Going back to the roots: the microbial ecology of the rhi

Nature Reviews Microbiology

11, 789-799

DOI: 10.1038/nrmicro3109

Citation Report

#	Article		CITATIONS
1	Syringic acid inhibited cucumber seedling growth and changed rhizosphere microbial communities. Plant, Soil and Environment, 2014, 60, 158-164.	1.0	18
2	Selective Microbial Genomic DNA Isolation Using Restriction Endonucleases. PLoS ONE, 2014, 9, e109061.	1.1	19
3	Managing biotic interactions for ecological intensification of agroecosystems. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	42
4	Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 2014, 50, 7406-7429.	1.7	73
5	Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration. Soil Biology, 2014, , 287-296.	0.6	12
6	Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, 2014, , .	0.6	21
7	Interactions between Bacillus anthracis and Plants May Promote Anthrax Transmission. PLoS Neglected Tropical Diseases, 2014, 8, e2903.	1.3	40
8	The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 2014, 5, 368.	1.5	145
9	Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Frontiers in Plant Science, 2014, 5, 635.	1.7	36
10	Comparative Metagenomic Analysis of Human Gut Microbiome Composition Using Two Different Bioinformatic Pipelines. BioMed Research International, 2014, 2014, 1-10.	0.9	68
11	Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritimaââ,¬â€ancestor of all beet cropsââ,¬â€and modern sugar beets. Frontiers in Microbiology, 2014, 5, 415.	1.5	124
12	Draft Genome Sequence of Paenibacillus pini JCM 16418 ^T , Isolated from the Rhizosphere of Pine Tree. Genome Announcements, 2014, 2, .	0.8	5
13	Role of 2-hexyl, 5-propyl resorcinol production by <i>Pseudomonas chlororaphis</i> PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiology Ecology, 2014, 89, 20-31.	1.3	50
14	The <i><scp>S</scp>phagnum</i> microbiome supports bog ecosystem functioning under extreme conditions. Molecular Ecology, 2014, 23, 4498-4510.	2.0	98
15	Belowground biodiversity and ecosystem functioning. Nature, 2014, 515, 505-511.	13.7	2,371
16	Invasive plant species set up their own niche. New Phytologist, 2014, 204, 435-437.	3.5	4
17	Belowâ€ground opportunities in vegetation science. Journal of Vegetation Science, 2014, 25, 1117-1125.	1.1	30
18	An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Molecular Ecology, 2014, 23,	2.0	33

	Сітатіо	n Report	
#	Article	IF	CITATIONS
19	An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science, 2014, 5, 209.	1.7	446
20	Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 2014, 5, 283.	1.5	196
21	Rhizosphere microbial communities associated with Rhizoctonia damage at the field and disease patch scale. Applied Soil Ecology, 2014, 78, 37-47.	2.1	42
22	Phyllosphere Microbiota Composition and Microbial Community Transplantation on Lettuce Plants Grown Indoors. MBio, 2014, 5, .	1.8	84
23	Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends in Biotechnology, 2014, 32, 529-537.	4.9	63
24	The pathogen <i>Batrachochytrium dendrobatidis</i> disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5049-58.	3.3	264
25	Soybean Plants Modify Metal Oxide Nanoparticle Effects on Soil Bacterial Communities. Environmental Science & Technology, 2014, 48, 13489-13496.	4.6	99
26	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	2.3	299
27	How may biochar influence severity of diseases caused by soilborne pathogens?. Carbon Management, 2014, 5, 169-183.		117
28	Bacterial community characterization in the soils of native and restored rainforest fragments. Antonie Van Leeuwenhoek, 2014, 106, 947-957.	0.7	2
29	Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Applied Microbiology and Biotechnology, 2014, 98, 9375-9387.	1.7	45
30	Root exudates mediated interactions belowground. Soil Biology and Biochemistry, 2014, 77, 69-80.	4.2	671
31	Phytoextraction and dissipation of lindane by Spinacia oleracea L Ecotoxicology and Environmental Safety, 2014, 109, 22-26.	2.9	33
32	Resistance of bacterial communities in the potato rhizosphere to disturbance and its application to agroecology. Soil Biology and Biochemistry, 2014, 79, 125-131.	4.2	9
33	A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus. Journal of Chemical Ecology, 2014, 40, 502-513.	0.9	55
34	Insect herbivoreâ€associated organisms affect plant responses to herbivory. New Phytologist, 2014, 204, 315-321	3.5	78
35	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	3.5	2,193
36	Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal, 2014, 8, 1577-1587.	4.4	633

#	Article	IF	Citations
37	Exploring interactions of plant microbiomes. Scientia Agricola, 2014, 71, 528-539.	0.6	122
38	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> . Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	1.4	69
39	Soil microbial community responses to heat wave components: drought and high temperature. Climate Research, 2015, 66, 243-264.	0.4	72
40	Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Scientific Reports, 2015, 5, 14345.	1.6	26
42	Revealing crosstalk of plant and fungi in the symbiotic roots of sewage-cleaning Eichhornia crassipes using direct de novo metatranscriptomic analysis. Scientific Reports, 2015, 5, 15407.	1.6	15
43	Molecular and chemical dialogues in bacteria-protozoa interactions. Scientific Reports, 2015, 5, 12837.	1.6	51
44	Antimicrobial compounds from rhizosphere bacteria and their role in plant disease management. , 2015, , 371-386.		0
45	Interaction of Piriformospora indica with Azotobacter chroococcum. Scientific Reports, 2015, 5, 13911.	1.6	36
46	Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Scientific Reports, 2015, 5, 14233.	1.6	219
47	āf€ā,¤,ºā®ç"Ÿè,²éŽç∵‹ā«āŠāʿā,‹æ¹åœå¾®ç"Ÿç‰©å¢ā®å‰å‹• åœfå´ç'°å¢f下ã§ā®éºä¼å解枕 Kagaku To Seit	out ou g 201	5, 6 3, 576-53
48	Isolation and genetic characterization of endophytic and rhizospheric microorganisms from Butia purpurascens Glassman. African Journal of Microbiology Research, 2015, 9, 1907-1916.	0.4	3
49	Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	11
50	THE RESURRECTION PLANT TRIPOGON SPICATUS (POACEAE) HARBORS A DIVERSITY OF PLANT GROWTH PROMOTING BACTERIA IN NORTHEASTERN BRAZILIAN CAATINGA. Revista Brasileira De Ciencia Do Solo, 2015, 39, 993-1002.	0.5	25
51	Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling. Frontiers in Microbiology, 2015, 6, 268.	1.5	47
52	A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Frontiers in Microbiology, 2015, 6, 398.	1.5	85
53	Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology, 2015, 6, 598.	1.5	111
54	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Frontiers in Microbiology, 2015, 6, 869.	1.5	118
55	Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Frontiers in Microbiology, 2015, 6, 887.	1.5	62

#	Article	IF	CITATIONS
56	Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Frontiers in Microbiology, 2015, 6, 1121.	1.5	45
57	Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars. Frontiers in Microbiology, 2015, 6, 1252.	1.5	52
58	Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Frontiers in Microbiology, 2015, 6, 1280.	1.5	208
59	Cross-Kingdom Similarities in Microbiome Ecology and Biocontrol of Pathogens. Frontiers in Microbiology, 2015, 6, 1311.	1.5	24
60	Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A. PLoS ONE, 2015, 10, e0126033.	1.1	28
61	Environmental Filtering of Microbial Communities in Agricultural Soil Shifts with Crop Growth. PLoS ONE, 2015, 10, e0134345.	1.1	65
62	Root Microbiome Assemblage is Modulated by Plant Host Factors. Advances in Botanical Research, 2015, 75, 57-79.	0.5	28
64	Microbial Assembly in Agroecosystems â \in " From the Small Arise the Big. , 0, , .		1
65	Beyond borders: investigating microbiome interactivity and diversity for advanced biocontrol technologies. Microbial Biotechnology, 2015, 8, 5-7.	2.0	33
66	Bioprospecting glacial ice for plant growth promoting bacteria. Microbiological Research, 2015, 177, 1-7.	2.5	38
67	Total Synthesis and Biological Investigation of (â^')-Promysalin. Journal of the American Chemical Society, 2015, 137, 7314-7317.	6.6	34
68	Plant traits related to nitrogen uptake influence plantâ€microbe competition. Ecology, 2015, 96, 2300-2310.	1.5	114
69	Loss of Microbiome Ecological Niches and Diversity by Global Change and Trophic Downgrading. SpringerBriefs in Ecology, 2015, , 89-113.	0.2	6
70	Virulence of oomycete pathogens from <i>Phragmites australis</i> â€invaded and noninvaded soils to seedlings of wetland plant species. Ecology and Evolution, 2015, 5, 2127-2139.	0.8	32
71	The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends in Microbiology, 2015, 23, 751-762.	3.5	128
72	Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biology and Biochemistry, 2015, 91, 140-150.	4.2	88
73	The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta, 2015, 241, 1015-1025.	1.6	28
74	Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomy for Sustainable Development, 2015, 35, 67-81.	2.2	93

#	Article	IF	CITATIONS
75	Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry, 2015, 87, 45-52.	2.8	96
76	Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 2015, 83, 184-199.	4.2	1,141
77	Community composition and population genetics of insect pathogenic fungi in the genus <scp><i>M</i></scp> <i>etarhizium</i> from soils of a longâ€ŧerm agricultural research system. Environmental Microbiology, 2015, 17, 2791-2804.	1.8	75
78	Cropland soil–plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. Soil Science and Plant Nutrition, 2015, 61, 2-33.	0.8	40
80	Emergence Shapes the Structure of the Seed Microbiota. Applied and Environmental Microbiology, 2015, 81, 1257-1266.	1.4	294
81	Metagenomic Analysis of the Airborne Environment in Urban Spaces. Microbial Ecology, 2015, 69, 346-355.	1.4	76
82	Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. Journal of Soils and Sediments, 2015, 15, 1212-1223.	1.5	31
83	Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biology and Fertility of Soils, 2015, 51, 379-389.	2.3	111
84	Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie Van Leeuwenhoek, 2015, 107, 575-588.	0.7	61
85	Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2015, 386, 341-355.	1.8	53
86	Functional congruence of rhizosphere microbial communities associated to leguminous tree from <scp>B</scp> razilian semiarid region. Environmental Microbiology Reports, 2015, 7, 95-101.	1.0	20
87	Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84, 53-64.	4.2	495
88	Effects of sublethal doses of silver nanoparticles on <i>Bacillus subtilis</i> planktonic and sessile cells. Journal of Applied Microbiology, 2015, 118, 1103-1115.	1.4	46
89	Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in Microbiology, 2015, 166, 121-131.	1.0	77
90	Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotech, 2015, 5, 433-441.	1.1	24
91	Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biology and Biochemistry, 2015, 89, 196-205.	4.2	113
92	The root cap: a short story of life and death. Journal of Experimental Botany, 2015, 66, 5651-5662.	2.4	128
93	PERN: an EU–Russia initiative for rhizosphere microbial resources. Trends in Biotechnology, 2015, 33, 377-380.	4.9	9

		PORT	
#	Article	IF	CITATIONS
94	The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 2015, 79, 293-320.	2.9	1,895
95	Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biology and Biochemistry, 2015, 89, 44-51.	4.2	84
96	Bypassing the methane cycle. Nature, 2015, 523, 534-535.	13.7	25
97	Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus) Tj ETQq1	1 0.78431 0.8	l4 rgBT /Ove ≇6
98	Exercising influence: distinct biotic interactions shape root microbiomes. Current Opinion in Plant Biology, 2015, 26, 32-36.	3.5	18
99	Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology and Biochemistry, 2015, 85, 170-182.	4.2	137
100	Spatial heterogeneity of plant–soil feedback affects root interactions and interspecific competition. New Phytologist, 2015, 207, 830-840.	3.5	62
101	Woody Mimosa species are nodulated by Burkholderia in ombrophylous forest soils and their symbioses are enhanced by arbuscular mycorrhizal fungi (AMF). Plant and Soil, 2015, 393, 123-135.	1.8	18
102	Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytologist, 2015, 207, 1134-1144.	3.5	179
103	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	4.4	548
104	Visualization of Plant-Microbe Interactions. , 2015, , 299-306.		8
105	Rhizosphere microbial community manipulated by 2Âyears of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils, 2015, 51, 553-562.	2.3	175
106	Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Frontiers in Microbiology, 2015, 6, 25.	1.5	79
107	NMR metabolomics for soil analysis provide complementary, orthogonal data to MIR and traditional soil chemistry approaches – a land use study. Magnetic Resonance in Chemistry, 2015, 53, 719-725.	1.1	27
108	Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 2015, 196, 3-14.	1.7	1,529
109	Plant Biotic Interactions in the Sonoran Desert: Conservation Challenges and Future Directions. Journal of the Southwest, 2015, 57, 457-501.	0.1	6
111	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	1.8	232
112	Soil Biodiversity and the Environment. Annual Review of Environment and Resources, 2015, 40, 63-90.	5.6	194

	C	ITATION REPORT	
#	Article	IF	CITATIONS
113	Bacteria and Fungi in Green Roof Ecosystems. Ecological Studies, 2015, , 175-191.	0.4	11
114	Composition of soil microbial communities in the rhizosphere of cucumber cultivars with differing nitrogen acquisition efficiency. Applied Soil Ecology, 2015, 95, 90-98.	2.1	13
116	Microbial diversity $\hat{a} \in $ exploration of natural ecosystems and microbiomes. Current Opinion in Genetics and Development, 2015, 35, 66-72.	1.5	105
117	Bacterial networks and coâ€occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17, 239-252.	1.8	241
118	Spatio Temporal Influence of Isoflavonoids on Bacterial Diversity in the Soybean Rhizosphere. Molecular Plant-Microbe Interactions, 2015, 28, 22-29.	1.4	28
119	The Plant Microbiome at Work. Molecular Plant-Microbe Interactions, 2015, 28, 212-217.	1.4	493
120	The Minimal Rhizosphere Microbiome. , 2015, , 411-417.		28
121	Principles of Plant-Microbe Interactions. , 2015, , .		89
122	The interactive effects of elevated ozone and wheat cultivars on soil microbial community composition and metabolic diversity. Applied Soil Ecology, 2015, 87, 11-18.	2.1	34
123	Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist, 2015, 205, 1537-1551.	3.5	370
124	Soil Streptomyces communities in a prairie establishment reflect interactions between soil edaphic characteristics and plant host. Plant and Soil, 2015, 386, 89-98.	1.8	13
125	Gas Sensing in Nematodes. Molecular Neurobiology, 2015, 51, 919-931.	1.9	18
126	Impact of transgenic cotton expressing cry1Ac and cry2Ab genes on soil rhizosphere bacterial and fungal populations in soils of central Kenya. African Journal of Biotechnology, 2016, 15, 930-939.	0.3	0
127	Indicator and Pathogen Removal by Low Impact Development Best Management Practices. Water (Switzerland), 2016, 8, 600.	1.2	28
128	Knowledge needs, available practices, and future challenges in agricultural soils. Soil, 2016, 2, 511-5	21. 2.2	10
129	Isolation and characterization of free-living nitrogen fixing bacteria from alkaline soils. International Journal of Scientific World, 2016, 5, 18.	3.0	1
130	Structured Heterogeneity in a Marine Terrace Chronosequence: Upland Mottling. Vadose Zone Journal, 2016, 15, 1-14.	1.3	25
131	Microbial communities of bulk and eschscholzia californica rhizosphere soils at two altitudes in Central Chile. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	3

#	Article		CITATIONS
132	Microbial Community Structure in the Rhizosphere of Rice Plants. Frontiers in Microbiology, 2015, 6, 1537.	1.5	148
133	Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds. Marine Drugs, 2016, 14, 100.	2.2	293
134	Arbuscular Mycorrhizal Fungi Alleviate the Negative Effects of Iron Oxide Nanoparticles on Bacterial Community in Rhizospheric Soils. Frontiers in Environmental Science, 0, 4, .	1.5	43
135	Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease. Frontiers in Microbiology, 2016, 7, 117.	1.5	78
136	Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism. Frontiers in Microbiology, 2016, 7, 341.	1.5	213
137	Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species. Frontiers in Microbiology, 2016, 7, 382.	1.5	71
138	Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 2016, 7, 440.	1.5	153
139	Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research. Frontiers in Microbiology, 2016, 7, 773.	1.5	69
140	Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil. Frontiers in Microbiology, 2016, 7, 995.	1.5	43
141	Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth. Frontiers in Microbiology, 2016, 7, 1286.	1.5	51
142	Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization. Frontiers in Microbiology, 2016, 7, 1341.	1.5	92
143	Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Frontiers in Microbiology, 2016, 7, 1538.	1.5	499
144	Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime. Frontiers in Microbiology, 2016, 7, 1788.	1.5	31
145	Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf Infection. Frontiers in Microbiology, 2016, 7, 2062.	1.5	59
146	Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues. International Journal of Environmental Research and Public Health, 2016, 13, 633.	1.2	21
147	Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches. PLoS ONE, 2016, 11, e0146558.	1.1	47
148	Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE, 2016, 11, e0153353.	1.1	41
149	Impact of Reed Canary Grass Cultivation and Mineral Fertilisation on the Microbial Abundance and Genetic Potential for Methane Production in Residual Peat of an Abandoned Peat Extraction Area. PLoS ONE, 2016, 11, e0163864.	1.1	11

#	Article	IF	CITATIONS
150	Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds. PLoS ONE, 2016, 11, e0168236.	1.1	26
151	Distribution of Root-Associated Bacterial Communities Along a Salt-Marsh Primary Succession. Frontiers in Plant Science, 2015, 6, 1188.	1.7	27
152	Harnessing Host-Vector Microbiome for Sustainable Plant Disease Management of Phloem-Limited Bacteria. Frontiers in Plant Science, 2016, 7, 1423.	1.7	46
153	The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants. Microbial Ecology, 2016, 72, 394-406.	1.4	75
154	Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 2016, 19, 375-382.	3.0	143
155	Overwintering seeds as reservoirs for seedling pathogens of wetland plant species. Ecosphere, 2016, 7, e01281.	1.0	9
156	Exotic invasive plants increase productivity, abundance of ammoniaâ€oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 2016, 104, 994-1002.	1.9	66
157	The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19, 926-936.	3.0	803
158	Local genetic structure and worldwide phylogenetic position of symbiotic Rhizobium leguminosarum strains associated with a traditional cultivated crop, Vicia ervilia, from Northern Morocco. Systematic and Applied Microbiology, 2016, 39, 409-417.	1.2	10
159	The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology, 2016, 30, 1086-1098.	1.7	184
160	Terroir is a key driver of seedâ€associated microbial assemblages. Environmental Microbiology, 2016, 18, 1792-1804.	1.8	150
161	Mycorrhizosphere: The Extended Rhizosphere and Its Significance. , 2016, , 97-124.		14
162	Growth Promotion Features of the Maize Microbiome: From an Agriculture Perspective. , 2016, , 345-374.		11
163	Microbial Ecology at Rhizosphere: Bioengineering and Future Prospective. , 2016, , 63-96.		8
164	Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils. Scientific Reports, 2016, 6, 23584.	1.6	60
165	Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecology and Evolution, 2016, 6, 7387-7396.	0.8	183
166	Examining Biochar Impacts on Soil Abiotic and Biotic Processes and Exploring the Potential for Pyrosequencing Analysis. , 2016, , 133-162.		4
167	Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports, 2016, 6, 33643.	1.6	114

#	Article	IF	CITATIONS
168	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	1.1	39
169	Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 2016, 107, 1-12.	2.1	122
170	Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 2016, 105, 109-125.	2.1	363
171	Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 2016, 100, 5729-5746.	1.7	314
172	Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil, 2016, 405, 337-355.	1.8	207
173	Effects of spatial plant–soil feedback heterogeneity on plant performance in monocultures. Journal of Ecology, 2016, 104, 364-376.	1.9	36
174	Microbial utilization of rice root exudates: 13C labeling and PLFA composition. Biology and Fertility of Soils, 2016, 52, 615-627.	2.3	87
175	Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters. Journal of Bacteriology, 2016, 198, 1764-1772.	1.0	32
176	Characterization of rhizosphere and endophytic fungal communities from roots of <i>Stipa purpurea</i> in alpine steppe around Qinghai Lake. Canadian Journal of Microbiology, 2016, 62, 643-656.	0.8	9
177	Organic Farming, Soil Health, and Food Quality: Considering Possible Links. Advances in Agronomy, 2016, 137, 319-367.	2.4	95
178	Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza, 2016, 26, 575-585.	1.3	32
179	Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil. Environmental Science & Technology, 2016, 50, 4169-4177.	4.6	48
180	Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiology Letters, 2016, 363, fnw122.	0.7	16
181	The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 2016, 122, 22-29.	2.9	271
182	Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 2016, 32, 95.	1.7	48
183	Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization. Agriculture, Ecosystems and Environment, 2016, 233, 396-403.	2.5	49
184	Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere. Journal of Integrative Agriculture, 2016, 15, 1892-1902.	1.7	25
185	Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 2016, 407, 1-8.	1.8	78

#	Article	IF	CITATIONS
186	Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiology Ecology, 2016, 92, fiw163.	1.3	36
187	Plant–microbe partnerships in 2020. Microbial Biotechnology, 2016, 9, 635-640.	2.0	72
188	Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biology and Biochemistry, 2016, 101, 195-206.	4.2	80
189	New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 2016, 108, 96-107.	2.1	49
190	Predation and selection for antibiotic resistance in natural environments. Evolutionary Applications, 2016, 9, 427-434.	1.5	23
191	Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system. Agriculture, Ecosystems and Environment, 2016, 232, 85-92.	2.5	7
192	Intrinsic factors ofPeltigeralichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiology Ecology, 2016, 92, fiw178.	1.3	20
193	The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiology Ecology, 2016, 92, fiw173.	1.3	41
194	Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Applied Microbiology and Biotechnology, 2016, 100, 8651-8665.	1.7	111
195	Plant Biotic Interactions in the Sonoran Desert: Current Knowledge and Future Research Perspectives. International Journal of Plant Sciences, 2016, 177, 217-234.	0.6	21
196	Contribution of the seed microbiome to weed management. Weed Research, 2016, 56, 335-339.	0.8	20
197	Diversity of fungal endophytes in recent and ancient wheat ancestors <i>Triticum dicoccoides</i> and <i>Aegilops sharonensis</i> . FEMS Microbiology Ecology, 2016, 92, fiw152.	1.3	56
198	Plant and insect microbial symbionts alter the outcome of plant–herbivore–parasitoid interactions: implications for invaded, agricultural and natural systems. Journal of Ecology, 2016, 104, 1734-1744.	1.9	24
199	Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through <i>Azospirillum brasilense-Pseudomonas protegens</i> co-cultivation. FEMS Microbiology Letters, 2016, 363, fnw238.	0.7	11
200	Plant nodulation inducers enhance horizontal gene transfer of <i>Azorhizobium caulinodans</i> symbiosis island. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13875-13880.	3.3	82
201	Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City. MSphere, 2016, 1, .	1.3	28
202	Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Scientific Reports, 2016, 6, 36773.	1.6	95
203	Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Scientific Reports, 2016, 6, 27731.	1.6	55

		CITATION REP	PORT	
#	Article		IF	CITATIONS
204	Metagenomics and biodiversity of sphagnum bogs. Molecular Biology, 2016, 50, 645-64	3.	0.4	7
205	Specific impacts of beech and Norway spruce on the structure and diversity of the rhizos soil microbial communities. Scientific Reports, 2016, 6, 27756.	phere and	1.6	101
206	Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in t Hilly Region (LHR) of China. Scientific Reports, 2016, 6, 28469.	ie Loess	1.6	54
207	Divergent habitat filtering of root and soil fungal communities in temperate beech forest Reports, 2016, 6, 31439.	s. Scientific	1.6	84
208	Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis fro X-ray Computed Tomography Data. Journal of Visualized Experiments, 2016, , .	n In-soil	0.2	2
209	Climate and edaphic controllers influence rhizosphere community assembly for a wild an Ecology, 2016, 97, 1307-1318.	nual grass.	1.5	111
210	Phosphorus availability and microbial community in the rhizosphere of intercropped cere legume along a P-fertilizer gradient. Plant and Soil, 2016, 407, 119-134.	al and	1.8	83
211	Plant, Soil and Microbes. , 2016, , .			5
212	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Poten Impacts by the Canola Plant. Environmental Science & Technology, 2016, 50, 6892	iation of 6901.	4.6	30
213	Mathematical modeling of rhizosphere microbial degradation with impulsive diffusion or Advances in Difference Equations, 2016, 2016, .	nutrient.	3.5	4
214	Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosyster 337-357.	n., 2016,,		12
215	The properties and functions of biochars in forest ecosystems. Journal of Soils and Sedim 16, 2005-2020.	ents, 2016,	1.5	43
216	A perspective on inter-kingdom signaling in plant–beneficial microbe interactions. Plar Biology, 2016, 90, 537-548.	t Molecular	2.0	97
217	Engineering the Rhizosphere. Trends in Plant Science, 2016, 21, 266-278.		4.3	203
218	Exploring rhizospheric interactions for agricultural sustainability: the need of integrative on multi-trophic interactions. Journal of Cleaner Production, 2016, 115, 362-365.	research	4.6	63
219	Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol 2016, 34, 14-29.	ogy Advances,	6.0	937
220	Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biolo Biochemistry, 2016, 97, 63-70.	igy and	4.2	73
221	Challenges and opportunities in harnessing soil disease suppressiveness for sustainable production. Soil Biology and Biochemistry, 2016, 95, 100-111.	pasture	4.2	33

#	Article	IF	CITATIONS
222	An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology and Evolution, 2016, 31, 440-452.	4.2	879
223	Viruses as living processes. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, 59, 109-116.	0.8	42
224	Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 2016, 235, 171-180.	1.9	53
225	From pots to plots: hierarchical traitâ€based prediction of plant performance in a mesic grassland. Journal of Ecology, 2016, 104, 206-218.	1.9	51
226	Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria. Bioremediation Journal, 2016, 20, 108-116.	1.0	19
227	Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 689-697.	2.0	48
228	Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. Trends in Plant Science, 2016, 21, 218-229.	4.3	298
229	The Soil-Borne Supremacy. Trends in Plant Science, 2016, 21, 171-173.	4.3	159
230	Root–Root Interactions: Towards A Rhizosphere Framework. Trends in Plant Science, 2016, 21, 209-217.	4.3	149
231	Water for Carbon, Carbon for Water. Vadose Zone Journal, 2016, 15, 1-10.	1.3	33
232	Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME Journal, 2016, 10, 2092-2105.	4.4	63
233	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 623-634.	2.0	140
234	Vitis vinifera microbiome: from basic research to technological development. BioControl, 2016, 61, 243-256.	0.9	44
235			
	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 2016, 96, 229-237.	4.2	148
236	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 2016, 96, 229-237.Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	4.2 2.0	148 523
236 237	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 2016, 96, 229-237. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587. New Methods To Unravel Rhizosphere Processes. Trends in Plant Science, 2016, 21, 243-255.	4.2 2.0 4.3	148 523 163
236 237 238	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 2016, 96, 229-237.Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.New Methods To Unravel Rhizosphere Processes. Trends in Plant Science, 2016, 21, 243-255.The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem. Applied Microbiology and Biotechnology, 2016, 100, 1999-2010.	 4.2 2.0 4.3 1.7 	148 523 163 14

#	Article	IF	CITATIONS
240	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	2.4	424
241	Glyphosate effects on soil rhizosphere-associated bacterial communities. Science of the Total Environment, 2016, 543, 155-160.	3.9	171
242	Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 2016, 54, 58-73.	8.2	239
243	Plant–soil feedback in Eastâ€African savanna trees. Ecology, 2016, 97, 294-301.	1.5	31
244	Plant compartment and biogeography affect microbiome composition in cultivated and native <i>Agave</i> species. New Phytologist, 2016, 209, 798-811.	3.5	663
245	Microbial communities and primary succession in high altitude mountain environments. Annals of Microbiology, 2016, 66, 43-60.	1.1	46
246	Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil, 2016, 405, 125-140.	1.8	150
247	The Functioning of Rhizosphere Biota in Wetlands – a Review. Wetlands, 2017, 37, 615-633.	0.7	34
248	Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology, 2017, 26, 1641-1651.	2.0	134
249	Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 2017, 109, 145-155.	4.2	191
250	Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Scientific Reports, 2017, 7, 42335.	1.6	76
251	Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Science Advances, 2017, 3, e1602105.	4.7	110
252	How lysimetric monitoring of Technosols can contribute to understand the temporal dynamics of the soil porosity. Geoderma, 2017, 296, 60-68.	2.3	7
253	Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, 2017, 240, 148-161.	2.5	399
254	Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 2017, 79, 48-56.	1.4	35
255	Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33.	0.8	113
256	Research progress on aging of organic pollutants in geosorbents: a review. Acta Geochimica, 2017, 36, 27-43.	0.7	12
257	Specificity of root microbiomes in nativeâ€grown <i>Nicotiana attenuata</i> and plant responses to <scp>UVB</scp> increase <i>Deinococcus</i> colonization. Molecular Ecology, 2017, 26, 2543-2562.	2.0	23

#	Αρτιςι ε	IF	CITATIONS
258	Does short-term litter input manipulation affect soil respiration and its carbon-isotopic signature in	2.1	33
259	Dryland forest management alters fungal community composition and decouples assembly of root- and soil-associated fungal communities. Soil Biology and Biochemistry, 2017, 109, 14-22.	4.2	39
260	Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 2017, 7, 44641.	1.6	309
261	Arbuscular Mycorrhizal Fungi and Tolerance of Fe Stress in Plants. , 2017, , 131-145.		3
262	Alleviation of environmental stress in plants: The role of beneficial <i>Pseudomonas</i> spp Critical Reviews in Environmental Science and Technology, 2017, 47, 372-407.	6.6	45
263	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
264	Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 2017, 37, 15-22.	2.3	331
265	Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere, 2017, 3, 233-243.	1.4	242
266	Species diversity and community composition of native arbuscular mycorrhizal fungi in apple roots are affected by site and orchard management. Applied Soil Ecology, 2017, 116, 42-54.	2.1	39
267	The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. Journal of Ecology, 2017, 105, 569-579.	1.9	55
268	Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. Annual Review of Phytopathology, 2017, 55, 61-83.	3.5	353
269	Tree diversity regulates soil respiration through accelerated tree growth in a mesocosm experiment. Pedobiologia, 2017, 65, 24-28.	0.5	9
270	Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 2017, 26, 4085-4098.	2.0	173
271	Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion. Plant Physiology, 2017, 174, 1289-1306.	2.3	78
272	The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere, 2017, 3, 212-221.	1.4	66
273	Does drought stress modify the effects of plantâ€growth promoting rhizobacteria on an aboveground chewing herbivore?. Insect Science, 2017, 24, 1034-1044.	1.5	7
274	Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant and Soil, 2017, 416, 283-295.	1.8	40
275	Weed and pathogen control with steam in California strawberry production. Acta Horticulturae, 2017, , 593-602.	0.1	2

#	Article	IF	CITATIONS
276	Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, 2017, 93, .	1.3	376
277	Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica, 2017, 213, 1.	0.6	62
278	Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Applied Soil Ecology, 2017, 116, 70-78.	2.1	34
279	Upscaling of fungal–bacterial interactions: from the lab to the field. Current Opinion in Microbiology, 2017, 37, 35-41.	2.3	47
280	Making a microbiome: the many determinants of host-associated microbial community composition. Current Opinion in Microbiology, 2017, 35, 23-29.	2.3	201
281	The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiology Ecology, 2017, 93, .	1.3	36
282	Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific Reports, 2017, 7, 3608.	1.6	50
283	Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome, 2017, 5, 56.	4.9	65
284	Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms. FEMS Microbiology Letters, 2017, 364, .	0.7	26
285	Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170944.	1.2	71
286	Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments. Journal of Basic Microbiology, 2017, 57, 625-632.	1.8	4
287	How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, 2017, 22, 661-673.	4.3	322
288	A new analytical framework of farming system and agriculture model diversities. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	179
289	Adaptation, specialization, and coevolution within phytobiomes. Current Opinion in Plant Biology, 2017, 38, 109-116.	3.5	51
290	Does functional soil microbial diversity contribute to explain withinâ€site plant βâ€diversity in an alpine grassland and a <i>dehesa</i> meadow in Spain?. Journal of Vegetation Science, 2017, 28, 1018-1027.	1.1	8
291	Let the Core Microbiota Be Functional. Trends in Plant Science, 2017, 22, 583-595.	4.3	317
292	Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, 2, 17065.	5.9	727
293	The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiology Ecology, 2017, 93, .	1.3	79

