Bio-based solvents: an emerging generation of fluids for processes in catalysis and organic chemistry

Chemical Society Reviews 42, 9550

DOI: 10.1039/c3cs60241a

Citation Report

#	Article	IF	CITATIONS
1	Microbial production of plant specialized metabolites. Plant Biotechnology, 2014, 31, 465-482.	0.5	18
2	Natural surfactant mediated phytosynthesis and solvatochromic fluorescence of 2-aminobenzamide derivatives. RSC Advances, 2014, 4, 63039-63047.	1.7	5
3	Greenâ€Solventâ€Processed Molecular Solar Cells. Angewandte Chemie, 2014, 126, 14606-14609.	1.6	9
4	Copperâ€catalyzed homoâ€and crossâ€coupling reactions of terminal alkynes in ethyl lactate. Applied Organometallic Chemistry, 2014, 28, 631-634.	1.7	35
5	Deep Eutectic Solvents: Environmentally Friendly Media for Metal-Catalyzed Organic Reactions. ACS Symposium Series, 2014, , 37-52.	0.5	11
6	Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 2014, 16, 3169-3174.	4.6	44
7	Introducing Deep Eutectic Solvents to Polar Organometallic Chemistry: Chemoselective Addition of Organolithium and Grignard Reagents to Ketones in Air. Angewandte Chemie - International Edition, 2014, 53, 5969-5973.	7.2	158
8	Metal-catalyzed nitrile hydration reactions: The specific contribution of ruthenium. Journal of Organometallic Chemistry, 2014, 771, 93-104.	0.8	79
9	Post-polymerization modification and organocatalysis using reactive statistical poly(ionic) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 422 Td
10	Glycerol: a biorenewable solvent for base-free Cu(i)-catalyzed 1,3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chemistry, 2014, 16, 3515.	4.6	76
11	Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 2014, 16, 1056.	4.6	79
12	Experimental Measurement and Modeling of Ternary Vapor–Liquid Equilibrium for Water + 2-Propanol + Glycerol. Journal of Chemical & Data, 2014, 59, 3825-3830.	1.0	14
13	Solvent Effects in Acidâ€Catalyzed Biomass Conversion Reactions. Angewandte Chemie - International Edition, 2014, 53, 11872-11875.	7.2	371
15	Greenâ€Solventâ€Processed Molecular Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 14378-14381.	7.2	102
16	Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Advances, 2014, 4, 55990-56002.	1.7	109
17	Introducing deep eutectic solvents as biorenewable media for Au($<$ scp $>$ i $<$ /scp $>$)-catalysed cycloisomerisation of \hat{I}^3 -alkynoic acids: an unprecedented catalytic system. Chemical Communications, 2014, 50, 12927-12929.	2.2	61
18	ScCO ₂ /Green Solvents: Biphasic Promising Systems for Cleaner Chemicals Manufacturing. ACS Sustainable Chemistry and Engineering, 2014, 2, 2623-2636.	3.2	59
19	Metal-free synthesis of 1,3,5-trisubstituted benzenes by the cyclotrimerization of enaminones or alkynes in water. RSC Advances, 2014, 4, 20499-20505.	1.7	27

#	ARTICLE	IF	Citations
20	Effects of \hat{I}^3 -valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chemistry, 2014, 16, 4659-4662.	4.6	149
21	Î ³ -Valerolactone as a Renewable Dipolar Aprotic Solvent Deriving from Biomass Degradation for the Hiyama Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 2461-2464.	3.2	111
22	Insights into alkyl lactate+water mixed fluids. Journal of Molecular Liquids, 2014, 199, 215-223.	2.3	14
23	Superparamagnetic CuFeO ₂ Nanoparticles in Deep Eutectic Solvent: an Efficient and Recyclable Catalytic System for the Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines. ChemCatChem, 2014, 6, 2854-2859.	1.8	109
24	Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Advances, 2014, 4, 51580-51588.	1.7	69
25	Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chemical Communications, 2014, 50, 9650-9652.	2.2	329
26	Deep eutectic solvents as novel extraction media for phenolic compounds from model oil. Chemical Communications, 2014, 50, 11749-11752.	2.2	121
27	Glycerol as Suitable Solvent for the Synthesis of Metallic Species and Catalysis. Chemistry - A European Journal, 2014, 20, 10884-10893.	1.7	48
28	Aqueous extract of Balanites roxburghii fruit: a green dispersant for Câ€"C bond formation. RSC Advances, 2014, 4, 31177-31183.	1.7	17
29	Imidazolium-functionalized \hat{l}^2 -cyclodextrin as a highly recyclable multifunctional ligand in water. Green Chemistry, 2014, 16, 3117-3124.	4.6	32
30	Development of a hybrid fermentation–enzymatic bioprocess for the production of ethyl lactate from dairy waste. Bioresource Technology, 2014, 165, 343-349.	4.8	18
35	Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities. European Journal of Organic Chemistry, 2015, 2015, 6779-6799.	1.2	105
36	Deep Eutectic Mixtures: Promising Sustainable Solvents for Metalâ€Catalysed and Metalâ€Mediated Organic Reactions. European Journal of Inorganic Chemistry, 2015, 2015, 5147-5157.	1.0	168
37	Freeâ€radical terpolymerization of <i>n</i> à€butyl acrylate/butyl methacrylate/ <scp>d</scp> â€limonene. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
39	Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 2015, 16, 17101-17159.	1.8	177
41	lonic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chemistry, 2015, 17, 2693-2713.	4.6	98
42	Efficient hydration of 2-amino-2,3-dimethylbutyronitrile to 2-amino-2,3-dimethylbutyramide in a biphasic system via an easily prepared whole-cell biocatalyst. Green Chemistry, 2015, 17, 3992-3999.	4.6	14
43	Biocatalysis. , 2015, , 391-408.		4

#	Article	IF	Citations
44	Vapor–Liquid Equilibrium of Water + Ethanol + Glycerol: Experimental Measurement and Modeling for Ethanol Dehydration by Extractive Distillation. Journal of Chemical & Engineering Data, 2015, 60, 1892-1899.	1.0	23
45	Catalyst-free three-component domino reactions for regioselective synthesis of multi-functional fused pyrroles. Tetrahedron, 2015, 71, 4745-4751.	1.0	15
46	Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.	1.7	497
47	Opportunities for greener alternatives in chemical formulations. Green Chemistry, 2015, 17, 2664-2678.	4.6	76
48	Ethyl Lactate as a Greener Alternative to Acetonitrile in RPLC: A Realistic Appraisal. Journal of Chromatographic Science, 2015, 53, bmv077.	0.7	14
49	Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2015, 34, 5759-5766.	1.1	48
50	Environmentally Friendly Synthesis of \hat{I}^3 -Valerolactone by Direct Catalytic Conversion of Renewable Sources. ACS Catalysis, 2015, 5, 1882-1894.	5 . 5	182
51	Green solvents for green technologies. Journal of Chemical Technology and Biotechnology, 2015, 90, 1631-1639.	1.6	306
52	Green Solvents for Eco-friendly Synthesis of Bioactive Heterocyclic Compounds., 2015,, 101-139.		8
53	Glycerol acetals and ketals as bio-based solvents: positioning in Hansen and COSMO-RS spaces, volatility and stability towards hydrolysis and autoxidation. Green Chemistry, 2015, 17, 1779-1792.	4.6	59
54	Applicability evaluation of Deep Eutectic Solvents–Cellulase system for lignocellulose hydrolysis. Bioresource Technology, 2015, 181, 297-302.	4.8	109
55	Pickering Interfacial Catalysis for Biphasic Systems: From Emulsion Design to Green Reactions. Angewandte Chemie - International Edition, 2015, 54, 2006-2021.	7.2	376
56	Ultrasound assisted multicomponent reactions: a green method for the synthesis of highly functionalized selenopyridines using reusable polyethylene glycol as reaction medium. RSC Advances, 2015, 5, 22168-22172.	1.7	32
57	Synthesis of α-Hydroxyl Amides via Direct Amidation of Lactic Acid at Solvent- and Catalyst-Free Conditions. Journal of Chemical Research, 2015, 39, 274-276.	0.6	4
58	lodine-mediated synthesis of (E)-vinyl sulfones from sodium sulfinates and cinnamic acids in aqueous medium. RSC Advances, 2015, 5, 66723-66726.	1.7	50
59	Bio-based solvents for the Baylis–Hillman reaction of HMF. RSC Advances, 2015, 5, 69238-69242.	1.7	20
60	Eco-friendly chemoselective N-functionalization of isatins mediated by supported KF in 2-MeTHF. Green Chemistry, 2015, 17, 4194-4197.	4.6	22
61	A magnetic nanoparticle catalyzed eco-friendly synthesis of cyanohydrins in a deep eutectic solvent. RSC Advances, 2015, 5, 61191-61198.	1.7	17

