.	2.8	35
17	SARVAVID. , 2016, , .		14
18	From sequence reads to evolutionary inferences. , 0, , 305-335.		0

#	Article	IF	Citations
19	The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Research, 2016, 23, 427-439.	3.4	35
20	Non-excitable fluorescent protein orthologs found in ctenophores. BMC Evolutionary Biology, 2016, 16, 167.	3.2	7
21	Aligning the unalignable: bacteriophage whole genome alignments. BMC Bioinformatics, 2016, 17, 30.	2.6	8
22	Visual programming for next-generation sequencing data analytics. BioData Mining, 2016, 9, 16.	4.0	14
23	The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biology, 2016, 17, 124.	8.8	156
24	An introduction to plant phylogenomics with a focus on palms. Botanical Journal of the Linnean Society, 2016, 182, 234-255.	1.6	42
25	Organellar Genomes of White Spruce (<i>Picea glauca</i>): Assembly and Annotation. Genome Biology and Evolution, 2016, 8, 29-41.	2.5	46
26	Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytologist, 2017, 215, 140-156.	7.3	115
27	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
28	<i>De Novo</i> Transcriptome Characterization of a Sterilizing Trematode Parasite (<i>Microphallus</i> sp.) from Two Species of New Zealand Snails. G3: Genes, Genomes, Genetics, 2017, 7, 871-880.	1.8	6
29	The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546, 148-152.	27.8	579
30	Seqping: gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data. BMC Bioinformatics, 2017, 18, 1-7.	2.6	25
31	POTAGE: A Visualisation Tool for Speeding up Gene Discovery in Wheat. Scientific Reports, 2017, 7, 14315.	3.3	11
32	The genome sequence and insights into the immunogenetics of the bananaquit (Passeriformes: Coereba) Tj ETQo	1 1 0.784 2.4	-314 rgBT /O
33	Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling. Frontiers in Microbiology, 2017, 8, 1772.	3.5	31
34	Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Research, 2017, 45, gkx006.	14.5	47
35	"Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS ONE, 2017, 12, e0184451.	2.5	51
36	Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions. BMC Plant Biology, 2017, 17, 115.	3.6	13

	CITATION	REPORT	
#	Article	IF	CITATIONS
37	GFF3sort: a novel tool to sort GFF3 files for tabix indexing. BMC Bioinformatics, 2017, 18, 482.	2.6	6
38	Evolutionary thrift: mycobacteria repurpose plasmid diversity during adaptation of type VII secretion systems. Genome Biology and Evolution, 2017, 9, 398-413.	2.5	33
39	Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix) Tj ETQq0 2522-2545.	0 0 rgBT /Ove 2.5	erlock 10 Tf 5 27
40	COGNATE: comparative gene annotation characterizer. BMC Genomics, 2017, 18, 535.	2.8	7
41	Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots. Genetics, 2018, 208, 1209-1229.	2.9	61
42	Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME Journal, 2018, 12, 1568-1581.	9.8	82
43	A Whole Genome Assembly of the Horn Fly, <i>Haematobia irritans</i> , and Prediction of Genes with Roles in Metabolism and Sex Determination. G3: Genes, Genomes, Genetics, 2018, 8, 1675-1686.	1.8	12
44	LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiology, 2018, 176, 1410-1422.	4.8	694
45	Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics, 2018, 19, 279.	2.8	56
46	Improving the annotation of the Heterorhabditis bacteriophora genome. GigaScience, 2018, 7, .	6.4	18
47	Refined ab initio gene predictions of Heterorhabditis bacteriophora using RNA-seq. International Journal for Parasitology, 2018, 48, 585-590.	3.1	6
48	Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Research, 2018, 46, e9-e9.	14.5	39
49	TE-nester: a recursive software tool for structure-based discovery of nested transposable elements. , 2018, , .		4
50	DAWN: a resource for yielding insights into the diversity among wheat genomes. BMC Genomics, 2018, 19, 941.	2.8	23