#	Article	IF	CITATIONS
294	Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands. Environmental Science and Pollution Research, 2017, 24, 11483-11492.	2.7	28
295	Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biology and Biochemistry, 2017, 111, 10-14.	4.2	151
296	Shining a light on the dark world of plant root–microbe interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4281-4283.	3.3	49
297	Root symbionts: Powerful drivers of plant above―and belowground indirect defenses. Insect Science, 2017, 24, 947-960.	1.5	91
298	Arbuscular Mycorrhizas and Stress Tolerance of Plants. , 2017, , .		39
299	Bacterial diversity of the rhizosphere and nearby surface soil of rice (Oryza sativa) growing in the Camargue (France). Rhizosphere, 2017, 3, 112-122.	1.4	29
300	Diversity and composition of bacterial community in the rhizosphere sediments of submerged macrophytes revealed by 454 pyrosequencing. Annals of Microbiology, 2017, 67, 313-319.	1.1	15
301	Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant and Soil, 2017, 414, 339-354.	1.8	24
302	A decade of irrigation transforms the soil microbiome of a semiâ€arid pine forest. Molecular Ecology, 2017, 26, 1190-1206.	2.0	163
303	Juncus spp.—The helophyte for all (phyto)remediation purposes?. New Biotechnology, 2017, 38, 43-55.	2.4	49
304	Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Applied Soil Ecology, 2017, 111, 48-56.	2.1	140
305	Northern peatland carbon dynamics driven by plant growth form — the role of graminoids. Plant and Soil, 2017, 415, 25-35.	1.8	22
306	Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 2017, 93, fiw242.	1.3	114
307	Crop Improvement. , 2017, , .		3
308	Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	37
309	Multitrophic interactions in the rhizosphere of a temperate forest tree affect plant carbon flow into the belowground food web. Soil Biology and Biochemistry, 2017, 115, 526-536.	4.2	31
310	Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms and Molecular Mechanisms. , 2017, , 1-29.		13
311	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942

#	Article	IF	CITATIONS
312	Diverse concepts of breeding for nitrogen use efficiency. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	102
313	Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 2017, 121, 102-117.	2.1	178
314	Plant-Assisted Bioremediation: An Ecological Approach for Recovering Multi-contaminated Areas. , 2017, , 291-303.		11
315	Ecosystem Services Provided By Soil Microorganisms. , 2017, , 9-24.		57
316	Integrated Mechanisms of Plant Disease Containment by Rhizospheric Bacteria: Unraveling the Signal Cross Talk Between Plant and Fluorescent Pseudomonas. , 2017, , 263-291.		7
317	Plant Microbiome: Composition and Functions in Plant Compartments. , 2017, , 7-20.		24
318	The Brazilian Soil Microbiome. , 2017, , 21-39.		2
319	Microbial Interactions and Plant Health. , 2017, , 61-84.		1
320	Ecology of belowground biological control: Entomopathogenic nematode interactions with soil biota. Applied Soil Ecology, 2017, 121, 201-213.	2.1	29
321	Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Applied Soil Ecology, 2017, 121, 214-222.	2.1	52
322	Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2017, 6, 1-12.	3.3	1,228
323	Bioactive Small Molecules Mediate Microalgal-Bacterial Interactions. , 2017, , 279-300.		3
324	Induction of Systemic Resistance for Disease Suppression. , 2017, , 335-357.		3
326	Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biology and Biochemistry, 2017, 115, 109-123.	4.2	14
327	Rhizosphere effect is stronger than PAH concentration on shaping spatial bacterial assemblages along centimetre-scale depth gradients. Canadian Journal of Microbiology, 2017, 63, 881-893.	0.8	8
328	Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15, 579-590.	13.6	2,087
329	Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Science, 2017, 264, 48-56.	1.7	101
330	Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiology Ecology, 2017, 93, .	1.3	35

#	Article	IF	CITATIONS
331	Mineral phosphorus fertilization modulates interactions between maize, rhizosphere yeasts and arbuscular mycorrhizal fungi. Rhizosphere, 2017, 4, 89-93.	1.4	26
332	Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities. Scientific Reports, 2017, 7, 8411.	1.6	30
333	Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Applied and Environmental Microbiology, 2017, 83, .	1.4	141
334	Genomeâ€wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2017, 19, 4638-4656.	1.8	51
335	Bacteria utilizing plantâ€derived carbon in the rhizosphere of <i>Triticum aestivum</i> change in different depths of an arable soil. Environmental Microbiology Reports, 2017, 9, 729-741.	1.0	21
336	Importance of Soil Microbes in Nutrient Use Efficiency and Sustainable Food Production. , 2017, , 3-23.		9
338	Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Scientific Reports, 2017, 7, 9604.	1.6	77
339	Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study. Scientific Reports, 2017, 7, 7827.	1.6	20
340	Metagenomic evidence of stronger effect of stylo (legume) than bahiagrass (grass) on taxonomic and functional profiles of the soil microbial community. Scientific Reports, 2017, 7, 10195.	1.6	17
341	Metagenome of Rhizosphere and Endophytic Ecosystem. , 2017, , 125-156.		5
342	Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends in Plant Science, 2017, 22, 842-856.	4.3	169
343	Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Btâ€maize cultivation under field conditions in North West Province of South Africa. Journal of Basic Microbiology, 2017, 57, 781-792.	1.8	44
344	A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling. Journal of Visualized Experiments, 2017, , .	0.2	1
345	Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiology Ecology, 2017, 93, .	1.3	143
346	Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Applied Soil Ecology, 2017, 119, 260-266.	2.1	45
347	Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiological Research, 2017, 204, 30-39.	2.5	21
348	Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704.	4.4	464
349	Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 2017, 19, 3649-3659.	1.8	78

	CITATION	REPORT	
#	Article	IF	CITATIONS
350	The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548, 43-51.	13.7	687
351	Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Scientific Reports, 2017, 7, 2330.	1.6	23
352	Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Scientific Reports, 2017, 7, 6472.	1.6	54
354	Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Applied Soil Ecology, 2017, 119, 407-416.	2.1	51
355	Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in Mollisols that differ in soil organic carbon content. Applied Soil Ecology, 2017, 119, 375-383.	2.1	18
356	How to Outgrow Your Native Neighbour? Belowground Changes under Native Shrubs at an Early Stage of Invasion. Land Degradation and Development, 2017, 28, 2380-2388.	1.8	9
357	Carbon Fluxes in Mycorrhizal Plants. , 2017, , 1-21.		8
358	Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 2017, 41, 599-623.	3.9	314
359	Premier Biocontrol Traits of Pseudomonads: Siderophores, Phenazines or What Else?. Microorganisms for Sustainability, 2017, , 351-390.	0.4	2
360	Microbial Biofertilizer: A Potential Tool for Sustainable Agriculture. Microorganisms for Sustainability, 2017, , 25-52.	0.4	6
361	Volatiles in theÂRhizosphere: Bioprospecting for Sustainable Agriculture and Food Security. , 2017, , 61-80.		0
362	Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. Scientific Reports, 2017, 7, 16707.	1.6	42
363	Hairy Root Composite Plant Systems in Root-Microbe Interaction Research. , 2017, , 17-44.		3
364	Contrasting understorey species responses to the canopy and root effects of a dominant shrub drive community composition. Journal of Vegetation Science, 2017, 28, 1118-1127.	1.1	14
365	Possible mechanisms of control of Fusarium wilt of cut chrysanthemum by Phanerochaete chrysosporium in continuous cropping fields: A case study. Scientific Reports, 2017, 7, 15994.	1.6	21
366	Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Scientific Reports, 2017, 7, 15709.	1.6	78
367	Rhizosphere Microbiome Metagenomics: Elucidating the Abditive Microflora. , 2017, , 11-27.		1
368	Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell and Environment, 2017, 40, 2042-2067.	2.8	138

#	ARTICLE	IF	CITATIONS
369	Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology and Biochemistry, 2017, 113, 275-284.	4.2	210
370	Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots. Plant Physiology and Biochemistry, 2017, 118, 422-426.	2.8	19
371	Biocontrol through antibiosis: exploring the role played by subinhibitory concentrations of antibiotics in soil and their impact on plant pathogens. Canadian Journal of Plant Pathology, 2017, 39, 267-274.	0.8	27
372	Positive effects of plant association on rhizosphere microbial communities depend on plant species involved and soil nitrogen level. Soil Biology and Biochemistry, 2017, 114, 1-4.	4.2	28
373	The Good, the Bad, and the Ugly of Rhizosphere Microbiome. , 2017, , 253-290.		29
374	Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 2017, 7, 4686.	1.6	160
375	Capping material type affects rhizosphere bacteria community structure in the cover soil in oil sands reclamation. Journal of Soils and Sediments, 2017, 17, 2516-2523.	1.5	10
376	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	1.2	307
377	Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 2017, 101, 4871-4881.	1.7	204
378	Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial rhizobiome. Ecotoxicology and Environmental Safety, 2017, 144, 283-290.	2.9	5
379	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	4.4	298
380	Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry, 2017, 109, 214-226.	4.2	80
381	Elevated N2O emission by the rice roots: based on the abundances of narG and bacterial amoA genes. Environmental Science and Pollution Research, 2017, 24, 2116-2125.	2.7	8
382	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
383	Fungus-associated bacteriome in charge of their host behavior. Fungal Genetics and Biology, 2017, 102, 38-48.	0.9	30
384	Ecosystem fluxes of hydrogen in a midâ€latitude forest driven by soil microorganisms and plants. Global Change Biology, 2017, 23, 906-919.	4.2	14
385	Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant and Soil, 2017, 410, 369-382.	1.8	40
386	Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System. Microbial Ecology, 2017, 73, 153-161.	1.4	86

#	Article	IF	CITATIONS
387	Root heterogeneity along an arctic elevational gradient: the importance of resolution. Functional Ecology, 2017, 31, 480-487.	1.7	7
388	N/P imbalance as a key driver for the invasion of oligotrophic dune systems by a woody legume. Oikos, 2017, 126, .	1.2	22
389	Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere. Environmental Microbiology, 2017, 19, 1391-1406.	1.8	42
390	Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. Journal of Hazardous Materials, 2017, 325, 82-89.	6.5	50
391	Microbial community composition but not diversity changes along succession in arctic sand dunes. Environmental Microbiology, 2017, 19, 698-709.	1.8	32
392	Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, <i>Helianthus annuus</i> . New Phytologist, 2017, 214, 412-423.	3.5	185
393	Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research, 2017, 167, 30-38.	2.6	118
394	Harnessing the microbiomes of Brassica vegetables for health issues. Scientific Reports, 2017, 7, 17649.	1.6	47
395	Variation in Bacterial and Eukaryotic Communities Associated with Natural and Managed Wild Blueberry Habitats. Phytobiomes Journal, 2017, 1, 102-113.	1.4	47
396	Volatiles and Food Security. , 2017, , .		12
396 397	Volatiles and Food Security. , 2017, , . Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture. , 2017, , 307-322.		12
396 397 398	Volatiles and Food Security., 2017, , . Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017, , 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017, , 193-219.		12 1 5
396397398399	Volatiles and Food Security., 2017, , Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017, , 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017, , 193-219. Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017, , 101-133.	0.5	12 1 5 54
 396 397 398 399 400 	Volatiles and Food Security., 2017, , . Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017, , 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017, , 193-219. Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017, , 101-133. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter. Frontiers in Plant Science, 2017, 8, 284.	0.5	12 1 5 54 24
 396 397 398 399 400 401 	Volatiles and Food Security., 2017, , . Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017, , 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017, , 193-219. Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017, , 101-133. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter. Frontiers in Plant Science, 2017, 8, 284. Phycospheric Native Bacteria Pelagibaca bermudensis and Stappia sp. Ameliorate Biomass Productivity of Tetraselmis striata (KCTC1432BP) in Co-cultivation System through Mutualistic Interaction. Frontiers in Plant Science, 2017, 8, 289.	0.5	12 1 5 54 24 34
 396 397 398 399 400 401 402 	Volatiles and Food Security., 2017,, Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017,, 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017,, 193-219. Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017,, 101-133. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter. Frontiers in Plant Science, 2017, 8, 284. Phycospheric Native Bacteria Pelagibaca bermudensis and Stappia sp. Ameliorate Biomass Productivity of Tetraselmis striata (KCTC1432BP) in Co-cultivation System through Mutualistic Interaction. Frontiers in Plant Science, 2017, 8, 289. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 2017, 8, 294.	0.5 1.7 1.7	12 1 5 54 24 34 86
 396 397 398 399 400 401 402 403 	Volatiles and Food Security., 2017,,. Harnessing the Plant Microbiome: A Key Towards Sustainable Agriculture., 2017,, 307-322. Plant-Microbe Interactions in the Rhizosphere: Mechanisms and Their Ecological Benefits., 2017,, 193-219. Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere andÂPhyllosphere. Advances in Botanical Research, 2017,, 101-133. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter. Frontiers in Plant Science, 2017, 8, 284. Phycospheric Native Bacteria Pelagibaca bermudensis and Stappia sp. Ameliorate Biomass Productivity of Tetraselmis striata (KCTC1432BP) in Co-cultivation System through Mutualistic Interaction. Frontiers in Plant Science, 2017, 8, 289. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 2017, 8, 294. The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L. Frontiers in Plant Science, 2017, 8, 930.	0.5 1.7 1.7 1.7	12 1 5 54 24 34 86 57

#	Article	IF	CITATIONS
405	Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. Frontiers in Plant Science, 2017, 8, 1381.	1.7	34
406	Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 2017, 8, 1809.	1.7	45
407	Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 2017, 8, 2202.	1.7	367
408	Transmission of Bacterial Endophytes. Microorganisms, 2017, 5, 70.	1.6	308
409	Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest. Frontiers in Plant Science, 2017, 8, 1834.	1.7	54
410	Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 455.	1.8	116
411	Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	45
412	A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds. Frontiers in Microbiology, 2017, 8, 11.	1.5	313
413	Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes. Frontiers in Microbiology, 2017, 8, 199.	1.5	136
414	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	1.5	80
415	The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment. Frontiers in Microbiology, 2017, 8, 902.	1.5	101
416	A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. Frontiers in Microbiology, 2017, 8, 975.	1.5	87
417	Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes. Frontiers in Microbiology, 2017, 8, 1127.	1.5	124
418	Assessment of the Diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae Rhizosphere under Monoculture by Combining DGGE and Quantitative PCR. Frontiers in Microbiology, 2017, 8, 1748.	1.5	33
419	Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater. Frontiers in Microbiology, 2017, 8, 1932.	1.5	44
420	Plant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field. Frontiers in Microbiology, 2017, 8, 2414.	1.5	56
421	Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome. Frontiers in Microbiology, 2017, 8, 2494.	1.5	56
422	Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in Microbiology, 2017, 8, 2552.	1.5	488

#	Article	IF	CITATIONS
423	Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences, 2017, 14, 5115-5142.	1.3	130
424	Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer. PLoS ONE, 2017, 12, e0179695.	1.1	5
425	Rhizosphere hydrophobicity: A positive trait in the competition for water. PLoS ONE, 2017, 12, e0182188.	1.1	19
426	MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome, 2017, 5, 157.	4.9	128
427	Preceding crop and seasonal effects influence fungal, bacterial and nematode diversity in wheat and oilseed rape rhizosphere and soil. Applied Soil Ecology, 2018, 126, 34-46.	2.1	43
428	Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytologist, 2018, 218, 530-541.	3.5	70
429	Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 2018, 18, 1701-1719.	1.5	121
430	Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere, 2018, 197, 729-740.	4.2	64
431	Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Scientific Reports, 2018, 8, 5758.	1.6	15
432	Effects of Apirolio Addition and Alfalfa and Compost Treatments on the Natural Microbial Community of a Historically PCB-Contaminated Soil. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	31
433	Tree species and recovery time drives soil restoration after mining: A chronosequence study. Land Degradation and Development, 2018, 29, 1738-1747.	1.8	22
434	Amendment with biocontrol strains increases Trichoderma numbers in mature kiwifruit (Actinidia) Tj ETQq1 1 0.7 Protection, 2018, 51, 54-69.	′84314 rgl 0.6	BT /Overlock 1
435	Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Applied Soil Ecology, 2018, 128, 23-34.	2.1	80
436	Endophytic bacterial microbiome associated with leaves of genetically modified (AtAREB1) and conventional (BR 16) soybean plants. World Journal of Microbiology and Biotechnology, 2018, 34, 56.	1.7	5
437	Biological nitrogen removal using soil columns for the reuse of reclaimed water: Performance and microbial community analysis. Journal of Environmental Management, 2018, 217, 100-109.	3.8	35
438	Exploiting ecosystem services in agriculture for increased food security. Global Food Security, 2018, 17, 57-63.	4.0	84
439	Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Applied and Environmental Microbiology, 2018, 84, .	1.4	60
440	Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME Journal, 2018, 12, 1032-1046.	4.4	197

#	Article	IF	CITATIONS
441	Microbial volatiles as plant growth inducers. Microbiological Research, 2018, 208, 63-75.	2.5	182
442	Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Science of the Total Environment, 2018, 627, 20-27.	3.9	53
443	Biosynthetic and antimicrobial potential of actinobacteria isolated from bulrush rhizospheres habitat in Zhalong Wetland, China. Archives of Microbiology, 2018, 200, 695-705.	1.0	9
444	Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology, 2018, 16, 291-303.	13.6	395
445	Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species. Ecology, 2018, 99, 904-914.	1.5	47
446	Comparative analysis of microbial diversity and bacterial seedling diseaseâ€suppressive activity in organicâ€farmed and standardized commercial conventional soils for rice nursery cultivation. Journal of Phytopathology, 2018, 166, 249-264.	0.5	10
447	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganisms for Sustainability, 2018, , 21-43.	0.4	35
448	Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil. Soil Biology and Biochemistry, 2018, 120, 70-79.	4.2	37
449	Diversity of root-associated microbial populations of Tamarix parviflora cultivated under various conditions. Applied Soil Ecology, 2018, 125, 264-272.	2.1	16
450	Calling from distance: attraction of soil bacteria by plant root volatiles. ISME Journal, 2018, 12, 1252-1262.	4.4	195
451	Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nature Communications, 2018, 9, 336.	5.8	93
452	Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. Science of the Total Environment, 2018, 624, 530-539.	3.9	69
453	N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agriculture, Ecosystems and Environment, 2018, 254, 191-201.	2.5	57
454	Rhizosphere yeasts improve P uptake of a maize arbuscular mycorrhizal association. Applied Soil Ecology, 2018, 125, 18-25.	2.1	15
455	Effects of Epichloë gansuensis on root-associated fungal communities of Achnatherum inebrians under different growth conditions. Fungal Ecology, 2018, 31, 29-36.	0.7	26
456	Responses of bulk and rhizosphere soil microbial communities to thermoclimatic changes in a Mediterranean ecosystem. Soil Biology and Biochemistry, 2018, 118, 130-144.	4.2	23
457	Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Applied Soil Ecology, 2018, 125, 88-96.	2.1	94
458	Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Applied Soil Ecology, 2018, 125, 117-127.	2.1	59

#	Article	IF	CITATIONS
459	Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 2018, 118, 178-186.	4.2	258
460	Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biology, 2018, 122, 231-240.	1.1	58
461	Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea maysL.) Rhizosphere. Communications in Soil Science and Plant Analysis, 2018, 49, 88-98.	0.6	20
462	The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME Journal, 2018, 12, 1188-1198.	4.4	74
463	The rhizosphere microbial community response to a bio-organic fertilizer: finding the mechanisms behind the suppression of watermelon Fusarium wilt disease. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	14
464	Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere, 2018, 197, 33-41.	4.2	96
465	Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 2018, 94, .	1.3	152
466	Soil bacterial community responses to altered precipitation and temperature regimes in an old field grassland are mediated by plants. FEMS Microbiology Ecology, 2018, 94, .	1.3	54
467	Promysalin Elicits Species-Selective Inhibition of <i>Pseudomonas aeruginosa</i> by Targeting Succinate Dehydrogenase. Journal of the American Chemical Society, 2018, 140, 1774-1782.	6.6	63
468	Carbonaceous Nanomaterials Have Higher Effects on Soybean Rhizosphere Prokaryotic Communities During the Reproductive Growth Phase than During Vegetative Growth. Environmental Science & Technology, 2018, 52, 6636-6646.	4.6	54
469	Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	6
470	Comparison of crop productivity and soil microbial activity among different fertilization patterns in red upland and paddy soils. Acta Ecologica Sinica, 2018, 38, 262-267.	0.9	8
471	Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology and Biochemistry, 2018, 121, 185-192.	4.2	259
472	Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae. Nucleic Acids Research, 2018, 46, 3953-3966.	6.5	5
473	Resveratrol as a Growth Substrate for Bacteria from the Rhizosphere. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
474	The impact of legume and cereal cover crops on rhizosphere microbial communities of subsequent vegetable crops for contrasting crop decline. Biological Control, 2018, 120, 17-25.	1.4	19
475	The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant and Soil, 2018, 422, 35-49.	1.8	131
476	Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta. Physics and Chemistry of the Earth, 2018, 103, 19-27.	1.2	31

#	Article	IF	CITATIONS
477	Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 2018, 69, 155-167.	2.4	291
478	Changes of bacterial communities in the rhizosphere of sugarcane under elevated concentration of atmospheric <scp>CO</scp> ₂ . GCB Bioenergy, 2018, 10, 137-145.	2.5	21
479	Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. International Journal of Phytoremediation, 2018, 20, 311-320.	1.7	76
480	Synthesizing redox biogeochemistry at aquatic interfaces. Limnologica, 2018, 68, 59-70.	0.7	10
481	Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution, 2018, 232, 123-136.	3.7	152
482	Protists are an integral part of the <i>Arabidopsis thaliana</i> microbiome. Environmental Microbiology, 2018, 20, 30-43.	1.8	85
483	Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12, 212-224.	4.4	296
484	Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal, 2018, 93, 166-180.	2.8	191
485	Hotspots of biodiversity in the underground: A matter of humus form?. Applied Soil Ecology, 2018, 123, 305-312.	2.1	12
486	Fungal diversity during fermentation correlates with thiol concentration in wine. Australian Journal of Grape and Wine Research, 2018, 24, 105-112.	1.0	21
487	Distinct taxonomic and functional composition of soil microbiomes along the gradient forest-restinga-mangrove in southeastern Brazil. Antonie Van Leeuwenhoek, 2018, 111, 101-114.	0.7	33
488	Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. European Journal of Plant Pathology, 2018, 150, 831-846.	0.8	24
489	Seasonal variation rather than stand age determines bacterial diversity in the rhizosphere of wolfberry (Lycium barbarum L.) associated with soil degradation. Journal of Soils and Sediments, 2018, 18, 1518-1529.	1.5	6
490	Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. Environmental Science and Pollution Research, 2018, 25, 6387-6397.	2.7	25
491	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
492	Archaea Are Interactive Components of Complex Microbiomes. Trends in Microbiology, 2018, 26, 70-85.	3.5	203
493	Commentary: seed bacterial inhabitants and their routes of colonization. Plant and Soil, 2018, 422, 129-134.	1.8	66
494	How Valuable Are Organic Amendments as Tools for the Phytomanagement of Degraded Soils? The Knowns, Known Unknowns, and Unknowns. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	58

#	Article	IF	CITATIONS
495	Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Frontiers in Microbiology, 2018, 9, 3147.	1.5	30
496	Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiology Journal, 2018, 12, 261-279.	0.2	78
497	Nitrogen rates associated with the inoculation of Azospirillum brasilense and application of Si: Effects on micronutrients and silicon concentration in irrigated corn. Open Agriculture, 2018, 3, 510-523.	0.7	7
498	Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants. Frontiers in Microbiology, 2018, 9, 3102.	1.5	89
499	Models for prediction of individual leaf area of forage legumes. Revista Ceres, 2018, 65, 204-209.	0.1	3
501	Coral metabolite gradients affect microbial community structures and act as a disease cue. Communications Biology, 2018, 1, 184.	2.0	39
502	Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1801.	1.7	204
503	Diversifying Anaerobic Respiration Strategies to Compete in the Rhizosphere. Frontiers in Environmental Science, 2018, 6, .	1.5	33
504	Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events. Frontiers in Microbiology, 2018, 9, 2279.	1.5	21
505	Enriching Beneficial Microbial Diversity of Indoor Plants and Their Surrounding Built Environment With Biostimulants. Frontiers in Microbiology, 2018, 9, 2985.	1.5	25
506	Recognizing Patterns: Spatial Analysis of Observed Microbial Colonization on Root Surfaces. Frontiers in Environmental Science, 2018, 6, .	1.5	38
507	Rhizosphere Microbial Communities of Spartina alterniflora and Juncus roemerianus From Restored and Natural Tidal Marshes on Deer Island, Mississippi. Frontiers in Microbiology, 2018, 9, 3049.	1.5	20
508	Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome, 2018, 6, 215.	4.9	122
510	Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 2018, 9, 5451.	5.8	189
511	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	1.5	62
512	Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Scientific Reports, 2018, 8, 17521.	1.6	2
513	Exploration of the Biosynthetic Potential of the <i>Populus</i> Microbiome. MSystems, 2018, 3, .	1.7	34
514	Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores. Ecological Studies, 2018, , 319-343.	0.4	18

#	Article	IF	CITATIONS
515	Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36, 1100-1109.	9.4	506
516	Aquaponic Systems for Sustainable Resource Recovery: Linking Nitrogen Transformations to Microbial Communities. Environmental Science & Technology, 2018, 52, 12728-12739.	4.6	51
518	Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize. Soil Biology and Biochemistry, 2018, 127, 200-212.	4.2	34
519	Root exudation rate as functional trait involved in plant nutrientâ€use strategy classification. Ecology and Evolution, 2018, 8, 8573-8581.	0.8	104
520	Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiomes Journal, 2018, 2, 183-193.	1.4	124
521	Soil Microstructures Examined Through Transmission Electron Microscopy Reveal Soil-Microorganisms Interactions. Frontiers in Environmental Science, 2018, 6, .	1.5	22
523	Metaproteomic characterization of Vitis vinifera rhizosphere. FEMS Microbiology Ecology, 2019, 95, .	1.3	26
524	The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties. Microbiome, 2018, 6, 184.	4.9	29
525	G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes and Environments, 2018, 33, 317-325.	0.7	21
526	Functional Complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: The Challenge of Translational Research. Frontiers in Plant Science, 2018, 9, 1407.	1.7	67
527	Microbial communities associated with barley growing in an oil sands reclamation area in Alberta, Canada. Canadian Journal of Microbiology, 2018, 64, 1004-1019.	0.8	3
528	Greater variations of rhizosphere effects within mycorrhizal group than between mycorrhizal group in a temperate forest. Soil Biology and Biochemistry, 2018, 126, 237-246.	4.2	48
529	The effect of a medic-wheat rotational system and contrasting degrees of soil disturbance on nematode functional groups and soil microbial communities. Agriculture, Ecosystems and Environment, 2018, 268, 103-114.	2.5	7
530	Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Applied Soil Ecology, 2018, 132, 91-98.	2.1	29
531	The effect of slope aspect on the phylogenetic structure of arbuscular mycorrhizal fungal communities in an alpine ecosystem. Soil Biology and Biochemistry, 2018, 126, 103-113.	4.2	29
532	Response of the rhizosphere microbial community to fine root and soil parameters following Robinia pseudoacacia L. afforestation. Applied Soil Ecology, 2018, 132, 11-19.	2.1	36
533	Soil Microbial-Community Alteration in Response to Heterotheca subaxillaris – an Invasive Alien Plant. Environment and Natural Resources Research, 2018, 8, 85.	0.1	1
534	Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Environmental Pollution, 2018, 241, 63-73.	3.7	67

#	Article	IF	CITATIONS
535	Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. Scientific Reports, 2018, 8, 7966.	1.6	33
536	Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks and Tick-borne Diseases, 2018, 9, 1241-1251.	1.1	36
537	Successful Formulation and Application of Plant Growth-Promoting <i> Kosakonia radicincitans</i> in Maize Cultivation. BioMed Research International, 2018, 2018, 1-8.	0.9	50
538	Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the United States of America, 2018, 115, 7368-7373.	3.3	435
539	Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Science of the Total Environment, 2018, 643, 569-578.	3.9	39
540	Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities. MSystems, 2018, 3, .	1.7	56
541	Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environmental Pollution, 2018, 242, 113-125.	3.7	30
542	Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiology Ecology, 2018, 94, .	1.3	54
543	Effects of tree species and soil properties on the composition and diversity of the soil bacterial community following afforestation. Forest Ecology and Management, 2018, 427, 342-349.	1.4	74
544	Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and Biochemistry, 2018, 125, 251-260.	4.2	253
545	Interaction Between Plant Competition and Rhizospheric Bacterial Community Influence Secondary Succession of Abandoned Farmland on the Loess Plateau of China. Frontiers in Plant Science, 2018, 9, 898.	1.7	17
546	Nutrient allocation and photochemical responses of Populus × canadensis â€~Neva' to nitrogen fertilization and exogenous Rhizophagus irregularis inoculation. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	5
547	Species-Associated Differences in the Below-Ground Microbiomes of Wild and Domesticated Setaria. Frontiers in Plant Science, 2018, 9, 1183.	1.7	31
548	Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research and Public Health, 2018, 15, 574.	1.2	161
549	Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions. Frontiers in Plant Science, 2018, 9, 114.	1.7	174
550	Diversity and Co-occurrence Patterns of Soil Bacterial and Fungal Communities in Seven Intercropping Systems. Frontiers in Microbiology, 2018, 9, 1521.	1.5	132
551	The role of plants in bioretention systems; does the science underpin current guidance?. Ecological Engineering, 2018, 120, 532-545.	1.6	73
552	Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Systematic and Applied Microbiology, 2018, 41, 629-640.	1.2	17

#	Article	IF	CITATIONS
553	Bacterial communities in the rhizosphere of different populations of the Ni-hyperaccumulator Alyssum serpyllifolium and the metal-excluder Dactylis glomerata growing in ultramafic soils. Plant and Soil, 2018, 431, 317-332.	1.8	8
554	Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology. Biology and Fertility of Soils, 2018, 54, 819-828.	2.3	31
555	Linking 3D Soil Structure and Plant-Microbe-Soil Carbon Transfer in the Rhizosphere. Frontiers in Environmental Science, 2018, 6, .	1.5	97
556	Impact of Pore-Scale Wettability on Rhizosphere Rewetting. Frontiers in Environmental Science, 2018, 6, .	1.5	9
557	Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems. Frontiers in Microbiology, 2018, 9, 7.	1.5	21
558	Plant Rhizosphere Selection of Plasmodiophorid Lineages from Bulk Soil: The Importance of "Hidden― Diversity. Frontiers in Microbiology, 2018, 9, 168.	1.5	7
559	Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities. Frontiers in Microbiology, 2018, 9, 294.	1.5	161
560	Host and Aquatic Environment Shape the Amphibian Skin Microbiome but Effects on Downstream Resistance to the Pathogen Batrachochytrium dendrobatidis Are Variable. Frontiers in Microbiology, 2018, 9, 487.	1.5	63
561	Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Frontiers in Microbiology, 2018, 9, 859.	1.5	66
562	Belowground Microbiota and the Health of Tree Crops. Frontiers in Microbiology, 2018, 9, 1006.	1.5	118
563	Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes. Frontiers in Microbiology, 2018, 9, 1133.	1.5	63
564	Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought. Agriculture (Switzerland), 2018, 8, 14.	1.4	70
565	Existing and Potential Statistical and Computational Approaches for the Analysis of 3D CT Images of Plant Roots. Agronomy, 2018, 8, 71.	1.3	21
566	Endophytic Microbes as a Novel Source for Producing Anticancer Compounds as Multidrug Resistance Modulators. , 2018, , 343-381.		1
567	Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability. , 2018, , 173-203.		1
568	A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. Sustainability, 2018, 10, 2023.	1.6	57
569	Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition. Plant and Soil, 2018, 431, 53-69.	1.8	29
570	Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiology Ecology, 2018, 94, .	1.3	78