#	Article	IF	CITATIONS
62	One-pot three-component synthesis of 1,2,3-triazoles using magnetic NiFe ₂ O ₄ –glutamate–Cu as an efficient heterogeneous catalyst in water. RSC Advances, 2015, 5, 59167-59185.	1.7	49
63	Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustainable Chemistry and Engineering, 2015, 3, 1145-1154.	3.2	159
64	A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chemistry, 2015, 17, 3251-3254.	4.6	57
65	Highly efficient regioselective synthesis of pyrroles via a tandem enamine formation–Michael addition–cyclization sequence under catalyst- and solvent-free conditions. Green Chemistry, 2015, 17, 3415-3423.	4.6	36
66	Copolymerization of Limonene with <i>n</i> i>â€Butyl Acrylate. Macromolecular Reaction Engineering, 2015, 9, 339-349.	0.9	27
67	Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chemistry, 2015, 17, 3687-3705.	4.6	189
68	Deep eutectic solvents: biorenewable reaction media for Au(<scp>i</scp>)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels–Alder reactions. Green Chemistry, 2015, 17, 3870-3878.	4.6	74
69	Catalyst free, multicomponent-tandem synthesis of spirooxindole-indazolones and spirooxindole-pyrazolines: a glycerol mediated green approach. RSC Advances, 2015, 5, 45152-45157.	1.7	30
70	Room temperature deep eutectic solvents of (1S)-(+)-10-camphorsulfonic acid and sulfobetaines: hydrogen bond-based mixtures with low ionicity and structure-dependent toxicity. RSC Advances, 2015, 5, 31772-31786.	1.7	62
71	One pot synthesis of pyran-based heterocycles from benzyl halides as key reagents. RSC Advances, 2015, 5, 30364-30371.	1.7	23
72	6. Biomass-derived molecules conversion to chemicals using heterogeneous and homogeneous catalysis., 2015,, 141-164.		0
73	Bronsted acid-type biosurfactant for heterocyclization: a green protocol for benzopyran synthesis. RSC Advances, 2015, 5, 84610-84620.	1.7	22
74	A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 2015, 51, 17249-17252.	2.2	49
75	Bio-based green solvent for the catalyst free oxidation of arylboronic acids into phenols. RSC Advances, 2015, 5, 89133-89138.	1.7	30
76	Multi-step enzyme-organocatalyst Câ \in "C bond forming reactions in deep-eutectic-solvents: towards improved performances by organocatalyst design. Sustainable Chemical Processes, 2015, 3, .	2.3	19
77	Solubilities of Carbon Dioxide in Five Biobased Solvents. Journal of Chemical & Engineering Data, 2015, 60, 104-111.	1.0	25
78	Perspectives on exploiting near-critical fluids for energy-efficient catalytic conversion of emerging feedstocks. Journal of Supercritical Fluids, 2015, 96, 96-102.	1.6	7
79	Facile and environmentally friendly halogenation of BODIPYs in deep eutectic solvent. Dyes and Pigments, 2015, 112, 274-279.	2.0	13

#	ARTICLE	IF	CITATIONS
80	A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry, 2015, 17, 365-372.	4.6	120
81	Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives. BioMed Research International, 2016, 2016, 1-7.	0.9	2
82	Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents. Beilstein Journal of Organic Chemistry, 2016, 12, 2620-2626.	1.3	44
83	One-Pot Synthesis of Alkyl 4-Alkoxypentanoates by Esterification and Reductive Etherification of Levulinic Acid in Alcoholic Solutions. ACS Sustainable Chemistry and Engineering, 2016, 4, 4089-4093.	3.2	18
84	C–H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone. Chemical Communications, 2016, 52, 9777-9780.	2.2	101
86	Enzymatic synthesis and anti-oxidative activities of plant oil-based ascorbyl esters in 2-methyltetrahydrofuran-containing mixtures. Biocatalysis and Biotransformation, 2016, 34, 181-188.	1.1	3
87	Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4, .	2.3	837
88	Recent Developments in the Lithiation Reactions of Oxygen Heterocycles. Advances in Heterocyclic Chemistry, 2016, , 91-127.	0.9	7
89	Efficient Regioselective Synthesis of the Crotonyl Polydatin Prodrug by Thermomyces lanuginosus Lipase: a Kinetics Study in Eco-friendly 2-Methyltetrahydrofuran. Applied Biochemistry and Biotechnology, 2016, 179, 1011-1022.	1.4	7
90	Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatalysis and Agricultural Biotechnology, 2016, 7, 14-23.	1.5	66
91	Analysis of the Cybotactic Region of Two Renewable Lactone–Water Mixed-Solvent Systems that Exhibit Synergistic Kamlet–Taft Basicity. Journal of Physical Chemistry B, 2016, 120, 4467-4481.	1.2	38
92	A practical green chemistry approach to synthesize fused bicyclic 4H-pyranes via an amine catalysed 1,4-addition and cyclization cascade. RSC Advances, 2016, 6, 38875-38879.	1.7	10
93	Rapid flow-based synthesis of poly(3-hexylthiophene) using 2-methyltetrahydrofuran as a bio-derived reaction solvent. European Polymer Journal, 2016, 80, 240-246.	2.6	18
94	Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustainable Chemistry and Pharmacy, 2016, 4, 40-45.	1.6	12
95	Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chemistry, 2016, 18, 6596-6608.	4.6	42
96	Green Solvents as a Promising Approach to Degradation of Organophosphorate Pesticides. ACS Sustainable Chemistry and Engineering, 2016, 4, 7023-7031.	3.2	18
97	Synthesis of T-shaped Oxazolonaphthoimidazo[1,2- <i>a</i>]pyridines using Lactic Acid as Bio-based Green Solvent: An Insight into Photophysical Studies. ChemistrySelect, 2016, 1, 2900-2908.	0.7	9
98	Green Solid-Phase Peptide Synthesis 2. 2-Methyltetrahydrofuran and Ethyl Acetate for Solid-Phase Peptide Synthesis under Green Conditions. ACS Sustainable Chemistry and Engineering, 2016, 4, 6809-6814.	3.2	85

#	Article	IF	CITATIONS
99	Green Solvents in Biomass Processing. ACS Sustainable Chemistry and Engineering, 2016, 4, 5821-5837.	3.2	123
100	Mechanisms into dehydroaromatization of bio-derived limonene to p-cymene over Pd/HZSM-5 in the presence and absence of H ₂ . RSC Advances, 2016, 6, 66695-66704.	1.7	22
101	Can bioâ€based chemicals meet demand? Global and regional caseâ€study around citrus wasteâ€derived limonene as a solvent for cleaning applications. Biofuels, Bioproducts and Biorefining, 2016, 10, 686-698.	1.9	56
102	Enhanced hydrogenation of ethyl-levulinate to î³-valerolactone over Ni ^{î′} O _x stabilized Cu ⁺ surface sites. RSC Advances, 2016, 6, 87294-87298.	1.7	15
103	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
104	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to \hat{I}^3 -valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	4.6	59
105	Intelligent Approach to Solvent Substitution: The Identification of a New Class of Levoglucosenone Derivatives. ChemSusChem, 2016, 9, 3503-3512.	3.6	38
106	[Bmim]OH mediated Cu-catalyzed azide–alkyne cycloaddition reaction: A potential green route to 1,4-disubstituted 1,2,3-triazoles. Tetrahedron Letters, 2016, 57, 5661-5665.	0.7	32
107	Alternatives for Conventional Alkane Solvents. Journal of the American Chemical Society, 2016, 138, 14650-14657.	6.6	22
108	Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Advances, 2016, 6, 106160-106170.	1.7	79
109	A General, Effcient and Green Procedure for Synthesis of Dihydropyrimidineâ€5 arboxamides in Low Melting Betaine Hydrochloride/Urea Mixture. Chinese Journal of Chemistry, 2016, 34, 637-645.	2.6	22
110	Synthesis of cholesterol-reducing sterol esters by enzymatic catalysis in bio-based solvents or solvent-free. RSC Advances, 2016, 6, 48753-48756.	1.7	17
111	Biomass-derived \hat{I}^3 -valerolactone as an efficient solvent and catalyst for the transformation of CO $<$ sub $>$ 2 $<$ /sub $>$ to formamides. Green Chemistry, 2016, 18, 3956-3961.	4.6	105
112	KIO ₃ -Catalyzed Aerobic Cross-Coupling Reactions of Enaminones and Thiophenols: Synthesis of Polyfunctionalized Alkenes by Metal-Free C–H Sulfenylation. Organic Letters, 2016, 18, 584-587.	2.4	138
113	Eco-friendly Suzuki–Miyaura coupling of arylboronic acids to aromatic ketones catalyzed by the oxime-palladacycle in biosolvent 2-MeTHF. New Journal of Chemistry, 2016, 40, 3119-3123.	1.4	46
114	Extraction of phytochemicals using hydrotropic solvents. Separation Science and Technology, 2016, 51, 1151-1165.	1.3	39
115	Efficient enzymatic synthesis of ampicillin using mutant Penicillin G acylase with bio-based solvent glycerol. Catalysis Communications, 2016, 79, 31-34.	1.6	14
116	A "top-down―in silico approach for designing ad hoc bio-based solvents: application to glycerol-derived solvents of nitrocellulose. Green Chemistry, 2016, 18, 3239-3249.	4.6	28