51	Highly Continuous Genome Assembly of Eurasian Perch (<i>Perca fluviatilis</i>) Using Linked-Read Sequencing. G3: Genes, Genomes, Genetics, 2018, 8, 3737-3743.	1.8	42
52	Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element. PLoS ONE, 2018, 13, e0206586.	2.5	16
53	Firefly genomes illuminate parallel origins of bioluminescence in beetles. ELife, 2018, 7, .	6.0	108
54	"Out of the Can― A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes, 2018, 9, 485.	2.4	30

#	Article	IF	CITATIONS
55	Genomics as a service: A joint computing and networking perspective. Computer Networks, 2018, 145, 27-51.	5.1	8
56	Integrating embryonic development and evolutionary history to characterize tentacle-specific cell types in a ctenophore. Molecular Biology and Evolution, 2018, 35, 2940-2956.	8.9	29
57	Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361, .	12.6	339
58	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	9.3	391
59	Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host–Pathogen Genetic Interactions. Frontiers in Genetics, 2018, 9, 130.	2.3	45
60	Molecular evolution of DNMT1 in vertebrates: Duplications in marsupials followed by positive selection. PLoS ONE, 2018, 13, e0195162.	2.5	14
61	Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecology and Evolution, 2018, 2, 1250-1257.	7.8	154
62	Comparative genomics of the nonlegume <i>Parasponia</i> reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4700-E4709.	7.1	253
63	Related Endogenous Retrovirus-K Elements Harbor Distinct Protease Active Site Motifs. Frontiers in Microbiology, 2018, 9, 1577.	3.5	6
64	Insect Retroelements Provide Novel Insights into the Origin of Hepatitis B Viruses. Molecular Biology and Evolution, 2018, 35, 2254-2259.	8.9	13
65	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 2019, 10, 4702.	12.8	115
66	Orthologous nuclear markers and new transcriptomes that broadly cover the phylogenetic diversity of Acanthaceae. Applications in Plant Sciences, 2019, 7, e11290.	2.1	4
67	A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Current Biology, 2019, 29, 3018-3028.e4.	3.9	7
68	Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genetics, 2019, 15, e1008272.	3.5	103
69	Recompleting the <i>Caenorhabditis elegans</i> genome. Genome Research, 2019, 29, 1009-1022.	5.5	108
70	The Impact of Protein Architecture on Adaptive Evolution. Molecular Biology and Evolution, 2019, 36, 2013-2028.	8.9	42
71	Coding palindromes in mitochondrial genes of Nematomorpha. Nucleic Acids Research, 2019, 47, 6858-6870.	14.5	8
72	Genetic Identification of Species Responsible for Depredation in Commercial and Recreational Fisheries. North American Journal of Fisheries Management, 2019, 39, 524-534.	1.0	18

#	Article	IF	CITATIONS
73	A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Genome Biology and Evolution, 2019, 11, 954-969.	2.5	61
74	Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore <i>Tetranychus urticae</i> . Genetics, 2019, 211, 1409-1427.	2.9	70
75	Chromosome-scale genome assembly of kiwifruit <i>Actinidia eriantha</i> with single-molecule sequencing and chromatin interaction mapping. GigaScience, 2019, 8, .	6.4	65
76	Genomic content of a novel yeast species Hanseniaspora gamundiae sp. nov. from fungal stromata (Cyttaria) associated with a unique fermented beverage in Andean Patagonia, Argentina. PLoS ONE, 2019, 14, e0210792.	2.5	37
77	Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Communications Biology, 2019, 2, 56.	4.4	75
78	Explore, edit and leverage genomic annotations using Python GTF toolkit. Bioinformatics, 2019, 35, 3487-3488.	4.1	12
79	High throughput genotyping of structural variations in a complex plant genome using an original AffymetrixA® axiom® array. BMC Genomics, 2019, 20, 848.	2.8	9
80	Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 2019, 20, 275.	8.8	579
81	VARUS: sampling complementary RNA reads from the sequence read archive. BMC Bioinformatics, 2019, 20, 558.	2.6	10