#	Article	IF	CITATIONS
571	Microbial diversity and biogeography in Arctic soils. Environmental Microbiology Reports, 2018, 10, 611-625.	1.0	84
572	Influence of new agromining cropping systems on soil bacterial diversity and the physico-chemical characteristics of an ultramafic soil. Science of the Total Environment, 2018, 645, 380-392.	3.9	22
573	Genome variations between rhizosphere and bulk soil ecotypes of a <i>Pseudomonas koreensis</i> population. Environmental Microbiology, 2018, 20, 4401-4414.	1.8	16
574	Pseudomonas chlororaphis Produces Multiple R-Tailocin Particles That Broaden the Killing Spectrum and Contribute to Persistence in Rhizosphere Communities. Applied and Environmental Microbiology, 2018, 84, .	1.4	28
575	Defoliation intensity and elevated precipitation effects on microbiome and interactome depend on site type in northern mixed-grass prairie. Soil Biology and Biochemistry, 2018, 122, 163-172.	4.2	23
576	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	5.2	105
577	Niche partition of phenanthrene-degrading bacteria along a Phragmites australis rhizosphere gradient. Biology and Fertility of Soils, 2018, 54, 607-616.	2.3	6
578	Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems. Rhizosphere, 2018, 6, 67-73.	1.4	30
579	Community composition and diversity of Neotropical rootâ€associated fungi in common and rare trees. Biotropica, 2018, 50, 694-703.	0.8	6
580	Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments. Journal of Visualized Experiments, 2018, , .	0.2	57
581	Pochonia chlamydosporia applied via seed treatment for nematode control in two soil types. Crop Protection, 2018, 114, 106-112.	1.0	14
582	Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports, 2018, 8, 12696.	1.6	231
583	Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6, 146.	4.9	368
584	Recovery of Amoebae Community in the Root Soil of M. sativa after a Strong Contamination Pulse with n-Hexane. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	3
585	Species-specific plant–soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia, 2018, 188, 801-811.	0.9	36
586	Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage (Brassica) Tj ETQq1 1 0. 1620.	784314 rgE 1.5	3T /Overlock 38
587	Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Frontiers in Microbiology, 2018, 9, 1767.	1.5	155
588	Identification and molecular phylogeny analysis using random amplification of polymorphic DNA (RAPD) and 16SrRNA sequencing of N2 fixing tea field soil bacteria from North Bengal tea gardens. African Journal of Microbiology Research, 2018, 12, 655-663.	0.4	5

#	Article	IF	CITATIONS
589	Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food. Frontiers in Plant Science, 2018, 9, 1089.	1.7	90
590	Plant Cuttings. Annals of Botany, 2018, 121, iv-vii.	1.4	1
591	Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS ONE, 2018, 13, e0192967.	1.1	49
592	Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biology, 2018, 122, 928-934.	1.1	33
593	Influence of light intensity on microalgal growth, nutrients removal and capture of carbon in the wastewater under intermittent supply of CO ₂ . Journal of Chemical Technology and Biotechnology, 2018, 93, 3582-3589.	1.6	4
594	Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biology and Biochemistry, 2018, 124, 47-58.	4.2	111
595	Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE, 2018, 13, e0194665.	1.1	83
596	Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Science of the Total Environment, 2018, 642, 708-722.	3.9	14
597	Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS ONE, 2018, 13, e0197095.	1.1	59
598	Quantifying Crop Rhizosphere Microbiome Ecology: The Next Frontier in Enhancing the Commercial Utility of Agricultural Microbes. Industrial Biotechnology, 2018, 14, 116-119.	0.5	19
599	The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata. Microbial Ecology, 2019, 77, 191-200.	1.4	46
600	Early colonisation and temporal dynamics of the gut microbial ecosystem in Standardbred foals. Equine Veterinary Journal, 2019, 51, 231-237.	0.9	44
601	Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. European Journal of Plant Pathology, 2019, 154, 141-156.	0.8	42
602	Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Applied Soil Ecology, 2019, 143, 192-200.	2.1	65
603	Emerging Insights on Rhizobacterial Functions. , 2019, , 171-189.		0
604	Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Applied Microbiology and Biotechnology, 2019, 103, 8203-8214.	1.7	13
605	Environmental Microbial Health Under Changing Climates: State, Implication and Initiatives for High-Performance Soils. Sustainable Agriculture Reviews, 2019, , 1-32.	0.6	1
606	Microbes: An Important Resource for Sustainable Agriculture. , 2019, , 53-77.		2

	Ст	ation Report	
#	Article	IF	Citations
607	MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries. Frontiers in Genetics, 2019, 10, 753.	1.1	22
608	Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms, 2019, 7, 269.	1.6	87
609	Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis) Tj E Biology and Biochemistry, 2019, 137, 107547.	[Qq0 0 0 rgBT /Overl 4.2	ock 10 Tf 50 25
610	Drought tolerance improvement in plants: an endophytic bacterial approach. Applied Microbiology and Biotechnology, 2019, 103, 7385-7397.	1.7	119
611	Metagenomics as a Tool to Explore New Insights from Plant-Microbe Interface. , 2019, , 271-289.		4
612	Following legume establishment, microbial and chemical associations facilitate improved productivity in degraded grasslands. Plant and Soil, 2019, 443, 273-292.	1.8	14
613	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	1.0	8
614	Plant traitâ€based approaches to improve nitrogen cycling in agroecosystems. Journal of Applied Ecology, 2019, 56, 2454-2466.	1.9	36
615	Biocontrol of Soil Phytopathogens by Arbuscular Mycorrhiza $\hat{a} \in \hat{A}$ Review. , 2019, , 221-237.		6
616	Effect of soil nutrients, neighbor identities and root separation types on intra―and interspecific interaction among three clonal plant species. Nordic Journal of Botany, 2019, 37, .	0.2	7
617	The Plant Microbiome: Diversity, Dynamics, and Role in Food Safety. , 2019, , 229-257.		5
618	Strong spatial and temporal turnover of soil bacterial communities in South Africa's hyperdiverse fynbos biome. Soil Biology and Biochemistry, 2019, 136, 107541.	4.2	25
619	Influence of Xenobiotics on the Mycorrhizosphere. , 2019, , 111-137.		3
620	An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples?. Frontiers in Microbiology, 2019, 10, 1629.	1.5	87
621	Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. Environmental Pollution, 2019, 253, 141-151.	3.7	56
622	Metagenomic Functional Shifts to Plant Induced Environmental Changes. Frontiers in Microbiology, 2019, 10, 1682.	1.5	28
623	Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. Journal of Environmental Management, 2019, 247, 756-765.	3.8	12
624	Trichoderma harzianum- and Methyl Jasmonate-Induced Resistance to Bipolaris sorokiniana Through Enhanced Phenylpropanoid Activities in Bread Wheat (Triticum aestivum L.). Frontiers in Microbiology, 2019, 10, 1697.	1.5	55

#	Article	IF	CITATIONS
625	Characterizing symbiont inheritance during host–microbiota evolution: Application to the great apes gut microbiota. Molecular Ecology Resources, 2019, 19, 1659-1671.	2.2	17
626	Cover Crop Management Practices Rather Than Composition of Cover Crop Mixtures Affect Bacterial Communities in No-Till Agroecosystems. Frontiers in Microbiology, 2019, 10, 1618.	1.5	64
627	More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 145-168.	3.8	219
628	Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. Frontiers in Plant Science, 2019, 10, 901.	1.7	50
629	Radiotracer evidence that the rhizosphere is a hot-spot for chlorination of soil organic matter. Plant and Soil, 2019, 443, 245-257.	1.8	10
630	Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots. Vadose Zone Journal, 2019, 18, 1-10.	1.3	73
631	A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 2019, 9, 9300.	1.6	91
632	Plants exhibit significant effects on the rhizospheric microbiome across contrasting soils in tropical and subtropical China. FEMS Microbiology Ecology, 2019, 95, .	1.3	4
633	The Composition and Assembly of Bacterial Communities across the Rhizosphere and Phyllosphere Compartments of Phragmites Australis. Diversity, 2019, 11, 98.	0.7	21
634	Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Science of the Total Environment, 2019, 688, 470-478.	3.9	313
635	Compositional response of Phaseolus vulgaris rhizomicrobiome to a changing soil environment is regulated by long-distance plant signaling. Plant and Soil, 2019, 442, 257-269.	1.8	4
636	Environmental filtering: A case of bacterial community assembly in soil. Soil Biology and Biochemistry, 2019, 136, 107531.	4.2	23
637	Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Scientific Reports, 2019, 9, 9650.	1.6	42
638	One for All and All for One! Increased Plant Heavy Metal Tolerance by Growth-Promoting Microbes: A Metabolomics Standpoint. , 2019, , 39-54.		2
639	Contrasting responses of soil nematode communities to native and non-native woody plant expansion. Oecologia, 2019, 190, 891-899.	0.9	7
640	Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biology and Biochemistry, 2019, 139, 107632.	4.2	110
641	The Role of Plant Litter in Driving Plant-Soil Feedbacks. Frontiers in Environmental Science, 2019, 7, .	1.5	79
642	Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 2019, 10, 1357.	1.7	189
#	Article	IF	Citations
-----	---	-----	-----------
643	<i>Azoarcus</i> sp. strain KH32C affects rice plant growth and the root-associated soil bacterial community in low nitrogen input paddy fields. Soil Science and Plant Nutrition, 2019, 65, 451-459.	0.8	8
644	Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 2019, 7, 136.	4.9	270
645	Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant Nutrition and Soil Science, 2019, 182, 945-952.	1.1	36
646	The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS ONE, 2019, 14, e0223691.	1.1	39
647	Effects of rhizoma peanut cultivars (<i>Arachis glabrata</i> Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecology and Evolution, 2019, 9, 12676-12687.	0.8	21
648	Differential selection pressure exerted by root rot disease on the microbial communities in the rhizosphere of avocado (<i>Persea americana</i> Mill.). Annals of Applied Biology, 2019, 175, 376-387.	1.3	11
649	Genomic and metabolic differences between Pseudomonas putida populations inhabiting sugarcane rhizosphere or bulk soil. PLoS ONE, 2019, 14, e0223269.	1.1	9
650	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	5.8	88
651	A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nature Communications, 2019, 10, 4802.	5.8	90
652	Exploration of Root-associated Bacteria from the Medicinal Plant <i>Platycodon grandiflorum</i> . Microbes and Environments, 2019, 34, 413-420.	0.7	11
653	Taking plant–soil feedbacks to the field in a temperate grassland. Basic and Applied Ecology, 2019, 40, 30-42.	1.2	17
654	Shifts in the Composition and Activities of Denitrifiers Dominate CO ₂ Stimulation of N ₂ O Emissions. Environmental Science & Technology, 2019, 53, 11204-11213.	4.6	27
655	Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics. Soil Biology and Biochemistry, 2019, 137, 107573.	4.2	56
657	Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express, 2019, 9, 125.	1.4	50
658	Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, 2019, 19, 201.	1.3	194
659	Conservation of Endophyte Bacterial Community Structure Across Two Panicum Grass Species. Frontiers in Microbiology, 2019, 10, 2181.	1.5	19
660	Culturing Simpler and Bacterial Wilt Suppressive Microbial Communities from Tomato Rhizosphere. Plant Pathology Journal, 2019, 35, 362-371.	0.7	20
661	Coordinated community structure amongÂtrees, fungi and invertebrate groups in Amazonian rainforests. Scientific Reports, 2019, 9, 11337.	1.6	15

#	Article	IF	CITATIONS
662	Fate of photosynthesized carbon as regulated by long–term tillage management in a dryland wheat cropping system. Soil Biology and Biochemistry, 2019, 138, 107581.	4.2	18
663	Predominance of soil vs root effect in rhizosphere microbiota reassembly. FEMS Microbiology Ecology, 2019, 95, .	1.3	15
664	The Roles of Invertebrates in the Urban Soil Microbiome. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	16
665	Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. Journal of Integrative Agriculture, 2019, 18, 2006-2018.	1.7	68
666	Pontoscolex corethrurus: A homeless invasive tropical earthworm?. PLoS ONE, 2019, 14, e0222337.	1.1	1
667	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	1.6	20
668	Culturable mycobiome of soya bean cyst nematode (Heterodera glycines) cysts from a long-term soya bean-corn rotation system is dominated by Fusarium. Fungal Ecology, 2019, 42, 100857.	0.7	19
669	Can multiple harvests of plants improve nitrogen removal from the point-bar soil of lake?. Journal of Environmental Management, 2019, 249, 109371.	3.8	4
670	Bacterial Diversity and Community Structure in Typical Plant Rhizosphere. Diversity, 2019, 11, 179.	0.7	59
671	Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Frontiers in Microbiology, 2019, 10, 2252.	1.5	41
672	16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages. Frontiers in Microbiology, 2019, 10, 2103.	1.5	16
673	Plant geographic origin and phylogeny as potential drivers of community structure in rootâ€inhabiting fungi. Journal of Ecology, 2019, 107, 1720-1736.	1.9	27
674	Bacteria Associated With a Commercial Mycorrhizal Inoculum: Community Composition and Multifunctional Activity as Assessed by Illumina Sequencing and Culture-Dependent Tools. Frontiers in Plant Science, 2018, 9, 1956.	1.7	50
675	Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca) Tj ETQq1 I	0,784314 4.9	ł rgβT /Overl
676	Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi River Estuary, Northeast China. Marine Pollution Bulletin, 2019, 140, 171-178.	2.3	31
677	Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiology Ecology, 2019, 95, .	1.3	32
678	Bacterial communities associated to Chilean altiplanic native plants from the Andean grasslands soils. Scientific Reports, 2019, 9, 1042.	1.6	32
679	Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp Brazilian Journal of Microbiology, 2019, 50, 583-592.	0.8	14

	CITATION	Report	
#	ARTICLE Monitoring soil biological properties during the restoration of a phosphate mine under different	IF	CITATIONS
680	tree species and plantation types. Ecotoxicology and Environmental Safety, 2019, 180, 130-138.	2.9	21
681	Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens, 2019, 8, 78.	1.2	91
682	Coldâ€adapted <i>Bacilli</i> isolated from the Qinghai–Tibetan Plateau are able to promote plant growth in extreme environments. Environmental Microbiology, 2019, 21, 3505-3526.	1.8	42
683	Estimating belowground plant abundance with DNA metabarcoding. Molecular Ecology Resources, 2019, 19, 1265-1277.	2.2	34
684	The time delays influence on the dynamical complexity of algal blooms in the presence of bacteria. Ecological Complexity, 2019, 39, 100769.	1.4	8
685	Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 2019, 135, 420-428.	4.2	36
686	The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology, 2019, 10, 1142.	1.5	123
687	Metagenomic survey of the bacterial communities in the rhizosphere of three Andean tuber crops. Symbiosis, 2019, 79, 141-150.	1.2	7
688	Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma, 2019, 351, 180-187.	2.3	61
689	Role and exploitation of underground chemical signaling in plants. Pest Management Science, 2019, 75, 2455-2463.	1.7	37
690	Microbial community structure of soils in Bamenwan mangrove wetland. Scientific Reports, 2019, 9, 8406.	1.6	37
691	Rise of the killer plants: investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal. Journal of Biological Engineering, 2019, 13, 52.	2.0	9
692	Microbial community structure in the rhizosphere of the orphan legume Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Molecular Biology Reports, 2019, 46, 4471-4481.	1.0	11
693	Measuring rhizosphere effects of two tree species in a temperate forest: A comprehensive method comparison. Rhizosphere, 2019, 10, 100153.	1.4	10
694	Transcriptomic Analysis of Trichoderma atroviride Overgrowing Plant-Wilting Verticillium dahliae Reveals the Role of a New M14 Metallocarboxypeptidase CPA1 in Biocontrol. Frontiers in Microbiology, 2019, 10, 1120.	1.5	50
695	Leaf and Root Endospheres Harbor Lower Fungal Diversity and Less Complex Fungal Co-occurrence Patterns Than Rhizosphere. Frontiers in Microbiology, 2019, 10, 1015.	1.5	60
696	Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biology and Biochemistry, 2019, 135, 163-172.	4.2	58
697	Spatially tracking carbon through the root–rhizosphere–soil system using laser ablationâ€IRMS. Journal of Plant Nutrition and Soil Science, 2019, 182, 401-410.	1.1	10

#	Article	IF	CITATIONS
698	From Leguminosae/Gramineae Intercropping Systems to See Benefits of Intercropping on Iron Nutrition. Frontiers in Plant Science, 2019, 10, 605.	1.7	46
699	The inconspicuous gatekeeper: endophytic <i>Serendipita vermifera</i> acts as extended plant protection barrier in the rhizosphere. New Phytologist, 2019, 224, 886-901.	3.5	52
700	Impact of Climate Change on Soil Carbon Exchange, Ecosystem Dynamics, and Plant–Microbe Interactions. , 2019, , 379-413.		9
701	Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 2019, 135, 343-360.	4.2	356
702	Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition. Plant and Soil, 2019, 441, 283-300.	1.8	26
703	Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media – A review. Journal of Advanced Research, 2019, 19, 15-27.	4.4	102
704	Successional trajectories of soil bacterial communities in mine tailings: The role of plant functional traits. Journal of Environmental Management, 2019, 241, 284-292.	3.8	33
705	Cultivated rice rhizomicrobiome is more sensitive to environmental shifts than that of wild rice in natural environments. Applied Soil Ecology, 2019, 140, 68-77.	2.1	17
706	Rhizospheric Microbial Diversity: An Important Component for Abiotic Stress Management in Crop Plants Toward Sustainable Agriculture. , 2019, , 115-134.		6
707	Phyllosphere Microbiome: Functional Importance in Sustainable Agriculture. , 2019, , 135-148.		10
708	Effect of longâ€ŧerm organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environmental Microbiology, 2019, 21, 2426-2439.	1.8	42
709	High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula Sinkiangensis at different soil depths. Scientific Reports, 2019, 9, 6558.	1.6	26
710	Bacterial and Archaeal Communities Change With Intensity of Vegetation Coverage in Arenized Soils From the Pampa Biome. Frontiers in Microbiology, 2019, 10, 497.	1.5	7
711	Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis. European Journal of Plant Pathology, 2019, 154, 931-942.	0.8	81
712	Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Science of the Total Environment, 2019, 669, 62-69.	3.9	19
713	Adaptations and evolution of a heritable leaf nodule symbiosis between <i>Dioscorea sansibarensis</i> and <i>Orrella dioscoreae</i> . ISME Journal, 2019, 13, 1831-1844.	4.4	17
714	Climatic Change and Metabolome Fluxes. , 2019, , 179-237.		0
715	Rhizospheric Fungi: Diversity and Potential Biotechnological Applications. Fungal Biology, 2019, , 63-84.	0.3	6

#	Article	IF	CITATIONS
716	Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiological and Molecular Plant Pathology, 2019, 106, 232-237.	1.3	38
717	Climate warming and tree carbon use efficiency in a wholeâ€tree ¹³ <scp>CO</scp> ₂ tracer study. New Phytologist, 2019, 222, 1313-1324.	3.5	30
718	Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition. Oikos, 2019, 128, 1136-1146.	1.2	10
719	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
720	Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Applied Soil Ecology, 2019, 138, 80-87.	2.1	34
721	Effects of Land Use and Restoration on Soil Microbial Communities. Advances in Environmental Microbiology, 2019, , 173-242.	0.1	4
722	The effect of environment on the microbiome associated with the roots of a native woody plant under different climate types in China. Applied Microbiology and Biotechnology, 2019, 103, 3899-3913.	1.7	11
723	Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil. Environmental Pollution, 2019, 249, 716-727.	3.7	44
724	Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 2019, 95, .	1.3	95
725	Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034603.	2.3	53
726	Effects of endophytic fungi diversity in different coniferous species on the colonization of Sirex noctilio (Hymenoptera: Siricidae). Scientific Reports, 2019, 9, 5077.	1.6	23
727	Exploitation of Rhizosphere Microbiome Services. Rhizosphere Biology, 2019, , 105-132.	0.4	9
728	No "Gadgil effectâ€: Temperate tree roots and soil lithology are effective predictors of wood decomposition. Forest Pathology, 2019, 49, e12506.	0.5	8
729	Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 2019, 13, 1722-1736.	4.4	716
730	Physico-chemical and biological aspects of a serially connected lab-scale constructed wetland-stabilization tank-GAC slow sand filtration system during removal of selected PPCPs. Chemical Engineering Journal, 2019, 369, 1109-1118.	6.6	29
731	Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biology and Biochemistry, 2019, 134, 122-130.	4.2	38
732	Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Frontiers in Microbiology, 2019, 10, 581.	1.5	42
733	Compost-assisted phytoremediation of As-polluted soil. Journal of Soils and Sediments, 2019, 19, 2971-2983.	1.5	22

#	Article	IF	CITATIONS
734	Lime and ammonium carbonate fumigation coupled with bioâ€organic fertilizer application steered banana rhizosphere to assemble a unique microbiome against Panama disease. Microbial Biotechnology, 2019, 12, 515-527.	2.0	23
735	Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytologist, 2019, 223, 462-474.	3.5	51
736	Interspecies Social Spreading: Interaction between Two Sessile Soil Bacteria Leads to Emergence of Surface Motility. MSphere, 2019, 4, .	1.3	23
737	Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541.	4.3	233
738	Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Scientific Reports, 2019, 9, 4033.	1.6	32
739	Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Applied Soil Ecology, 2019, 138, 245-252.	2.1	31
740	New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances, 2019, 37, 107371.	6.0	189
741	Rhizosphere microbiota compositional changes reflect potato blackleg disease. Applied Soil Ecology, 2019, 140, 11-17.	2.1	9
742	Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China. Canadian Journal of Microbiology, 2019, 65, 538-549.	0.8	11
743	Variable Influences of Water Availability and Rhizobacteria on the Growth of Schizachyrium scoparium (Little Bluestem) at Different Ages. Frontiers in Microbiology, 2019, 10, 860.	1.5	8
744	Relating Urban Biodiversity to Human Health With the †Holobiont' Concept. Frontiers in Microbiology, 2019, 10, 550.	1.5	64
745	Local soil characteristics determine the microbial communities under forest understorey plants along a latitudinal gradient. Basic and Applied Ecology, 2019, 36, 34-44.	1.2	10
746	Soil Abiotic Properties and Plant Functional Traits Mediate Associations Between Soil Microbial and Plant Communities During a Secondary Forest Succession on the Loess Plateau. Frontiers in Microbiology, 2019, 10, 895.	1.5	52
747	Rhizosphere effects on soil microbial community structure and enzyme activity in a successional subtropical forest. FEMS Microbiology Ecology, 2019, 95, .	1.3	34
748	Role of the Plant Root Microbiome in Abiotic Stress Tolerance. , 2019, , 273-311.		20
749	Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. Journal of Medicinal Chemistry, 2019, 62, 7618-7642.	2.9	73
750	Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean. Archives of Microbiology, 2019, 201, 879-888.	1.0	22
751	Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant and Soil, 2019, 439, 505-523.	1.8	44

#	Article	IF	CITATIONS
752	Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal, 2019, 13, 1647-1658.	4.4	210
753	Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Annals of Microbiology, 2019, 69, 307-320.	1.1	135
754	A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Molecular Plant, 2019, 12, 661-677.	3.9	83
755	A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33, 540-552.	1.7	292
756	Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Scientific Reports, 2019, 9, 1695.	1.6	23
757	Soil Bacterial Communities From the Chilean Andean Highlands: Taxonomic Composition and Culturability. Frontiers in Bioengineering and Biotechnology, 2019, 7, 10.	2.0	34
758	Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Scientific Reports, 2019, 9, 3127.	1.6	33
759	Successional Dynamics and Seascape-Level Patterns of Microbial Communities on the Canopy-Forming Kelps Nereocystis luetkeana and Macrocystis pyrifera. Frontiers in Microbiology, 2019, 10, 346.	1.5	77
760	Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species. Plant and Soil, 2019, 437, 215-239.	1.8	14
761	Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine). Applied Sciences (Switzerland), 2019, 9, 5559.	1.3	20
762	Nitrogen Fixing and Phosphate Mineralizing Bacterial Communities in Sweet Potato Rhizosphere Show a Genotype-Dependent Distribution. Diversity, 2019, 11, 231.	0.7	7
763	Rhizosphere microbiome and plant probiotics. , 2019, , 273-281.		3
764	Arbuscular Mycorrhizal Fungi in the Rhizosphere of Saplings Used in the Restoration of the Rupestrian Grassland. Ecological Restoration, 2019, 37, 152-162.	0.5	6
765	An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities. Journal of Agricultural Science, 2019, 157, 693-700.	0.6	5
766	Effects of microalgal biomass as biofertilizer on the growth of cucumber and microbial communities in the cucumber rhizosphere. Turkish Journal of Botany, 0, , .	0.5	4
767	Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	8
768	Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal Communities. MBio, 2019, 10, .	1.8	60
769	Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem. , 2019, , 517-546.		6

#	Article	IF	CITATIONS
770	Functional Diversity of Plant Growth-Promoting Rhizobacteria: Recent Progress and Future Prospects. , 2019, , 229-253.		5
771	Mixed-Cropping Between Field Pea Varieties Alters Root Bacterial and Fungal Communities. Scientific Reports, 2019, 9, 16953.	1.6	31
772	Interactions of Microhabitat and Time Control Grassland Bacterial and Fungal Composition. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	12
773	Beneficial Plant Microorganisms Affect the Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different Molecular Approaches. Frontiers in Microbiology, 2019, 10, 2500.	1.5	20
774	4. Merging microbial and plant profiling to understand the impact of human-generated extreme environments on natural and agricultural systems. , 2019, , 57-92.		2
775	Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions. PLoS ONE, 2019, 14, e0222737.	1.1	8
776	Reads Binning Improves Alignment-Free Metagenome Comparison. Frontiers in Genetics, 2019, 10, 1156.	1.1	17
777	The Role of Plant Growth-Promoting Bacteria in the Growth of Cereals under Abiotic Stresses. , 0, , .		11
778	Interaction between arbuscular mycorrhizal fungi andÂBacillusÂspp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 2019, 6, 23.	2.5	98
780	Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Frontiers in Microbiology, 2019, 10, 2726.	1.5	55
781	Vulnerability of Soil Microbiome to Monocropping of Medicinal and Aromatic Plants and Its Restoration Through Intercropping and Organic Amendments. Frontiers in Microbiology, 2019, 10, 2604.	1.5	27
782	Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Science of the Total Environment, 2019, 649, 422-430.	3.9	62
783	Diversity of microorganisms associated to Ananas spp. from natural environment, cultivated and ex situ conservation areas. Scientia Horticulturae, 2019, 243, 544-551.	1.7	11
784	Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biology and Biochemistry, 2019, 131, 9-18.	4.2	47
785	Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 2019, 131, 28-39.	4.2	141
786	Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests. Catena, 2019, 175, 167-173.	2.2	47
787	Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates. Frontiers in Microbiology, 2018, 9, 3263.	1.5	17
788	The rhizosphere microbiome: A key component of sustainable cork oak forests in trouble. Forest Ecology and Management, 2019, 434, 29-39.	1.4	23

#	Article	IF	CITATIONS
789	Effect of elemental sulfur and gypsum application on the bioavailability and redistribution of cadmium during rice growth. Science of the Total Environment, 2019, 657, 1460-1467.	3.9	74
790	Fertilisation practice changes rhizosphere microbial community structure in the agroecosystem. Annals of Applied Biology, 2019, 174, 123-132.	1.3	16
791	Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiological Research, 2019, 219, 74-83.	2.5	68
792	Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry, 2019, 129, 144-152.	4.2	52
793	Divergence in Diversity and Composition of Root-Associated Fungi Between Greenhouse and Field Studies in a Semiarid Grassland. Microbial Ecology, 2019, 78, 122-135.	1.4	13
794	Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Applied Microbiology and Biotechnology, 2019, 103, 643-657.	1.7	40
795	Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands. Applied Soil Ecology, 2019, 135, 38-43.	2.1	34
796	Maize plant growth response to whole rhizosphere microbial communities in different mineral N and P fertilization scenarios. Rhizosphere, 2019, 9, 38-46.	1.4	15
797	Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent. Rhizosphere, 2019, 9, 56-68.	1.4	35
798	Temperatureâ€mediated phylogenetic assemblage of fungal communities and local adaptation in mycorrhizal symbioses. Environmental Microbiology Reports, 2019, 11, 215-226.	1.0	8
799	Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. Science of the Total Environment, 2019, 659, 463-472.	3.9	28
800	Soil constraints for arbuscular mycorrhizal fungi spore community in degraded sites of rupestrian grassland: Implications for restoration. European Journal of Soil Biology, 2019, 90, 51-57.	1.4	16
801	Comparative transcriptomic analysis reveals different responses of Arabidopsis thaliana roots and shoots to infection by Agrobacterium tumefaciens in a hydroponic co-cultivation system. Physiological and Molecular Plant Pathology, 2019, 106, 109-119.	1.3	4
802	Differential magnitude of rhizosphere effects on soil aggregation at three stages of subtropical secondary forest successions. Plant and Soil, 2019, 436, 365-380.	1.8	35
803	Do soil bacterial communities respond differently to abrupt or gradual additions of copper?. FEMS Microbiology Ecology, 2019, 95, .	1.3	5
804	Nitrogen fertilization increases rice rhizodeposition and its stabilization in soil aggregates and the humus fraction`. Plant and Soil, 2019, 445, 125-135.	1.8	46
805	Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME Journal, 2019, 13, 738-751.	4.4	166
806	Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 2019, 33, 129-138.	1.7	28

#	Article	IF	CITATIONS
807	Endohyphal bacteria; the prokaryotic modulators of host fungal biology. Fungal Biology Reviews, 2019, 33, 72-81.	1.9	19
808	Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity. Applied Microbiology and Biotechnology, 2019, 103, 1973-1987.	1.7	16
809	Trichoderma-Inoculation and Mowing Synergistically Altered Soil Available Nutrients, Rhizosphere Chemical Compounds and Soil Microbial Community, Potentially Driving Alfalfa Growth. Frontiers in Microbiology, 2018, 9, 3241.	1.5	32
810	Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum) Tj ETQq1 1 0.784314	ŧrgβT /Ον £.8	erlock 10 T 45
811	Biotic priming with Pseudomonas fluorescens induce drought stress tolerance in Abelmoschus esculentus (L.) Moench (Okra). Physiology and Molecular Biology of Plants, 2019, 25, 101-112.	1.4	24
812	Expansion of rice enzymatic rhizosphere: temporal dynamics in response to phosphorus and cellulose application. Plant and Soil, 2019, 445, 169-181.	1.8	37
813	Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiology and Biochemistry, 2019, 135, 61-68.	2.8	36
814	Larger plants promote a greater diversity of symbiotic nitrogenâ€fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107, 977-991.	1.9	38
815	Stable states in soil chemistry persist in eucalypt woodland restorations. Applied Vegetation Science, 2019, 22, 105-114.	0.9	7
816	Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Science of the Total Environment, 2019, 651, 1627-1638.	3.9	37
817	Assembly processes of trophic guilds in the root mycobiome of temperate forests. Molecular Ecology, 2019, 28, 348-364.	2.0	46
818	Physics and hydraulics of the rhizosphere network. Journal of Plant Nutrition and Soil Science, 2019, 182, 5-8.	1.1	17
819	ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Briefings in Bioinformatics, 2020, 21, 621-636.	3.2	151
820	Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science, 2020, , .	0.3	9
821	Belowground Microbial Communities: Key Players for Soil and Environmental Sustainability. SpringerBriefs in Environmental Science, 2020, , 5-22.	0.3	10
822	Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms. Microbial Ecology, 2020, 79, 50-63.	1.4	10
823	Sewage Treatment in Campus for Recycling Purpose: A Review. , 2020, , 207-243.		4
824	The aeroponic rhizosphere microbiome: community dynamics in early succession suggest strong selectional forces. Antonie Van Leeuwenhoek, 2020, 113, 83-99.	0.7	10

#		IF	CITATIONS
825	The plant microbiome: A missing link for the understanding of community dynamics and multifunctionality in forest ecosystems. Applied Soil Ecology, 2020, 145, 103345.	2.1	22
826	Short-term plant legacy alters the resistance and resilience of soil microbial communities exposed to heat disturbance in a Mediterranean calcareous soil. Ecological Indicators, 2020, 108, 105740.	2.6	11
827	Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil and Tillage Research, 2020, 196, 104431.	2.6	38
828	Do pyrene and Kandelia obovata improve removal of BDE-209 in mangrove soils?. Chemosphere, 2020, 240, 124873.	4.2	14
829	Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytologist, 2020, 225, 960-973.	3.5	69
830	Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Natural Product Reports, 2020, 37, 29-54.	5.2	77
831	Effect of nitrogen fertilisation on nitrous oxide emission and the abundance of microbial nitrifiers and denitrifiers in the bulk and rhizosphere soil of Solanum lycopersicum and Phaseolus vulgaris. Plant and Soil, 2020, 451, 107-120.	1.8	14
832	Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn. Applied Soil Ecology, 2020, 146, 103375.	2.1	9
833	Soil microbial community characteristics under different vegetation types at the national nature reserve of Xiaolongshan Mountains, Northwest China. Ecological Informatics, 2020, 55, 101020.	2.3	17
834	Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry, 2020, 141, 107662.	4.2	77
835	Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology, 2020, 147, 103388.	2.1	41
836	Biofixation of atmospheric nitrogen in the context of world staple crop production: Policy perspectives. Science of the Total Environment, 2020, 701, 134945.	3.9	16
837	Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene, 2020, 23, 100625.	0.3	12
838	Plant traits shape soil legacy effects on individual plant–insect interactions. Oikos, 2020, 129, 261-273.	1.2	25
839	Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils. Environmental Pollution, 2020, 257, 113580.	3.7	13
840	Small scale fungal community differentiation in a vineyard system. Food Microbiology, 2020, 87, 103358.	2.1	33
841	Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables. Journal of Environmental Management, 2020, 253, 109636.	3.8	35
842	Long-Term Greenhouse Cucumber Production Alters Soil Bacterial Community Structure. Journal of Soil Science and Plant Nutrition, 2020, 20, 306-321.	1.7	33