#	Article	IF	CITATIONS
117	Experimental Measurement and Modeling of Vapor–Liquid Equilibrium for the Ternary System Water + 1-Propanol + Glycerol. Journal of Chemical & Engineering Data, 2016, 61, 1637-1644.	1.0	5
118	Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents. Separation and Purification Technology, 2016, 163, 310-318.	3.9	75
119	Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids, 2016, 215, 345-386.	2.3	354
120	Water opens the door to organolithiums and Grignard reagents: exploring and comparing the reactivity of highly polar organometallic compounds in unconventional reaction media towards the synthesis of tetrahydrofurans. Chemical Science, 2016, 7, 1192-1199.	3.7	106
121	CHEM21 selection guide of classical- and less classical-solvents. Green Chemistry, 2016, 18, 288-296.	4.6	1,348
122	Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors. Catalysis Science and Technology, 2016, 6, 1810-1820.	2.1	38
123	Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chemistry, 2016, 18, 1724-1730.	4.6	91
124	Stereoselective organocatalysed reactions in deep eutectic solvents: highly tunable and biorenewable reaction media for sustainable organic synthesis. Green Chemistry, 2016, 18, 792-797.	4.6	103
125	Tunable solvents: Shades of green. Chemical Engineering and Processing: Process Intensification, 2016, 99, 88-96.	1.8	60
126	Multicomponent reaction in deep eutectic solvent for synthesis of substituted 1-aminoalkyl-2-naphthols. Research on Chemical Intermediates, 2017, 43, 379-385.	1.3	35
127	Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). Journal of Applied Research on Medicinal and Aromatic Plants, 2017, 6, 31-40.	0.9	34
128	Aegle marmelos in heterocyclization: greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Advances, 2017, 7, 7315-7328.	1.7	54
129	Nucleophilic ring opening of aziridines with amines under catalyst- and solvent-free conditions. Green Chemistry, 2017, 19, 924-927.	4.6	25
130	Continuousâ€Flow <i>O</i> àâ€Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium–Aluminium Hydrotalcites as Catalyst Precursors. ChemSusChem, 2017, 10, 1571-1583.	3.6	13
131	Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	4.6	169
132	CO2-Expanded Alkyl Lactates: A Physicochemical and Molecular Modeling Study. Journal of Solution Chemistry, 2017, 46, 259-280.	0.6	16
133	lonic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids, 2017, 233, 403-414.	2.3	431
134	CO 2 -expanded bio-based liquids as novel solvents for enantioselective biocatalysis. Tetrahedron, 2017, 73, 2984-2989.	1.0	30

#	Article	IF	CITATIONS
135	Expanding the biomass derived chemical space. Chemical Science, 2017, 8, 4724-4738.	3.7	101
136	Synthesis of (S)-3-chloro-1-phenylpropanol by permeabilized recombinant Escherichia coli harboring Saccharomyces cerevisiae YOL151W reductase in 2-methyltetrahydrofuran cosolvent system. Catalysis Communications, 2017, 97, 56-59.	1.6	13
137	Heterogeneous Câ€"H alkenylations in continuous-flow: oxidative palladium-catalysis in a biomass-derived reaction medium. Green Chemistry, 2017, 19, 2510-2514.	4.6	89
138	Seleniumâ€Catalyzed Oxacyclization of Alkenoic Acids and Alkenols. Asian Journal of Organic Chemistry, 2017, 6, 988-992.	1.3	36
139	Stability of gamma-valerolactone under neutral, acidic, and basic conditions. Structural Chemistry, 2017, 28, 423-429.	1.0	57
140	Glycerol as a Recyclable Solvent for Copper-Mediated Ligand-Free C-S Cross-Coupling Reaction: Application to Synthesis of Gemmacin Precursor. ChemistrySelect, 2017, 2, 4852-4856.	0.7	13
141	Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere, 2017, 183, 277-285.	4.2	36
142	Catalyst-Free, Visible-Light Promoted One-Pot Synthesis of Spirooxindole-Pyran Derivatives in Aqueous Ethyl Lactate. ACS Sustainable Chemistry and Engineering, 2017, 5, 6175-6182.	3.2	147
143	Heteropoly acid catalysts in upgrading of biorenewables: Cycloaddition of aldehydes to monoterpenes in green solvents. Applied Catalysis B: Environmental, 2017, 217, 92-99.	10.8	27
144	Challenges in the development of bio-based solvents: a case study on methyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate as an alternative aprotic solvent. Faraday Discussions, 2017, 202, 157-173.	1.6	39
145	Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Arylâ€containing Ketones in Aqueous Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2017, 359, 1049-1057.	2.1	73
146	Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatshefte Fýr Chemie, 2017, 148, 37-48.	0.9	84
147	Esterification of the levulinic acid with n-butyl and isobutyl alcohols over aluminum-containing MCM-41. Fuel Processing Technology, 2017, 167, 442-450.	3.7	49
148	Greener and Additive-Free Reactions in Deep Eutectic Solvent: One-Pot, Three-Component Synthesis of Highly Substituted Pyridines. ChemistrySelect, 2017, 2, 8870-8873.	0.7	22
149	Modulating Biocatalytic Activity toward Sterically Bulky Substrates in CO ₂ -Expanded Biobased Liquids by Tuning the Physicochemical Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 11051-11059.	3.2	23
150	Microwave-Assisted, Green Synthesis of $4(3 < i > H < /i >)$ -Quinazolinones under CO Pressure in \hat{I}^3 -Valerolactone and Reusable Pd/ \hat{I}^2 -Cyclodextrin Cross-Linked Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9233-9243.	3.2	22
151	Bio-based N-alkyl-2-pyrrolidones by Pd-catalyzed reductive N-alkylation and decarboxylation of glutamic acid. Green Chemistry, 2017, 19, 4919-4929.	4.6	17
152	SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules, 2017, 18, 3447-3456.	2.6	23

#	Article	IF	Citations
153	Sustainable chemistry: how to produce better and more from less?. Green Chemistry, 2017, 19, 4973-4989.	4.6	125
154	Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived \hat{I}^3 -valerolactone: enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO ₂ . Green Chemistry, 2017, 19, 5041-5045.	4.6	33
155	Microwave-assisted, ligand-free, direct Câ€"H arylation of thiophenes in biomass-derived γ-valerolactone. New Journal of Chemistry, 2017, 41, 9210-9215.	1.4	20
156	Functional Enzymes in Nonaqueous Environment: The Case of Photosynthetic Reaction Centers in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 7768-7776.	3.2	56
157	Deep eutectic solvents as performance additives in biphasic reactions. RSC Advances, 2017, 7, 40367-40370.	1.7	24
158	Catalyst Free Synthesis of Bis(Indolyl)Methanes and 3,3â€Bis(Indolyl)oxindoles in Aqueous Ethyl Lactate. ChemistrySelect, 2017, 2, 11561-11564.	0.7	26
159	Long-term stability of nanostructured polypyrrole electrochromic devices by using deep eutectic solvents. Journal of Electroanalytical Chemistry, 2017, 807, 70-75.	1.9	30
160	OMS-2/H ₂ O ₂ /Dimethyl Carbonate: An Environmentally-Friendly Heterogeneous Catalytic System for the Oxidative Synthesis of Benzoxazoles at Room Temperature. Organic Process Research and Development, 2017, 21, 2018-2024.	1.3	22
161	Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO ₂ with Amines to Synthesize <i>N</i> -Substituted Compounds. ACS Sustainable Chemistry and Engineering, 2017, 5, 7086-7092.	3.2	70
162	Agroâ€Waste Extract Based Solvents: Emergence of Novel Green Solvent for the Design of Sustainable Processes in Catalysis and Organic Chemistry. ChemistrySelect, 2017, 2, 5180-5188.	0.7	54
163	Simple and efficient approach for synthesis of hydrazones from carbonyl compounds and hydrazides catalyzed by meglumine. Synthetic Communications, 2017, 47, 178-187.	1.1	16
164	KIO ₃ â€Catalyzed Domino C(sp ²)â^'H Bond Sulfenylation and Câ^'N Bond Oxygenation of Enaminones toward the Synthesis of 3â€Sulfenylated Chromones. ChemCatChem, 2017, 9, 465-468.	1.8	76
165	An enolate ion as a synthon in biocatalytic synthesis of 3,4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-1,4-benzoxazin-2-ones: lemon juice as an alternative to hazardous solvents and catalysts. Green Chemistry, 2017, 19, 707-715.	4.6	39
166	Efficient separation method for tert -butanol dehydration via extractive distillation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 73, 27-36.	2.7	52
167	Dyeâ€Sensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	1.8	80
168	Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products. Molecules, 2017, 22, 121.	1.7	35
169	Initial Considerations., 2017,, 3-16.		3
170	Biotransformation Using Liquid and Supercritical CO 2., 2017,, 3-25.		3