82	The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Scientific Reports, 2019, 9, 18181.	3.3	79
83	Variation in abundance of predicted resistance genes in the <i>Brassica oleracea</i> pangenome. Plant Biotechnology Journal, 2019, 17, 789-800.	8.3	92
84	Finding Nemo's Genes: A chromosomeâ€scale reference assembly of the genome of the orange clownfish <i>Amphiprion percula</i> . Molecular Ecology Resources, 2019, 19, 570-585.	4.8	55
85	Comparative genomics of the major parasitic worms. Nature Genetics, 2019, 51, 163-174.	21.4	377
86	Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiology, 2019, 179, 38-54.	4.8	45
87	The GFF3toolkit: QC and Merge Pipeline for Genome Annotation. Methods in Molecular Biology, 2019, 1858, 75-87.	0.9	10
88	The draft genomes of five agriculturally important African orphan crops. GigaScience, 2019, 8, .	6.4	108
89	Bioinformatics of nanopore sequencing. Journal of Human Genetics, 2020, 65, 61-67.	2.3	28
90	Vegetative desiccation tolerance in the resurrection plant <i>XerophytaÂhumilis</i> has not evolved through reactivation of the seed canonical LAFL regulatory network. Plant Journal, 2020, 101, 1349-1367.	5.7	19

#	Article	IF	CITATIONS
91	Transcriptional changes in the aphid species Myzus cerasi under different host and environmental conditions. Insect Molecular Biology, 2020, 29, 271-282.	2.0	10
92	Draft Genomes of Two Artocarpus Plants, Jackfruit (A. heterophyllus) and Breadfruit (A. altilis). Genes, 2020, 11, 27.	2.4	30
93	Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (<i>Silurus glanis</i>) Using Linked-Read Sequencing. G3: Genes, Genomes, Genetics, 2020, 10, 3897-3906.	1.8	9
94	TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting. Bioinformatics, 2020, 36, 4991-4999.	4.1	11
95	Whole genome resequencing of four Italian sweet pepper landraces provides insights on sequence variation in genes of agronomic value. Scientific Reports, 2020, 10, 9189.	3.3	18
96	Genome Size Versus Genome Assemblies: Are the Genomes Truly Expanded in Polyploid Fungal Symbionts?. Genome Biology and Evolution, 2020, 12, 2384-2390.	2.5	6
97	Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Communications Biology, 2020, 3, 656.	4.4	91
98	The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potential—Phaffia australis sp. nov. and Phaffia tasmanica sp. nov Microorganisms, 2020, 8, 1651.	3.6	9
99	Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genomics, 2020, 21, 606.	2.8	15
100	PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis. BMC Genomics, 2020, 21, 645.	2.8	15
101	Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics, 2020, 21, 588.	2.8	34
102	Genomic re-assessment of the transposable element landscape of the potato genome. Plant Cell Reports, 2020, 39, 1161-1174.	5.6	12
103	The genome evolution and domestication of tropical fruit mango. Genome Biology, 2020, 21, 60.	8.8	104
104	Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE, 2020, 15, e0226234.	2.5	33
105	Genome comparisons suggest an association between Ceratocystis host adaptations and effector clusters in unique transposable element families. Fungal Genetics and Biology, 2020, 143, 103433.	2.1	9
106	The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Communications Biology, 2020, 3, 323.	4.4	44
107	Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Research, 2020, 20, .	2.3	29
108	Chromosome-Level Assembly of the <i>Caenorhabditis remanei</i> Genome Reveals Conserved Patterns of Nematode Genome Organization. Genetics, 2020, 214, 769-780.	2.9	28

#	Article	IF	CITATIONS
109	Conservation and Divergence in the Meiocyte sRNAomes of Arabidopsis, Soybean, and Cucumber. Plant Physiology, 2020, 182, 301-317.	4.8	13
110	The genome of <i>Draba nivalis</i> shows signatures of adaptation to the extreme environmental stresses of the Arctic. Molecular Ecology Resources, 2021, 21, 661-676.	4.8	14