#	Article	IF	CITATIONS
843	Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. Journal of Hazardous Materials, 2020, 390, 121493.	6.5	50
844	Locally Adapted <i>Mimulus</i> Ecotypes Differentially Impact Rhizosphere Bacterial and Archaeal Communities in an Environment-Dependent Manner. Phytobiomes Journal, 2020, 4, 53-63.	1.4	6
845	Rhizosphere and litter feedbacks to rangeâ€expanding plant species and related natives. Journal of Ecology, 2020, 108, 353-365.	1.9	16
846	Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation and Development, 2020, 31, 190-204.	1.8	60
847	Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnology and Oceanography, 2020, 65, S38.	1.6	46
848	Long term forest conversion affected soil nanoscale pores in subtropical China. Catena, 2020, 185, 104289.	2.2	12
849	Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME Journal, 2020, 14, 463-475.	4.4	141
850	The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Frontiers in Microbiology, 2019, 10, 2951.	1.5	19
851	Effects of reduced nitrogen and suitable soil moisture on wheat (Triticum aestivum L.) rhizosphere soil microbiological, biochemical properties and yield in the Huanghuai Plain, China. Journal of Integrative Agriculture, 2020, 19, 234-250.	1.7	23
852	Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biology and Biochemistry, 2020, 142, 107717.	4.2	27
853	Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	29
854	Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 2020, 58, 1.	0.6	28
855	Arbuscular mycorrhiza has little influence on N2O potential emissions compared to plant diversity in experimental plant communities. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
856	Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2. Renewable Energy, 2020, 149, 708-715.	4.3	46
857	Diversity and structure of bacterial community in rhizosphere of lima bean. Applied Soil Ecology, 2020, 150, 103490.	2.1	20
858	Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology, 2020, 150, 103468.	2.1	26
859	Mechanisms of water regime effects on uptake of cadmium and nitrate by two ecotypes of water spinach (Ipomoea aquatica Forsk.) in contaminated soil. Chemosphere, 2020, 246, 125798.	4.2	24
860	Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome. Plant and Soil, 2020, 446, 655-669.	1.8	20

#	Article	IF	CITATIONS
861	Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Applied Microbiology and Biotechnology, 2020, 104, 785-797.	1.7	28
862	Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species. Science of the Total Environment, 2020, 706, 135955.	3.9	58
863	Analysis of the microbial communities in soils of different ages following volcanic eruptions. Pedosphere, 2020, 30, 126-134.	2.1	17
864	Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in <i>Catharanthus roseus</i> roots. Journal of Applied Microbiology, 2020, 128, 1128-1142.	1.4	32
865	Endophytic Microbiome of Biofuel Plant Miscanthus sinensis (Poaceae) Interacts with Environmental Gradients. Microbial Ecology, 2020, 80, 133-144.	1.4	9
866	Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment. Biology and Fertility of Soils, 2020, 56, 169-183.	2.3	22
867	Fungal community structure in relation to manure rate in red soil in southern China. Applied Soil Ecology, 2020, 147, 103442.	2.1	19
868	Root-Secreted Spermine Binds to <i>Bacillus amyloliquefaciens</i> SQR9 Histidine Kinase KinD and Modulates Biofilm Formation. Molecular Plant-Microbe Interactions, 2020, 33, 423-432.	1.4	11
869	Biocontrol of Bacterial Wilt Disease Through Complex Interaction Between Tomato Plant, Antagonists, the Indigenous Rhizosphere Microbiota, and Ralstonia solanacearum. Frontiers in Microbiology, 2019, 10, 2835.	1.5	72
870	Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. Applied Sciences (Switzerland), 2020, 10, 6387.	1.3	11
871	Root Border Cells and Mucilage Secretions of Soybean, Glycine Max (Merr) L.: Characterization and Role in Interactions with the Oomycete Phytophthora Parasitica. Cells, 2020, 9, 2215.	1.8	28
872	An Overview of Bioinformatics Tools for DNA Meta-Barcoding Analysis of Microbial Communities of Bioaerosols: Digest for Microbiologists. Life, 2020, 10, 185.	1.1	4
873	Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Frontiers in Plant Science, 2020, 11, 561007.	1.7	57
874	The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 2020, 44, 107614.	6.0	79
875	Genomic characterization of a diazotrophic microbiota associated with maize aerial root mucilage. PLoS ONE, 2020, 15, e0239677.	1.1	13
876	Temporal and Cultivar-Specific Effects on Potato Root and Soil Fungal Diversity. Agronomy, 2020, 10, 1535.	1.3	8
877	Rhizospheric microbiomes help Dongxiang common wild rice (Oryza rufipogon Griff.) rather than Leersia hexandra Swartz survive under cold stress. Archives of Agronomy and Soil Science, 2020, , 1-13.	1.3	5
878	Effects of <i>Hedysarum</i> leguminous plants on soil bacterial communities in the Mu Us Desert, northwest China. Ecology and Evolution, 2020, 10, 11423-11439.	0.8	15

#	Article	IF	CITATIONS
879	Harnessing PGPR inoculation through exogenous foliar application of salicylic acid and microbial extracts for improving rice growth. Journal of Basic Microbiology, 2020, 60, 950-961.	1.8	7
880	Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biology and Biochemistry, 2020, 151, 108046.	4.2	33
881	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	2.5	64
882	Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecology, 2020, 48, 100988.	0.7	21
883	Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environmental and Sustainability Indicators, 2020, 8, 100073.	1.7	23
884	Is soluble protein mineralisation and protease activity in soil regulated by supply or demand?. Soil Biology and Biochemistry, 2020, 150, 108007.	4.2	22
885	Salinity, Water Level, and Forest Structure Contribute to Baldcypress (Taxodium distichum) Rhizosphere and Endosphere Community Structure. Wetlands, 2020, 40, 2179-2188.	0.7	3
886	Expression of N ycling genes of root microbiomes provides insights for sustaining oilseed crop production. Environmental Microbiology, 2020, 22, 4545-4556.	1.8	11
887	Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. Annals of Microbiology, 2020, 70, .	1.1	19
888	Fungal volatiles influence plant defence against aboveâ€ground and belowâ€ground herbivory. Functional Ecology, 2020, 34, 2259-2269.	1.7	6
890	Serratia. , 2020, , 27-36.		3
891	Ozonation as non-thermal option for bacterial load reduction of Chlorella biomass cultivated in airlift photobioreactor. Journal of Cleaner Production, 2020, 276, 123029.	4.6	8
892	Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages. Brazilian Journal of Microbiology, 2020, 51, 1873-1884.	0.8	7
893	Exploring the Microbiota of East African Indigenous Leafy Greens for Plant Growth, Health, and Resilience. Frontiers in Microbiology, 2020, 11, 585690.	1.5	5
894	Plant Genotype Influences Physicochemical Properties of Substrate as Well as Bacterial and Fungal Assemblages in the Rhizosphere of Balsam Poplar. Frontiers in Microbiology, 2020, 11, 575625.	1.5	12
895	Phytophthora zoospores: From perception of environmental signals to inoculum formation on the host-root surface. Computational and Structural Biotechnology Journal, 2020, 18, 3766-3773.	1.9	18
896	Aboveâ€belowground linkages of functionally dissimilar plant communities and soil properties in a grassland experiment. Ecosphere, 2020, 11, e03246.	1.0	7
897	Genotype May Influence Bacterial Diversity in Bark and Bud of Vitis vinifera Cultivars Grown under the Same Environment. Applied Sciences (Switzerland), 2020, 10, 8405.	1.3	3

#	Article	IF	CITATIONS
898	Temporal Dynamics of Rhizobacteria Found in Pequin Pepper, Soybean, and Orange Trees Growing in a Semi-arid Ecosystem. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	7
899	Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. International Journal of Molecular Sciences, 2020, 21, 8895.	1.8	14
900	Response of Soil Bacterial Community to Application of Organic and Inorganic Phosphate Based Fertilizers under Vicia faba L. Cultivation at Two Different Phenological Stages. Sustainability, 2020, 12, 9706.	1.6	9
901	Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. Journal of Applied Microbiology, 2020, 131, 513-526.	1.4	2
902	Space and Vine Cultivar Interact to Determine the Arbuscular Mycorrhizal Fungal Community Composition. Journal of Fungi (Basel, Switzerland), 2020, 6, 317.	1.5	3
903	Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Annals of Microbiology, 2020, 70, .	1.1	50
904	Beyond Plant Microbiome Composition: Exploiting Microbial Functions and Plant Traits via Integrated Approaches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 896.	2.0	44
905	The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 2020, 134, 126-134.	1.2	61
906	Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Frontiers in Microbiology, 2020, 11, 1560.	1.5	11
907	Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability, 2020, 12, 5559.	1.6	75
908	Plant and Soil Development Cooperatively Shaped the Composition of the <i>phoD</i> -Harboring Bacterial Community along the Primary Succession in the Hailuogou Glacier Chronosequence. MSystems, 2020, 5, .	1.7	9
909	Rhizosphere Spatiotemporal Organization–A Key to Rhizosphere Functions. Frontiers in Agronomy, 2020, 2, .	1.5	54
910	Mapping Reaction-Diffusion Networks at the Plant Wound Site With Pathogens. Frontiers in Plant Science, 2020, 11, 1074.	1.7	2
911	Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 2020, 96, .	1.3	28
912	Soil prokaryotic community resilience, fungal colonisation and increased cross-domain co-occurrence in response to a plant-growth enhancing organic amendment. Soil Biology and Biochemistry, 2020, 149, 107937.	4.2	8
913	Optimizing Boron Seed Coating Level and Boron-Tolerant Bacteria for Improving Yield and Biofortification of Chickpea. Journal of Soil Science and Plant Nutrition, 2020, 20, 2471-2478.	1.7	17
914	Seasonal variations of soil bacterial communities in Suaeda wetland of Shuangtaizi River estuary, Northeast China. Journal of Environmental Sciences, 2020, 97, 45-53.	3.2	24
915	Deciphering the archaeal communities in tree rhizosphere of the Qinghai-Tibetan plateau. BMC Microbiology, 2020, 20, 235.	1.3	14

#	Article	IF	CITATIONS
916	Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Annals of Applied Biology, 2020, 177, 282-293.	1.3	18
917	Bacterial Diversity and Interaction Networks of Agave lechuguilla Rhizosphere Differ Significantly From Bulk Soil in the Oligotrophic Basin of Cuatro Cienegas. Frontiers in Plant Science, 2020, 11, 1028.	1.7	22
918	Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Scientific Reports, 2020, 10, 12234.	1.6	38
919	Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 2020, 6, eabc1176.	4.7	181
920	Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse. Scientific Reports, 2020, 10, 13729.	1.6	20
921	Responses of active soil microorganisms facing to a soil biostimulant input compared to plant legacy effects. Scientific Reports, 2020, 10, 13727.	1.6	24
922	Soil drugs of the future: The sustainability of BioAg and the repair of arable land. Environment and Planning E, Nature and Space, 2020, , 251484862094389.	1.6	4
923	Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific Reports, 2020, 10, 13685.	1.6	11
925	Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Frontiers in Microbiology, 2020, 11, 2073.	1.5	19
926	Understanding the Impact of Cultivar, Seed Origin, and Substrate on Bacterial Diversity of the Sugar Beet Rhizosphere and Suppression of Soil-Borne Pathogens. Frontiers in Plant Science, 2020, 11, 560869.	1.7	27
927	Sampling the control bulk soil for rhizosphere and drilosphere microbial studies. Geoderma, 2020, 380, 114674.	2.3	10
928	Effect of Inorganic N Top Dressing and Trichoderma harzianum Seed-Inoculation on Crop Yield and the Shaping of Root Microbial Communities of Wheat Plants Cultivated Under High Basal N Fertilization. Frontiers in Plant Science, 2020, 11, 575861.	1.7	32
929	Identification and functional assessment of endophytic bacterial diversity in Ageratina adenophora (Sprengel) and their interactions with the host plant. South African Journal of Botany, 2020, 134, 99-108.	1.2	2
930	Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Frontiers in Microbiology, 2020, 11, 580024.	1.5	314
931	The geophagous earthworm Metaphire guillelmi effects on rhizosphere microbial community structure and functioning vary with plant species. Geoderma, 2020, 379, 114647.	2.3	7
932	The Fungal Endophyte Serendipita williamsii Does Not Affect Phosphorus Status But Carbon and Nitrogen Dynamics in Arbuscular Mycorrhizal Tomato Plants. Journal of Fungi (Basel, Switzerland), 2020, 6, 233.	1.5	9
933	Microbiome Management by Biological and Chemical Treatments in Maize Is Linked to Plant Health. Microorganisms, 2020, 8, 1506.	1.6	17
934	Effects of Plant and Soil Characteristics on Phyllosphere and Rhizosphere Fungal Communities During Plant Development in a Copper Tailings Dam. Frontiers in Microbiology, 2020, 11, 556002.	1.5	15

#	Article	IF	CITATIONS
935	Growth of Arabidopsis thaliana in rhizobox culture system evaluated through the lens of root microbiome. Plant and Soil, 2020, 455, 467-487.	1.8	2
936	Dryland Cropping Systems, Weed Communities, and Disease Status Modulate the Effect of Climate Conditions on Wheat Soil Bacterial Communities. MSphere, 2020, 5, .	1.3	3
937	Bacterial communities of the Salvia lyrata rhizosphere explained by spatial structure and sampling grain. Microbial Ecology, 2020, 80, 846-858.	1.4	8
938	Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8, 137.	4.9	181
939	Microbial mechanisms responsible for the variation of soil Cd availability under different pe+pH environments. Ecotoxicology and Environmental Safety, 2020, 206, 111057.	2.9	18
940	Elevational is the main factor controlling the soil microbial community structure in alpine tundra of the Changbai Mountain. Scientific Reports, 2020, 10, 12442.	1.6	43
941	Changes of soil-rhizosphere microbiota after organic amendment application in a Hordeum vulgare L. short-term greenhouse experiment. Plant and Soil, 2020, 455, 489-506.	1.8	17
942	Exogenous application of plant hormones in the field alters aboveground plant–insect responses and belowground nutrient availability, but does not lead to differences in plant–soil feedbacks. Arthropod-Plant Interactions, 2020, 14, 559-570.	0.5	2
943	Forest and Rangeland Soils of the United States Under Changing Conditions. , 2020, , .		6
944	Bacterial Diversity in the Rhizosphere of Anabasis aphylla in the Gurbantunggut Desert, China. Current Microbiology, 2020, 77, 3750-3759.	1.0	7
945	Distribution and Chiral Signatures of Polychlorinated Biphenyls (PCBs) in Soils and Vegetables around an e-Waste Recycling Site. Journal of Agricultural and Food Chemistry, 2020, 68, 10542-10549.	2.4	10
946	The Plant Family Brassicaceae. , 2020, , .		12
947	Compartmentalization drives the evolution of symbiotic cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190602.	1.8	55
948	Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant and Soil, 2020, 454, 411-430.	1.8	24
949	Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express, 2020, 10, 72.	1.4	19
950	Two Food Waste By-Products Selectively Stimulate Beneficial Resident Citrus Host-Associated Microbes in a Zero-Runoff Indoor Plant Production System. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
951	Ecosystem Functions of Microbial Consortia in Sustainable Agriculture. Agronomy, 2020, 10, 1902.	1.3	30
952	Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Frontiers in Microbiology. 2020, 11, 560406.	1.5	119

#	Article	IF	CITATIONS
953	Characterization of bacterial communities of rhizosphere and rhizoplane of Early Zhukovsky potato. E3S Web of Conferences, 2020, 222, 02050.	0.2	1
954	Rootstock-Scion Interaction Affects the Composition and Pathogen Inhibitory Activity of Tobacco (Nicotiana tabacum L.) Root Exudates. Plants, 2020, 9, 1652.	1.6	6
955	Inoculation With the Plant-Growth-Promoting Rhizobacterium Pseudomonas fluorescens LBUM677 Impacts the Rhizosphere Microbiome of Three Oilseed Crops. Frontiers in Microbiology, 2020, 11, 569366.	1.5	23
956	Plant-associated fungal biofilms—knowns and unknowns. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
957	Role of rhizospheric microbial diversity in plant growth promotion in maintaining the sustainable agrosystem at high altitude regions. , 2020, , 147-196.		17
958	A New High-Throughput Screening Method to Detect Antimicrobial Volatiles from Metagenomic Clone Libraries. Antibiotics, 2020, 9, 726.	1.5	2
959	Soybean Nodule-Associated Non-Rhizobial Bacteria Inhibit Plant Pathogens and Induce Growth Promotion in Tomato. Plants, 2020, 9, 1494.	1.6	15
960	Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in Oil Palm-Enrichment Plantations. Microorganisms, 2020, 8, 1577.	1.6	9
961	Plant Pellets: A Compatible Vegan Feedstock for Preparation of Plant-Based Culture Media and Production of Value-Added Biomass of Rhizobia. Sustainability, 2020, 12, 8389.	1.6	1
962	Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 2020, 24, 337-352.	4.4	172
963	Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biology and Biochemistry, 2020, 147, 107840.	4.2	73
964	Microbial assemblages associated with the rhizosphere and endosphere of an herbage, <i>Leymus chinensis</i> . Microbial Biotechnology, 2020, 13, 1390-1402.	2.0	30
965	Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biology and Fertility of Soils, 2020, 56, 1201-1210.	2.3	15
966	An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization. Frontiers in Microbiology, 2020, 11, 682.	1.5	3
967	The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME Journal, 2020, 14, 2197-2210.	4.4	46
968	Differentiating microbial taxonomic and functional responses to physical disturbance in bulk and rhizosphere soils. Land Degradation and Development, 2020, 31, 2858-2871.	1.8	11
969	Soil and root nutrient chemistry structure rootâ€associated fungal assemblages in temperate forests. Environmental Microbiology, 2020, 22, 3081-3095.	1.8	21
970	Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different Seasons. Applied and Environmental Microbiology, 2020, 86, .	1.4	39

#	Article	IF	CITATIONS
971	Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Frontiers in Microbiology, 2020, 11, 749.	1.5	20
972	Secondary soil salinization in urban lawns: Microbial functioning, vegetation state, and implications for carbon balance. Land Degradation and Development, 2020, 31, 2591-2604.	1.8	19
973	A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 2020, 86, .	1.4	38
974	Differential impacts of nitrogen addition on rhizosphere and bulkâ€soil carbon sequestration in an alpine shrubland. Journal of Ecology, 2020, 108, 2309-2320.	1.9	20
975	Phenol Removal Capacity of the Common Duckweed (Lemna minor L.) and Six Phenol-Resistant Bacterial Strains From Its Rhizosphere: In Vitro Evaluation at High Phenol Concentrations. Plants, 2020, 9, 599.	1.6	14
976	Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology, 2020, 154, 103641.	2.1	69
977	The Role of Rhizosphere Bacteriophages in Plant Health. Trends in Microbiology, 2020, 28, 709-718.	3.5	43
978	Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. Trends in Plant Science, 2020, 25, 1017-1029.	4.3	42
979	Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. Journal of Plant Interactions, 2020, 15, 93-105.	1.0	87
980	Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere. Applied and Environmental Microbiology, 2020, 86, .	1.4	20
981	Root Growth Adaptation to Climate Change in Crops. Frontiers in Plant Science, 2020, 11, 544.	1.7	101
982	Prokaryotic Community Composition and Extracellular Polymeric Substances Affect Soil Microaggregation in Carbonate Containing Semiarid Grasslands. Frontiers in Environmental Science, 2020, 8, .	1.5	17
983	Halotolerant microbes and their applications in sustainable agriculture. , 2020, , 39-49.		2
984	Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. Environmental Science & Technology, 2020, 54, 8878-8889.	4.6	46
985	Structure of greenhouse gas-consuming microbial communities in surface soils of a nitrogen-removing experimental drainfield. Science of the Total Environment, 2020, 739, 140362.	3.9	3
986	Cropping systems in agriculture and their impact on soil health-A review. Global Ecology and Conservation, 2020, 23, e01118.	1.0	113
987	Denitrifier communities differ in mangrove wetlands across China. Marine Pollution Bulletin, 2020, 155, 111160.	2.3	6
988	Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiological Research, 2020, 239, 126518.	2.5	40

#	Article	IF	CITATIONS
989	Soil metabolome correlates with bacterial diversity and co-occurrence patterns in root-associated soils on the Tibetan Plateau. Science of the Total Environment, 2020, 735, 139572.	3.9	26
990	Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 2020, 15, e0233783.	1.1	19
991	Effects of biocontrol agents and compost against the Phytophthora capsici of zucchini and their impact on the rhizosphere microbiota. Applied Soil Ecology, 2020, 154, 103659.	2.1	22
992	Host genotype explains rhizospheric microbial community composition: the case of wild cotton metapopulations (Gossypium hirsutum L.) in Mexico. FEMS Microbiology Ecology, 2020, 96, .	1.3	7
993	The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytologist, 2020, 228, 1070-1082.	3.5	47
994	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	4.8	106
995	Change of rhizospheric bacterial community of the ancient wild tea along elevational gradients in Ailao mountain, China. Scientific Reports, 2020, 10, 9203.	1.6	19
996	Methodological Aspects of Multiplex Terminal Restriction Fragment Length Polymorphism-Technique to Describe the Genetic Diversity of Soil Bacteria, Archaea and Fungi. Sensors, 2020, 20, 3292.	2.1	9
997	Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiology Ecology, 2020, 96, .	1.3	54
998	Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech, 2020, 10, 292.	1.1	7
999	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	4.2	27
1000	Biotic and Environmental Drivers of Plant Microbiomes Across a Permafrost Thaw Gradient. Frontiers in Microbiology, 2020, 11, 796.	1.5	20
1001	Disentangling Large- and Small-Scale Abiotic and Biotic Factors Shaping Soil Microbial Communities in an Alpine Cushion Plant System. Frontiers in Microbiology, 2020, 11, 925.	1.5	25
1003	Rhizosphere microbial communities reflect genotypic and trait variation in a salt marsh ecosystem engineer. American Journal of Botany, 2020, 107, 941-949.	0.8	14
1004	Role of <i>Epichloë</i> Endophytes in Improving Host Grass Resistance Ability and Soil Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 6944-6955.	2.4	30
1005	Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland. Plant and Soil, 2020, 449, 285-301.	1.8	44
1006	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134
1007	Microbial bioformulation-based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. , 2020, , 195-225.		23

#	Article	IF	CITATIONS
1008	Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Brazilian Journal of Microbiology, 2020, 51, 861-873.	0.8	25
1009	Factors that shape the host microbiome. , 2020, , 55-77.		5
1010	Adapting to environmental change. , 2020, , 154-181.		2
1011	Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms, 2020, 8, 355.	1.6	63
1012	Medicago sativa and soil microbiome responses to Trichoderma as a biofertilizer in alkaline-saline soils. Applied Soil Ecology, 2020, 153, 103573.	2.1	18
1013	Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development. Frontiers in Microbiology, 2020, 11, 198.	1.5	9
1014	Root-Bacteria Associations Boost Rhizosheath Formation in Moderately Dry Soil through Ethylene Responses. Plant Physiology, 2020, 183, 780-792.	2.3	37
1015	Do soilâ€borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. Journal of Ecology, 2020, 108, 1810-1821.	1.9	49
1016	Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms, 2020, 8, 384.	1.6	12
1017	Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 2020, 151, 103543.	2.1	32
1018	Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 2020, 70, .	1.1	51
1019	Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8, 27.	4.9	156
1020	Inoculation with Different Nitrogen-Fixing Bacteria and Arbuscular Mycorrhiza Affects Grain Protein Content and Nodule Bacterial Communities of a Fava Bean Crop. Agronomy, 2020, 10, 768.	1.3	3
1021	Ridge Tillage Improves Soil Properties, Sustains Diazotrophic Communities, and Enhances Extensively Cooperative Interactions Among Diazotrophs in a Clay Loam Soil. Frontiers in Microbiology, 2020, 11, 1333.	1.5	8
1022	The Presence of Plant-Associated Bacteria Alters Responses to N-acyl Homoserine Lactone Quorum Sensing Signals that Modulate Nodulation in Medicago Truncatula. Plants, 2020, 9, 777.	1.6	10
1023	The Rhizosphere Microbiome of Mikania micrantha Provides Insight Into Adaptation and Invasion. Frontiers in Microbiology, 2020, 11, 1462.	1.5	21
1024	Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 2020, 743, 140682.	3.9	261
1025	New Insight into the Composition of Wheat Seed Microbiota. International Journal of Molecular Sciences, 2020, 21, 4634.	1.8	39

#	Article	IF	CITATIONS
1026	Quantitative comparison between the rhizosphere effect of <i>Arabidopsis thaliana</i> and co-occurring plant species with a longer life history. ISME Journal, 2020, 14, 2433-2448.	4.4	27
1027	Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. Environment International, 2020, 143, 105912.	4.8	31
1028	Effect of Soil Microbiome from Church Forest in the Northwest Ethiopian Highlands on the Growth of Olea europaea and Albizia gummifera Seedlings under Glasshouse Conditions. Sustainability, 2020, 12, 4976.	1.6	5
1029	CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environmental Science & Technology, 2020, 54, 8699-8709.	4.6	65
1030	Rhizoglomus intraradices and associated Brevibacterium frigoritolerans enhance the competitive growth of Flaveria bidentis. Plant and Soil, 2020, 453, 281-295.	1.8	7
1031	Effects of continuous cropping of sugar beet (Beta vulgaris L.) on its endophytic and soil bacterial community by high-throughput sequencing. Annals of Microbiology, 2020, 70, .	1.1	13
1032	Structure of the O-specific polysaccharide from Azospirillum formosense CC-Nfb-7(T). Carbohydrate Research, 2020, 494, 108060.	1.1	2
1033	Revegetation approach and plant identity unequally affect structure, ecological network and function of soil microbial community in a highly acidified mine tailings pond. Science of the Total Environment, 2020, 744, 140793.	3.9	27
1034	Core microbiomes: Characterization and identification. , 2020, , 43-84.		0
1035	Endophytic animations to blossom Sub-Saharan agriculture. , 2020, , 343-356.		0
1036	Wheat rhizodeposition stimulates soil nitrous oxide emission and denitrifiers harboring the nosZ clade I gene. Soil Biology and Biochemistry, 2020, 143, 107738.	4.2	14
1037	Fungal and Bacterial Microbiome Associated with the Rhizosphere of Native Plants from the Atacama Desert. Microorganisms, 2020, 8, 209.	1.6	39
1038	Core endophyte communities of different citrus varieties from citrus growing regions in China. Scientific Reports, 2020, 10, 3648.	1.6	32
1039	Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology, 2020, 96, .	1.3	77
1040	Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. Npj Biofilms and Microbiomes, 2020, 6, 8.	2.9	68
1041	Rhizospheric soil fungal community patterns of <i>Duchesnea indica</i> in response to altitude gradient in Yunnan, southwest China. Canadian Journal of Microbiology, 2020, 66, 359-367.	0.8	8
1042	Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Applied Sciences (Switzerland), 2020, 10, 1217.	1.3	53
1043	Plant growth drives soil nitrogen cycling and N-related microbial activity through changing root traits. Fungal Ecology, 2020, 44, 100910.	0.7	14

#	Article	IF	CITATIONS
1044	A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biology and Biochemistry, 2020, 144, 107754.	4.2	34
1045	Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences, 2020, , .	0.4	15
1046	Aquatic Macrophytes and Local Factors Drive Bacterial Community Distribution and Interactions in a Riparian Zone of Lake Taihu. Water (Switzerland), 2020, 12, 432.	1.2	3
1047	The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Applied Microbiology and Biotechnology, 2020, 104, 3627-3641.	1.7	16
1048	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	1.6	16
1049	Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Applied Soil Ecology, 2020, 152, 103545.	2.1	21
1051	Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PLoS ONE, 2020, 15, e0228899.	1.1	107
1052	Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. International Journal of Phytoremediation, 2020, 22, 703-712.	1.7	4
1053	Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiology Ecology, 2020, 96, .	1.3	18
1054	Woody Plant Declines. What's Wrong with the Microbiome?. Trends in Plant Science, 2020, 25, 381-394.	4.3	48
1055	Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends in Plant Science, 2020, 25, 406-417.	4.3	127
1056	A beneficial role of arbuscular mycorrhizal fungi in influencing the effects of silver nanoparticles on plant-microbe systems in a soil matrix. Environmental Science and Pollution Research, 2020, 27, 11782-11796.	2.7	22
1057	Carbonatites as rock fertilizers: A review. Rhizosphere, 2020, 13, 100188.	1.4	7
1058	Rare Species Shift the Structure of Bacterial Communities Across Sphagnum Compartments in a Subalpine Peatland. Frontiers in Microbiology, 2019, 10, 3138.	1.5	18
1059	Legacy effects of 8-year nitrogen inputs on bacterial assemblage in wheat rhizosphere. Biology and Fertility of Soils, 2020, 56, 583-596.	2.3	35
1061	Native mycorrhizal communities of olive tree roots as affected by protective green cover and soil tillage. Applied Soil Ecology, 2020, 149, 103520.	2.1	10
1062	Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum. Industrial Crops and Products, 2020, 145, 112163.	2.5	38
1063	The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato. Frontiers in Microbiology, 2020, 11, 581.	1.5	16

#	Article	IF	CITATIONS
1064	Soil Nutrients Effects on the Performance of Durum Wheat Inoculated with Entomopathogenic Fungi. Agronomy, 2020, 10, 589.	1.3	8
1065	Insights on comparative bacterial diversity between different arid zones of Cholistan Desert, Pakistan. 3 Biotech, 2020, 10, 224.	1.1	8
1066	Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes. Scientific Reports, 2020, 10, 7296.	1.6	14
1067	Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils. Biology and Fertility of Soils, 2020, 56, 771-783.	2.3	13
1068	Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient. Plant and Soil, 2020, 450, 183-200.	1.8	24
1069	Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. South African Journal of Botany, 2020, 134, 50-63.	1.2	50
1070	Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land. Science of the Total Environment, 2020, 724, 138259.	3.9	44
1071	An approach for broad molecular imaging of the root-soil interface via indirect matrix-assisted laser desorption/ionization mass spectrometry. Soil Biology and Biochemistry, 2020, 146, 107804.	4.2	15
1072	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	2.4	238
1073	Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System. Frontiers in Plant Science, 2020, 11, 360.	1.7	14
1074	Overexpression of Strigolactone-Associated Genes Exerts Fine-Tuning Selection on Soybean Rhizosphere Bacterial and Fungal Microbiome. Phytobiomes Journal, 2020, 4, 239-251.	1.4	30
1075	Phytoremediation of pharmaceutical-contaminated wastewater: Insights into rhizobacterial dynamics related to pollutant degradation mechanisms during plant life cycle. Chemosphere, 2020, 253, 126681.	4.2	32
1076	Nanomaterial Transformation in the Soil–Plant System: Implications for Food Safety and Application in Agriculture. Small, 2020, 16, e2000705.	5.2	71
1077	Plant community composition steers grassland vegetation via soil legacy effects. Ecology Letters, 2020, 23, 973-982.	3.0	76
1078	Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Environmental Pollution, 2020, 263, 114561.	3.7	35
1079	Overview and challenges in the implementation of plant beneficial microbes. , 2020, , 1-18.		3
1080	Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard. Scientific Reports, 2020, 10, 6453.	1.6	12
1081	Effect of various biological control agents (BCAs) on drought resistance and spring barley productivity. BIO Web of Conferences, 2020, 17, 00063.	0.1	2

~	_
CITATION	REPORT
Christian	

#	Article	IF	CITATIONS
1082	Comparison of bacterial communities in soil samples with and without tomato bacterial wilt caused by Ralstonia solanacearum species complex. BMC Microbiology, 2020, 20, 89.	1.3	26
1083	High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biology, 2020, 20, 166.	1.6	40
1084	Geology and climate influence rhizobiome composition of the phenotypically diverse tropical tree Tabebuia heterophylla. PLoS ONE, 2020, 15, e0231083.	1.1	5
1085	The Cultivable Bacterial Microbiota Associated to the Medicinal Plant Origanum vulgare L.: From Antibiotic Resistance to Growth-Inhibitory Properties. Frontiers in Microbiology, 2020, 11, 862.	1.5	19
1086	Comparison of Soil Bacterial Communities from Juvenile Maize Plants of a Long-Term Monoculture and a Natural Grassland. Agronomy, 2020, 10, 341.	1.3	6
1087	Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale. Biogeosciences, 2020, 17, 1507-1533.	1.3	58
1088	Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biology and Biochemistry, 2020, 145, 107797.	4.2	69
1089	Vetiver grass-microbe interactions for soil remediation. Critical Reviews in Environmental Science and Technology, 2021, 51, 897-938.	6.6	17
1090	Biogeographic patterns and co-occurrence networks of diazotrophic and arbuscular mycorrhizal fungal communities in the acidic soil ecosystem of southern China. Applied Soil Ecology, 2021, 158, 103798.	2.1	21
1091	Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant – microbiome – soil continuum. FEMS Microbiology Ecology, 2021, 97, .	1.3	18
1092	Targeted plant hologenome editing for plant trait enhancement. New Phytologist, 2021, 229, 1067-1077.	3.5	25
1093	Root trait–microbial relationships across tundra plant species. New Phytologist, 2021, 229, 1508-1520.	3.5	46
1094	Volatiles from soilâ€borne fungi affect directional growth of roots. Plant, Cell and Environment, 2021, 44, 339-345.	2.8	16
1095	Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Science of the Total Environment, 2021, 754, 142134.	3.9	31
1096	Investigation of carbon dynamics in rhizosphere by synchrotron radiation-based Fourier transform infrared combined with two dimensional correlation spectroscopy. Science of the Total Environment, 2021, 762, 143078.	3.9	13
1097	Mechanisms of the phytomicrobiome for enhancing soil fertility and health. , 2021, , 1-14.		5
1098	Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. Science of the Total Environment, 2021, 756, 143839.	3.9	7
1099	Interacting effects of land use type, microbes and plant traits on soil aggregate stability. Soil Biology and Biochemistry, 2021, 154, 108072.	4.2	38

ARTICLE IF CITATIONS Plant-microbial feedback in secondary succession of semiarid grasslands. Science of the Total 1100 3.9 10 Environment, 2021, 760, 143389. Maize microbiome: current insights for the sustainable agriculture., 2021, , 267-297. Secondary metabolites from bacteria and viruses., 2021, , 19-40. 7 1102 Root-associated Burkholderia spp. on the hairy vetch (Vicia villosa Roth.) cover crop vary depending on soil history of use. Rhizosphere, 2021, 17, 100297. Quorum Quenching in copper-tolerant Papiliotrema laurentii strains. Rhizosphere, 2021, 17, 100298. 1104 1.4 0 Mechanisms of microbial–neuronal interactions in pain and nociception. Neurobiology of Pain 1.0 (Cambridge, Mass), 2021, 9, 100056. The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa 1106 1.4 71 (United States). Applied and Environmental Microbiology, 2021, 87, . Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541. 1107 2.8 115 Dynamics of soil specific enzyme activities and temperature sensitivities during grassland succession 1108 2.2 12 after farmland abandonment. Catena, 2021, 199, 105081. Identification and verification of rhizosphere indicator microorganisms in tobacco root rot. 1109 Agronomy Journal, 2021, 113, 1480-1491. Phyllosphere microbiome: modern prospectus and application., 2021, , 345-366. 1110 4 Corn-soybean rotation, tillage, and foliar fungicides: Impacts on yield and soil fungi. Field Crops 2.3 Research, 2021, 262, 108030 Non-targeted metabolomics reveal the impact of phenanthrene stress on root exudates of ten urban 1112 3.7 18 greening tree species. Environmental Research, 2021, 196, 110370. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiology, 2021, 94, 2.1 103666. Root exudates drive soilâ€microbeâ€nutrient feedbacks in response to plant growth. Plant, Cell and 1114 150 2.8 Environment, 2021, 44, 613-628. Arbuscular Mycorrhizal Fungi Mediate Grazing Effects on Seasonal Soil Nitrogen Fluxes in a Steppe Ecosystem. Ecosystems, 2021, 24, 1171-1183. The rhizosphere microbiome: functions, dynamics, and role in plant protection. Tropical Plant 1116 0.8 34 Pathology, 2021, 46, 13-25. Molecular Identification and In Vitro Plant Growth-Promoting Activities of Culturable Potato 1.2 (Solanum tuberosum L.) Rhizobacteria in Tanzania. Potato Research, 2021, 64, 67-95.