#	ARTICLE	IF	CITATIONS
171	Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angewandte Chemie, 2018, 130, 11284-11297.	1.6	54
172	Three-component one-pot synthesis of N-arylsulfonyl-2-iminocoumarins. Tetrahedron, 2018, 74, 1900-1907.	1.0	9
173	CFL light promoted one-pot synthesis of pyrano[3,2- <i>c</i>]chromen-5(4 <i>H</i>)-ones. Synthetic Communications, 2018, 48, 809-815.	1.1	14
174	2â€Methyltetrahydrofuran: A Green Solvent for Iron atalyzed Cross oupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	3.6	44
175	A waste-minimized protocol for copper-catalyzed Ullmann-type reaction in a biomass derived furfuryl alcohol/water azeotrope. Green Chemistry, 2018, 20, 1634-1639.	4.6	37
176	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	1.7	42
177	Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates. Molecular Diversity, 2018, 22, 723-741.	2.1	13
178	Hydration and alkoxylation of alkynes catalyzed by NHC–Au–OTf. Green Chemistry, 2018, 20, 2125-2134.	4.6	40
179	Selecting a Green Strategy on Extraction of Birch Bark and Isolation of Pure Betulin Using Monoterpenes. ACS Sustainable Chemistry and Engineering, 2018, 6, 6281-6288.	3.2	20
180	Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: a greener protocol for benzopyran synthesis. Royal Society Open Science, 2018, 5, 170333.	1.1	5
181	Ironâ€Catalyzed Crossâ€Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angewandte Chemie - International Edition, 2018, 57, 11116-11128.	7.2	214
182	Facile synthesis of 1,4-diketones $i>viathree-component reactions of i+ketoaldehyde, 1,3-dicarbonyl compound, and a nucleophile in water. Green Chemistry, 2018, 20, 1367-1374.$	4.6	54
183	Efficient and Ecoâ€Friendly Oneâ€Pot Synthesis of Functionalized Furanâ€2â€one, Pyrrolâ€2â€one, and Tetrahydropyridine Using Lemon Juice as a Biodegradable Catalyst. ChemistrySelect, 2018, 3, 1371-1380.	0.7	30
184	An Efficient and Environmentally Benign Protocol for the 1,6â€Michael Addition of Nitroalkanes to 3â€Methylâ€4â€nitroâ€5â€styrylisoxazoles in WERSA. ChemistrySelect, 2018, 3, 1915-1918.	0.7	19
185	Heteropoly acid catalysts for the valorization of biorenewables: Isomerization of caryophyllene oxide in green solvents. Molecular Catalysis, 2018, 458, 213-222.	1.0	11
186	Site selective [bmlm]OH catalyzed C C bond functionalization under green conditions. Tetrahedron Letters, 2018, 59, 654-657.	0.7	4
187	Investigation of SO 2 solubilities in some biobased solvents and their thermodynamic properties. Journal of Chemical Thermodynamics, 2018, 119, 84-91.	1.0	9
188	Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetrical bis-spirooxindole derivatives at room temperature. RSC Advances, 2018, 8, 1934-1939.	1.7	30

#	Article	IF	CITATIONS
189	Entropyâ€Driven Ringâ€Opening Disulfide Metathesis Polymerization for the Synthesis of Functional Poly(disulfide)s. Macromolecular Rapid Communications, 2018, 39, e1700735.	2.0	15
190	Some aspects of green solvents. Comptes Rendus Chimie, 2018, 21, 572-580.	0.2	138
191	Highly Efficient Hydrogenation of Levulinic Acid into γâ€Valerolactone using an Iron Pincer Complex. ChemSusChem, 2018, 11, 1474-1478.	3.6	36
192	Waste derived bioeconomy in India: A perspective. New Biotechnology, 2018, 40, 60-69.	2.4	7 3
193	Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology. Pure and Applied Chemistry, 2018, 90, 21-33.	0.9	30
194	Formulation and optimization of emulsions based on bitter fennel essential oil and EO/BO block copolymer surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 142-147.	2.3	16
195	Porous, Naturally Derived Hafnium Phytate for the Highly Chemoselective Transfer Hydrogenation of Aldehydes with Other Reducible Moieties. ChemCatChem, 2018, 10, 725-730.	1.8	8
196	Waste-minimised copper-catalysed azide–alkyne cycloaddition in Polarclean as a reusable and safe reaction medium. Green Chemistry, 2018, 20, 183-187.	4.6	37
197	Synergetic effects of naturally sourced metal oxides in organic synthesis: a greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes. Research on Chemical Intermediates, 2018, 44, 1775-1795.	1.3	26
198	Valorisation of chitinous biomass for antimicrobial applications. Pure and Applied Chemistry, 2018, 90, 293-304.	0.9	21
199	Strategies for using hydrogen-bond donor/acceptor solvent pairs in developing green chemical processes with supercritical fluids. Journal of Supercritical Fluids, 2018, 141, 182-197.	1.6	21
200	Glycerol Micellar Catalysis: An Efficient Multicomponentâ€Tandem Green Synthetic Approach to Biologically Important 2, 4â€Disubstituted Thiazole Derivatives. ChemistrySelect, 2018, 3, 11634-11642.	0.7	20
201	Highly selective solvent-free hydrogenation of pinenes to added-value cis-pinane. Comptes Rendus Chimie, 2018, 21, 1035-1042.	0.2	11
202	Organic Solar Cell Materials toward Commercialization. Small, 2018, 14, e1801793.	5.2	253
203	γâ€Valerolactone as a Promising Bioâ€Compatible Media for Oneâ€Pot Synthesis of Spiro[indolineâ€3,4'â€pyrano[3,2â€ <i>c</i>]chromene Derivatives. Journal of Heterocyclic Chemistry, 2018, 55, 2817-2822.	1.4	10
204	Cu(II)–Glucose: Sustainable Catalyst for the Synthesis of Quinazolinones in a Biomass-Derived Solvent 2-MethylTHF and Application for the Synthesis of Diproqualone. ACS Sustainable Chemistry and Engineering, 2018, 6, 14283-14291.	3.2	24
205	Ruthenium $\langle i \rangle p \langle i \rangle$ -cymene complexes with $\hat{l}\pm$ -diimine ligands as catalytic precursors for the transfer hydrogenation of ethyl levulinate to \hat{l}^3 -valerolactone. New Journal of Chemistry, 2018, 42, 17574-17586.	1.4	19
206	How do the hydrocarbon chain length and hydroxyl group position influence the solute dynamics in alcohol-based deep eutectic solvents?. Physical Chemistry Chemical Physics, 2018, 20, 24613-24622.	1.3	34

#	Article	IF	CITATIONS
207	Naturally occurring gallic acid derived multifunctional porous polymers for highly efficient CO ₂ conversion and I ₂ capture. Green Chemistry, 2018, 20, 4655-4661.	4.6	37
208	Separation and identification of polar polyphenols in oily formulation using high-performance thin-layer chromatography and mass spectroscopy techniques. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, D506.	0.6	4
209	Enhanced Furfural Yields from Xylose Dehydration in the $\hat{I}^3 \hat{a} \in V$ alerolactone/Water Solvent System at Elevated Temperatures. ChemSusChem, 2018, 11, 2321-2331.	3.6	69
210	Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics, 2018, 323, 44-48.	1.3	104
211	Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Progress in Polymer Science, 2018, 83, 1-27.	11.8	111
212	UN sustainable development goals: How can sustainable/green chemistry contribute?. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 154-157.	3.2	10
213	Organic Solvents in Sustainable Synthesis and Engineering. , 2018, , 513-553.		55
214	Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 2018, 564, 562-586.	4.1	255
215	Avoiding hot-spots in Microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent \tilde{I}^3 -Valerolactone. Scientific Reports, 2018, 8, 10571.	1.6	28
216	Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes, 2018, 8, 23.	1.4	101
217	Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules, 2018, 23, 1065.	1.7	118
218	Expectation-Maximization Model for Substitution of Missing Values Characterizing Greenness of Organic Solvents. Molecules, 2018, 23, 1292.	1.7	7
219	Energy-efficient and ecologically friendly hybrid extractive distillation using a pervaporation system for azeotropic feed compositions in alcohol dehydration process. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 251-265.	2.7	26
220	Investigation of extractive interaction between ionic liquids and carbamazepine. Journal of Molecular Liquids, 2018, 268, 523-528.	2.3	6
221	lonic Liquids as Green Corrosion Inhibitors for Industrial Metals and Alloys. , 0, , .		12
222	Water-Tuned Tautomer-Selective Tandem Synthesis of the 5,6-Dihydropyrimidin-4(3 <i>H</i>)-ones, Driven under the Umbrella of Sustainable Chemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13358-13366.	3.2	16
223	Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. ACS Omega, 2018, 3, 6642-6650.	1.6	48
224	HPLC purification technique: synthesis of unsymmetrical thiobarbituric acids. Heliyon, 2019, 5, e02008.	1.4	1