111	Unique genomic traits for cold adaptation in <i>Naganishia vishniacii</i> , a polyextremophile yeast isolated from Antarctica. FEMS Yeast Research, 2021, 21, .	2.3	14
112	Wholeâ€genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrowâ€leafed lupin. Plant Journal, 2021, 105, 1192-1210.	5.7	12
113	The digital biomarker discovery pipeline: An open-source software platform for the development of digital biomarkers using mHealth and wearables data. Journal of Clinical and Translational Science, 2021, 5, e19.	0.6	44
114	A Predictive Approach to Infer the Activity and Natural Variation of Retrotransposon Families in Plants. Methods in Molecular Biology, 2021, 2250, 1-14.	0.9	7
121	Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics, 2021, 22, 313.	2.8	11
122	Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nature Geoscience, 2021, 14, 231-237.	12.9	17
123	The <i>Gossypium stocksii</i> genome as a novel resource for cotton improvement. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	8
125	Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology, 2021, 19, 93.	3.8	41
126	Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Scientific Reports, 2021, 11, 9987.	3.3	20
127	Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries. Cells, 2021, 10, 1291.	4.1	6
128	Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome. BMC Genomics, 2021, 22, 382	2.8	12
129	The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evolutionary Applications, 2021, 14, 1898-1913.	3.1	11
130	Assembly and characterization of the genome of chard (Beta vulgaris ssp. vulgaris var. cicla). Journal of Biotechnology, 2021, 333, 67-76.	3.8	7
131	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
133	Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. IScience, 2021, 24, 102680.	4.1	9
134	A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes. Scientific Data, 2021, 8, 174.	5.3	14

#	Article	IF	CITATIONS
135	Distinct Retrotransposon Evolution Profile in the Genome of Rabbit (<i>Oryctolagus cuniculus</i>). Genome Biology and Evolution, 2021, 13, .	2.5	6
136	LGAAP: Leishmaniinae Genome Assembly and Annotation Pipeline. Microbiology Resource Announcements, 2021, 10, e0043921.	0.6	8
137	GenoVault: a cloud based genomics repository. BioData Mining, 2021, 14, 36.	4.0	0
138	Haplotype-resolved genome of diploid ginger (<i>Zingiber officinale</i>) and its unique gingerol biosynthetic pathway. Horticulture Research, 2021, 8, 189.	6.3	53
139	High-quality genome assembly of the soybean fungal pathogen <i>Cercospora kikuchii</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
140	Diversity and Paleodemography of the Addax (Addax nasomaculatus), a Saharan Antelope on the Verge of Extinction. Genes, 2021, 12, 1236.	2.4	8
142	Genome and transcriptome assemblies of the kuruma shrimp, <i>Marsupenaeus japonicus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	20
145	Chromosome-scale genome sequencing, assembly and annotation of six genomes from subfamily Leishmaniinae. Scientific Data, 2021, 8, 234.	5.3	5
146	Chromosome-Level Genome Assembly and Annotation of the Fiber Flax (Linum usitatissimum) Genome. Frontiers in Genetics, 2021, 12, 735690.		15
147	Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiology Spectrum, 2021, 9, e0109921.		12
148	Novel genome reveals susceptibility of popular gamebird, the red-legged partridge (Alectoris rufa,) Tj ETQq0 0 0	rgBT /Ovei 2.9	loçk 10 Tf 50
149	Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Molecular Ecology, 2021, 30, 6596-6610.	3.9	10
150	<i>De novo</i> genome assembly of the tobacco hornworm moth (<i>Manduca sexta)</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	20
151	<i>De novo</i> whole-genome assembly and resequencing resources for the roan (<i>Hippotragus) Tj ETQq1 1 0</i>	.784314 r 1.8	gBT /Overlo <mark>c</mark> i