#	Article	IF	CITATIONS
1119	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
1120	Mycorrhizal and rhizospheric fungal community assembly differs during subalpine forest restoration on the eastern Qinghai-Tibetan Plateau. Plant and Soil, 2021, 458, 245-259.	1.8	15
1121	Current challenges and best-practice protocols for microbiome analysis. Briefings in Bioinformatics, 2021, 22, 178-193.	3.2	268
1122	Actinomycetes as biostimulants and their application in agricultural practices. , 2021, , 267-282.		3
1123	Grazing and mining influence the population of arbuscular mycorrhizal fungi around the opencast coal mine pit. Environmental Science and Pollution Research, 2021, 28, 21425-21436.	2.7	1
1124	Metatranscriptomics in Microbiome Study: A Comprehensive Approach. , 2021, , 1-36.		3
1125	Wine Terroir and the Soil Bacteria: An Amplicon Sequencing–Based Assessment of the Barossa Valley and Its Sub-Regions. Frontiers in Microbiology, 2020, 11, 597944.	1.5	13
1127	Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production. , 2021, , 15-31.		5
1128	Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices. Rhizosphere Biology, 2021, , 315-348.	0.4	1
1129	The Apple Microbiome: Structure, Function, and Manipulation for Improved Plant Health. Compendium of Plant Genomes, 2021, , 341-382.	0.3	8
1130	An Endophytic Bacterial Approach: A Key Regulator of Drought Stress Tolerance in Plants. , 2021, , 551-569.		0
1131	Rhizosphere. , 2021, , 269-301.		2
1132	Pipelines for Characterization of Microbial-Producing Drugs. , 2021, , .		0
1133	Biotization and in vitro plant cell cultures: plant endophyte strategy in response to heavy metals knowledge in assisted phytoremediation. , 2021, , 27-36.		5
1134	Root rot alters the root-associated microbiome of field pea in commercial crop production systems. Plant and Soil, 2021, 460, 593-607.	1.8	10
1135	A biofoundry workflow for the identification of genetic determinants of microbial growth inhibition. Synthetic Biology, 2021, 6, ysab004.	1.2	6
1136	Application of Phyllosphere Microbiota as Biofertilizers. , 2021, , 311-327.		4
1137	Introduction to Microbiota and Biofertilizers 2021 195-232.		1 _

#	Article	IF	CITATIONS
1138	Long Sequencing Tools for Rhizosphere Study. Rhizosphere Biology, 2021, , 213-233.	0.4	0
1139	Microbial Enzymes and Their Role in Phytoremediation. , 2021, , 625-650.		3
1140	Root-endophytes and their contribution to plant abiotic stress tolerance. , 2021, , 119-129.		1
1141	Research Advances of Root Exudates in Response to Nitrogen Deposition. International Journal of Ecology, 2021, 10, 289-297.	0.0	0
1142	Next-Generation Sequencing in Environmental Mycology. A Useful Tool?. , 2021, , 73-83.		3
1143	Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiology Ecology, 2021, 97, .	1.3	12
1144	Role of Rhizospheric Bacteria in Disease Suppression During Seedling Formation in Millet. Rhizosphere Biology, 2021, , 263-274.	0.4	4
1145	The nutrient-improvement bacteria selected by <i>Agave lechuguilla</i> T. and their role in the rhizosphere community. FEMS Microbiology Ecology, 2021, 97, .	1.3	1
1146	Genomics and functional traits required for the successful use of biofertilizers. , 2021, , 45-56.		0
1147	Plant-Mediated Above- Belowground Interactions: A Phytobiome Story. , 2021, , 205-231.		5
1148	Fe-Chelating Compounds Producing Fungal Communities and Their Applications. Fungal Biology, 2021, , 135-157.	0.3	2
1149	Ecology and performance of rhizosphere and endosphere microbiomes. , 2021, , 125-136.		Ο
1150	Fragmentation of nanoplastics driven by plant–microbe rhizosphere interaction during abiotic stress combination. Environmental Science: Nano, 2021, 8, 2802-2810.	2.2	15
1151	Bioremediation of Pesticides: An Eco-Friendly Approach for Environment Sustainability. Microorganisms for Sustainability, 2021, , 23-84.	0.4	21
1152	Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering. , 2021, , 577-624.		13
1153	Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health. , 2021, , 405-433.		1
1154	Composition and co-occurrence network of the rhizosphere bacterial community of two emergent macrophytes and implications for phytoremediation. Marine and Freshwater Research, 2021, , .	0.7	3
1155	Insights into the Rhizospheric Microbes and Their Application for Sustainable Agriculture. , 2021, , 13-29.		0

	Сіта	tion Report	
#	Article	IF	Citations
1157	Rhizosphere microbiome dynamics in tropical seagrass under short-term inorganic nitrogen fertilization. Environmental Science and Pollution Research, 2021, 28, 19021-19033.	2.7	8
1158	Desiccation-tolerant rhizobacteria. , 2021, , 81-100.		0
1159	Microbial mitigation of drought stress: Potential mechanisms and challenges. , 2021, , 185-201.		3
1160	Functional Niche Under Abiotic Stress. , 2021, , 311-342.		0
1161	Augmenting the Abiotic Stress Tolerance in Plants Through Microbial Association. , 2021, , 179-198.		1
1162	Diversity–Function Relationships and the Underlying Ecological Mechanisms in Host-Associated Microbial Communities. Advances in Environmental Microbiology, 2021, , 297-326.	0.1	1
1163	Chlorine cycling and the fate of Cl in terrestrial environments. Environmental Science and Pollution Research, 2021, 28, 7691-7709.	2.7	23
1164	Effect of Root Diameter on the Selection and Network Interactions of Root-Associated Bacterial Microbiomes in Robinia pseudoacacia L. Microbial Ecology, 2021, 82, 391-402.	1.4	18
1165	Exploration of Rhizospheric Microbial Diversity of the Indian Sundarbans: A World Heritage Site. , 2021, , 435-452.		1
1166	Structure and diversity of bacterial community in semiarid soils cultivated with prickly-pear cactus (Opuntia ficus-indica (L.) Mill.). Anais Da Academia Brasileira De Ciencias, 2021, 93, e20190183.	0.3	3
1167	Potentilla anserina L. developmental changes affect the rhizosphere prokaryotic community. Scientific Reports, 2021, 11, 2838.	1.6	4
1168	Soil management legacy alters weed-crop competition through biotic and abiotic pathways. Plant and Soil, 2021, 462, 543-560.	1.8	1
1169	Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Current Microbiology, 2021, 78, 1069-1085.	1.0	40
1170	Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics. PLoS ONE, 2021, 16, e0247534.	1.1	14
1171	Mucilaginibacter mali sp. nov., isolated from rhizosphere soil of apple orchard. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	7
1172	Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	176
1173	Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growthâ€promoting microorganisms and interâ€kingdom interactions between bacteria and fungi. Plant and Soil, 2022, 470, 127-139.	t 1.8	32
1174	Defining and validating regenerative farm systems using a composite of ranked agricultural practices. F1000Research, 2021, 10, 115.	0.8	24

#	Article	IF	CITATIONS
1175	Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Frontiers in Microbiology, 2021, 12, 629169.	1.5	18
1176	Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	153
1177	Grazing exclusion regulates bacterial community in highly degraded semiarid soils from the Brazilian <i>Caatinga</i> biome. Land Degradation and Development, 2021, 32, 2210-2225.	1.8	23
1178	Metabolic Interactions between <i>Brachypodium</i> and Pseudomonas fluorescens under Controlled Iron-Limited Conditions. MSystems, 2021, 6, .	1.7	13
1179	Effects of Tilletia foetida on Microbial Communities in the Rhizosphere Soil of Wheat Seeds Coated with Different Concentrations of Jianzhuang. Microbial Ecology, 2021, 82, 736-745.	1.4	9
1180	Effect of Low-Input Organic and Conventional Farming Systems on Maize Rhizosphere in Two Portuguese Open-Pollinated Varieties (OPV), "Pigarro―(Improved Landrace) and "SinPre―(a Composite)	Tij.₤TQq1	140.784314
1181	Soil microbial composition and carbon mineralization are associated with vegetation type and temperature regime in mesocosms of a semiarid ecosystem. FEMS Microbiology Letters, 2021, 368, .	0.7	3
1182	Distinct rhizomicrobiota assemblages and plant performance in lettuce grown in soils with different agricultural management histories. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
1183	Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils. FEMS Microbiology Ecology, 2021, 97, .	1.3	14
1184	Grazing Affects Bacterial and Fungal Diversities and Communities in the Rhizosphere and Endosphere Compartments of Leymus chinensis through Regulating Nutrient and Ion Distribution. Microorganisms, 2021, 9, 476.	1.6	15
1185	Seed inoculation of <scp>desertâ€</scp> plant growthâ€promoting rhizobacteria induce biochemical alterations and develop resistance against water stress in wheat. Physiologia Plantarum, 2021, 172, 990-1006.	2.6	21
1186	Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 2021, 13, 428-444.	1.0	75
1187	Survival of Xanthomonas campestris pv. campestris in the phyllosphere and rhizosphere of crops. Plant and Soil, 2021, 462, 389-403.	1.8	2
1188	Metagenomic Insight into the Community Structure and Functional Genes in the Sunflower Rhizosphere Microbiome. Agriculture (Switzerland), 2021, 11, 167.	1.4	13
1189	Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiology Ecology, 2021, 97, .	1.3	35
1192	Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). Journal of Plant Nutrition, 2021, 44, 1818-1825.	0.9	8
1193	Impact of Robinia pseudoacacia stand conversion on soil properties and bacterial community composition in Mount Tai, China. Forest Ecosystems, 2021, 8, .	1.3	10
1194	Bacterial diversity and bio-chemical properties in the rhizosphere soils of Cumin and Coriander. Tropical Ecology, 2021, 62, 368-376.	0.6	7

#	Article	IF	CITATIONS
1195	Relationship between Plant Roots, Rhizosphere Microorganisms, and Nitrogen and Its Special Focus on Rice. Agriculture (Switzerland), 2021, 11, 234.	1.4	60
1196	Rapid evolution of trait correlation networks during bacterial adaptation to the rhizosphere. Evolution; International Journal of Organic Evolution, 2021, 75, 1218-1229.	1.1	5
1197	Plant-Associated Microorganisms as a Potent Bio-Factory of Active Molecules against Multiresistant Pathogens. , 0, , .		1
1198	Short-Term Thinning Influences the Rhizosphere Fungal Community Assembly of Pinus massoniana by Altering the Understory Vegetation Diversity. Frontiers in Microbiology, 2021, 12, 620309.	1.5	6
1199	Seedâ€borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New Phytologist, 2021, 230, 2047-2060.	3.5	70
1200	Fusarium Head Blight From a Microbiome Perspective. Frontiers in Microbiology, 2021, 12, 628373.	1.5	60
1201	Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews, 2021, 214, 103525.	4.0	99
1202	Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Frontiers in Microbiology, 2021, 12, 627569.	1.5	80
1203	Rice Plant–Soil Microbiome Interactions Driven by Root and Shoot Biomass. Diversity, 2021, 13, 125.	0.7	4
1204	Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME Journal, 2021, 15, 2454-2464.	4.4	49
1205	Effect of Chia Seed Mucilage on the Rhizosphere Hydraulic Characteristics. Sustainability, 2021, 13, 3303.	1.6	2
1206	Rhizosphere microbiome modulated effects of biochar on ryegrass 15N uptake and rhizodeposited 13C allocation in soil. Plant and Soil, 2021, 463, 359-377.	1.8	17
1207	Shifts in the structure and function of wheat root-associated bacterial communities in response to long-term nitrogen addition in an agricultural ecosystem. Applied Soil Ecology, 2021, 159, 103852.	2.1	12
1208	Shifts in root and soil chemistry drive the assembly of belowground fungal communities in tropical land-use systems. Soil Biology and Biochemistry, 2021, 154, 108140.	4.2	22
1209	A new method for early detection of latent infection by â€~Candidatus Liberibacter asiaticus' in citrus trees. F1000Research, 0, 10, 250.	0.8	0
1210	Transient Surface Hydration Impacts Biogeography and Intercellular Interactions of Nonmotile Bacteria. Applied and Environmental Microbiology, 2021, 87,	1.4	0
1211	Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use and Management, 2022, 38, 964-977.	2.6	36
1213	Functional assembly of rootâ€associated microbial consortia improves nutrient efficiency and yield in soybean. Journal of Integrative Plant Biology, 2021, 63, 1021-1035.	4.1	34

#	Article	IF	CITATIONS
1214	Efficacy of Application of Biostimulants Based on Non-pathogenic Microorganisms when Growing Okra in Arkansas. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 218-222.	0.1	0
1215	Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil. PLoS ONE, 2021, 16, e0249834.	1.1	12
1217	The influence of maize genotype on the rhizosphere eukaryotic community. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
1218	Microbiome-Assisted Breeding to Understand Cultivar-Dependent Assembly in Cucurbita pepo. Frontiers in Plant Science, 2021, 12, 642027.	1.7	24
1219	Microbiome Modulation—Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants. Frontiers in Microbiology, 2021, 12, 650610.	1.5	78
1220	Soil fungal diversity and community assembly: affected by island size or type?. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
1221	A new global regulator that facilitates the coâ€metabolization of polyaromatic hydrocarbons and other nutrients in <i>Novosphingobium</i> . Environmental Microbiology, 2021, 23, 2875-2877.	1.8	6
1222	Metagenomics Assessment of Soil Fertilization on the Chemotaxis and Disease Suppressive Genes Abundance in the Maize Rhizosphere. Genes, 2021, 12, 535.	1.0	8
1223	Soil gas probes for monitoring trace gas messengers of microbial activity. Scientific Reports, 2021, 11, 8327.	1.6	3
1224	Bioprospecting of Beneficial Bacteria Traits Associated With Tomato Root in Greenhouse Environment Reveals That Sampling Sites Impact More Than the Root Compartment. Frontiers in Plant Science, 2021, 12, 637582.	1.7	15
1225	Positive Effects of Crop Diversity on Productivity Driven by Changes in Soil Microbial Composition. Frontiers in Microbiology, 2021, 12, 660749.	1.5	59
1226	Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 2021, 23, 5866-5882.	1.8	36
1227	Rhizosphere Bacterial Networks, but Not Diversity, Are Impacted by Pea-Wheat Intercropping. Frontiers in Microbiology, 2021, 12, 674556.	1.5	23
1228	Different Responses of Soil Bacterial and Fungal Communities to 3 Years of Biochar Amendment in an Alkaline Soybean Soil. Frontiers in Microbiology, 2021, 12, 630418.	1.5	19
1229	Shifts in the rhizobiome during consecutive <i>inÂplanta</i> enrichment for phosphateâ€solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, 2021, 14, 1594-1612.	2.0	21
1230	The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Frontiers in Microbiology, 2021, 12, 642730.	1.5	11
1231	Robustness analysis of metabolic predictions in algal microbial communities based on different annotation pipelines. PeerJ, 2021, 9, e11344.	0.9	6
1232	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	1.4	17

#	Article	IF	CITATIONS
1233	Dominant plant identity determines soil extracellular enzyme activities of its entire community in a semi-arid grassland. Applied Soil Ecology, 2021, 161, 103872.	2.1	6
1234	Effect of the diverse combinations of useful microbes and chemical fertilizers on important traits of potato. Saudi Journal of Biological Sciences, 2021, 28, 2641-2648.	1.8	14
1235	Plant-microbe interactions in response to grassland herbivory and nitrogen eutrophication. Soil Biology and Biochemistry, 2021, 156, 108208.	4.2	9
1236	Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS ONE, 2021, 16, e0251643.	1.1	5
1237	Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	87
1238	Negative effects of multiple global change factors on soil microbial diversity. Soil Biology and Biochemistry, 2021, 156, 108229.	4.2	97
1239	Impact of cropping systems on the functional diversity of rhizosphere microbial communities associated with maize plant: a shotgun approach. Archives of Microbiology, 2021, 203, 3605-3613.	1.0	4
1240	Soil microorganisms decrease barley biomass uniformly across contrasting nitrogen availability. European Journal of Soil Biology, 2021, 104, 103311.	1.4	4
1241	Responses of Low-Cost Input Combinations on the Microbial Structure of the Maize Rhizosphere for Greenhouse Gas Mitigation and Plant Biomass Production. Frontiers in Plant Science, 2021, 12, 683658.	1.7	3
1242	Structure of Bacterial Communities Associated with Some Aquatic Plants. IOP Conference Series: Earth and Environmental Science, 2021, 790, 012030.	0.2	2
1243	Sweet Sorghum Genotypes Tolerant and Sensitive to Nitrogen Stress Select Distinct Root Endosphere and Rhizosphere Bacterial Communities. Microorganisms, 2021, 9, 1329.	1.6	10
1244	Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry, 2021, 155, 39-57.	1.7	8
1245	Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Frontiers in Molecular Biosciences, 2021, 8, 686110.	1.6	18
1246	Effects of S-metolachlor on wheat (Triticum aestivum L.) seedling root exudates and the rhizosphere microbiome. Journal of Hazardous Materials, 2021, 411, 125137.	6.5	45
1247	Deciphering the rhizobacterial assemblages under the influence of genetically engineered maize carrying mcry genes. Environmental Science and Pollution Research, 2021, 28, 60154-60166.	2.7	2
1248	Soil biological response to multi-species cover crops in the Northern Great Plains. Agriculture, Ecosystems and Environment, 2021, 313, 107373.	2.5	15
1249	Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems and Environment, 2021, 312, 107336.	2.5	40
1250	Rice domestication influences the composition and function of the rhizosphere bacterial chemotaxis systems. Plant and Soil, 2021, 466, 81-99.	1.8	16

#	Article	IF	CITATIONS
1251	Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 2021, 3, 239-254.	6.2	112
1252	Assembly processes lead to divergent soil fungal communities within and among 12 forest ecosystems along a latitudinal gradient. New Phytologist, 2021, 231, 1183-1194.	3.5	20
1253	Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea – maize intercropping system. Rhizosphere, 2021, 18, 100331.	1.4	42
1254	Rare soil microbial taxa regulate the negative effects of land degradation drivers on soil organic matter decomposition. Journal of Applied Ecology, 2021, 58, 1658-1669.	1.9	10
1255	Rapid evolution of bacterial mutualism in the plant rhizosphere. Nature Communications, 2021, 12, 3829.	5.8	51
1256	Shifts in the structure of rhizosphere bacterial communities of avocado after Fusarium dieback. Rhizosphere, 2021, 18, 100333.	1.4	11
1257	Bacterial predation transforms the landscape and community assembly of biofilms. Current Biology, 2021, 31, 2643-2651.e3.	1.8	29
1258	Food Webs. , 0, , .		0
1259	Changes in the diversity and predicted functional composition of the bulk and rhizosphere soil bacterial microbiomes of tomato and common bean after inorganic N-fertilization. Rhizosphere, 2021, 18, 100362.	1.4	16
1260	Experimental-Evolution-Driven Identification of <i>Arabidopsis</i> Rhizosphere Competence Genes in Pseudomonas protegens. MBio, 2021, 12, e0092721.	1.8	19
1261	Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agriculture, Ecosystems and Environment, 2021, 313, 107387.	2.5	26
1263	Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biology and Fertility of Soils, 2021, 57, 809-824.	2.3	49
1264	Pioneer plant species and fungal root endophytes in metal-polluted tailings deposited near human populations and agricultural areas in Northern Mexico. Environmental Science and Pollution Research, 2021, 28, 55072-55088.	2.7	5
1265	Performance of five typical warmâ€season turfgrasses and their influence on soil bacterial community under a simulated tropical coral island environment. Land Degradation and Development, 2021, 32, 3920-3929.	1.8	2
1266	Corn shoot and grain nutrient uptake affected by silicon application combined with <i>Azospirillum brasilense</i> inoculation and nitrogen rates. Journal of Plant Nutrition, 2022, 45, 168-184.	0.9	3
1267	Multi-Trait Wheat Rhizobacteria from Calcareous Soil with Biocontrol Activity Promote Plant Growth and Mitigate Salinity Stress. Microorganisms, 2021, 9, 1588.	1.6	5
1268	Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiology, 2021, 21, 206.	1.3	13
1269	Effects of chromium stress on the rhizosphere microbial community composition of Cyperus alternifolius. Ecotoxicology and Environmental Safety, 2021, 218, 112253.	2.9	25

#	Article	IF	CITATIONS
1270	Bacterial community assembly and antibiotic resistance genes in the lettuce-soil system upon antibiotic exposure. Science of the Total Environment, 2021, 778, 146255.	3.9	30
1271	Time outweighs the effect of host developmental stage on microbial community composition. FEMS Microbiology Ecology, 2021, 97, .	1.3	13
1272	Rhizosphere Soil Quality of Different Cultivated and Wild Barley Genotypes as Evaluated Using Physical and Chemical Indicators. Journal of Soil Science and Plant Nutrition, 2021, 21, 2538-2550.	1.7	1
1273	Unraveling negative biotic interactions determining soil microbial community assembly and functioning. ISME Journal, 2022, 16, 296-306.	4.4	80
1274	Responses of cucumber (<i>Cucumis sativus</i> L) rhizosphere microbial community to some agronomic management practices. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
1275	Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 2021, 31, 527-544.	1.3	18
1276	Plastic film mulch changes the microbial community in maize root-associated compartments. Plant and Soil, 2022, 470, 5-20.	1.8	20
1277	Warming affects soil metabolome: The case study of Icelandic grasslands. European Journal of Soil Biology, 2021, 105, 103317.	1.4	4
1278	Tomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities. Frontiers in Plant Science, 2021, 12, 688533.	1.7	10
1279	Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
1280	Host species shape the community structure of culturable endophytes in fruits of wild berry species (<i>Vaccinium myrtillus</i> L., <i>Empetrum nigrum</i> L. and <i>Vaccinium vitis-idaea</i> L.). FEMS Microbiology Ecology, 2021, 97, .	1.3	11
1281	Legume–rhizobium dance: an agricultural tool that could be improved?. Microbial Biotechnology, 2021, 14, 1897-1917.	2.0	23
1282	Disentangling soil microbiome functions by perturbation. Environmental Microbiology Reports, 2021, 13, 582-590.	1.0	16
1283	Function is a better predictor of plant rhizosphere community membership than <scp>16S</scp> phylogeny. Environmental Microbiology, 2021, 23, 6089-6103.	1.8	3
1284	Microbiological Control: A New Age of Maize Production. , 0, , .		2
1285	It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms, 2021, 9, 1566.	1.6	3
1286	Metagenomic Study of the Community Structure and Functional Potentials in Maize Rhizosphere Microbiome: Elucidation of Mechanisms behind the Improvement in Plants under Normal and Stress Conditions. Sustainability, 2021, 13, 8079.	1.6	15
1288	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25

#	ARTICLE Inoculation With Ectomycorrhizal Fungi and Dark Septate Endophytes Contributes to the Resistance	IF 1.5	CITATIONS
1290	of Pinus spp. to Pine Wilt Disease. Frontiers in Microbiology, 2021, 12, 687304. Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. Biology and Fertility of Soils, 2021, 57, 973-989.	2.3	12
1291	Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. Frontiers in Plant Science, 2021, 12, 690567.	1.7	49
1292	Biochar and Intercropping With Potato–Onion Enhanced the Growth and Yield Advantages of Tomato by Regulating the Soil Properties, Nutrient Uptake, and Soil Microbial Community. Frontiers in Microbiology, 2021, 12, 695447.	1.5	25
1293	Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. Frontiers in Plant Science, 2021, 12, 700479.	1.7	11
1294	Sustainable Biological Ammonia Production towards a Carbon-Free Society. Sustainability, 2021, 13, 9496.	1.6	6
1295	Herbivory shapes the rhizosphere bacterial microbiota in potato plants. Environmental Microbiology Reports, 2021, 13, 805-811.	1.0	16
1297	Response of Plant Rhizosphere Microenvironment to Water Management in Soil- and Substrate-Based Controlled Environment Agriculture (CEA) Systems: A Review. Frontiers in Plant Science, 2021, 12, 691651.	1.7	11
1298	Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biology and Biochemistry, 2021, 159, 108309.	4.2	48
1299	The use of indigenous bacterial community as inoculant for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 2023, 69, 135-150.	1.3	12
1301	Conservation Strip Tillage Leads to Persistent Alterations in the Rhizosphere Microbiota of Brassica napus Crops. Frontiers in Soil Science, 2021, 1, .	0.8	0
1302	A review of root exudates and rhizosphere microbiome for crop production. Environmental Science and Pollution Research, 2021, 28, 54497-54510.	2.7	52
1303	Nitrogen and water addition regulate fungal community and microbial co-occurrence network complexity in the rhizosphere of Alhagi sparsifolia seedlings. Applied Soil Ecology, 2021, 164, 103940.	2.1	24
1305	Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land. International Journal of Phytoremediation, 2022, 24, 507-517.	1.7	9
1306	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	3.5	22
1307	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
1308	Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil. Journal of Hazardous Materials, 2021, 416, 125770.	6.5	19
1309	Metagenomes Binning Using Proximity-Ligation Data. Methods in Molecular Biology, 2022, 2301, 163-181.	0.4	3
		ÖRI	
------	---	---------------------	--------------
#	Article	IF	CITATIONS
1310	Designing a home for beneficial plant microbiomes. Current Opinion in Plant Biology, 2021, 62, 102025.	3.5	32
1311	Soil-Applied Boron Combined with Boron-Tolerant Bacteria (Bacillus sp. MN54) Improve Root Proliferation and Nodulation, Yield and Agronomic Grain Biofortification of Chickpea (Cicer) Tj ETQq1 1 0.784314	r g.B T /Ove	erlæck 10 Tf
1312	Effect of mycorrhizal fungi inoculation on bacterial diversity, community structure and fruit yield of blueberry. Rhizosphere, 2021, 19, 100360.	1.4	15
1313	The effect of crop rotation on the soil biological activity. Grain Economy of Russia, 2021, , 39-44.	0.1	0
1314	Conspecific and heterospecific plant–soil biota interactions of Lonicera japonica in its native and introduced range: implications for invasion success. Plant Ecology, 2021, 222, 1313.	0.7	1
1315	Plant–Microbe Interaction: Aboveground to Belowground, from the Good to the Bad. International Journal of Molecular Sciences, 2021, 22, 10388.	1.8	27
1316	Exploration of Social Spreading Reveals That This Behavior Is Prevalent among <i>Pedobacter</i> and Pseudomonas fluorescens Isolates and That There Are Variations in the Induction of the Phenotype. Applied and Environmental Microbiology, 2021, 87, e0134421.	1.4	0
1317	Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use and Management, 2022, 38, 94-120.	2.6	37
1318	Foliar application of fertilizers and biostimulant has a strong impact on the olive (Olea europaea) rhizosphere microbial community profile and the abundance of arbuscular mycorrhizal fungi. Rhizosphere, 2021, 19, 100402.	1.4	13
1319	Shifts in microbial metabolic pathway for soil carbon accumulation along subtropical forest succession. Soil Biology and Biochemistry, 2021, 160, 108335.	4.2	24
1320	Crop development has more influence on shaping rhizobacteria of wheat than tillage practice and crop rotation pattern in an arid agroecosystem. Applied Soil Ecology, 2021, 165, 104016.	2.1	19
1321	A core of rhizosphere bacterial taxa associates with two of the world's most isolated plant congeners. Plant and Soil, 2021, 468, 277-294.	1.8	10
1322	Rhizosphere-Associated Microbiomes of Rice (Oryza sativa L.) Under the Effect of Increased Nitrogen Fertilization. Frontiers in Microbiology, 2021, 12, 730506.	1.5	16
1323	Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
1324	Effects of Freezing-Thawing on Microbial Community Structure in the Soil of Old Apple Orchards. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1368-1374.	0.5	0
1325	Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 2021, 12, 5686.	5.8	96
1326	Cellulose-decomposing activity of soil biota in field crop rotations. IOP Conference Series: Earth and Environmental Science, 2021, 839, 042013.	0.2	0
1327	Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics, 2021, 10, 1076.	1.5	36