#	Article	IF	CITATIONS
225	Ethyl Lactate: A Green Solvent for Olefin Metathesis. ChemSusChem, 2019, 12, 4655-4661.	3.6	28
226	Extraction of Natural Fragrance Ingredients: History Overview and Future Trends. Chemistry and Biodiversity, 2019, 16, e1900424.	1.0	42
227	The potency of \hat{I}^3 -valerolactone as bio-sourced polar aprotic organic medium for the electrocarboxlation of furfural by CO2. Journal of Electroanalytical Chemistry, 2019, 848, 113257.	1.9	7
228	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
229	From Petroleum to Bio-Based Solvents: From Academia to Industry. Green Chemistry and Sustainable Technology, 2019, , 51-87.	0.4	4
230	A metrics-based approach to preparing sustainable membranes: application to ultrafiltration. Green Chemistry, 2019, 21, 4457-4469.	4.6	23
231	The periodic table of the elements of green and sustainable chemistry. Green Chemistry, 2019, 21, 6545-6566.	4.6	90
232	Hydrocarbon Chain-Length Dependence of Solvation Dynamics in Alcohol-Based Deep Eutectic Solvents: A Two-Dimensional Infrared Spectroscopic Investigation. Journal of Physical Chemistry B, 2019, 123, 9355-9363.	1.2	20
233	Valorization of Carbohydrates of Agricultural Residues and Food Wastes: A Key Strategy for Carbon Conservation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17799-17807.	3.2	17
234	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	2.1	37
235	Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions. Chinese Chemical Letters, 2019, 30, 2304-2308.	4.8	43
236	Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. International Journal of Thermophysics, 2019, 40, 1.	1.0	34
237	ZnCl ₂ /Urea Eutectic Solvent as Stable Carbonylation Source for Benign Synthesis of 2â€"Benzimidazolones and 2â€"Imidazolones: An Effective Strategy for Preventing NH ₃ Gas Evolution. ChemistrySelect, 2019, 4, 11093-11097.	0.7	13
238	Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA. Molecules, 2019, 24, 3838.	1.7	9
239	Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines. RSC Advances, 2019, 9, 27250-27256.	1.7	18
240	Deep eutectic solvents for Cu-catalysed ARGET ATRP under an air atmosphere: a sustainable and efficient route to poly(methyl methacrylate) using a recyclable Cu(ii) metal–organic framework. Green Chemistry, 2019, 21, 5865-5875.	4.6	37
241	Waste-to-useful: a biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New Journal of Chemistry, 2019, 43, 2134-2140.	1.4	57
243	Anisole: a further step to sustainable hydroformylation. Green Chemistry, 2019, 21, 1091-1098.	4.6	47

#	Article	IF	CITATIONS
244	Applications of lignin-derived catalysts for green synthesis. Green Energy and Environment, 2019, 4, 210-244.	4.7	91
245	Application of a Sustainable Bioderived Solvent (Biodiesel) for Phenol Extraction. ACS Omega, 2019, 4, 10431-10437.	1.6	19
246	Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30, 2259-2262.	4.8	56
247	Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 324-329.	1.4	52
248	DESs: Green solvents for transition metal catalyzed organic reactions. Chinese Chemical Letters, 2019, 30, 2151-2156.	4.8	33
249	γ-valerolactone (GVL) as a bio-based green solvent and ligand for iron-mediated AGET ATRP. E-Polymers, 2019, 19, 323-329.	1.3	13
250	Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 10182-10197.	3.2	30
251	Sustainable routes for quantitative green selenocyanation of activated alkynes. Chinese Chemical Letters, 2019, 30, 1237-1240.	4.8	96
252	Cleaning oil paintings: NMR relaxometry and SPME to evaluate the effects of green solvents and innovative green gels. New Journal of Chemistry, 2019, 43, 8229-8238.	1.4	28
253	Production of n-butyl levulinate over modified KIT-6 catalysts: comparison of the activity of KIT-SO3H and Al-KIT-6 catalysts. Journal of the Iranian Chemical Society, 2019, 16, 2045-2053.	1.2	14
254	A green solvent for operating highly efficient low-power photon upconversion in air. Physical Chemistry Chemical Physics, 2019, 21, 14516-14520.	1.3	18
255	Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules, 2019, 20, 2135-2147.	2.6	33
256	Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope: A Continuum of Green Nanostructured Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 7878-7883.	3.2	43
257	Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry, 2019, 21, 2164-2213.	4.6	203
258	An Effective One-Pot Access to 2-Amino-4H-benzo[b] pyrans and 1,4-Dihydropyridines via \hat{I}^3 -Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent. Catalysis Letters, 2019, 149, 1690-1700.	1.4	29
259	Analytical chemistry with biosolvents. Analytical and Bioanalytical Chemistry, 2019, 411, 4359-4364.	1.9	25
260	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
261	Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Molecular Catalysis, 2019, 466, 60-69.	1.0	27

#	Article	IF	Citations
262	Eucalyptol: a new solvent for the synthesis of heterocycles containing oxygen, sulfur and nitrogen. Green Chemistry, 2019, 21, 1531-1539.	4.6	39
263	A practical multigram-scale method for the green synthesis of 5-substituted-1H-tetrazoles in deep eutectic solvent. Tetrahedron Letters, 2019, 60, 402-406.	0.7	36
264	Novel palladium nanoparticles supported on βâ€cyclodextrin@graphene oxide as magnetically recyclable catalyst for Suzuki–Miyaura crossâ€coupling reaction with two different approaches in bioâ€based solvents. Applied Organometallic Chemistry, 2019, 33, e4632.	1.7	31
265	Chemoselective hydrogenation of nitrobenzenes activated with tuned Au/h-BN. Journal of Catalysis, 2019, 370, 55-60.	3.1	48
266	Natural Deep Eutectic Solvent-Catalyzed Selenocyanation of Activated Alkynes via an Intermolecular H-Bonding Activation Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 2169-2175.	3.2	116
267	Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catalysis, 2019, 9, 1895-1906.	5.5	140
268	Electrodeposition of Ag onto Au(111) from Deep Eutectic Solvents. ChemElectroChem, 2019, 6, 141-146.	1.7	11
269	Hydroformylation of biomass-based hydroxyolefins in eco-friendly solvents: New fragrances from myrtenol and nopol. Molecular Catalysis, 2019, 462, 1-9.	1.0	23
270	Deep Eutectic Solvents., 2019,,.		70
271	Applications of Deep Eutectic Solvents. , 2019, , 111-151.		18
272	Nickel-catalysed C O bond reduction of 2,4,6-triaryloxy-1,3,5-triazines in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30, 409-412.	4.8	9
273	A new synthesis of limonene copolymer: experimental and theoretical analysis. Polymer Bulletin, 2019, 76, 3297-3327.	1.7	4
274	New scents using eco-friendly solvents: Oxo synthesis of aldehydes from caryophyllane sesquiterpenes. Catalysis Today, 2020, 344, 24-31.	2.2	6
275	Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water. Catalysis Letters, 2020, 150, 450-460.	1.4	31
276	Green extraction of oil from <scp><i>Carum carvi</i></scp> seeds using bioâ€based solvent and supercritical fluid: Evaluation of its antioxidant and antiâ€inflammatory activities. Phytochemical Analysis, 2020, 31, 37-45.	1.2	30
277	Synthesis, DFT, computational exploration of chemical reactivity, molecular docking studies of novel formazan metal complexes and their biological applications. Applied Organometallic Chemistry, 2020, 34, e5444.	1.7	50
278	Tandem addition/cyclization for synthesis of 2-aroyl benzofurans and 2-aroyl indoles by carbopalladation of nitriles. Organic and Biomolecular Chemistry, 2020, 18, 488-494.	1.5	14
279	Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl)benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents. Bioorganic Chemistry, 2020, 95, 103537.	2.0	39

#	Article	IF	Citations
280	Visible-light-promoted C N and C S bonds formation: A catalyst and solvent-free photochemical approach for the synthesis of 1,3-thiazolidin-4-ones. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112347.	2.0	18
281	Readily Scalable Methodology for the Synthesis of Nonsymmetric Glyceryl Diethers by a Tandem Acid-/Base-Catalyzed Process. Organic Process Research and Development, 2020, 24, 154-162.	1.3	5
282	Nickelâ€Catalyzed Tandem Reaction of Functionalized Arylacetonitriles with Arylboronic Acids in 2â€MeTHF: Ecoâ€Friendly Synthesis of Aminoisoquinolines and Isoquinolones. Chemistry - an Asian Journal, 2020, 15, 106-111.	1.7	19
283	Extraction and recovery of asphalt binder: a literature review. International Journal of Pavement Research and Technology, 2020, 13, 20-31.	1.3	20
284	Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions. Applied Microbiology and Biotechnology, 2020, 104, 1481-1496.	1.7	59
285	Exploration of New Biomassâ€Derived Solvents: Application to Carboxylation Reactions. ChemSusChem, 2020, 13, 2080-2088.	3.6	22
286	Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. Journal of Molecular Liquids, 2020, 298, 112183.	2.3	83
287	Recyclable Polyisobutyleneâ€Bound HMPA as an Organocatalyst in Recyclable Poly(αâ€olefin) Solvents. ChemCatChem, 2020, 12, 6050-6058.	1.8	5
288	Microwave-assisted nucleophilic degradation of organophosphorus pesticides in propylene carbonate. Organic and Biomolecular Chemistry, 2020, 18, 7868-7875.	1.5	5
289	CO2-expanded liquids as solvents to enhance activity of Pseudozyma antarctica lipase B towards ortho-substituted 1-phenylethanols. Tetrahedron Letters, 2020, 61, 152424.	0.7	7
290	Furfural and 5-(hydroxymethyl)furfural: Two pivotal intermediates for bio-based chemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100384.	3.2	37
291	Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 2020, 136, 109558.	2.9	43
292	Steps Forward toward the Substitution of Conventional Solvents in the Heck–Mizoroki Coupling Reaction: Glycerol-Derived Ethers and Deep Eutectic Solvents as Reaction Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 13076-13084.	3.2	19
293	Lemon juice mediated efficient and eco-friendly organic transformations. Tetrahedron Letters, 2020, 61, 152298.	0.7	9
294	The Potential of High Voltage Discharges for Green Solvent Extraction of Bioactive Compounds and Aromas from Rosemary (Rosmarinus officinalis L.)—Computational Simulation and Experimental Methods. Molecules, 2020, 25, 3711.	1.7	18
295	Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-ones in a Deep Eutectic Solvent. Organic Preparations and Procedures International, 2020, 52, 517-523.	0.6	26
296	Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research and Development, 2020, 24, 2665-2675.	1.3	32
297	Replacement strategies for non-green dipolar aprotic solvents. Green Chemistry, 2020, 22, 6240-6257.	4.6	102