152	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2016, 1374, 293-337.	0.9	7
153	A high-quality genome assembly and annotation of the gray mangrove, <i>Avicennia marina</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	16
154	Transcriptome-wide expression profiling of Sporothrix schenckii yeast and mycelial forms and the establishment of the Sporothrix Genome DataBase. Microbial Genomics, 2020, 6, .	2.0	12
169	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	3.5	77

#	Article	IF	CITATIONS
170	Occurrence of Isopenicillin-N-Synthase Homologs in Bioluminescent Ctenophores and Implications for Coelenterazine Biosynthesis. PLoS ONE, 2015, 10, e0128742.	2.5	21
171	Epigenetic silencing of V(D)J recombination is a major determinant for selective differentiation of mucosal-associated invariant t cells from induced pluripotent stem cells. PLoS ONE, 2017, 12, e0174699.	2.5	8
172	GFF3toEMBL: Preparing annotated assemblies for submission to EMBL. Journal of Open Source Software, 2016, 1, 80.	4.6	3
173	LTRpred: de novo annotation of intact retrotransposons. Journal of Open Source Software, 2020, 5, 2170.	4.6	17
174	The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies. GigaByte, 0, 2020, 1-22.	0.0	18
176	Genome streamlining in a minute herbivore that manipulates its host plant. ELife, 2020, 9, .	6.0	33
178	Genome report: a draft genome of <i>Alliaria petiolata</i> (garlic mustard) as a model system for invasion genetics. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
179	Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production. Communications Biology, 2021, 4, 1203.	4.4	15
181	Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Communications Biology, 2021, 4, 1193.	4.4	23
192	Applications of Supercomputers in Sequence Analysis and Genome Annotation. , 2019, , 625-652.		0
201	The Gillenia trifoliata genome reveals dynamics correlated with growth and reproduction in Rosaceae. Horticulture Research, 2021, 8, 233.	6.3	4
203	Integrated Genome-Scale Analysis and Northern Blot Detection of Retrotransposon siRNAs Across Plant Species. Methods in Molecular Biology, 2020, 2166, 387-411.	0.9	3
205	Applications of Supercomputers in Sequence Analysis and Genome Annotation. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 0, , 149-175.	0.5	2
214	Comparative analysis of transposable elements provides insights into genome evolution in the genus Camelus. BMC Genomics, 2021, 22, 842.	2.8	4
217	Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits. Genomics, Proteomics and Bioinformatics, 2022, 20, 14-28.	6.9	26
218	The highly continuous reference genome of a leaf-chimeric red pineapple (Ananas comosus var.) Tj ETQq1 1 0.784 2022, 12, .	4314 rgBT 1.8	/Overlock 1 1
219	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2022, 2443, 327-385.	0.9	2
220	Chromosome restructuring and number change during the evolution of <i>Morus notabilis</i> and <i>Morus alba</i> . Horticulture Research, 2022, 9, .	6.3	16

#	Article	IF	CITATIONS
224	A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS ONE, 2022, 17, e0263496.	2.5	8
225	Comparative Population Genomics of Cryptic Speciation and Adaptive Divergence in Bicknell's and Gray-Cheeked Thrushes (Aves: <i>Catharus bicknelli</i> and <i>Catharus minimus</i>). Genome Biology and Evolution, 2022, 14, .	2.5	7
226	iLoci: robust evaluation of genome content and organization for provisional and mature genome assemblies. NAR Genomics and Bioinformatics, 2022, 4, lqac013.	3.2	0
227	The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features. GigaScience, 2022, 11, .	6.4	29
228	Amplicon sequencing of <i>Fusarium</i> translation elongation factor 1α reveals that soil communities of <i>Fusarium</i> species are resilient to disturbances caused by crop and tillage practices. Phytobiomes Journal, 0, , .	2.7	1
229	A genome assembly of the Atlantic chub mackerel (Scomber colias): aÂvaluable teleost fishing resource. GigaByte, 0, 2022, 1-21.	0.0	3