ATION R

#	Article	IF	CITATIONS
1328	Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine. Applied Microbiology and Biotechnology, 2021, 105, 7035-7050.	1.7	35
1329	Irrigating digestate to improve cadmium phytoremediation potential of Pennisetum hybridum. Chemosphere, 2021, 279, 130592.	4.2	10
1330	The shifts of maize soil microbial community and networks are related to soil properties under different organic fertilizers. Rhizosphere, 2021, 19, 100388.	1.4	27
1331	Root Carbon Interaction with Soil Minerals Is Dynamic, Leaving a Legacy of Microbially Derived Residues. Environmental Science & Technology, 2021, 55, 13345-13355.	4.6	13
1332	Comparison of the Species Communities of <i>Phytophthora, Pythium</i> , and <i>Phytopythium</i> Associated with Soybean Genotypes in High Disease Environments in Ohio. Phytobiomes Journal, 2021, 5, 288-304.	1.4	7
1333	The assembly of wheat-associated fungal community differs across growth stages. Applied Microbiology and Biotechnology, 2021, 105, 7427-7438.	1.7	8
1334	Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology, 2021, 27, 100210.	2.3	71
1335	Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME Journal, 2022, 16, 339-345.	4.4	57
1336	Biological factor of humus reproduction in conditions of the steppe zone of the Southern Urals. IOP Conference Series: Earth and Environmental Science, 2021, 848, 012054.	0.2	0
1337	Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biology and Biochemistry, 2021, 160, 108343.	4.2	29
1338	Nitrous Oxide Emission from Forage Plantain and Perennial Ryegrass Swards Is Affected by Belowground Resource Allocation Dynamics. Agronomy, 2021, 11, 1936.	1.3	2
1339	Plant legacies and soil microbial community dynamics control soil respiration. Soil Biology and Biochemistry, 2021, 160, 108350.	4.2	10
1340	Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions. Geoderma, 2021, 398, 115102.	2.3	20
1341	Antagonism to Plant Pathogens by Epichloë Fungal Endophytes—A Review. Plants, 2021, 10, 1997.	1.6	23
1342	Invasive Grass Dominance over Native Forbs Is Linked to Shifts in the Bacterial Rhizosphere Microbiome. Microbial Ecology, 2022, 84, 496-508.	1.4	6
1343	Soil fungi are more sensitive than bacteria to short-term plant interactions of Picea asperata and Abies faxoniana. European Journal of Soil Biology, 2021, 106, 103348.	1.4	12
1344	Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 2021, 9, 1988.	1.6	75
1345	Effect of rice (Oryza sativa L.) genotype on yield: Evidence from recruiting spatially consistent rhizosphere microbiome. Soil Biology and Biochemistry, 2021, 161, 108395.	4.2	27

#	Article	IF	CITATIONS
1346	Linkages between plant rhizosphere and animal gut environments: Interaction effects of pesticides with their microbiomes. Environmental Advances, 2021, 5, 100091.	2.2	3
1347	Root control of fungal communities and soil carbon stocks in a temperate forest. Soil Biology and Biochemistry, 2021, 161, 108390.	4.2	14
1348	Conventional and conservation tillage practices affect soil microbial co-occurrence patterns and are associated with crop yields. Agriculture, Ecosystems and Environment, 2021, 319, 107534.	2.5	33
1349	Omics technologies used in pesticide residue detection and mitigation in crop. Journal of Hazardous Materials, 2021, 420, 126624.	6.5	19
1350	Perennial legume intercrops provide multiple belowground ecosystem services in smallholder farming systems. Agriculture, Ecosystems and Environment, 2021, 320, 107566.	2.5	31
1351	Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China. Forest Ecology and Management, 2021, 498, 119549.	1.4	26
1352	Response of the soil food web to warming and litter removal in the Tibetan Plateau, China. Geoderma, 2021, 401, 115318.	2.3	13
1353	Maize genotype-specific exudation strategies: An adaptive mechanism to increase microbial activity in the rhizosphere. Soil Biology and Biochemistry, 2021, 162, 108426.	4.2	31
1354	Intercrop mulch affects soil biology and microbial diversity in rainfed transgenic Bt cotton hybrids. Science of the Total Environment, 2021, 794, 148787.	3.9	14
1355	Phytoremediation of microbial contamination in soil by New Zealand native plants. Applied Soil Ecology, 2021, 167, 104040.	2.1	3
1356	C:N:P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest. Science of the Total Environment, 2021, 796, 148925.	3.9	27
1357	Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau. Geoderma, 2021, 403, 115186.	2.3	7
1358	Plant-microbe interactions for the sustainable agriculture and food security. Plant Gene, 2021, 28, 100325.	1.4	29
1359	Fungal community composition and diversity in the rhizosphere soils of Argentina (syn. Potentilla) anserina, on the Qinghai Plateau. Fungal Ecology, 2021, 54, 101107.	0.7	5
1360	Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Science of the Total Environment, 2021, 799, 149368.	3.9	17
1361	Rhizosphere bacterial and fungal spatial distribution and network pattern of Astragalus mongholicus in representative planting sites differ the bulk soil. Applied Soil Ecology, 2021, 168, 104114.	2.1	20
1362	Specific dissolved organic matter components drive the assembly of a core microbial community in acidic soil of ammonium-preferring plants. Catena, 2021, 207, 105584.	2.2	14
1363	Effect of the natural establishment of two plant species on microbial activity, on the composition of the fungal community, and on the mitigation of potentially toxic elements in an abandoned mine tailing. Science of the Total Environment, 2022, 802, 149788.	3.9	8

#	Article	IF	CITATIONS
1364	Soil type and pH mediated arable soil bacterial compositional variation across geographic distance in North China Plain. Applied Soil Ecology, 2022, 169, 104220.	2.1	12
1365	Different biodegradation potential and the impacted soil functions of epoxiconazole in two soils. Journal of Hazardous Materials, 2022, 422, 126787.	6.5	10
1366	N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 2022, 804, 150148.	3.9	24
1367	Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere. Applied Soil Ecology, 2022, 169, 104224.	2.1	16
1368	Microbiota associated with the rhizosphere of Paeonia lactiflora Pall. (ornamental cultivar). Applied Soil Ecology, 2022, 169, 104214.	2.1	9
1369	Plant beneficial microbes in mitigating the nutrient cycling for sustainable agriculture and food security. , 2022, , 483-512.		3
1370	Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study. Journal of Hazardous Materials, 2022, 423, 127180.	6.5	8
1371	Plant-assisted bioremediation: Soil recovery and energy from biomass. , 2022, , 25-48.		4
1372	Nature and characteristics of forest soils and peat soils as niches for microorganisms. , 2021, , 223-229.		1
1373	Roles of Root Exudates in Different Processes in the Nitrogen Cycle in the Rhizosphere. Soil Biology, 2021, , 179-200.	0.6	3
1375	<i>Pseudomonas chlororaphis</i> PA23 metabolites protect against protozoan grazing by the predator <i>Acanthamoeba castellanii</i> . PeerJ, 2021, 9, e10756.	0.9	2
1376	Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 2021, 22, 29.	1.2	36
1377	Sustaining Productivity Through Integrated Use of Microbes in Agriculture. Microorganisms for Sustainability, 2021, , 109-145.	0.4	5
1378	Applications of Soil Bacterial Community in Carbon Sequestration: An Accost Towards Advanced Eco-sustainability. Microorganisms for Sustainability, 2021, , 225-238.	0.4	0
1379	Are endophytes essential partners for plants and what are the prospects for metal phytoremediation?. Plant and Soil, 2021, 460, 1-30.	1.8	18
1380	Soil-plant-microbial interactions for soil fertility management and sustainable agriculture. , 2021, , 341-362.		1
1382	Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens. Frontiers in Microbiology, 2020, 11, 574110.	1.5	40
1383	Phytomicrobiome Community: An Agrarian Perspective Towards Resilient Agriculture. , 2021, , 493-534.		8

		CITATION REPORT	
# 1384	ARTICLE Rhizosphere Manipulations for Sustainable Plant Growth Promotion. , 2021, , 61-77.	IF	CITATIONS
1385	Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2021, 2, 28-37.	6.2	120
1386	A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Myceliun Methods in Molecular Biology, 2020, 2146, 33-41.	ı. 0.4	3
1387	Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Sustainable Development and Biodiversity, 2019, , 11-44.	1.4	7
1388	Tripartite Interaction Among Nanoparticles, Symbiotic Microbes, and Plants: Current Scenario an Future Perspectives. Nanotechnology in the Life Sciences, 2020, , 55-64.	d 0.4	2
1389	Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes. Nanotechnology ir the Life Sciences, 2020, , 65-85.	0.4	2
1390	Exploiting Arbuscular Mycorrhizal Fungi-Rhizobia-Legume Symbiosis to Increase Smallholder Farn Crop Production and Resilience Under a Changing Climate. , 2020, , 471-488.	ıers'	5
1391	Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats. Sustainabl Development and Biodiversity, 2020, , 381-424.	2 1.4	12
1392	Role of Rhizomicrobiome in Maintaining Soil Fertility and Crop Production. Soil Biology, 2020, , 373-401.	0.6	2
1393	Fungal Biofertilizers for Sustainable Agricultural Productivity. Fungal Biology, 2020, , 199-225.	0.3	8
1394	Microbiome-Mediated Multitrophic Interactions in an Age of Microbial Extinction. SpringerBriefs Ecology, 2015, , 115-124.	n 0.2	2
1395	Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challen in Climate Change. SpringerBriefs in Ecology, 2015, , 125-152.	ges 0.2	2
1396	Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applicatio for Alleviation of Drought Stress in Plants. Microorganisms for Sustainability, 2019, , 255-308.	ns 0.4	76
1397	Role of PGPR for Alleviating Aluminum Toxicity in Acidic Soil. Microorganisms for Sustainability, 2 , 309-326.	019, 0.4	1
1398	Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. , 2020, , 17-43.		26
1399	Engineering Rhizobacterial Functions for the Improvement of Plant Growth and Disease Resistan 2019, , 451-469.	ce. ,	1
1400	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1
1401	Microbial Inoculation of Seeds for Better Plant Growth and Productivity. , 2019, , 523-550.		3

#	Article	IF	CITATIONS
1402	Rhizosphere Engineering and Agricultural Productivity. , 2019, , 71-154.		4
1403	Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops. , 2020, , 423-441.		4
1404	Microbial Biotechnology: A Key to Sustainable Agriculture. Environmental and Microbial Biotechnology, 2020, , 219-243.	0.4	3
1405	Role of Biotechnology in the Exploration of Soil and Plant Microbiomes. , 2020, , 335-355.		7
1406	Rhizospheric Microbiome: Biodiversity, Current Advancement and Potential Biotechnological Applications. Microorganisms for Sustainability, 2020, , 39-60.	0.4	1
1407	Endophytic Microbiomes: Biodiversity, Current Status, and Potential Agricultural Applications. Microorganisms for Sustainability, 2020, , 61-82.	0.4	4
1408	Molecular Mechanisms of Plant–Microbe Interactions in the Rhizosphere as Targets for Improving Plant Productivity. Rhizosphere Biology, 2021, , 295-338.	0.4	8
1409	Rhizosphere Microbiome and Soil-Borne Diseases. Rhizosphere Biology, 2021, , 155-168.	0.4	4
1410	Use of Biostimulants for Improving Abiotic Stress Tolerance in Brassicaceae Plants. , 2020, , 497-531.		3
1411	Rhizosphere Biology: A Key to Agricultural Sustainability. Environmental and Microbial Biotechnology, 2021, , 161-182.	0.4	8
1412	Duration of the conditioning phase affects the results of plant-soil feedback experiments via soil chemical properties. Oecologia, 2018, 186, 459-470.	0.9	23
1413	Biodiversity, phylogenetic profiling, and mechanisms of colonization of seed microbiomes. , 2020, , 99-125.		4
1414	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	3.9	80
1415	Root herbivory and soil carbon cycling: Shedding "green―light onto a "brown―world. Soil Biology and Biochemistry, 2020, 150, 107972.	4.2	23
1416	Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biology and Biochemistry, 2020, 150, 107973.	4.2	21
1417	Microbiomes of Soils, Plants and Animals. , 2020, , .		27
1418	Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera:) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 102

1419	Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal, 2019, 476, 2705-2724.	1.7	198
------	---	-----	-----

#	Article	IF	CITATIONS
1420	Integrated pest management in temperate horticulture: seeing the wood for the trees CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-13.	0.6	1
1421	Service crops improve a degraded monoculture system by changing common bean rhizospheric soil microbiota and reducing soil-borne fungal diseases. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
1422	Devosia elaeis sp. nov., isolated from oil palm rhizospheric soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 851-855.	0.8	28
1437	Long-Term Nutrient Enrichment of an Oligotroph-Dominated Wetland Increases Bacterial Diversity in Bulk Soils and Plant Rhizospheres. MSphere, 2020, 5, .	1.3	31
1438	Elucidating the Diversity and Potential Function of Nonribosomal Peptide and Polyketide Biosynthetic Gene Clusters in the Root Microbiome. MSystems, 2020, 5, .	1.7	12
1439	Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express, 2020, 10, 189.	1.4	29
1440	Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 2020, 8, 4.	4.9	102
1441	Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste, 2015, 102, 465-478.	0.3	185
1442	Influence of Soil Type, Cultivar and Verticillium dahliae on the Structure of the Root and Rhizosphere Soil Fungal Microbiome of Strawberry. PLoS ONE, 2014, 9, e111455.	1.1	41
1443	Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling. PLoS ONE, 2015, 10, e0132837.	1.1	17
1444	Growth-altering microbial interactions are responsive to chemical context. PLoS ONE, 2017, 12, e0164919.	1.1	15
1445	Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE, 2018, 13, e0191761.	1.1	71
1446	Composição diferencial das comunidades bacterianas na rizosfera de variedas de cana-de-açúcar. Revista Brasileira De Ciencia Do Solo, 2014, 38, 1694-1702.	0.5	3
1447	Isolation and Characterization of Tomato Leaf Phyllosphere Methylobacterium and Their Effect on Plant Growth. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2121-2136.	0.0	21
1448	Examining Soil Carbon Gas (CO2, CH4) Emissions and the Effect on Functional Microbial Abundances in the Zhangjiang Estuary Mangrove Reserve. Journal of Coastal Research, 2020, 36, 54.	0.1	5
1449	Bioinformatics Analysis of The Rhizosphere Microbiota of Dangshan Su Pear in Different Soil Types. Current Bioinformatics, 2020, 15, 503-514.	0.7	7
1450	Impact of Imidacloprid Seed Dressing Treatment on Soil Microorganisms and Enzyme Activities in the Maize Rhizosphere. Open Biotechnology Journal, 2016, 10, 266-271.	0.6	3
1451	Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7.	0.2	107

		CITATION RE	EPORT	
#	Article		IF	Citations
1452	Isolation of Rhizosphere Bacterial Communities from Soil. Bio-protocol, 2015, 5, .		0.2	16
1453	Abundance of rhizospheric bacteria and fungi associated with Fouquieria columnaris at Sonora, Mexico. Revista Mexicana De Biodiversidad, 2018, 89, .	Punta Cirio,	0.4	4
1455	Indigenous Bacteria Have High Potential for Promoting Salix integra Thunb. Remediatic Lead-Contaminated Soil by Adjusting Soil Properties. Frontiers in Microbiology, 2020, 1	n of 1, 924.	1.5	8
1456	Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Resear for the Selection of the Best Performing Inocula. Agronomy, 2020, 10, 106.	ch Strategies	1.3	141
1457	New Fusarium species from the Kruger National Park, South Africa. MycoKeys, 2018, 34	4, 63-92.	0.8	30
1458	Plant-microbial interactions in agriculture and the use of farming systems to improve d productivity. AIMS Microbiology, 2017, 3, 335-353.	iversity and	1.0	24
1459	The rhizobiome of herbaceous plants in Clovelly and Sterkspruit soils of the Stevenson supersite. Koedoe, 2020, 62, .	–Hamilton	0.3	3
1461	Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. se Spanish Journal of Agricultural Research, 2016, 14, e0803.	redlings.	0.3	7
1462	Levels of Organic Compounds, Number of Microorganisms and Cadmium Accumulation ovina Hydroponic Culture. Polish Journal of Microbiology, 2016, 65, 191-200.	ı in <i>Festuca</i>	0.6	3
1463	Bacterial community dynamics with rhizosphere of Calotropis procera and Senna alexa plants in Saudi Arabia. Bioinformation, 2020, 16, 567-578.	ndrina desert	0.2	6
1464	Structural plasticity in root-fungal symbioses: diverse interactions lead to improved pla PeerJ, 2018, 6, e6030.	nt fitness.	0.9	47
1465	Rhizosphere bacterial and fungal communities during the growth of <i>Angelica sinens seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ, 2020, 8, e8541.</i>	is	0.9	13
1466	Seasonal variations in leaf and branch trace elements and the influence of a 3-yr 100% exclusion on <i>Pinus massoniana</i> Lamb. PeerJ, 2020, 8, e9935.	rainfall	0.9	4
1467	Effect of Soil Properties and Soil Bacterial Community on Early Growth Characteristics Wild-simulated Ginseng (Panax ginseng C. A. Meyer) in Coniferous and Mixed Forest. K Medicinal Crop Science, 2020, 28, 183-194.	of orean Journal of	0.1	5
1468	Bacterial core community in soybean rhizosphere. Korean Journal of Microbiology, 201	5, 51, 347-354.	0.2	9
1469	Impact of Climate Change on Localized Plant–Microbe Signalling and Technology Ad Microbial Quorum Sensing. Soil Biology, 2021, , 695-715.	vancement in	0.6	1
1470	Composition of the Microbiomes from Spinach Seeds Infested or Noninfested with <i>effusa</i> or <i>Verticillium dahliae</i> . Phytobiomes Journal, 2022, 6, 169-180.	Peronospora	1.4	0
1471	Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota. Frontie Science, 2021, 12, 752653.	e Fungal rs in Plant	1.7	9

#	Article	IF	CITATIONS
1472	Soil <scp>pH</scp> drives poplar rhizosphere soil microbial community responses to ozone pollution and nitrogen addition. European Journal of Soil Science, 2022, 73, .	1.8	9
1474	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	3.5	216
1475	Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology, 2021, 10, 1051.	1.3	6
1476	Action mechanisms of small microbial volatile compounds in plants. Journal of Experimental Botany, 2022, 73, 498-510.	2.4	15
1477	Characteristics of Culturable Microbial Community in Rhizosphere/Non-rhizosphere Soil of Potentilla Fruticosa Population in Alpine Meadow Elevation Gradient. Frontiers in Soil Science, 2021, 1, .	0.8	1
1478	Enhanced mobilization of Cd from commercial pigments in the rhizosphere of flooded lowland rice. Science of the Total Environment, 2022, 807, 151032.	3.9	6
1479	Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi Journal of Biological Sciences, 2022, 29, 1760-1769.	1.8	43
1480	Rhizosphere bacterial community structure of three minor grain crops: A caseâ€study from paired field sites in northern China. Land Degradation and Development, 2022, 33, 104-116.	1.8	9
1481	Oak seedling performance and soil development across a forest restoration chronosequence following agriculture in the American Midwest – a greenhouse experiment. Restoration Ecology, 0, , e13587.	1.4	0
1482	Coordination of root auxin with the fungus <i>Piriformospora indica</i> and bacterium <i>Bacillus cereus</i> enhances rice rhizosheath formation under soil drying. ISME Journal, 2022, 16, 801-811.	4.4	22
1483	Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. Environmental Microbiomes, 2021, 16, 18.	2.2	21
1484	Microbial community structure in rhizosphere soil rather than that in bulk soil characterizes aggregate-associated organic carbon under long-term forest conversion in subtropical region. Rhizosphere, 2021, 20, 100438.	1.4	10
1485	Plant community legacy effects on nutrient cycling, fungal decomposer communities and decomposition in a temperate grassland. Soil Biology and Biochemistry, 2021, 163, 108450.	4.2	7
1486	Plants on duty – phytotechnologies and phytoremediation at a glance. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 11, 23-29.	1.0	1
1489	Transkingdom Signaling Systems Between Plant and Its Associated Beneficial Microbes in Relation to Plant Growth and Development. , 2017, , 451-472.		1
1491	Assessment of Culturable Microbial Diversity Associated with Arnebia euchroma: A Critically Endangered Plant Growing in Trans-Himalayas of Himachal Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2953-2968.	0.0	2
1493	Phosphorus Nutrition of Plants: A Microbial Perspective. MOJ Ecology & Environmental Sciences, 2017, 2, .	0.1	0
1496	Co-inoculation of Liquid Microbial Cultures and Compatibility with Chemicals for Improvement of Seed Germination and Vigour in Paddy. International Journal of Current Microbiology and Applied Sciences. 2018. 7. 2077-2085.	0.0	1

#	Article	IF	Citations
1497	Microbial Rhizobacteria-Mediated Signalling and Plant Growth Promotion. , 2019, , 35-58.		1
1499	Microbial Inoculants for Sustainable Crop Management. , 2019, , 1-35.		0
1500	Microbiome: Effect on Plant System, Current Application and Future Aspect. , 2019, , 119-134.		0
1502	Rhizosphere Management: A Novel Approach for Improving the Crop Productivity. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2143-2155.	0.0	1
1508	Construction of LC-MS maps of root exudates in cotton (Gossypium hirsutum L.) seedlings. Abasyn Journal of Life Sciences, 2019, , .	0.2	0
1512	Microbiome of Soybean Rhizosphere under Fungicides and Complex Inoculation Application. MikrobiolohichnyA-Zhurnal, 2019, 81, 30-44.	0.2	1
1513	Accumulation of root-stubble residues and nutrients in feed crop rotations. Agricultural Science Euro-North-East, 2019, 20, 613-622.	0.2	1
1514	The influence of field crop rotations on the accumulation of crop-root residues in the arable layer of sod-podzolic soil. Agricultural Science Euro-North-East, 2019, 20, 594-601.	0.2	3
1515	Endophyte infection influences arbuscular mycorrhizal fungi communities in rhizosphere soils of host as opposed to nonâ€host grass. European Journal of Soil Science, 2021, 72, 995-1009.	1.8	11
1520	Rhizosphere Legacy: Plant Root Interactions with the Soil and Its Biome. Rhizosphere Biology, 2021, , 129-153.	0.4	3
1522	Root Microbiome Structure and Microbial Succession in the Rhizosphere. Rhizosphere Biology, 2021, , 109-128.	0.4	8
1524	Root Disease Impacts on Root-Rhizosphere Microbial Communities. Rhizosphere Biology, 2021, , 169-184.	0.4	0
1525	Interaction of Inherited Microbiota from Cover Crops with Cash Crops. Agronomy, 2021, 11, 2199.	1.3	4
1526	The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World Journal of Microbiology and Biotechnology, 2021, 37, 206.	1.7	7
1527	Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of the Total Environment, 2022, 806, 151302.	3.9	20
1528	Impact of bacterial volatiles on phytopathogenic fungi: an <i>in vitro</i> study on microbial competition and interaction. Journal of Experimental Botany, 2022, 73, 596-614.	2.4	8
1529	Rhizosphere Processes and Root Traits Determining the Acquisition of Soil Potassium. , 2021, , 99-117.		3
1530	Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiological Research, 2022, 254, 126901.	2.5	43

#	Article	IF	CITATIONS
1531	Microbe-based plant biostimulants and their formulations for growth promotion and stress tolerance in plants. , 2022, , 213-230.		1
1532	Role of microorganism as new generation plant bio-stimulants: An assessment. , 2022, , 1-16.		1
1533	Bacterial inoculants improved the growth and nitrogen use efficiency of Pyrus betulifolia under nitrogen-limited conditions by affecting the native soil bacterial communities. Applied Soil Ecology, 2022, 170, 104285.	2.1	11
1534	Fungal communities are more sensitive to nitrogen fertilization than bacteria in different spatial structures of silage maize under short-term nitrogen fertilization. Applied Soil Ecology, 2022, 170, 104275.	2.1	15
1535	Root Phenolics Profile Modulates Microbial Ecology of Rhizosphere. , 2020, , 555-578.		4
1536	Phytoremediation of Soils Contaminated by Hydrocarbon. Concepts and Strategies in Plant Sciences, 2020, , 83-101.	0.6	2
1537	Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. , 2020, , 299-334.		0
1538	Biological control of Meloidogyne spp. in glasshouse-grown chrysanthemum. Journal of Nematology, 2020, 52, 1-12.	0.4	2
1539	Forest and Rangeland Soil Biodiversity. , 2020, , 75-97.		2
1540	Dissecting Structure and Function of Plant Rhizomicrobiome: A Genomic Approach. Microorganisms for Sustainability, 2020, , 73-103.	0.4	0
1541	Rhizospheric Microbial Community: Ecology, Methods, and Functions. Microorganisms for Sustainability, 2020, , 127-148.	0.4	4
1542	The Importance of the Rare Biosphere for Astrobiological Studies and the Diversification and Resilience of Life on Earth. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 135-148.	0.4	3
1543	Metagenomic Insights Into Interactions Between Plant Nematodes and Endophytic Microbiome. , 2020, , 95-124.		1
1545	Soil Microbes and Plant Health. Sustainability in Plant and Crop Protection, 2020, , 111-135.	0.2	4
1546	Potential Environmental Effects of Engineered Antimicrobial Surfaces. Materials Horizons, 2020, , 135-163.	0.3	0
1548	Abiotic and Biotic Stress-Induced Alterations in the Micronutrient Status of Plants. , 2020, , 285-309.		3
1550	Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes. Ecology Letters, 2022, 25, 189-201.	3.0	20
1551	Spike Formation Is a Turning Point Determining Wheat Root Microbiome Abundance, Structures and Functions. International Journal of Molecular Sciences, 2021, 22, 11948.	1.8	2

#	Article	IF	CITATIONS
1552	Sculpting the soil microbiota. Plant Journal, 2022, 109, 508-522.	2.8	28
1553	Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host Effects in a Hyper-Arid Desert. Frontiers in Microbiology, 2021, 12, 754453.	1.5	4
1554	In Vitro Study of Biocontrol Potential of Rhizospheric Pseudomonas aeruginosa against Pathogenic Fungi of Saffron (Crocus sativus L.). Pathogens, 2021, 10, 1423.	1.2	10
1556	Hydrological and soil physiochemical variables determine the rhizospheric microbiota in subtropical lakeshore areas. PeerJ, 2020, 8, e10078.	0.9	5
1558	Taxonomic and Functional Diversity of Microbial Communities as an Indicator of the Effectiveness of Water Treatment in Constructed Wetlands. Water Resources, 2020, 47, 1020-1030.	0.3	4
1559	The presence of a foreign microbial community promotes plant growth and reduces filtering of root fungi in the arctic-alpine plant <i>Silene acaulis</i> . Plant Ecology and Diversity, 2020, 13, 377-390.	1.0	2
1567	Long-Term Chili Monoculture Alters Environmental Variables Affecting the Dominant Microbial Community in Rhizosphere Soil. Frontiers in Microbiology, 2021, 12, 681953.	1.5	0
1568	Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Frontiers in Microbiology, 2021, 12, 715991.	1.5	2
1570	Development and regulation of microbial pesticides in the post-genomic era. , 2022, , 285-299.		0
1571	Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Research, 2022, 209, 117895.	5.3	9
1572	Compositional and functional comparison on the rhizosphere microbial community between healthy and Sclerotium rolfsii-infected monkshood (Aconitum carmichaelii) revealed the biocontrol potential of healthy monkshood rhizosphere microorganisms. Biological Control, 2022, 165, 104790.	1.4	9
1573	Cunninghamia lanceolata and understory ferns had positive rhizosphere effects on the temperature sensitivity of soil microbial respiration in a subtropical forest. Geoderma, 2022, 408, 115593.	2.3	5
1574	Intercropping with Chinese leek decreased Meloidogyne javanica population and shifted microbial community structure in Sacha Inchi plantation. Journal of Agricultural Science, 0, , 1-10.	0.6	2
1575	Decreased spatial variation and deterministic processes of bacterial community assembly in the rhizosphere of <i>Phragmites australis</i> across the Middle–Lower Yangtze plain. Molecular Ecology, 2022, 31, 1180-1195.	2.0	21
1576	Biogeography of rootâ€associated fungi in foundation grasses of North American plains. Journal of Biogeography, 2022, 49, 22-37.	1.4	17
1577	Shotgun metagenomics evaluation of soil fertilization effect on the rhizosphere viral community of maize plants. Antonie Van Leeuwenhoek, 2022, 115, 69-78.	0.7	2
1578	Fusarium Oxysporum f. sp. Cannabis Isolated from Cannabis Sativa L.: In Vitro and In Planta Biocontrol by a Plant Growth Promoting-Bacteria Consortium. Plants, 2021, 10, 2436.	1.6	4
1579	Complete Genome Sequences of Four Soil-Derived Isolates for Studying Synthetic Bacterial Community Assembly. Microbiology Resource Announcements, 2021, 10, e0084821.	0.3	6

# 1580	ARTICLE A Holistic Approach for Enhancing the Efficacy of Soil Microbial Inoculants in Agriculture. Global Journal of Agricultural Innovation Research & Development, 0, 8, 176-190.	IF 0.2	CITATIONS
1582	Diversity and function of microbial communities in the sand sheath of Agropyron cristatum by metagenomic analysis. Canadian Journal of Microbiology, 2021, , 1-13.	0.8	2
1583	Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biology, 2021, 1, 1.	1.5	4
1584	Diversity Indices of Plant Communities and Their Rhizosphere Microbiomes: An Attempt to Find the Connection. Microorganisms, 2021, 9, 2339.	1.6	12
1585	Arboreal Fungi in Biological Control against Soil Fungi. Environmental Sciences Proceedings, 2021, 9, .	0.3	0
1586	Plant genotype controls wetland soil microbial functioning in response to sea-level rise. Biogeosciences, 2021, 18, 6133-6146.	1.3	4
1587	Phylosymbiosis in the Rhizosphere Microbiome Extends to Nitrogen Cycle Functional Potential. Microorganisms, 2021, 9, 2476.	1.6	2
1588	Bulk and rhizosphere soil properties under two Coffea species influenced by the earthworm Pontoscolex corethrurus. Rhizosphere, 2022, 21, 100458.	1.4	6
1589	Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). Microbiome, 2021, 9, 230.	4.9	6
1590	Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil. Frontiers in Microbiology, 2021, 12, 741597.	1.5	9
1591	Effects of microbial inoculants on soil carbon stock, enzymatic activity, and above ground and belowground biomass in marginal lands of Northern India. Land Degradation and Development, 2022, 33, 308-323.	1.8	8
1592	Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. , 2022, 1, 30-42.		29
1593	N-Cycling Microbiome Recruitment Differences Between Modern andÂWild <i>Zea mays</i> . Phytobiomes Journal, 2022, 6, 151-160.	1.4	5
1594	Investigation of soil nutrients and associated rhizobacterial communities in different sugarcane genotypes in relation to sugar content. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	11
1595	The volatile cedrene from <i>Trichoderma guizhouense</i> modulates <i>Arabidopsis</i> root development through auxin transport and signalling. Plant, Cell and Environment, 2022, 45, 969-984.	2.8	17
1596	Wheat Genotype-Specific Recruitment of Rhizosphere Bacterial Microbiota Under Controlled Environments. Frontiers in Plant Science, 2021, 12, 718264.	1.7	7
1598	Interactions Between Plant Genotypes and PGPR are a Challenge for Crop Breeding and Improvement Inoculation Responses. , 2021, , 331-349.		0
1599	Serendipita indica Mediated Drought and Heavy Metal Stress Tolerance in Plants. , 2021, , 181-194.		0

#	Article	IF	CITATIONS
1601	Spatial and Temporal Heterogeneity in Chemical Composition and Stability of Glomalin-Related Soil Protein in Coastal Wetlands. SSRN Electronic Journal, 0, , .	0.4	0
1602	Consistent effects of vegetation patch type on soil microbial communities across three successional stages in a desert ecosystem. Land Degradation and Development, 2022, 33, 1552-1563.	1.8	9
1603	Pecan agroforestry systems improve soil quality by stimulating enzyme activity. PeerJ, 2022, 10, e12663.	0.9	12
1604	Metagenomic analysis of rhizosphere microbiome provides insights into occurrence of iron deficiency chlorosis in field of Asian pears. BMC Microbiology, 2022, 22, 18.	1.3	2
1605	The Overlap of Soil and Vegetable Microbes Driving the Transfer of Antibiotic Resistance Genes from Manure-Amended Soil to Vegetables. SSRN Electronic Journal, 0, , .	0.4	0
1606	Soil Ph Determines Microbial Network Complexity and the Relative Abundance of Keystone Taxa Across Wheat Fields of the North China Plain. SSRN Electronic Journal, 0, , .	0.4	0
1607	Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 2022, 32, 15-38.	2.1	58
1608	Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field. Chemosphere, 2022, 290, 133257.	4.2	15
1609	Diversity and Functionalities of Unknown Mycorrhizal Fungal Microbiota. Microbiological Research, 2022, 256, 126940.	2.5	4
1610	Investigating the effect of microbial inoculants Frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng. Applied Soil Ecology, 2022, 172, 104369.	2.1	15
1611	Exploring of promising bacteria from the rhizosphere of maize, cocoa and lamtoro. Biodiversitas, 2020, 21, .	0.2	0
1613	Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiology, 2021, 21, 337.	1.3	3
1614	Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 2022, 11, 259.	1.6	35
1615	Different bacterial co-occurrence patterns and community assembly between rhizosphere and bulk soils under N addition in the plant–soil system. Plant and Soil, 2022, 471, 697-713.	1.8	34
1616	Application of Bioorganic Fertilizer on Panax notoginseng Improves Plant Growth by Altering the Rhizosphere Microbiome Structure and Metabolism. Microorganisms, 2022, 10, 275.	1.6	9
1617	Structure and Function of the Soil Rhizosphere Fungal Communities in Medicinal Plants—A Preliminary Study. Agriculture (Switzerland), 2022, 12, 152.	1.4	3
1618	Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences, 2022, 3, 100107.	1.4	16
1619	Archaeal Communities: The Microbial Phylogenomic Frontier. Frontiers in Genetics, 2021, 12, 693193.	1.1	6