#	Article	IF	Citations
298	Supramolecular biosolvents made up of self-assembled rhamnolipids: synthesis and characterization. Green Chemistry, 2020, 22, 6115-6126.	4.6	19
299	Recent advances in liquid hydrosilane-mediated catalytic <i>N</i> formylation of amines with CO ₂ . RSC Advances, 2020, 10, 33972-34005.	1.7	20
300	Greener and Additiveâ€Free Ring Opening of Epoxides by Allâ€inâ€One Choline Systems. ChemistrySelect, 2020, 5, 14538-14542.	0.7	2
301	A Metal Free, Hantzsch Synthesis for Privileged Scaffold 1, 4-Dihydropyridines: A Glycerol Promoted Sustainable Protocol. Polycyclic Aromatic Compounds, 2022, 42, 1035-1047.	1.4	5
302	Recyclable Heterogeneous Palladium-Catalyzed Cyclocarbonylation of 2-lodoanilines with Acyl Chlorides in the Biomass-Derived Solvent 2-Methyltetrahydrofuran. Journal of Organic Chemistry, 2020, 85, 8522-8532.	1.7	17
303	Deep eutectic solvent in separation and preconcentration of organic and inorganic species. , 2020, , 381-423.		3
304	Experimental and modeling studies on the Ru/C catalyzed levulinic acid hydrogenation to \hat{I}^3 -valerolactone in packed bed microreactors. Chemical Engineering Journal, 2020, 399, 125750.	6.6	30
305	Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recoveryâ€"a review. Environmental Science and Pollution Research, 2020, 27, 32371-32388.	2.7	42
306	AGREEâ€"Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 2020, 92, 10076-10082.	3.2	989
307	How Does Addition of Lithium Salt Influence the Structure and Dynamics of Choline Chloride-Based Deep Eutectic Solvents?. Journal of Physical Chemistry B, 2020, 124, 2864-2878.	1.2	25
308	Complete Solvation Dynamics of Coumarin 153 in Tetraalkylammonium Bromide-Based Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 2473-2481.	1.2	11
309	Characterization of Anionic Reverse Micelles Formulated on Biobased Solvents as Replacing Conventional Nonpolar Organic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 5478-5484.	3.2	3
310	Metal-Free and Regioselective Synthesis of Substituted and Fused Chromenopyrrole Scaffolds via the Divergent Reactivity of α-Azido Ketones in Water. Journal of Organic Chemistry, 2020, 85, 9631-9649.	1.7	14
311	Visible-light-initiated malic acid-promoted cascade coupling/cyclization of aromatic amines and KSCN to 2-aminobenzothiazoles without photocatalyst. Chinese Chemical Letters, 2020, 31, 1895-1898.	4.8	98
312	Hydroformylation of recalcitrating biorenewable compounds containing trisubstituted double bonds. Applied Catalysis A: General, 2020, 591, 117406.	2.2	1
313	Green Technologies for the Production of Modified Lipids. Annual Review of Food Science and Technology, 2020, 11, 319-337.	5.1	7
314	Ethyl lactate-involved three-component dehydrogenative reactions: biomass feedstock in diversity-oriented quinoline synthesis. Green Chemistry, 2020, 22, 3074-3078.	4.6	45
315	Headspace GC/MS Analysis of Residual Solvents in Dietary Supplements, Cosmetics, and Household Products Using Ethyl Lactate as a Dissolution Medium. Journal of AOAC INTERNATIONAL, 2020, 103, 407-412.	0.7	4

#	Article	IF	Citations
316	Polyethylene Glycol (PEGâ€400) as Methylene Spacer and Green Solvent for the Synthesis of Heterodiarylmethanes under Metalâ€Free Conditions. European Journal of Organic Chemistry, 2020, 2020, 3499-3507.	1.2	15
317	Agroindustrial waste based biorefineries for sustainable production of lactic acid., 2020,, 125-153.		3
318	Electrostatic Manifestation of Micro-Heterogeneous Solvation Structures in Deep-Eutectic Solvents: A Spectroscopic Approach. Journal of Physical Chemistry B, 2020, 124, 3709-3715.	1.2	10
319	Glycerolysis of free fatty acids: A review. Renewable and Sustainable Energy Reviews, 2021, 137, 110501.	8.2	35
320	NNN Pincerâ€functionalized Porous Organic Polymer Supported Ru(III) as a Heterogeneous Catalyst for Levulinic Acid Hydrogenation to γâ€Valerolactone. ChemCatChem, 2021, 13, 695-703.	1.8	15
321	Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Separation and Purification Technology, 2021, 258, 118040.	3.9	23
322	Natural deep eutectic solvents: From simple systems to complex colloidal mixtures. Advances in Botanical Research, 2021, , 17-40.	0.5	3
323	Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions., 2021,, 643-673.		0
324	Aerobic waste-minimized Pd-catalysed C–H alkenylation in GVL using a tube-in-tube heterogeneous flow reactor. Green Chemistry, 2021, 23, 6576-6582.	4.6	19
325	Environmentally Friendly Solvents for Sample Preparation in Foodomics., 2021,, 536-565.		1
326	Green strategies for transition metal-catalyzed Câ€"H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
327	Green solvents for remediation technologies. , 2021, , 23-30.		1
328	lonic liquids as green solvents in the synthesis of pharmaceutically important compounds. , 2021, , 325-348.		0
329	Lipids as versatile solvents for chemical synthesis. Green Chemistry, 2021, 23, 7219-7227.	4.6	9
330	Environmentally Benign Organic Solvent: A Green Approach. Materials Horizons, 2021, , 165-180.	0.3	0
331	Green solvents for eco-friendly synthesis of bioactive heterocycles. , 2021, , 393-470.		4
332	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
333	Efficient hydrogenation of levulinic acid catalysed by spherical NHC-Ir assemblies with atmospheric pressure of hydrogen. Green Chemistry, 2021, 23, 5037-5042.	4.6	15

#	Article	IF	CITATIONS
334	Plant-derived solvents: Production and purification., 2021,, 191-204.		O
335	Replacing halogenated solvents by a butyl acetate solution of bisphenol S in the transformations of indoles. Green Chemistry, 2021, 23, 3588-3594.	4.6	9
336	Green chemistry design in polymers derived from lignin: review and perspective. Progress in Polymer Science, 2021, 113, 101344.	11.8	103
337	Technoeconomic Assessment of Organic Halide Based Gold Recovery from Waste Electronic and Electrical Equipment. Resources, 2021, 10, 17.	1.6	5
338	Interplay of Acidity and Ionic Liquid Structure on the Outcome of a Heterocyclic Rearrangement Reaction. Journal of Organic Chemistry, 2021, 86, 4045-4052.	1.7	3
339	Anhydrous tert-butanol production via extractive distillation using glycerol as an entrainer: technical performances simulation. IOP Conference Series: Earth and Environmental Science, 2021, 700, 012029.	0.2	0
340	Sustainable Recovery of High Added-Value Vanilla Compounds from Wastewater Using Green Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 4850-4862.	3.2	18
341	Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules, 2021, 26, 1760.	1.7	7
342	Green Chemistry Approach for Fabrication of Polymer Composites. Sustainable Chemistry, 2021, 2, 254-270.	2.2	6
344	Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes, 2021, 11, 309.	1.4	92
345	Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. Applied Sciences (Switzerland), 2021, 11, 3405.	1.3	19
346	Combing multiple site-directed mutagenesis of penicillin G acylase from Achromobacter xylosoxidans PX02 with improved catalytic properties for cefamandole synthesis. International Journal of Biological Macromolecules, 2021, 175, 322-329.	3.6	3
347	The application of clean production in organic synthesis. Chinese Chemical Letters, 2021, 32, 1637-1644.	4.8	51
348	Amidosulfonic acid supported on graphitic carbon nitride: novel and straightforward catalyst for Paal–Knorr pyrrole reaction under mild conditions. Monatshefte FÃ⅓r Chemie, 2021, 152, 625-634.	0.9	7
349	Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC–MS analysis: An insight to reducing the impact of caffeine on the GC–MS measurement. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1171, 122555.	1.2	18
350	Green Stereoregular Polymerization of Poly(methyl methacrylate)s Through Vesicular Catalysis. CCS Chemistry, 2022, 4, 1337-1346.	4.6	13
351	Green and sustainable membrane fabrication development. Sustainable Technologies for Green Economy, 2021, 1, 14-23.	2.7	7
352	Regiodivergent Isosorbide Acylation by Oxidative N-Heterocyclic Carbene Catalysis in Batch and Continuous Flow. ACS Sustainable Chemistry and Engineering, 2021, 9, 8295-8305.	3.2	13