230	Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. Horticulture Research, 2022, 9, .	6.3	14
231	Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
232	A chromosome-scale genome assembly of the false clownfish, <i>Amphiprion ocellaris</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
233	The genome sequence of the lesser marbled fritillary, <i>Brenthis ino</i> , and evidence for a segregating neo-Z chromosome. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
234	Genome assembly of the roundjaw bonefish (Albula glossodonta), aÂvulnerable circumtropical sportfish. GigaByte, 0, 2022, 1-29.	0.0	1
235	TransposonUltimate: software for transposon classification, annotation and detection. Nucleic Acids Research, 2022, 50, e64-e64.	14.5	30
237	Chromosome-Level Reference Genomes for Two Strains of <i>Caenorhabditis briggsae</i> : An Improved Platform for Comparative Genomics. Genome Biology and Evolution, 2022, 14, .	2.5	20
242	Genome assembly of <i>Danaus chrysippus</i> and comparison with the Monarch <i>Danaus plexippus</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
243	A high-quality genome assembly and annotation of the dark-eyed junco <i>Junco hyemalis</i> , a recently diversified songbird. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	5
244	High-quality chromosome-scale de novo assembly of the Paspalum notatum â€ ⁻ Flugge' genome. BMC Genomics, 2022, 23, 293.	2.8	1
253	Identifying small RNAs and Analyzing Their Association with Gene Expression Using IsolatedÂArabidopsis Male Meiocytes. Methods in Molecular Biology, 2022, 2484, 23-41.	0.9	0
254	The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion. Genome Biology, 2014, 15, 510.	9.6	15

\sim			n		
(17	ΓΔΤΙ	ON	RE	'PO	D.L
\sim	. /		- I C L		1X I.

#	Article	IF	CITATIONS
255	Near Chromosome-Level Genome Assembly and Annotation of Rhodotorula babjevae Strains Reveals High Intraspecific Divergence. Journal of Fungi (Basel, Switzerland), 2022, 8, 323.	3.5	1
256	Chromosomal rearrangements with stable repertoires of genes and transposable elements in an invasive forest-pathogenic fungus. , 0, 2, .		1
257	Assessing and assuring interoperability of a genomics file format. Bioinformatics, 2022, 38, 3327-3336.	4.1	3
259	TextFormats: Simplifying the definition and parsing of text formats in bioinformatics. PLoS ONE, 2022, 17, e0268910.	2.5	0
260	Trioâ€binned genomes of the woodrats <i>Neotoma bryanti</i> and <i>Neotoma lepida</i> reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Molecular Ecology Resources, 2022, 22, 2713-2731.	4.8	13
261	A High-Quality Genome of the Dobsonfly Neoneuromus Ignobilis Reveals Molecular Convergences in Aquatic Insects. SSRN Electronic Journal, 0, , .	0.4	0
262	Characterising genome architectures using genome decomposition analysis. BMC Genomics, 2022, 23, .	2.8	2
263	De Novo Assembly of Plasmodium knowlesi Genomes From Clinical Samples Explains the Counterintuitive Intrachromosomal Organization of Variant SICAvar and kir Multiple Gene Family Members. Frontiers in Genetics, 0, 13, .	2.3	3
266	Genome of Lindera glauca provides insights into the evolution of biosynthesis genes for aromatic compounds. IScience, 2022, 25, 104761.	4.1	2
268	Evolution of woody plants to the landâ€sea interface – The atypical genomic features of mangroves with atypical phenotypic adaptation. Molecular Ecology, 2023, 32, 1351-1365.	3.9	8
269	Spruce gigaâ€genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant Journal, 2022, 111, 1469-1485.	5.7	17
270	Automatic curation of LTR retrotransposon libraries from plant genomes through machine learning. Journal of Integrative Bioinformatics, 2022, .	1.5	1
272	Transcriptome variation in human tissues revealed by long-read sequencing. Nature, 2022, 608, 353-359.	27.8	103