#	Article	IF	CITATIONS
1620	Diversity and structure of the microbial community in rhizosphere soil of <i>Fritillaria ussuriensis</i> at different health levels. PeerJ, 2022, 10, e12778.	0.9	18
1621	Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environmental Microbiomes, 2022, 17, 1.	2.2	48
1622	The impact of different rotation regime on the soil bacterial and fungal communities in an intensively managed agricultural region. Archives of Microbiology, 2022, 204, 142.	1.0	5
1623	Contrasting effects of genotype and root size on the fungal and bacterial communities associated with apple rootstocks. Horticulture Research, 2022, 9, .	2.9	7
1624	Effects of Emerging Pollutants and Heavy Metals on the Variation of Bacterial Communities in Estuarine Sediments. SSRN Electronic Journal, 0, , .	0.4	0
1626	Distinct soil microbial communities under <i>Ageratina adenophora</i> invasions. Plant Biology, 2022, 24, 430-439.	1.8	14
1627	Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.). Sustainability, 2022, 14, 673.	1.6	16
1628	A field indicator for rhizosphere effect monitoring in arable soils. Plant and Soil, 0, , 1.	1.8	1
1629	Applications of Microbes in Soil Health Maintenance for Agricultural Applications. Environmental and Microbial Biotechnology, 2022, , 365-399.	0.4	2
1630	Metabolically dependent consortia in biofilm: A new horizon for green agriculture. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102256.	1.5	0
1631	Machine learning in postgenomic biology and personalized medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	4.6	3
1632	Mechanism of Intermittent Deep Tillage and Different Depths Improving Crop Growth From the Perspective of Rhizosphere Soil Nutrients, Root System Architectures, Bacterial Communities, and Functional Profiles. Frontiers in Microbiology, 2021, 12, 759374.	1.5	8
1633	Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 782135.	1.5	7
1634	Peanut Rotation and Flooding Induce Rhizobacteriome Variation With Opposing Influences on the Growth and Medicinal Yield of Corydalis yanhusuo. Frontiers in Plant Science, 2021, 12, 779302.	1.7	2
1635	Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant and Soil, 2022, 472, 207-223.	1.8	19
1636	Identification of root bacteria associated with different stripe rust resistance in wheat cultivars. Agronomy Journal, 0, , .	0.9	1
1637	Stenotrophomonas sp. SRS1 promotes growth ofÂArabidopsisÂand tomato plants under salt stress conditions. Plant and Soil, 2022, 473, 547-571.	1.8	7
1638	Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. Science of the Total Environment, 2022, 822, 153640.	3.9	3

			2
#	ARTICLE	lF	CITATIONS
1639	Are native phosphate solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part I. when rhizobacteria meet plant P requirements Rhizosphere, 2022, 21, 100476.	1.4	16
1640	The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. Science of the Total Environment, 2022, 821, 153479.	3.9	30
1641	The biological sink of atmospheric H2 is more sensitive to spatial variation of microbial diversity than N2O and CO2 emissions in a winter cover crop field trial. Science of the Total Environment, 2022, 821, 153420.	3.9	2
1642	Assessing synergistic effects of crop rotation pattern, tillage practice, and rhizosphere effect on soil bacterial community structure and assembly in China's Loess Plateau farmlands. Applied Soil Ecology, 2022, 174, 104411.	2.1	9
1643	Effect of CeO2 nanoparticles on plant growth and soil microcosm in a soil-plant interactive system. Environmental Pollution, 2022, 300, 118938.	3.7	15
1644	Effects of heavy metals on bacterial community surrounding Bijiashan mining area located in northwest China. Open Life Sciences, 2022, 17, 40-54.	0.6	11
1645	Enhancing translocation and remobilization of zinc in wheat by the application of plant growth regulators. Israel Journal of Plant Sciences, 2022, 69, 61-68.	0.3	1
1646	Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. , 2022, 2, 1.		41
1647	Bacterial Diversity of Root Nodule and Rhizosphere Soil Samples of Green Soybean (Edamame) in Japan. Microbiology Resource Announcements, 2022, 11, e0111421.	0.3	0
1648	Soil health, soil genetic horizons and biodiversity [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 24-34.	1.1	16
1649	Delivery of Beneficial Microbes via Seed Coating for Medicinal and Aromatic Plant Production: A Critical Review. Journal of Plant Growth Regulation, 2023, 42, 575-597.	2.8	8
1650	Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiology Ecology, 2022, 98, .	1.3	18
1651	Impacts of Elevated Atmospheric CO2 and N Fertilization on N2O Emissions and Dynamics of Associated Soil Labile C Components and Mineral N in a Maize Field in the North China Plain. Agronomy, 2022, 12, 432.	1.3	8
1652	Long-term land use in Amazon influence the dynamic of microbial communities in soil and rhizosphere. Rhizosphere, 2022, 21, 100482.	1.4	6
1653	The introduction of Phoebe bournei into Cunninghamia lanceolata monoculture plantations increased microbial network complexity and shifted keystone taxa. Forest Ecology and Management, 2022, 509, 120072.	1.4	17
1654	Soil under stress: The importance of soil life and how it is influenced by (micro)plastic pollution. Computational and Structural Biotechnology Journal, 2022, 20, 1554-1566.	1.9	30
1655	Rhizosphere engineering for crop improvement. , 2022, , 417-444.		1
1656	Soil Sample Storage Conditions Impact Extracellular Enzyme Activity and Bacterial Amplicon Diversity Metrics in a Semi-Arid Ecosystem. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1658	Survival in a Sea of Gradients: Bacterial and Archaeal Foraging in a Heterogeneous Ocean. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 47-102.	0.2	1
1659	Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiology Ecology, 2022, 98, .	1.3	11
1660	Plant Growth Stage Drives the Temporal and Spatial Dynamics of the Bacterial Microbiome in the Rhizosphere of Vigna subterranea. Frontiers in Microbiology, 2022, 13, 825377.	1.5	20
1661	Soil Type Influences Rhizosphere Bacterial Community Assemblies of Pecan Plantations, a Case Study of Eastern China. Forests, 2022, 13, 363.	0.9	4
1662	Gradient of microbial communities around seagrass roots was mediated by sediment grain size. Ecosphere, 2022, 13, .	1.0	11
1663	Changes in Bulk and Rhizosphere Soil Microbial Diversity and Composition Along an Age Gradient of Chinese Fir (Cunninghamia lanceolate) Plantations in Subtropical China. Frontiers in Microbiology, 2021, 12, 777862.	1.5	16
1664	Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends in Microbiology, 2022, 30, 882-897.	3.5	17
1665	Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis. Scientific Reports, 2022, 12, 2707.	1.6	1
1666	Comparison of the Effect of Fertilization with Ash from Wood Chips on Bacterial Community in Podzolic and Chernozem Soils for the Cultivation of Winter Oilseed Rape: A Preliminary Study. Agronomy, 2022, 12, 576.	1.3	3
1667	Changes in root microbiome during wheat evolution. BMC Microbiology, 2022, 22, 64.	1.3	12
1668	Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Research, 2022, 2, 697-707.	1.6	41
1669	Effects of Plant Fine Root Functional Traits and Soil Nutrients on the Diversity of Rhizosphere Microbial Communities in Tropical Cloud Forests in a Dry Season. Forests, 2022, 13, 421.	0.9	4
1670	Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of <i>Panax notoginseng</i> by Interfering with the Bacterial Community. Journal of Microbiology and Biotechnology, 2022, 32, 294-301.	0.9	5
1671	Wheat Metabolite Interferences on Fluorescent Pseudomonas Physiology Modify Wheat Metabolome through an Ecological Feedback. Metabolites, 2022, 12, 236.	1.3	2
1672	High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes. Molecular Plant-Microbe Interactions, 2022, 35, 592-603.	1.4	3
1673	A Novel In Situ Method for Simultaneously and Selectively Measuring As ^{III} , Sb ^{III} , and Se ^{IV} in Freshwater and Soils. Analytical Chemistry, 2022, 94, 4576-4583.	3.2	9
1675	Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere. Journal of Fungi (Basel, Switzerland), 2022, 8, 251.	1.5	30
1676	Plant Growth Promotion and Biocontrol by Endophytic and Rhizospheric Microorganisms From the Tropics: A Review and Perspectives. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	18

#	Article	IF	CITATIONS
1677	Natural and sustainable wine: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 8249-8260.	5.4	5
1678	Interplay between Arabidopsis thaliana Genotype, Plant Growth and Rhizosphere Colonization by Phytobeneficial Phenazine-Producing Pseudomonas chlororaphis. Microorganisms, 2022, 10, 660.	1.6	3
1679	Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 3141.	1.2	43
1680	The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome, 2022, 10, 54.	4.9	32
1681	Investigation of bacterial diversity using 16S rRNA sequencing and prediction of its functionalities in Moroccan phosphate mine ecosystem. Scientific Reports, 2022, 12, 3741.	1.6	14
1683	Spectroscopic analysis reveals that soil phosphorus availability and plant allocation strategies impact feedstock quality of nutrient-limited switchgrass. Communications Biology, 2022, 5, 227.	2.0	1
1684	Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends in Plant Science, 2022, 27, 674-687.	4.3	63
1685	Foliar Herbivory Reduces Rhizosphere Fungal Diversity and Destabilizes the Co-occurrence Network. Frontiers in Microbiology, 2022, 13, 846332.	1.5	5
1686	Manure fertilization enhanced microbial immigration in the wheat rhizosphere. Journal of Soils and Sediments, 0, , 1.	1.5	0
1687	Root-rhizosphere-soil interactions in biopores. Plant and Soil, 2022, 475, 253-277.	1.0	16
		1.0	
1688	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. Oikos, 2022, 2022, .	1.8	8
1688 1689	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient. , 2022, 1, .	1.2	8 34
1688 1689 1690	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plantâ€"soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient. , 2022, 1, . An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. Journal of Fungi (Basel, Switzerland), 2022, 8, 373.	1.2	8 34 7
1688 1689 1690	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plantâ€"soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient., 2022, 1, . An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. Journal of Fungi (Basel, Switzerland), 2022, 8, 373. The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses. Annual Review of Microbiology, 2022, 76, 45-65.	1.8 1.2 1.5 2.9	8 34 7 16
1688 1689 1690 1691	 Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient., 2022, 1, . An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. Journal of Fungi (Basel, Switzerland), 2022, 8, 373. The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses. Annual Review of Microbiology, 2022, 76, 45-65. Effects of biochar and chemical fertilizer amendment on diazotrophic abundance and community structure in rhizosphere and bulk soils. Environmental Science and Pollution Research, 2022, 29, 62361-62370. 	1.3 1.2 1.5 2.9 2.7	8 34 7 16 3
1688 1689 1690 1691 1692	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plantâ€" soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient., 2022, 1, . An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. Journal of Fungi (Basel, Switzerland), 2022, 8, 373. The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses. Annual Review of Microbiology, 2022, 76, 45-65. Effects of biochar and chemical fertilizer amendment on diazotrophic abundance and community structure in rhizosphere and bulk soils. Environmental Science and Pollution Research, 2022, 29, 62361-62370. Field co-inoculation of <i>Bradyrhizobium sp. and <i>Pseudomonas Field co-inoculation of <i>Bradyrhizobium sp. and <i>Plant Nutrition, 0, , 1-18.</i></i></i></i>	1.3 1.2 1.5 2.9 2.7 0.9	8 34 7 16 3
 1688 1689 1690 1691 1692 1693 1694 	Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plantâ€" soil feedback. Oikos, 2022, 2022, . Differential microbial assembly processes and coâ€occurrence networks in the soilâ€root continuum along an environmental gradient., 2022, 1, . An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. Journal of Fungi (Basel, Switzerland), 2022, 8, 373. The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses. Annual Review of Microbiology, 2022, 76, 45-65. Effects of biochar and chemical fertilizer amendment on diazotrophic abundance and community structure in rhizosphere and bulk soils. Environmental Science and Pollution Research, 2022, 29, 62361-62370. Field co-inoculation of <i>Bradyrhizobium sp. and <i>Pseudomonas Field co-inoculation of <i>Bradyrhizobium sp. and <i>Pseudomonas Effects of emerging contaminants and heavy metals on variation in bacterial communities in estuarine sediments. Science of the Total Environment, 2022, 832, 155118.</i></i></i></i>	1.3 1.2 1.5 2.9 2.7 0.9 3.9	8 34 7 16 3 0 20

#	Article	IF	CITATIONS
1696	Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers. Soil Biology and Biochemistry, 2022, 168, 108629.	4.2	25
1697	Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors. Science of the Total Environment, 2022, 826, 153908.	3.9	60
1698	Soil management and compost amendment are the main drivers of carbon sequestration in rainfed olive trees agroecosystems: An evaluation of chemical and biological markers. Catena, 2022, 214, 106258.	2.2	14
1699	Evidence for saponin diversity–mycobiome links and conservatism of plant–fungi interaction patterns across Holarctic disjunct Panax species. Science of the Total Environment, 2022, 830, 154583.	3.9	9
1700	The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment, 2022, 828, 154463.	3.9	23
1701	Intra-annual variation of root-associated fungi of Pinus sylvestris var. mongolica: The role of climate and implications for host phenology. Applied Soil Ecology, 2022, 176, 104480.	2.1	2
1702	The prokaryotic and fungal communities of oat rhizosphere responded contrastingly to different irrigation regimes at pre- and post-anthesis stages. Applied Soil Ecology, 2022, 176, 104490.	2.1	2
1703	Co-occurrence pattern and community assembly of broomcorn millet rhizosphere microbiomes in a typical agricultural ecosystem. Applied Soil Ecology, 2022, 176, 104478.	2.1	10
1704	Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment. Applied Microbiology and Biotechnology, 2022, 106, 441-453.	1.7	9
1705	Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages. Plants, 2021, 10, 2706.	1.6	3
1706	Nitrogen Fertiliser Immobilisation and Uptake in the Rhizospheres of Wheat and Canola. Agronomy, 2021, 11, 2507.	1.3	0
1707	How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research, 2022, 40, 45-58.	4.4	87
1708	Endofitne glive v biotiÄnem varstvu rastlin pred Åįkodljivimi organizmi in njihov posreden vpliv na rastline. Acta Agriculturae Slovenica, 2021, 117, 1.	0.2	0
1709	The Distribution and Turnover of Bacterial Communities in the Root Zone of Seven Stipa Species Across an Arid and Semi-arid Steppe. Frontiers in Microbiology, 2021, 12, 782621.	1.5	5
1710	Resistance and Not Plant Fruit Traits Determine Root-Associated Bacterial Community Composition along a Domestication Gradient in Tomato. Plants, 2022, 11, 43.	1.6	1
1711	Soil Bacterial Community Shifts Are Driven by Soil Nutrient Availability along a Teak Plantation Chronosequence in Tropical Forests in China. Biology, 2021, 10, 1329.	1.3	16
1712	High-Throughput Sequencing Analysis of the Composition and Diversity of the Bacterial Community in Cinnamomum camphora Soil. Microorganisms, 2022, 10, 72.	1.6	6
1713	Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Frontiers in Microbiology, 2021, 12, 715991.	1.5	10

#	Article	IF	CITATIONS
1714	Biodissolution of silica by rhizospheric silicate-solubilizing bacteria. , 2022, , 265-276.		3
1715	Cluster roots of Embothrium coccineum growing under field conditions differentially shape microbial diversity according to their developmental stage. Journal of Soil Science and Plant Nutrition, 2022, 22, 2418-2433.	1.7	1
1716	Metagenomic Approaches to Explore the Quorum Sensing-Mediated Interactions Between Algae and Bacteria in Sequence Membrane Photo-Bioreactors. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851376.	2.0	2
1717	Biochar alleviated the toxicity of atrazine to soybeans, as revealed by soil microbial community and the assembly process. Science of the Total Environment, 2022, 834, 155261.	3.9	26
1718	The parameters determining hyperaccumulator rhizobacteria diversity depend on the study scale. Science of the Total Environment, 2022, 834, 155274.	3.9	4
1719	Temporal Dynamics of Bacterial Communities along a Gradient of Disturbance in a U.S. Southern Plains Agroecosystem. MBio, 2022, 13, e0382921.	1.8	4
1720	The responses of soil bacterial and archaeal communities to coastal embankments in three typical salt marshes of Eastern China. Plant and Soil, 0, , .	1.8	1
1721	Microbial community structure analyses and cultivable denitrifier isolation of Myriophyllum aquaticum constructed wetland under low C/N ratio. Journal of Environmental Sciences, 2023, 127, 30-41.	3.2	10
1722	Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism. Environmental Microbiology, 2022, 24, 3355-3368.	1.8	4
1723	Spatial heterogeneity in chemical composition and stability of glomalin-related soil protein in the coastal wetlands. Science of the Total Environment, 2022, 835, 155351.	3.9	6
1724	Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology and Biochemistry, 2022, 169, 108670.	4.2	11
1968	Effects of soil properties and carbon substrates on bacterial diversity of two sunflower farms. AMB Express, 2022, 12, 47.	1.4	1
1969	Fungal Endophytes: As a Store House of Bioactive Compound. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	0
1970	Long-Term Chili Monoculture Alters Environmental Variables Affecting the Dominant Microbial Community in Rhizosphere Soil. Frontiers in Microbiology, 2021, 12, 681953.	1.5	12
1971	The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. Plants, 2022, 11, 840.	1.6	17
1972	Arbuscular mycorrhizal fungi in biotic and abiotic stress conditions: function and management in horticulture. , 2022, , 157-183.		3
1973	Plant Disease Management Through Microbiome Modulation. , 2022, , 113-150.		2
1974	Seed application with microbial inoculants for enhanced plant growth. , 2022, , 333-368.		1

#	Article	IF	CITATIONS
1977	Insights into the microbiome assembly during different growth stages and storage of strawberry plants. Environmental Microbiomes, 2022, 17, 21.	2.2	18
1978	Interactions between the soil bacterial community assembly and gene regulation in saltâ€sensitive and saltâ€tolerant sweet sorghum cultivars. Land Degradation and Development, 2022, 33, 2985-2997.	1.8	5
1979	Deterministic Process Dominated Belowground Community Assembly When Suffering Tomato Bacterial Wilt Disease. Agronomy, 2022, 12, 1024.	1.3	6
1980	Brassica napus Bacterial Assembly Processes Vary with Plant Compartment and Growth Stage but Not between Lines. Applied and Environmental Microbiology, 2022, 88, e0027322.	1.4	10
1981	Shift in beneficial interactions during crop evolution. Evolutionary Applications, 2022, 15, 905-918.	1.5	10
1982	Soil bacterial communities triggered by organic matter inputs associates with a high-yielding pear production. Soil, 2022, 8, 337-348.	2.2	7
1983	Plants—Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. International Journal of Molecular Sciences, 2022, 23, 5031.	1.8	56
1984	New methods for new questions about rhizosphere/plant root interactions. Plant and Soil, 2022, 476, 699-712.	1.8	9
1985	Plant growthâ€promoting rhizobacterium <i>Pseudomonas</i> sp. CM11 specifically induces lateral roots. New Phytologist, 2022, 235, 1575-1588.	3.5	14
1986	Indigenous Microorganisms Offset Arbuscular Mycorrhizal Fungi-Induced Plant Growth and Nutrient Acquisition Through Negatively Modulating the Genes of Phosphorus Transport and Nitrogen Assimilation. Frontiers in Plant Science, 2022, 13, .	1.7	9
1987	Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environmental and Experimental Botany, 2022, 199, 104897.	2.0	8
1988	Microbial eco-evolutionary dynamics in the plant rhizosphere. Current Opinion in Microbiology, 2022, 68, 102153.	2.3	14
1989	Correlations between dominant vegetation type and composition and diversity of soil bacterial communities in a subtropical forest. Soil Science Society of America Journal, 0, , .	1.2	2
1991	Differences between the effects of plant species and compartments on microbiome composition in two halophyte <i>Suaeda</i> species. Bioengineered, 2022, 13, 12475-12488.	1.4	6
1992	Complex and flexible catabolism in <i>Aromatoleum aromaticum</i> <scp>pCyN1</scp> . Environmental Microbiology, 2022, 24, 3195-3211.	1.8	4
1994	Endophytic bacteria in a biocontrol perspective. , 2022, , 155-176.		0
1995	<i>Bacillus aryabhattai</i> <scp>LAD</scp> impacts rhizosphere bacterial community structure and promotes maize plant growth. Journal of the Science of Food and Agriculture, 2022, 102, 6650-6657.	1.7	6
1998	Lower Compositional Variation and Higher Network Complexity of Rhizosphere Bacterial Community in Constructed Wetland Compared to Natural Wetland. Microbial Ecology, 2023, 85, 965-979.	1.4	4

#	Article	IF	Citations
1999	Cultivation of Two Barnyard Varieties Improves Physicochemical Properties of Saline-Alkali Land through Mediating Rhizospheric Microbiome and Metabolome. Agronomy, 2022, 12, 1322.	1.3	4
2001	Rhizosphere Soil Microbial Community Under Ice in a High-Latitude Wetland: Different Community Assembly Processes Shape Patterns of Rare and Abundant Microbes. Frontiers in Microbiology, 2022, 13, .	1.5	3
2002	Fertilization Rapidly Alters the Feeding Activity of Grassland Soil Mesofauna Independent of Management History. Frontiers in Ecology and Evolution, 0, 10, .	1.1	4
2003	Diversity Shifts in the Root Microbiome of Cucumber Under Different Plant Cultivation Substrates. Frontiers in Microbiology, 2022, 13, .	1.5	3
2004	Effects and Mechanisms of Copper Oxide Nanoparticles with Regard to Arsenic Availability in Soil–Rice Systems: Adsorption Behavior and Microbial Response. Environmental Science & Technology, 2022, 56, 8142-8154.	4.6	17
2005	Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan. Plant Pathology Journal, 2022, 38, 203-211.	0.7	8
2006	Root traits and soil nutrient and carbon availability drive soil microbial diversity and composition in a northern temperate forest. Plant and Soil, 2022, 479, 281-299.	1.8	7
2007	Resilience of the wheat root-associated microbiome to the disturbance of phenanthrene. Science of the Total Environment, 2022, 838, 156487.	3.9	7
2008	Maintaining grass coverage increases methane uptake in Amazonian pastures, with a reduction of methanogenic archaea in the rhizosphere. Science of the Total Environment, 2022, 838, 156225.	3.9	5
2010	Measuring root exudate metabolites in holm oak (Quercus ilex) under drought and recovery. , 2022, , 17-28.		0
2013	Microbial trait-based approaches for agroecosystems. Advances in Agronomy, 2022, , 259-299.	2.4	1
2014	Nontargeted screening of metabolites to discriminate disease suppressive and nonsuppressive soils for the fungal pathogen Rhizoctonia solani AG8. , 2022, , 77-90.		0
2015	Microbial systems, current trends, and future prospective: a systemic analysis. , 2022, , 81-94.		0
2016	Integrated analysis of changes in soil microbiota and metabolites following long-term fertilization in a subtropical maize-wheat agroecosystem. Pedosphere, 2023, 33, 521-533.	2.1	2
2017	Landscape Composition and Soil Physical–Chemical Properties Drive the Assemblages of Bacteria and Fungi in Conventional Vegetable Fields. Microorganisms, 2022, 10, 1202.	1.6	14
2018	Metagenomics: A Tool for Exploring Key Microbiome With the Potentials for Improving Sustainable Agriculture. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	17
2019	Variation in soybean root-associated microbiome between lateral roots with and without nodules. Plant and Soil, 2022, 479, 481-494.	1.8	4
2020	Influence of different irrigation methods on the alfalfa rhizosphere soil fungal communities in an arid region. PLoS ONE, 2022, 17, e0268175.	1.1	2

ARTICLE IF CITATIONS Bacillus subtilis EA-CB0575 inoculation of micropropagated banana plants suppresses black Sigatoka 2021 1.8 2 and induces changes in the root microbiome. Plant and Soil, 2022, 479, 513-527. The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and 1.3 Salinity Stresses. Biology, 2022, 11, 952. Rhizospheric Bacillus-Facilitated Effects on the Growth and Competitive Ability of the Invasive Plant 2023 1.7 8 Ageratina adenophora. Frontiers in Plant Science, 0, 13, . Cyperus rotundus L. drives arable soil infertile by changing the structure of soil bacteria in the rhizosphere, using a maize field as an example. Énvironmental Science and Pollution Research, 2022, 29, 2024 2.7 79579-79593. Spectroscopy-based isotopic ($\hat{l}'13C$) analysis for high spatial resolution of carbon exchange in the 2025 1.4 5 rhizosphere. Rhizosphere, 2022, 23, 100564. Soil Microbial Network Complexity Varies With pH as a Continuum, Not a Threshold, Across the North 1.5 China Plain. Frontiers in Microbiology, 0, 13, . Plant root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biology 2027 4.2 47 and Biochemistry, 2022, 172, 108753. From the bacterial citrus microbiome to the selection of potentially host-beneficial microbes. New 2028 2.4 Biotechnology, 2022, 70, 116-128. Legumes effect on nitrogen mineralization and microbial biomass potential in organic farming., 2022, 2029 1 281-306. 2030 Response of rhizosphere microbiomes to climate change., 2022, , 259-274. The structure, function, and utility of the rhizosphere microbiome of cereal crops., 2022, , 77-111. 2031 0 Interaction of the rhizosphere microbiome and crops under climate change., 2022, , 235-258. Mixed Organic and Inorganic Amendments Enhance Soil Microbial Interactions and Environmental 2034 0.4 1 Stress Resistance of Tibetan Barley on Plateau Farmland. SSRN Electronic Journal, O, , . The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Frontiers in 1.5 38 Agronomy, 0, 4, . <scp>Rhizosphere</scp><scp>bacterial communities differ among traditional maize landraces</scp>. 2037 3.15 Environmental DNA, 2022, 4, 1241-1249. The influence of biostimulants on the qualitative composition of carrots. IOP Conference Series: 2038 Earth and Environmental Science, 2022, 1045, 012087. Sustainable production through biostimulants under fruit orchards. CABI Agriculture and 2039 1.1 14 Bioscience, 2022, 3, . Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation 2040 in rice by promoting the formation of root apoplastic barriers. Journal of Hazardous Materials, 2022, 6.5 439, 129619.

#	Article	IF	CITATIONS
2041	Organic Connection of Holobiont Components and the Essential Roles of Core Microbes in the Holobiont Formation of Feral Brassica napus. Frontiers in Microbiology, 0, 13, .	1.5	4
2042	Use of Metagenomic Whole Genome Shotgun Sequencing Data in Taxonomic Assignment of Dipterygium glaucum Rhizosphere and Surrounding Bulk Soil Microbiomes, and Their Response to Watering. Sustainability, 2022, 14, 8764.	1.6	5
2043	Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome, 2022, 10, .	4.9	26
2044	Rhizosphere Effects along an Altitudinal Gradient of the Changbai Mountain, China. Forests, 2022, 13, 1104.	0.9	1
2045	Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiological Research, 2022, 263, 127137.	2.5	45
2046	Plantation vegetation restoration enhances the relationship between rhizosphere microbial diversity and soil multifunctionality. Land Degradation and Development, 2022, 33, 3630-3640.	1.8	9
2047	Reduction of banana fusarium wilt associated with soil microbiome reconstruction through green manure intercropping. Agriculture, Ecosystems and Environment, 2022, 337, 108065.	2.5	10
2048	Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. Science of the Total Environment, 2022, 845, 157197.	3.9	50
2049	A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. ELife, 0, 11,	2.8	16
2050	Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. Environmental Microbiomes, 2022, 17, .	2.2	15
2051	Disentangling the assembly mechanisms of bacterial communities in a transition zone between the alpine steppe and alpine meadow ecosystems on the Tibetan Plateau. Science of the Total Environment, 2022, 847, 157446.	3.9	5
2052	Soil properties, rhizosphere bacterial community, and plant performance respond differently to fumigation and bioagent treatment in continuous cropping fields. Frontiers in Microbiology, 0, 13, .	1.5	5
2053	Impact of PaGLK transgenic poplar on microbial community and soil enzyme activity in rhizosphere soil. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
2054	Maize-peanut rotational strip intercropping improves peanut growth and soil properties by optimizing microbial community diversity. PeerJ, 0, 10, e13777.	0.9	7
2057	Effects of a Furrow-Bed Seeding System on Stand Establishment, Soil Bacterial Diversity, and the Yield and Quality of Alfalfa Under Saline Condition. Frontiers in Plant Science, 0, 13, .	1.7	4
2058	Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 0, 13, .	1.5	50
2059	Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008T. Frontiers in Plant Science, 0, 13, .	1.7	9
2060	Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes. Journal of Environmental Sciences, 2023, 128, 117-128.	3.2	6

#	Article	IF	CITATIONS
2061	Arbuscular Mycorrhizal Fungi Associated with Roots Reveal High Diversity Levels at Different Elevations in Tropical Montane Rainforests. Diversity, 2022, 14, 587.	0.7	3
2062	Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Frontiers in Microbiology, 0, 13, .	1.5	6
2063	Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Frontiers in Ecology and Evolution, 0, 10, .	1.1	13
2064	Effect of organic fertilizers based on chicken manure on oat productivity and microbiological indicators of the soil. Sibirskii Vestnik Sel'skokhoziaistvennoi Nauki, 2022, 52, 5-16.	0.1	0
2065	Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions. International Journal of Molecular Sciences, 2022, 23, 8820.	1.8	10
2066	Forest gaps alter the soil bacterial community of weeping cypress plantations by modulating the understory plant diversity. Frontiers in Plant Science, 0, 13, .	1.7	2
2067	Coupled of carbon and nitrogen mineralization in rhizosphere soils along a temperate forest altitudinal gradient. Plant and Soil, 0, , .	1.8	3
2068	Soil microbiomes and one health. Nature Reviews Microbiology, 2023, 21, 6-20.	13.6	163
2069	Foliage applied boron along with boron-tolerant bacteria (<i>Bacillus</i> sp. MN54) ensures better nodulation, growth, grain yield and grains-B biofortification of chickpea. Journal of Plant Nutrition, 2023, 46, 1933-1945.	0.9	0
2070	Archaeal community structures associated with fine root systems of <i>Cryptomeria japonica</i> (Cupressaceae) in central Japan. Journal of Forest Research, 0, , 1-9.	0.7	0
2071	The influence of soil development on the depth distribution and structure of soil microbial communities. Soil Biology and Biochemistry, 2022, 174, 108808.	4.2	14
2072	Soil microbial communities shift along an urban gradient in Berlin, Germany. Frontiers in Microbiology, 0, 13, .	1.5	3
2073	Variations of rhizosphere and bulk soil microbial community in successive planting of Chinese fir (Cunninghamia lanceolata). Frontiers in Plant Science, 0, 13, .	1.7	1
2074	Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China. Agriculture (Switzerland), 2022, 12, 1138.	1.4	0
2075	Towards defining the core Saccharum microbiome: input from five genotypes. BMC Microbiology, 2022, 22, .	1.3	4
2076	Different genotypes regulate the microbial community structure in the soybean rhizosphere. Journal of Integrative Agriculture, 2023, 22, 585-597.	1.7	4
2077	Nitrogen and sulfur fertilizers promote the absorption of lead and cadmium with Salix integra Thunb. by increasing the bioavailability of heavy metals and regulating rhizosphere microbes. Frontiers in Microbiology, 0, 13, .	1.5	1
2078	Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Communications Earth & Environment, 2022, 3, .	2.6	31