#	Article	IF	CITATIONS
353	Brønsted acid catalyzed synthesis of 2â€arylâ€quinazolinones via cyclization of 2â€aminobenzamide with benzonitriles in PEG. Journal of Heterocyclic Chemistry, 2021, 58, 1955.	1.4	3
354	Mycotoxin extraction from edible insects with natural deep eutectic solvents: a green alternative to conventional methods. Journal of Chromatography A, 2021, 1648, 462180.	1.8	14
355	Experimental and theoretical investigation of the cycloisomerization of N-propargylcarboxamide catalyzed by NHC-Au-X in green solvents. Inorganica Chimica Acta, 2021, 522, 120372.	1.2	4
356	Novel 2â€Pyrazolinâ€5â€one Derivative through Unforeseen Orthoamide Intermediate: Mechanistic Insights on Isocyanide Based [4+1] Cycloaddition. ChemistrySelect, 2021, 6, 6690-6697.	0.7	1
357	Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. ChemSusChem, 2021, 14, 3367-3381.	3.6	28
358	Novel Sono-synthesized Triazole Derivatives Conjugated with Selenium Nanoparticles for cancer treatment. Egyptian Journal of Chemistry, 2021, .	0.1	1
359	Adsorption of CO2 on palm shell based activated carbon modified by deep eutectic solvent: Breakthrough adsorption study. Journal of Environmental Chemical Engineering, 2021, 9, 105333.	3.3	36
360	Catalytic Reductive Alcohol Etherifications with Carbonylâ€Based Compounds or CO ₂ and Related Transformations for the Synthesis of Ether Derivatives. ChemSusChem, 2021, 14, 3744-3784.	3.6	18
361	Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. Journal of Molecular Liquids, 2021, 338, 116930.	2.3	17
362	A further step to sustainable palladium catalyzed oxidation: Allylic oxidation of alkenes in green solvents. Applied Catalysis A: General, 2021, 625, 118349.	2.2	0
363	The green solvent: a critical perspective. Clean Technologies and Environmental Policy, 2021, 23, 2499-2522.	2.1	80
364	Solute rotation and solvation dynamics in deep eutectic solvents. Chemical Physics Impact, 2021, 3, 100043.	1.7	5
365	An environmentally stable supramolecular biosolvent: Characterization and study of its potential for the elimination of polar toxic substances in water. Journal of Cleaner Production, 2021, 321, 128975.	4.6	4
366	Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnology Advances, 2021, 52, 107815.	6.0	72
367	Considering solubility disparity and acoustic-cavitation susceptivity of neoteric solvents to accurately predict sono-recovery yield of value-added compounds. Separation and Purification Technology, 2021, 276, 119306.	3.9	2
368	Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chemical Engineering Journal, 2022, 427, 130925.	6.6	101
369	Biosolvents for biocatalysis. , 2021, , 85-107.		0
370	The green platform molecule gamma-valerolactone – ecotoxicity, biodegradability, solvent properties, and potential applications. Green Chemistry, 2021, 23, 2962-2976.	4.6	76

#	Article	IF	Citations
371	Eutectics: formation, properties, and applications. Chemical Society Reviews, 2021, 50, 8596-8638.	18.7	184
372	Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.	1.5	30
374	An Efficient and Facile Synthesis of 2â€Aminoâ€4 <i>H</i> à6€pyrans &Tetrahydrobenzo[<i>b</i>)pyrans Catalysed by WEMFSA at Room Temperature. ChemistrySelect, 2020, 5, 1896-1906.	0.7	35
375	Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis. Nanotechnology in the Life Sciences, 2020, , 435-455.	0.4	4
376	Role of Solvent System in Green Synthesis of Nanoparticles. , 2020, , 53-74.		2
377	Use of sustainable organic transformations in the construction of heterocyclic scaffolds. , 2020, , 245-352.		8
378	Catalyst-free Organic Synthesis: An Introduction. RSC Green Chemistry, 2017, , 1-10.	0.0	4
379	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
380	Recent Advances in the Utility of Glycerol as a Benign and Biodegradable Medium in Heterocyclic Synthesis. Current Organic Chemistry, 2020, 23, 3226-3246.	0.9	10
381	Application of Bio-Based Solvents in Catalysis. Current Organic Synthesis, 2015, 12, 675-695.	0.7	34
382	Sustainable Fabrication of Organic Solvent Nanofiltration Membranes. Membranes, 2021, 11, 19.	1.4	31
383	Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, 1, 005.	1.6	4
384	Aqueous extracts of biomass ash as an alternative class of Green Solvents for organic transformations: A review update. Sustainable Chemistry and Pharmacy, 2021, 24, 100551.	1.6	9
385	Influence of Water-Miscible Organic Solvent on the Activity and Stability of Silica-Coated Ru Catalysts in the Selective Hydrolytic Hydrogenation of Cellobiose into Sorbitol. Catalysts, 2020, 10, 149.	1.6	4
386	Green solvents for the formation of amide linkages. Organic and Biomolecular Chemistry, 2022, 20, 1137-1149.	1.5	26
387	Unconventional Ethereal Solvents in Organic Chemistry: A Perspective on Applications of 2-Methyltetrahydrofuran, Cyclopentyl Methyl Ether, and 4-Methyltetrahydropyran. Organic Process Research and Development, 2022, 26, 480-492.	1.3	19
389	Yeşil Çözücü Ortamında Enzimatik Kinetik Rezolüsyon Yöntemi ile Enantiyomerik Saflıkta 1-Fenile Aœretimi. Journal of Polytechnic, 0, , .	tanol 0.4	0
390	Straightforward and rapid Petasis multicomponent reactions in deep eutectic solvent. Current Research in Green and Sustainable Chemistry, 2021, 4, 100220.	2.9	4

#	Article	IF	CITATIONS
391	Supramolecular solvents in microextraction techniques. , 2021, , 513-537.		0
392	A review of green solvent extraction techniques and their use in antibiotic residue analysis. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114487.	1.4	24
393	Carvone and its eutectic mixtures as novel, biodegradable, and tunable solvents to extract hydrophobic compounds in substitution for volatile toxic solvents. Food Chemistry, 2022, 374, 131630.	4.2	5
394	Solvation Effects in Organic Chemistry: A Short Historical Overview. Journal of Organic Chemistry, 2022, 87, 1616-1629.	1.7	36
395	Influence of natural deep eutectic solvents on stability and structure of cellulase. Journal of Molecular Liquids, 2022, 346, 118238.	2.3	10
396	An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. Journal of Cleaner Production, 2022, 334, 130181.	4.6	19
397	Sulfamic acid promoted expeditious and column chromatography free synthesis of functionalized spiro [indoline-3, $7\hat{a} \in ^2$ -pyrano [3, 2-c: 5, 6-c'] dichromene]-2, $6\hat{a} \in ^2$, $8\hat{a} \in ^2$ -trione derivatives under reflux conditions. Journal of Molecular Structure, 2022, 1253, 132213.	1.8	2
398	Enzymatic Polymerization as a Green Approach to Synthesizing Bio-Based Polyesters. Macromol, 2022, 2, 30-57.	2.4	14
399	Metalâ€Free Oneâ€Pot Domino Synthesis of Oxazolidinone Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
400	Perspective Chapter: Overview of Bio-Based Surfactant – Recent Development, Industrial Challenge, and Future Outlook. , 0, , .		7
401	Sustainable protocols for direct C–H bond arylation of (hetero)arenes. Green Chemistry, 2022, 24, 1809-1894.	4.6	40
402	Recent Advances in Utilization of Deep Eutectic Solvents: An Environmentally Friendly Pathway for Multi-component Synthesis. Current Organic Chemistry, 2022, 26, 299-323.	0.9	15
403	K2CO3/PG DES promoted transition metal free room temperature synthesis of nitroaldols and nitroolefins. Current Research in Green and Sustainable Chemistry, 2022, 5, 100259.	2.9	0
404	Lemon Juice: A Versatile Biocatalyst and Green Solvent in Organic Transformations. ChemistrySelect, 2022, 7, .	0.7	11
405	Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application. Optical Materials, 2022, 124, 111975.	1.7	10
406	The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of Environmental Management, 2022, 307, 114385.	3.8	33
407	Catalytic upgrading of CO2 to N-formamides. , 2022, , 613-639.		0
408	Green solvents for organic electronics processing. , 2022, , 425-462.		1