273	The genome sequence of the scarce swallowtail, <i>Iphiclides podalirius</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	5
275	A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. Genomics, 2022, 114, 110437.	2.9	0
276	Genome Assembly of the Polyclad Flatworm <i>Prostheceraeus crozieri</i> . Genome Biology and Evolution, 2022, 14, .	2.5	3
277	Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line. Nucleic Acids Research, 2022, 50, e124-e124.	14.5	8
280	The reference genome of the Vernal Pool Tadpole Shrimp, <i>Lepidurus packardi</i> . Journal of Heredity, 0, , .	2.4	1

#	Article	IF	CITATIONS
281	A draft reference genome of the Vernal Pool Fairy Shrimp, <i>Branchinecta lynchi</i> . Journal of Heredity, 0, , .	2.4	0
282	The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5. Nature Communications, 2022, 13, .	12.8	28
283	Genome Sequence of the Diploid Yeast Debaryomyces hansenii TMW 3.1188. Microbiology Resource Announcements, 2022, 11, .	0.6	2
284	A chromosome-level reference genome for the Versatile Fairy Shrimp, <i>Branchinecta lindahli</i> . Journal of Heredity, 0, , .	2.4	0
286	Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression. Genes, 2022, 13, 1948.	2.4	2
288	Rounding up the annual ryegrass genome: High-quality reference genome of Lolium rigidum. Frontiers in Genetics, 0, 13, .	2.3	9
289	A highly contiguous genome assembly of red perilla (<i>Perilla frutescens</i>) domesticated in Japan. DNA Research, 2023, 30, .	3.4	7
291	Jack of all trades: Genome assembly of Wild Jack and comparative genomics of Artocarpus. Frontiers in Plant Science, 0, 13, .	3.6	1
292	Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Frontiers in Microbiology, 0, 13, .	3.5	0
293	An improved assembly of the "Cascade―hop (<i>Humulus lupulus</i>) genome uncovers signatures of molecular evolution and refines time of divergence estimates for the Cannabaceae family. Horticulture Research, 2023, 10, .	6.3	2
295	Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. Plant Journal, 2023, 113, 787-801.	5.7	4
296	The chromosome-scale genome assembly of the yellowtail clownfish <i>Amphiprion clarkii</i> provides insights into the melanic pigmentation of anemonefish. G3: Genes, Genomes, Genetics, 2023, 13,	1.8	4
297	Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. Frontiers in Plant Science, 0, 13, .	3.6	10
298	PlantTribes2: Tools for comparative gene family analysis in plant genomics. Frontiers in Plant Science, 0, 13, .	3.6	5
299	Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nature Communications, 2023, 14, .	12.8	10
300	Genomic, transcriptomic, and metabolomic analysis of <i>Oldenlandia corymbosa</i> reveals the biosynthesis and mode of action of antiâ€cancer metabolites. Journal of Integrative Plant Biology, 2023, 65, 1442-1466.	8.5	7
302	An improved assembly of the pearl millet reference genome using Oxford Nanopore long reads and optical mapping. G3: Genes, Genomes, Genetics, 2023, 13, .	1.8	1
305	RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents. Frontiers in Microbiology, 0, 14, .	3.5	2

#	Article	IF	CITATIONS
308	Whole genome assemblies of <i>Zophobas morio</i> and <i>Tenebrio molitor</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	1.8	8
309	Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biology, 2023, 21, .	3.8	3
310	A network of DZF proteins controls alternative splicing regulation and fidelity. Nucleic Acids Research, 2023, 51, 6411-6429.	14.5	2
311	A high-quality assembled genome of a representative peach landrace, â€~Feichenghongli', and analysis of distinct late florescence and narrow leaf traits. BMC Plant Biology, 2023, 23, .	3.6	0
312	High-quality chromosome-level de novo assembly of the Trifolium repens. BMC Genomics, 2023, 24, .	2.8	3
313	Circular RNAs modulate the floral fate acquisition in soybean shoot apical meristem. BMC Plant Biology, 2023, 23, .	3.6	3
