There's More to the Picture Than Meets the Eye: Nitric G Signaling

Plant Physiology 163, 459-470 DOI: 10.1104/pp.113.220624

Citation Report

#	Article	IF	CITATIONS
1	Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?. Frontiers in Plant Science, 2013, 4, 341.	1.7	13
2	Focus Issue: Calcium Signaling. Plant Physiology, 2013, 163, 457-458.	2.3	5
3	In Site Bioimaging of Hydrogen Sulfide Uncovers Its Pivotal Role in Regulating Nitric Oxide-Induced Lateral Root Formation. PLoS ONE, 2014, 9, e90340.	1.1	49
4	Stable Isotope Metabolic Labeling-Based Quantitative Thiol Redox Proteomic Analysis of Hydrogen Peroxide-treated Arabidopsis plant. Journal of Proteomics and Bioinformatics, 2014, 05, .	0.4	3
5	TheÂRole of Calmodulin and Related Proteins in Plant Cell Function: An Ever-Thickening Plot. Springer Science Reviews, 2014, 2, 145.	1.3	16
6	Influence of calcium and rhizobial infections (Rhizobium leguminosarum) on the dynamics of nitric oxide (NO) content in roots of etiolated pea (Pisum sativum L.) seedlings. Applied Biochemistry and Microbiology, 2014, 50, 652-657.	0.3	4
7	From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 2014, 20, 1-10.	3.5	110
8	An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Annals of Botany, 2014, 114, 1339-1347.	1.4	92
9	Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: Where there's a will there's a way. Nitric Oxide - Biology and Chemistry, 2014, 43, 81-88.	1.2	30
10	Ca ²⁺ signalling in plant immune response: from pattern recognition receptors to Ca ²⁺ decoding mechanisms. New Phytologist, 2014, 204, 782-790.	3.5	148
11	Redox Regulation in Plant Immune Function. Antioxidants and Redox Signaling, 2014, 21, 1373-1388.	2.5	129
12	Protein S-nitrosylation: specificity and identification strategies in plants. Frontiers in Chemistry, 2014, 2, 114.	1.8	91
13	The plant cell wall integrity maintenance mechanism – A case study of a cell wall plasma membrane signaling network. Phytochemistry, 2015, 112, 100-109.	1.4	59
14	Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant, Cell and Environment, 2015, 38, 331-348.	2.8	54
15	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	3.5	401
16	A Sophisticated Network of Signaling Pathways Regulates Stomatal Defenses to Bacterial Pathogens. Molecular Plant, 2015, 8, 566-581.	3.9	112
17	Nitric oxide in marine photosynthetic organisms. Nitric Oxide - Biology and Chemistry, 2015, 47, 34-39.	1.2	54
18	Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytology and Genetics, 2015, 49, 338-348	0.2	32

#	Article	IF	CITATIONS
19	SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages. Parasites and Vectors, 2015, 8, 513.	1.0	7
20	Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). Applied Biochemistry and Microbiology, 2015, 51, 494-504.	0.3	7
21	NO signaling in plant immunity: A tale of messengers. Phytochemistry, 2015, 112, 72-79.	1.4	79
22	Plant signalling in acute ozone exposure. Plant, Cell and Environment, 2015, 38, 240-252.	2.8	166
23	NO Signalling in Plant Immunity. Signaling and Communication in Plants, 2016, , 219-238.	0.5	3
24	Induction of heat resistance in wheat seedlings by exogenous calcium, hydrogen peroxide, and nitric oxide donor: functional interaction of signal mediators. Russian Journal of Plant Physiology, 2016, 63, 490-498.	0.5	17
25	ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiology, 2016, 171, 1606-1615.	2.3	455
26	Nitric Oxide Signaling during the Hypersensitive Disease Resistance Response. Advances in Botanical Research, 2016, 77, 219-243.	0.5	9
27	NO and Ca2+. Advances in Botanical Research, 2016, 77, 285-323.	0.5	3
28	Elevated CO ₂ -induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. Journal of Experimental Botany, 2016, 67, 893-904.	2.4	35
29	Functional characterization of the chaperonâ€like protein Cdc48 in cryptogeinâ€induced immune response in tobacco. Plant, Cell and Environment, 2017, 40, 491-508.	2.8	24
30	NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells. Environmental Science and Pollution Research, 2017, 24, 9437-9446.	2.7	3
31	Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review. Applied Biochemistry and Microbiology, 2017, 53, 140-148.	0.3	6
32	Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells. Plant Physiology, 2017, 173, 760-770.	2.3	35
33	Nitric oxide synthase in plants: Where do we stand?. Nitric Oxide - Biology and Chemistry, 2017, 63, 30-38.	1.2	173
34	Nitric oxide production by glomerular podocytes. Nitric Oxide - Biology and Chemistry, 2018, 72, 24-31.	1.2	14
35	Role of Ca2+ in Mediating Plant Responses to Extracellular ATP and ADP. International Journal of Molecular Sciences, 2018, 19, 3590.	1.8	25
36	Involvement of Calcium and Calmodulin in Nitric Oxide-Regulated Senescence of Cut Lily Flowers. Frontiers in Plant Science, 2018, 9, 1284.	1.7	19