#	Article	IF	CITATIONS
409	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
410	Choline chloride and ethylene glycol based deep eutectic solvent (DES) <i>versus</i> hydroxyl functionalized room temperature ionic liquids (RTILs): assessing the differences in microscopic behaviour between the DES and RTILs. Physical Chemistry Chemical Physics, 2022, 24, 7093-7106.	1.3	13
411	Diels–Alder Cycloaddition Reactions in Sustainable Media. Molecules, 2022, 27, 1304.	1.7	9
412	Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chemical Reviews, 2022, 122, 6749-6794.	23.0	58
413	Ultrasound-assisted efficient synthesis and antimicrobial evaluation of pyrazolopyranopyrimidine derivatives using starch functionalized magnetite nanoparticles as a green biocatalyst in water. Journal of Chemical Sciences, 2022, 134, 1.	0.7	11
414	Alternative green solvents in sample preparation. , 2022, 1, 100007.		25
415	Tailoring composition and nanostructures in supramolecular solvents: Impact on the extraction efficiency of polyphenols from vegetal biomass. Separation and Purification Technology, 2022, 292, 120991.	3.9	8
416	Copper-decorated covalent organic framework as a heterogeneous photocatalyst for phosphorylation of terminal alkynes. Green Chemistry, 2022, 24, 4071-4081.	4.6	47
417	Ringâ€Opening/Cyclization of Cyclobutanone Oxime Esters with Alkenes in Biomassâ€Derived Solvent Using Copper Catalyst and Inorganic Oxidant. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
418	Green Chemistry and Molecularly Imprinted Membranes. Membranes, 2022, 12, 472.	1.4	14
419	Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules, 2022, 211, 490-498.	3.6	4
420	Microwave-Accelerated facile synthesis of pyrano[2,3-d]pyrimidine derivatives via one-pot strategy executed by agro-waste extract as a greener solvent media. Current Microwave Chemistry, 2022, 09, .	0.2	0
421	Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. Molecular Catalysis, 2022, 527, 112400.	1.0	3
422	Biocarbonates Derived from CO ₂ and Terpenes: Molecular Design for Aqueous Mixture Treatment Driven by COSMO-RS. ACS Sustainable Chemistry and Engineering, 2022, 10, 9635-9643.	3.2	2
423	Simple and modestly scalable synthesis of. Australian Journal of Chemistry, 2022, 75, 331-344.	0.5	3
424	Design of spherical agglomerates via crystallization with a non-toxic bridging liquid: From mechanism to application. Powder Technology, 2022, 408, 117725.	2.1	12
425	Green solvents in polymeric membrane fabrication: A review. Separation and Purification Technology, 2022, 298, 121691.	3.9	32
426	Green solvents and approaches recently applied for extraction of natural bioactive compounds. TrAC - Trends in Analytical Chemistry, 2022, 157 , 116732 .	5.8	30

#	Article	IF	CITATIONS
427	Performance of Some Novel Mixed Solvents as Entrainers for Separation of Water and Acetonitrile. Journal of Chemical & Data, 2022, 67, 2393-2401.	1.0	1
428	N-Heterocyclic Carbene Gold Complexes Active in Hydroamination and Hydration of Alkynes. Catalysts, 2022, 12, 836.	1.6	5
429	Green solvents, potential alternatives for petroleum based products in food processing industries. , 2022, 3, 100052.		12
430	Regulatory aspects of deep eutectic solvents technology and applications. , 2022, , 373-405.		0
431	Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. Molecules, 2022, 27, 5654.	1.7	8
432	Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry. Catalysis Today, 2023, 423, 113892.	2.2	3
434	Activityâ€Based Models to Predict Kinetics of Levulinic Acid Esterification. ChemPhysChem, 2023, 24, .	1.0	4
435	Green nanostructured liquids for the analysis of urine in drug-facilitated sexual assault cases. Analytical and Bioanalytical Chemistry, 2023, 415, 2025-2035.	1.9	1
436	Characterization of a new sustainable supramolecular solvent and application to the determination of oxy-PAHs in meat, seafood and fish tissues. Food Chemistry, 2023, 405, 134731.	4.2	1
437	Trio Role of Deep Eutectic Solvents in the Green Synthesis of 1,4-Dihydropyridine Synthesis <i>via</i> Hantzsch Reaction. Polycyclic Aromatic Compounds, 2023, 43, 7238-7251.	1.4	1
438	Biopolymer $\hat{a}\in$ A sustainable and efficacious material system for effluent removal. Journal of Hazardous Materials, 2023, 443, 130168.	6.5	41
439	A recyclable process between a monomer and polyester with a natural catalyst. Green Chemistry, 2022, 24, 9282-9289.	4.6	4
440	Eco-friendly Synthesis of 2-Amino-4H-Chromene Catalysed by HRSPLAE and Anti-Cancer Activity Studies. Current Organocatalysis, 2022, 10, .	0.3	0
441	Mapping potential solvents for inhibitors removal from sugarcane bagasse hemicellulosic hydrolysate and its impact on fermentability. Industrial Crops and Products, 2023, 192, 116023.	2.5	3
442	Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar. Chemosphere, 2023, 313, 137457.	4.2	2
443	Optimized ultrasonic-assisted deep eutectic solvents extraction of Clematis flammula L. leaves, phytochemical screening, biological activities and the characterization of its volatile compounds. Biomass Conversion and Biorefinery, 0, , .	2.9	1
444	A Review on Green Synthesis of Biologically Active Compounds. Current Green Chemistry, 2022, 10, .	0.7	1
445	Dipolar Modification in Heterogeneous Catalysts under Electron Beam Irradiation for the Conversion of Biomass-Derived Platform Molecules. ACS Catalysis, 2022, 12, 15618-15625.	5 . 5	4

#	ARTICLE	IF	CITATIONS
446	Azide–Alkyne Cycloaddition Catalyzed by Copper(I) Coordination Polymers in PPM Levels Using Deep Eutectic Solvents as Reusable Reaction Media: A Waste-Minimized Sustainable Approach. ACS Omega, 2023, 8, 868-878.	1.6	8
447	Glycine/Glutamate: "Green―Alternatives to Recover Metals from Minerals/Residues—Review of Current Research. Minerals (Basel, Switzerland), 2023, 13, 22.	0.8	2
448	New imidazolium-based ionic liquids for mitigating carbon steel corrosion in acidic condition. Zeitschrift Fur Physikalische Chemie, 2023, 237, 211-241.	1.4	2
449	A comprehensive review on recent developments and future perspectives of switchable solvents and their applications in sample preparation techniques. Green Chemistry, 2023, 25, 1729-1748.	4.6	8
450	Isolation of Pure Lignin and Highly Digestible Cellulose from Defatted and Steam-Exploded <i>Cynara cardunculus</i> . ACS Sustainable Chemistry and Engineering, 2023, 11, 1875-1887.	3.2	1
451	Flow-through reductive catalytic fractionation of beech wood sawdust., 2023, 1, 459-469.		3
452	lonic liquids as green and efficient corrosion-protective materials for metals and alloys. , 2023, , 185-196.		0
453	Recent advances in water-mediated multiphase catalysis. Current Opinion in Colloid and Interface Science, 2023, 65, 101691.	3.4	5
454	Replacing polar aprotic solvents with water in organic synthesis. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100774.	3.2	4
455	Does variation in composition affect dynamics when approaching the eutectic composition?. Journal of Chemical Physics, 2023, 158, .	1.2	5
456	1,3-Dioxolane compounds (DOXs) as biobased reaction media. Green Chemistry, 2023, 25, 2790-2799.	4.6	1
457	Recent Advances in Greener Asymmetric Organocatalysis Using Bio-Based Solvents. Catalysts, 2023, 13, 553.	1.6	5
458	An Agro-Waste Catalyzed Facile Synthesis of 1 <i>H-</i> Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives: Evaluation of Antioxidant and Electrochemical Studies. Polycyclic Aromatic Compounds, 2024, 44, 1128-1150.	1.4	1
459	Process Development for a $1 < i > H < / i > - Indazole$ Synthesis Using an Intramolecular Ullmann-Type Reaction. Journal of Organic Chemistry, 2023, 88, 4209-4223.	1.7	1
460	Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technology Letters, 2023, 9, 01-14.	0.3	1
461	Iron-Mediated AGET ATRP of Methyl Methacrylate in Green Polar Ethyl Lactate Solvent without any External Ligand. Polymer Science - Series B, 2023, 65, 103-110.	0.3	1
462	Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities. Critical Reviews in Analytical Chemistry, 0, , 1-20.	1.8	5
463	Molecular design and experimental study of deep eutectic solvent extraction of keratin derived from feathers. International Journal of Biological Macromolecules, 2023, 241, 124512.	3.6	4

#	Article	IF	CITATIONS
464	13.3. Regioselective 1,2-Reduction of an \hat{l}_{\pm} , \hat{l}_{\pm}^2 -Unsaturated Ketone. A Green Experiment. , 2016, , 784-788.		0
466	Chemistry: Necessary for Sustainable Technology, but Not Sufficient. , 2021, , 247-329.		0
467	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
469	Introduction to Green Chemistry. , 2022, , 1-18.		0
476	Sustainability in Drug and Nanoparticle Processing. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
482	Environmentally Friendly Solvents. Current and Future Developments in Food Science, 2023, , 68-131.	0.0	0
483	Supramolecular Solvents. Current and Future Developments in Food Science, 2023, , 244-279.	0.0	0
484	Green solvents for membrane fabrication. , 2023, , 9-44.		0
485	Innovative extraction technologies of bioactive compounds from plant by-products for textile colorants and antimicrobial agents. Biomass Conversion and Biorefinery, 0, , .	2.9	5