315	Assembly and comparative genome analysis of a Patagonian <i>Aureobasidium pullulans</i> isolate reveals unexpected intraspecific variation. Yeast, 2023, 40, 197-213.	1.7	0
318	The Metasequoia genome and evolutionary relationships among redwoods. Plant Communications, 2023, 4, 100643.	7.7	4
320	High-Quality Genome Assembly and Genome-Wide Association Study of Male Sterility Provide Resources for Flax Improvement. Plants, 2023, 12, 2773.	3.5	2
321	Genomic Analysis of Yersinia pestis Strains from Brazil: Search for Virulence Factors and Association with Epidemiological Data. Pathogens, 2023, 12, 991.	2.8	0
322	LoCoLotive: In silico mining for lowâ€copy nuclear loci based on target capture probe sets and arbitrary reference genomes. Applications in Plant Sciences, 2023, 11, .	2.1	0
324	Deep serological profiling of the Trypanosoma cruzi TSSA antigen reveals different epitopes and modes of recognition by Chagas disease patients. PLoS Neglected Tropical Diseases, 2023, 17, e0011542.	3.0	1
325	Genome mining shows that retroviruses are pervasively invading vertebrate genomes. Nature Communications, 2023, 14, .	12.8	2
326	Novel and improved Caenorhabditis briggsae gene models generated by community curation. BMC Genomics, 2023, 24, .	2.8	4
327	A haplotype resolved chromosomeâ€scale assembly of North American wild apple <i>Malus fusca</i> and comparative genomics of the fire blight <i>Mfu10</i> locus. Plant Journal, 2023, 116, 989-1002.	5.7	2
329	The first high-quality genome assembly and annotation of Patiria pectinifera. Scientific Data, 2023, 10, .	5.3	0
330	Highâ€quality genome of a pioneer mangrove <i>Laguncularia racemosa</i> explains its advantages for intertidal zone reforestation. Molecular Ecology Resources, 0, , .	4.8	1
331	Sophora genomes provide insight into the evolution of alkaloid metabolites along with small-scale gene duplication. BMC Genomics, 2023, 24, .	2.8	0

#	Article	IF	CITATIONS
332	Genome sequencing of Syzygium cumini (jamun) reveals adaptive evolution in secondary metabolism pathways associated with its medicinal properties. Frontiers in Plant Science, 0, 14, .	3.6	1
335	Do chromosome rearrangements fix by genetic drift or natural selection? Insights from <i>Brenthis</i> butterflies. Molecular Ecology, 0, , .	3.9	3
336	Plants acquired mitochondrial linear plasmids horizontally from fungi likely during the conquest of land. Mobile DNA, 2023, 14, .	3.6	0
338	Dietary Habits of Hardhead (Ariopsis felis) and Gafftopsail (Bagre marinus) Catfish Revealed through DNA Barcoding of Stomach Contents. Fishes, 2023, 8, 539.	1.7	0
339	Representing true plant genomes: haplotype-resolved hybrid pepper genome with trio-binning. Frontiers in Plant Science, 0, 14, .	3.6	0
340	Introduction of Plant Transposon Annotation for Beginners. Biology, 2023, 12, 1468.	2.8	0
341	Structural and Functional Annotation of the Wheat Genome. Compendium of Plant Genomes, 2024, , 51-73.	0.5	0
342	Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU. , 2023, , .		0
343	Two novel Bartonella (sub)species isolated from edible dormice (Glis glis): hints of cultivation stress-induced genomic changes. Frontiers in Microbiology, 0, 14, .	3.5	0
347	Comparative analysis of Lithocarpus chloroplast genomes reveals candidate DNA barcoding loci. IOP Conference Series: Earth and Environmental Science, 2023, 1271, 012083.	0.3	0
348	Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. Nature Plants, 2024, 10, 240-255.	9.3	0
349	Near telomere-to-telomere genome of the model plant Physcomitrium patens. Nature Plants, 2024, 10, 327-343.	9.3	1
351	Revisiting genomes of non-model species with long reads yields new insights into their biology and evolution. Frontiers in Genetics, 0, 15, .	2.3	0
352	Chromosome-level genome assembly of the silver pomfret Pampus argenteus. Scientific Data, 2024, 11, .	5.3	0
353	Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses, 2024, 16, 398.	3.3	0