CITATION REPORT

#	Article	IF	CITATIONS
37	Activities of Adenylate Cyclase and Changes in cAMP Concentration in Root Cells of Pea Seedlings Infected with Mutualists and Phytopathogens. Russian Journal of Plant Physiology, 2018, 65, 588-597.	0.5	8
38	Molecular Mechanisms of Mechanosensing and Mechanotransduction. , 2018, , 375-397.		2
39	Metabolic Responses of Plants Upon Different Plant–Pathogen Interactions. , 2018, , 195-214.		4
40	Elevated CO2-induced production of nitric oxide differentially modulates nitrate assimilation and root growth of wheat seedlings in a nitrate dose-dependent manner. Protoplasma, 2019, 256, 147-159.	1.0	22
41	Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions. BMC Plant Biology, 2019, 19, 368.	1.6	20
42	Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science, 2019, 283, 343-354.	1.7	121
43	Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure. Plants, 2019, 8, 9.	1.6	51
44	Is nitric oxide a critical key factor in ABA-induced stomatal closure?. Journal of Experimental Botany, 2020, 71, 399-410.	2.4	21
45	Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 2020, 252, 66.	1.6	17
46	Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Science, 2020, 294, 110464.	1.7	29
47	Effects and Mechanisms of Exogenous Electromagnetic Field on Bone Cells: A Review. Bioelectromagnetics, 2020, 41, 263-278.	0.9	28
48	Implication of Nitric Oxide Under Salinity Stress: The Possible Interaction with Other Signaling Molecules. Journal of Plant Growth Regulation, 2022, 41, 163-177.	2.8	24
49	The role of signal production and transduction in induced resistance of harvested fruits and vegetables. Food Quality and Safety, 2021, 5, .	0.6	8
50	Modulation of Ion Transport Across Plant Membranes by Polyamines: Understanding Specific Modes of Action Under Stress. Frontiers in Plant Science, 2020, 11, 616077.	1.7	21
51	Induction and suppression of the defense response mediated by two fungal derived molecules in strawberry plants. Acta Horticulturae, 2021, , 781-788.	0.1	0
52	Roles of S-nitrosylation in abiotic stress tolerance in plants. , 2022, , 453-475.		1
53	Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast. , 2019, , 389-409.		1
54	Changes of Nitric Oxide and Its Relationship with H2O2 and Ca2+ in Defense Interactions between Wheat and Puccinia Triticina. PLoS ONE, 2015, 10, e0132265.	1.1	21

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Signal mediators at induction of heat resistance of wheat plantlets by short-term heating. Ukrainian Biochemical Journal, 2015, 87, 104-112.	0.1	5
56	nduction of plant cells heat resistance by hydrogen sulfide donor is mediated by H(2)O(2) generation with participation of NADPH oxidase and superoxide dismutase. Ukrainian Biochemical Journal, 2017, 89, 34-42.	0.1	11
57	Role of calcium ions and reactive oxygen species in induction of antioxidant enzymes and heat resistance of plant cells by nitric oxide donor. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2017, 2017, 52-61.	0.1	3
61	Effect of nodule and pathogenic bacteria on levels of nitric oxide and cyclic adenosine monophosphate in pea roots at initial stages of interaction. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2020, 10, 294-302.	0.1	2
62	1H, 13C and 15N chemical shift backbone resonance NMR assignment of tobacco calmodulin 2. Biomolecular NMR Assignments, 2022, , 1.	0.4	0
63	Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defense responses. Plant Science, 2022, 319, 111239.	1.7	2
64	Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. Plants, 2021, 10, 2774.	1.6	15
66	Nitric oxide (NO) involved in Cd tolerance in NHX1 transgenic duckweed during Cd stress. Plant Signaling and Behavior, 2022, 17, 2065114.	1.2	3
68	Signaling molecules hydrogen sulfide (H2S) and nitric oxide (NO): role in microalgae under adverse environmental conditions. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	27
69	Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology, 2023, 31, 89-117.	1.9	7
70	Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. Plants, 2022, 11, 3450.	1.6	7
72	Nitric oxide strengthens defense system in plants. , 2023, , 69-90.		Ο