#	Article	IF	CITATIONS
2079	Distinct rhizosphere soil responses to nitrogen in relation to microbial biomass and community composition at initial flowering stages of alfalfa cultivars. Frontiers in Plant Science, 0, 13, .	1.7	3
2081	Does Host Plant Drive Variation in Microbial Gut Communities in a Recently Shifted Pest?. Microbial Ecology, 2023, 86, 636-646.	1.4	3
2082	Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant and Soil, 2022, 480, 603-624.	1.8	7
2083	Volatile organic compounds from Bacillus mojavensis I4 promote plant growth and inhibit phytopathogens. Physiological and Molecular Plant Pathology, 2022, 121, 101887.	1.3	8
2084	Rare biosphere in cultivated Panax rhizosphere shows deterministic assembly and cross-plant similarity. Ecological Indicators, 2022, 142, 109215.	2.6	3
2085	Exploring the core microbiota in scented rice (Oryza sativa L.) rhizosphere through metagenomics approach. Microbiological Research, 2022, 263, 127157.	2.5	6
2086	Chemical fumigants control apple replant disease: Microbial community structure-mediated inhibition of Fusarium and degradation of phenolic acids. Journal of Hazardous Materials, 2022, 440, 129786.	6.5	6
2087	Succession of the soil bacterial community as resource utilization shifts from plant residues to rhizodeposits. Soil Biology and Biochemistry, 2022, 173, 108785.	4.2	13
2088	Resilience of soil microbial metabolic functions to temporary E. coli invasion. Chemosphere, 2022, 307, 135906.	4.2	4
2089	Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere, 2022, 307, 136138.	4.2	38
2090	The recruitment of specific rhizospheric bacteria facilitates Stevia rebaudiana salvation under nitrogen and/or water deficit stresses. Industrial Crops and Products, 2022, 187, 115434.	2.5	8
2091	Structural variability and niche differentiation of Paeonia lactiflora's root-associated microbiomes. Applied Soil Ecology, 2022, 180, 104632.	2.1	2
2093	Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment. Field Crops Research, 2022, 287, 108671.	2.3	15
2094	Trichoderma harzianum sensu lato TSM39: A wheat microbiome fungus that mitigates spot blotch disease of wheat (Triticum turgidum L. subsp. durum) caused by Bipolaris sorokiniana. Biological Control, 2022, 175, 105055.	1.4	5
2095	Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiological Research, 2022, 265, 127180.	2.5	11
2096	The effects of boron-enriched water irrigation on soil microbial community are dependent on crop species. Applied Soil Ecology, 2023, 181, 104677.	2.1	6
2097	The Use of Biopesticides for Sustainable Farming: Way Forward toward Sustainable Development Goals (SDGs). , 2022, , 571-596.		1
2098	Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils. Ecological Studies, 2022, , 205-233.	0.4	0

#	Article	IF	CITATIONS
2099	Contrasting Effects of Two Phenotypes of an Alpine Cushion Plant on Understory Species Drive Community Assembly. SSRN Electronic Journal, 0, , .	0.4	0
2100	Rhizospheric Soil–Plant-Microbial Interactions for Abiotic Stress Mitigation and Enhancing Crop Performance. Environmental Science and Engineering, 2022, , 593-614.	0.1	1
2101	Nanomaterial transformation in root–soil interface: a function of root exudate or microbial activity?. , 2022, , 209-237.		0
2102	Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biology, 2022, , 269-293.	0.3	0
2103	Global magnitude of rhizosphere effects on soil microbial communities and carbon cycling in natural terrestrial ecosystems. Science of the Total Environment, 2023, 856, 158961.	3.9	21
2104	Characterization of the microbial community response to replant diseases in peach orchards. Journal of Integrative Agriculture, 2023, 22, 1082-1092.	1.7	1
2105	Distribution of Core Root Microbiota of Tibetan Hulless Barley along an Altitudinal and Geographical Gradient in the Tibetan Plateau. Microorganisms, 2022, 10, 1737.	1.6	2
2106	Pseudomonas and Curtobacterium Strains from Olive Rhizosphere Characterized and Evaluated for Plant Growth Promoting Traits. Plants, 2022, 11, 2245.	1.6	6
2107	Exogenous Melatonin Reprograms the Rhizosphere Microbial Community to Modulate the Responses of Barley to Drought Stress. International Journal of Molecular Sciences, 2022, 23, 9665.	1.8	12
2108	Biostimulant-induced Improvement of Soil Health and Water-use Efficiency in Plants. , 2022, , 72-84.		0
2109	Advancing the science and practice of ecological nutrient management for smallholder farmers. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	12
2110	Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 26, 442-448.	0.4	0
2111	Individual competence predominates over host nutritional status in Arabidopsis root exudate-mediated bacterial enrichment in a combination of four Burkholderiaceae species. BMC Microbiology, 2022, 22, .	1.3	1
2112	Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress. Frontiers in Plant Science, 0, 13, .	1.7	4
2113	Proper irrigation amount for eggplant cultivation in a solar greenhouse improved plant growth, fruit quality and yield by influencing the soil microbial community and rhizosphere environment. Frontiers in Microbiology, 0, 13, .	1.5	5
2114	Microbial co-occurrence network in the rhizosphere microbiome: its association with physicochemical properties and soybean yield at a regional scale. Journal of Microbiology, 2022, 60, 986-997.	1.3	3
2115	Effects of Rhizosphere Bacteria on Strawberry Plants (Fragaria × ananassa Duch.) under Water Deficit. International Journal of Molecular Sciences, 2022, 23, 10449.	1.8	7
2116	Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta, 2022, 256, .	1.6	32

#	Article	IF	CITATIONS
2117	Rhizosphere element circling, multifunctionality, aboveground productivity and trade-offs are better predicted by rhizosphere rare taxa. Frontiers in Plant Science, 0, 13, .	1.7	5
2118	Semi-Arid-Habitat-Adapted Plant-Growth-Promoting Rhizobacteria Allows Efficient Wheat Growth Promotion. Agronomy, 2022, 12, 2221.	1.3	5
2119	Reconciling concepts of black queen and tragedy of the commons in simulated bulk soil and rhizosphere prokaryote communities. Frontiers in Microbiology, 0, 13, .	1.5	1
2121	What Drives the Assembly of Plant-associated Protist Microbiomes? Investigating the Effects of Crop Species, Soil Type and Bacterial Microbiomes. Protist, 2022, 173, 125913.	0.6	5
2123	Soil Layers Impact Lithocarpus Soil Microbial Composition in the Ailao Mountains Subtropical Forest, Yunnan, China. Journal of Fungi (Basel, Switzerland), 2022, 8, 948.	1.5	1
2124	Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Frontiers in Microbiology, 0, 13, .	1.5	6
2125	A 16S rRNA amplicon approach to the structural and functional diversity of bacterial communities associated with horse gram crop for drought mitigation and sustainable productivity. Journal of Applied Microbiology, 2022, 133, 3777-3789.	1.4	2
2126	Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities. Applied and Environmental Microbiology, 2022, 88, .	1.4	14
2127	Ectomycorrhizospheric Microbiome Assembly Rules of Quercus mongolica in the Habitat of SongRong (Tricholoma matsutake) and the Effect of Neighboring Plants. Diversity, 2022, 14, 810.	0.7	0
2128	Plant Growth Promoting Rhizobacteria for Biocontrol of Tomato Bacterial Wilt Caused by Ralstonia solanacearum. International Journal of Agronomy, 2022, 2022, 1-9.	0.5	5
2129	Microbial community structure and niche differentiation under different health statuses of Pinus bungeana in the Xiong'an New Area in China. Frontiers in Microbiology, 0, 13, .	1.5	4
2130	Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in Microbiology, 0, 13, .	1.5	9
2131	Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley. Frontiers in Plant Science, 0, 13, .	1.7	4
2132	Biogeography and ecological functions of rootâ€associated and soil fungi of <i>Pinus sylvestris</i> var. <i>mongolica</i> across different afforestation areas in desertified Northern China. Land Degradation and Development, 2023, 34, 313-326.	1.8	4
2133	Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14, 833-849.	1.0	21
2134	Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Frontiers in Plant Science, 0, 13, .	1.7	12
2135	Application and mechanisms of metalâ€based nanoparticles in the control of bacterial and fungal crop diseases. Pest Management Science, 2023, 79, 21-36.	1.7	31
2136	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5

#	Article	IF	CITATIONS
2137	Effects of manure fertilization on human pathogens in endosphere of three vegetable plants. Environmental Pollution, 2022, 314, 120344.	3.7	4
2138	Root-associated microbiomes are influenced by multiple factors and regulate the growth and quality of Astragalus membranaceus (fisch) Bge. var. mongholicus (Bge.) Hsiao. Rhizosphere, 2022, 24, 100609.	1.4	3
2139	Rhizospheric Engineering for Sustainable Production of Horticultural Crops. Rhizosphere Biology, 2022, , 511-537.	0.4	0
2140	Omics Approaches to Unravel the Features of Rhizospheric Microbiome. Rhizosphere Biology, 2022, , 391-402.	0.4	0
2141	Engineering the Plant Microbiome for Biotic Stress Tolerance: Biotechnological Advances. Microorganisms for Sustainability, 2022, , 133-151.	0.4	4
2142	Diversity of Arbuscular Mycorrhizal Fungi in the Ecuadorian Amazon Region. Fungal Biology, 2022, , 141-170.	0.3	1
2143	Understanding the Microbiome Interactions Across the Cropping System. Rhizosphere Biology, 2022, , 301-321.	0.4	1
2144	"The Key Influencers―of Rhizosphere Microbial Population Dynamics. Microorganisms for Sustainability, 2022, , 123-132.	0.4	0
2145	Plant–Rhizospheric Microbe Interactions: Enhancing Plant Growth and Improving Soil Biota. Rhizosphere Biology, 2022, , 445-459.	0.4	2
2146	The Potential of Rhizobacteria for Plant Growth and Stress Adaptation. Rhizosphere Biology, 2022, , 205-224.	0.4	0
2147	Exploring the Rhizosphere Microbiome for Sustainable Agriculture Production. Rhizosphere Biology, 2022, , 63-87.	0.4	0
2148	Conservation Strategies for Rhizobiome in Sustainable Agriculture. Rhizosphere Biology, 2022, , 37-61.	0.4	0
2149	Bacterial Volatile Isovaleric Acid Triggers Growth Alteration of Arabidopsis Seedlings. Metabolites, 2022, 12, 1043.	1.3	4
2150	Functionally-explicit sampling can answer key questions about the specificity of plant–microbe interactions. Environmental Microbiomes, 2022, 17, .	2.2	3
2152	Root-associated fungal microbiota of the perennial sweet sorghum cultivar under field growth. Frontiers in Microbiology, 0, 13, .	1.5	1
2154	Physical properties of soils under conservation agriculture: A multi-site experiment on five soil types in south-western France. Geoderma, 2022, 428, 116228.	2.3	3
2155	Aerobic hydrogen-oxidizing bacteria in soil: from cells to ecosystems. Reviews in Environmental Science and Biotechnology, 2022, 21, 877-904.	3.9	5
2156	Effects of elevated <scp>CO₂</scp> and warming on the rootâ€associated microbiota in an agricultural ecosystem. Environmental Microbiology, 2022, 24, 6252-6266.	1.8	4

#	Article	IF	Citations
2157	Integrating transcriptomics and metabolomics to analyze quinoa (Chenopodium quinoa Willd.) responses to drought stress and rewatering. Frontiers in Plant Science, 0, 13, .	1.7	7
2158	Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance. Plants, 2022, 11, 2816.	1.6	1
2159	Seasonal Shifts in Soil Microbiome Structure Are Associated with the Cultivation of the Local Runner Bean Variety around the Lake Mikri Prespa. Biology, 2022, 11, 1595.	1.3	1
2160	Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells, 2022, 11, 3292.	1.8	18
2162	Effects of Plant-Growth-Promoting Rhizobacteria (PGPR) and Cyanobacteria on Botanical Characteristics of Tomato (Solanum lycopersicon L.) Plants. Plants, 2022, 11, 2732.	1.6	11
2163	Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. Environmental Microbiomes, 2022, 17, .	2.2	3
2164	High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. New Phytologist, 2023, 237, 1333-1346.	3.5	8
2165	Plant types shape soil microbial composition, diversity, function, and coâ€occurrence patterns in cultivated land of a karst area. Land Degradation and Development, 2023, 34, 1097-1109.	1.8	7
2166	Opposing Surfactant and Gel Effects of Soil Borneâ€Hydrogels on Soil Water Retention. Water Resources Research, 2022, 58, .	1.7	3
2167	Multiple-functionalized biochar affects rice yield and quality via regulating arsenic and lead redistribution and bacterial community structure in soils under different hydrological conditions. Journal of Hazardous Materials, 2023, 443, 130308.	6.5	21
2168	Nitrogen fertilizer amount has minimal effect on rhizosphere bacterial diversity during different growth stages of peanut. PeerJ, 0, 10, e13962.	0.9	0
2169	Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon, 2022, 8, e11269.	1.4	6
2170	Linking rhizospheric microbial and fine root C:N:P stoichiometry under long-term forest conversion. Rhizosphere, 2022, 24, 100612.	1.4	0
2171	Soil fungal community of wheat Triticum aestivum rhizosphere at different phenological stages under a rain-fed management. Rhizosphere, 2022, 24, 100605.	1.4	2
2172	Soil sample storage conditions impact extracellular enzyme activity and bacterial amplicon diversity metrics in a semi-arid ecosystem. Soil Biology and Biochemistry, 2022, 175, 108858.	4.2	11
2173	The controlled-release nitrogen fertilizer driving the symbiosis of microbial communities to improve wheat productivity and soil fertility. Field Crops Research, 2022, 289, 108712.	2.3	10
2174	Function-Based Rhizosphere Assembly along a Gradient of Desiccation in the Former Aral Sea. MSystems, 2022, 7, .	1.7	6
2175	Comprehensive analysis of the mechanism underlying plastic microbiome and plants interaction, with future perspectives. , 2022, 1, 31-43.		2

#	Article	IF	Citations
2176	Short-Term Evaluation of the Spatial Distribution of Trophic Groups of Amoebae in the Rhizosphere of Zea mays Inoculated with Rhizophagus intraradices. Microbial Ecology, 0, , .	1.4	0
2177	Changes in the Microbial Structure of the Root Soil and the Yield of Chinese Baby Cabbage by Chemical Fertilizer Reduction with Bio-Organic Fertilizer Application. Microbiology Spectrum, 2022, 10, .	1.2	14
2178	Secondary forest succession drives differential responses of bacterial communities and interactions rather than bacterial functional groups in the rhizosphere and bulk soils in a subalpine region. Plant and Soil, 2023, 484, 293-312.	1.8	7
2179	Arbuscular mycorrhizal fungi contribute to wheat yield in an agroforestry system with different tree ages. Frontiers in Microbiology, 0, 13, .	1.5	2
2180	Higher-Quality Pumpkin Cultivars Need to Recruit More Abundant Soil Microbes in Rhizospheres. Microorganisms, 2022, 10, 2219.	1.6	1
2181	Contrasting effects of two phenotypes of an alpine cushion plant on understory species drive community assembly. Science of the Total Environment, 2022, , 160154.	3.9	3
2182	The Importance of Microorganisms for Sustainable Agriculture—A Review. Metabolites, 2022, 12, 1100.	1.3	11
2183	Nitrification inhibition by polyphenols from invasive <i>Fallopia japonica</i> under copper stress. Journal of Plant Nutrition and Soil Science, 2022, 185, 923-934.	1.1	5
2184	Dynamic analysis of the microbial communities and metabolome of healthy banana rhizosphere soil during one growth cycle. PeerJ, 0, 10, e14404.	0.9	3
2185	Response of bacterial communities to shrub encroachment and forage planting in alpine grassland of the Qinghai-Tibetan Plateau. Ecological Engineering, 2023, 186, 106837.	1.6	1
2186	Interplay of metal-based nanoparticles with plant rhizosphere microenvironment: implications for nanosafety and nano-enabled sustainable agriculture. Environmental Science: Nano, 2023, 10, 372-392.	2.2	7
2187	Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environmental Pollution, 2023, 317, 120788.	3.7	12
2188	Characteristics of bacterial communities in a rural river water restored by ecological floating beds with Oenathe javanica. Ecological Engineering, 2023, 187, 106823.	1.6	3
2189	Earthworms regulate plants' effects on soil microbial nutrient limitations: Examinations with contrasting soils and moisture. Journal of Environmental Management, 2023, 329, 117061.	3.8	1
2190	Controlling factors for soil bacterial and fungal diversity and composition vary with vegetation types in alpine grasslands. Applied Soil Ecology, 2023, 184, 104777.	2.1	6
2191	Root exudate composition from different plant species influences the growth of rhizosphere bacteria. Rhizosphere, 2023, 25, 100645.	1.4	12
2192	Mitigation of Paddy Field Soil Methane Emissions by Betaproteobacterium <i>Azoarcus</i> Inoculation of Rice Seeds. Microbes and Environments, 2022, 37, n/a.	0.7	1
2193	Correlates of Rhizosphere Soil Properties, Fungal Community Composition, and Active Secondary Metabolites in Cornus officinalis in Different Regions of China. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1

#	Article	IF	CITATIONS
2194	Effect of Rhizospheric Fungus on Biological Control of Root Rot (Fusarium equiseti) Disease of Saposhnikovia divaricata. Agronomy, 2022, 12, 2906.	1.3	3
2195	Habitats modulate influencing factors shaping the spatial distribution of bacterial communities along a Tibetan Plateau riverine wetland. Science of the Total Environment, 2023, 860, 160418.	3.9	1
2196	Alhagi sparsifolia Harbors a Different Root-Associated Mycobiome during Different Development Stages. Microorganisms, 2022, 10, 2376.	1.6	4
2198	Description of a novel species of Leclercia, Leclercia tamurae sp. nov. and proposal of a novel genus Silvania gen. nov. containing two novel species Silvania hatchlandensis sp. nov. and Silvania confinis sp. nov. isolated from the rhizosphere of oak. BMC Microbiology, 2022, 22, .	1.3	2
2199	Impact of Plant-Beneficial Bacterial Inocula on the Resident Bacteriome: Current Knowledge and Future Perspectives. Microorganisms, 2022, 10, 2462.	1.6	9
2200	The Effects of Suillus luteus Inoculation on the Diversity of Fungal Communities and Their Structures in the Soil under Pinus massoniana Located in a Mining Area. Forests, 2022, 13, 2162.	0.9	2
2201	<scp>3D</scp> printing of microbial communities: A new platform for understanding and engineering microbiomes. Microbial Biotechnology, 2023, 16, 489-493.	2.0	8
2202	Nodule-associated diazotrophic community succession is driven by developmental phases combined with microhabitat of Sophora davidii. Frontiers in Microbiology, 0, 13, .	1.5	1
2203	Foliar herbivory affects the rhizosphere microbial assembly processes and association networks. Rhizosphere, 2022, , 100649.	1.4	0
2204	Forage yield, nutritional value, soil chemical composition, and soil microbial abundance under maize–legume intercropping systems in a paddy field. Journal of Crop Science and Biotechnology, 0, , .	0.7	0
2205	Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nature Communications, 2022, 13, .	5.8	38
2206	The Golden Goal of Soil Management: Disease-Suppressive Soils. Phytopathology, 2023, 113, 741-752.	1.1	6
2207	Sustained Inhibition of Maize Seedâ€Borne <i>Fusarium</i> Using a <i>Bacillus</i> â€Đominated Rhizospheric Stable Core Microbiota with Unique Cooperative Patterns. Advanced Science, 2023, 10, .	5.6	10
2208	Trichoderma koningiopsis Survival on Coated Seeds and Effect on Plant Growth Promotion in Rice (Oryza sativa). Current Microbiology, 2023, 80, .	1.0	0
2209	Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita. Plant Pathology Journal, 2022, 38, 583-592.	0.7	1
2210	Crop rotation increases root biomass and promotes the correlation of soil dissolved carbon with the microbial community in the rhizosphere. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
2211	Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Applied and Environmental Microbiology, 0, , .	1.4	0
2212	Nitrous oxide production and isotopomer composition by fungi isolated from salt marsh sediments. Frontiers in Marine Science, 0, 9, .	1.2	4

#	Article	IF	CITATIONS
2213	Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L Frontiers in Microbiology, 0, 13, .	1.5	5
2214	Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. Stresses, 2023, 3, 136-152.	1.8	5
2215	Arbuscular mycorrhizal fungi in oat-pea intercropping. Scientific Reports, 2023, 13, .	1.6	1
2216	Plant Microbiome Diversity and Potential for Crops and Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 331-364.	0.4	0
2217	Urbanization alters soil bacterial communities in southern China coastal cities. Ecotoxicology and Environmental Safety, 2023, 250, 114492.	2.9	1
2218	Characteristics of the soil arbuscular mycorrhizal fungal community along succession stages in tropical forest and its driving factors. Frontiers in Environmental Science, 0, 10, .	1.5	1
2219	Assessing microbial communities across the fine root landscape. Journal of Experimental Botany, 2023, 74, 1751-1757.	2.4	1
2220	Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. International Journal of Molecular Sciences, 2023, 24, 1119.	1.8	0
2221	Screening and Identification of the Rhizosphere Fungal Communities Associated with Land Reclamation in Egypt. Agriculture (Switzerland), 2023, 13, 215.	1.4	4
2222	Submergence in the Dry Season Alters Microbial Nitrogen Transformations in the Root Zone of Carex cinerascens: A Mesocosm Study in One Floodplain Lake. Wetlands, 2023, 43, .	0.7	0
2223	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Wheat. , 2023, , 287-320.		3
2225	Ammonia Production Using Bacteria and Yeast toward a Sustainable Society. Bioengineering, 2023, 10, 82.	1.6	7
2226	Effect in soil and rhizosphere microbiota of Brachiaria inoculated with Azospirillum brasilense: a pilot trial in two oxisol types. Soil Research, 2023, , .	0.6	1
2227	Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. Micromachines, 2023, 14, 195.	1.4	5
2228	Mixed organic and inorganic amendments enhance soil microbial interactions and environmental stress resistance of Tibetan barley on plateau farmland. Journal of Environmental Management, 2023, 330, 117137.	3.8	4
2229	Diversity and assembly of active bacteria and their potential function along soil aggregates in a paddy field. Science of the Total Environment, 2023, 866, 161360.	3.9	2
2230	Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil. Science of the Total Environment, 2023, 865, 161284.	3.9	4
2231	Dynamic microbial community composition, co-occurrence pattern and assembly in rhizosphere and bulk soils along a coniferous plantation chronosequence. Catena, 2023, 223, 106914.	2.2	8

#		IF	CITATIONS
2232	Soilä€"Plantä€"Microbe Interactions Determine Soil Biological Fertility by Altering Rhizospheric Nutrient Cycling and Biocrust Formation. Sustainability, 2023, 15, 625.	1.6	9
2233	Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis, 2023, 89, 1-25.	1.2	3
2234	Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment. Sustainability, 2023, 15, 488.	1.6	3
2235	Biosurfactants and Their Benefits for Seeds. , 2023, , 309-329.		0
2236	Getting to the roots of N, P, and K uptake. Journal of Experimental Botany, 2023, 74, 1784-1805.	2.4	5
2238	Microbial cross talk: Below and above ground. , 2023, , 213-226.		0
2239	Nitrogen Fertilizer Type and Genotype as Drivers of P Acquisition and Rhizosphere Microbiota Assembly in Juvenile Maize Plants. Plants, 2023, 12, 544.	1.6	2
2240	Ecological Processes of Bacterial and Fungal Communities Associated with <i>Typha orientalis</i> Roots in Wetlands Were Distinct during Plant Development. Microbiology Spectrum, 2023, 11, .	1.2	6
2242	Effect of different straw retention techniques on soil microbial community structure in wheat–maize rotation system. Frontiers in Microbiology, 0, 13, .	1.5	6
2244	"Ectomosphereâ€: Insects and Microorganism Interactions. Microorganisms, 2023, 11, 440.	1.6	11
2247	Role of Mineral Nitrogen Nutrition in Fungal Plant Diseases of Cereal Crops. Critical Reviews in Plant Sciences, 2023, 42, 93-123.	2.7	3
2248	Linking microbial biogeochemical cycling genes to the rhizosphere of pioneering plants in a glacier foreland. Science of the Total Environment, 2023, 872, 161944.	3.9	7
2249	Discrepancies in rhizobacterial assembly caused by glyphosate application and herbicide-tolerant soybean Co-expressing GAT and EPSPS. Journal of Hazardous Materials, 2023, 450, 131053.	6.5	2
2250	Metabarcoding reveals response of rice rhizosphere bacterial community to rice bacterial leaf blight. Microbiological Research, 2023, 270, 127344.	2.5	5
2251	Dynamics of dominantÂrhizospheric microbial communities responsible for trichlorfon absorption and translocation in maize seedlings. Journal of Hazardous Materials, 2023, 451, 131096.	6.5	3
2252	Spatio-temporal dynamic diversity of bacterial alkaline phosphatase phoD gene and its environmental drivers in sediments during algal blooms: A case study of shallow Lake Taihu. Journal of Environmental Management, 2023, 336, 117595.	3.8	2
2253	Rice genotypes and root-associated niches shifted bacterial community in response to pollution of di-(2-ethylhexyl) phthalate (DEHP) for promoting DEHP removal. Journal of Hazardous Materials, 2023, 452, 131227.	6.5	6
2254	Long-term chemical fertilization results in a loss of temporal dynamics of diazotrophic communities in the wheat rhizosphere. Science of the Total Environment, 2023, 875, 162663.	3.9	2

#	Article	IF	CITATIONS
2255	Vertical distribution of nutrients, enzyme activities, microbial properties, and heavy metals in zinc smelting slag site revegetated with two herb species: Implications for direct revegetation. Science of the Total Environment, 2023, 879, 163206.	3.9	2
2256	Metabolism characteristics of nitrogen functional microorganisms in bioretention system under multiple dry-wet alternation. Journal of Water Process Engineering, 2023, 53, 103685.	2.6	4
2257	Soil Microbes and Biofertilizers. Geography of the Physical Environment, 2022, , 117-144.	0.2	2
2258	The influence of roots on soil's electrical signature. Rhizosphere, 2023, 25, 100670.	1.4	0
2259	Microplastics affect soybean rhizosphere microbial composition and function during vegetative and reproductive stages. Ecotoxicology and Environmental Safety, 2023, 252, 114577.	2.9	10
2261	Effects of Different Altitudes on Coffea arabica Rhizospheric Soil Chemical Properties and Soil Microbiota. Agronomy, 2023, 13, 471.	1.3	3
2262	The effect of tomato cultivar on Pythium root rot and efficacy of biopesticides. PhytoFrontiers, 0, , .	0.8	0
2263	Stochastic processes drive the soil fungal communities in a developing mid-channel bar. Frontiers in Microbiology, 0, 14, .	1.5	0
2264	Ridge intertillage alters rhizosphere bacterial communities and plant physiology to reduce yield loss of waterlogged cotton. Field Crops Research, 2023, 293, 108849.	2.3	5
2265	Untangling the Effects of Plant Genotype and Soil Conditions on the Assembly of Bacterial and Fungal Communities in the Rhizosphere of the Wild Andean Blueberry (Vaccinium floribundum Kunth). Microorganisms, 2023, 11, 399.	1.6	1
2266	An updated assessment of the soybean– <i>Phytophthora sojae</i> pathosystem. Plant Pathology, 2023, 72, 843-860.	1.2	2
2269	Encounter rates prime interactions between microorganisms. Interface Focus, 2023, 13, .	1.5	1
2270	Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. Environmental Science and Pollution Research, 2023, 30, 49498-49511.	2.7	11
2272	Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana. Microbiology Spectrum, 2023, 11, .	1.2	7
2273	Assembly and enrichment of rhizosphere and bulk soil microbiomes in Robinia pseudoacacia plantations during long-term vegetation restoration. Applied Soil Ecology, 2023, 187, 104835.	2.1	3
2274	Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Frontiers in Microbiology, 0, 14, .	1.5	2
2275	Root exudates and rhizosphere microbiomes jointly determine temporal shifts in plantâ€soil feedbacks. Plant, Cell and Environment, 2023, 46, 1885-1899.	2.8	12
2276	Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao. Frontiers in Microbiology, 0, 14, .	1.5	3

#	Article	IF	CITATIONS
2277	Characterization of rhizosphere bacterial microbiota under Robinia pseudoacacia plantations during long-term vegetation restoration on ex-arable land. Rhizosphere, 2023, 25, 100678.	1.4	0
2278	Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana <i>Fusarium</i> wilt disease. New Phytologist, 2023, 238, 2194-2209.	3.5	18
2279	Awaking the dormant virome in the rhizosphere. Molecular Ecology, 2023, 32, 2985-2999.	2.0	1
2280	Rhizosphere Soil Fungal Diversity and Soil Physicochemical Properties of Different Vegetations in Tundra of Changbai Mountain. Journal of Geoscience and Environment Protection, 2023, 11, 13-29.	0.2	1
2281	Metagenomic and machine learning-aided identification of biomarkers driving distinctive Cd accumulation features in the root-associated microbiome of two rice cultivars. ISME Communications, 2023, 3, .	1.7	13
2282	Changes of Soil Microbial Community in Ficus tikoua Patch at Different Succession Stages in Huayuan Lead-Zinc Tailings Wasteland. International Journal of Ecology, 2023, 12, 101-110.	0.0	1
2283	The spatial patterns of diversity and their relationships with environments in rhizosphere microorganisms and host plants differ along elevational gradients. Frontiers in Microbiology, 0, 14, .	1.5	2
2284	Comparison of the diversity and structure of the rhizosphere microbial community between the straight and twisted trunk types of Pinus yunnanensis. Frontiers in Microbiology, 0, 14, .	1.5	2
2285	Getting to the root of tree soil microbiome sampling. Phytobiomes Journal, 0, , .	1.4	0
2287	Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. FEMS Microbiology Ecology, 2023, 99, .	1.3	7
2288	llex paraguariensis Hosts Root-Trichoderma spp. with Plant-Growth-Promoting Traits: Characterization as Biological Control Agents and Biofertilizers. Current Microbiology, 2023, 80, .	1.0	3
2289	Habitat Heterogeneity, Environmental Feedbacks, and Species Coexistence across Timescales. American Naturalist, 2023, 202, E53-E64.	1.0	1
2290	Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 2023, 74, 569-607.	8.6	48
2291	Diversity and function of soybean rhizosphere microbiome under nature farming. Frontiers in Microbiology, 0, 14, .	1.5	4
2292	PGPM: Fundamental, Bioformulation, Commercialization, and Success at Farmer's Field. , 2023, , 257-301.		1
2293	Neighboring plant community attributes drive rhizobiome assemblages of a focal plant in a Kobresia meadow. Geoderma, 2023, 432, 116409.	2.3	0
2294	Use of 15N tracers to study nitrogen flows in agro-ecosystems: transformation, losses and plant uptake. Nutrient Cycling in Agroecosystems, 2023, 125, 89-93.	1.1	6
2295	Age-Related Rhizosphere Analysis of Coffea arabica Plants. Current Microbiology, 2023, 80, .	1.0	0
#	Article	IF	Citations
------	--	------	-----------
2296	rhizospheric microbial community. Frontiers in Plant Science, 0, 14, .	1.7	9
2297	Agronomical Practices and Management for Commercial Cultivation of Portulaca oleracea as a Crop: A Review. Plants, 2023, 12, 1246.	1.6	12
2298	Similarities and differences in the rhizosphere biota among different ephemeral desert plants in Gurbantünggüt Desert. Environmental Sciences Europe, 2023, 35, .	11.0	4
2299	Temporal shifts in root exudates driven by vegetation restoration alter rhizosphere microbiota in <i>Robinia pseudoacacia</i> plantations. Tree Physiology, 0, , .	1.4	0
2301	Endophytic Fusarium proliferatum Reprogrammed Phytohormone Production and Antioxidant System of Oryza sativa under Drought Stress. Agronomy, 2023, 13, 873.	1.3	3
2303	Applications of Microbial Consortia and Microbiome Interactions for Augmenting Sustainable Agrobiology. Microorganisms for Sustainability, 2023, , 275-316.	0.4	1
2304	Bibliometric Analysis on the Impact of Climate Change on Crop Pest and Disease. Agronomy, 2023, 13, 920.	1.3	3
2305	Management of Sustainable Vegetable Production Using Microbial Consortium. Microorganisms for Sustainability, 2023, , 225-243.	0.4	0
2306	Discovery of Brassica Yellows Virus and Porcine Reproductive and Respiratory Syndrome Virus in <i>Diaphorina citri</i> and Changes in Virome Due to Infection with â€~ <i>Ca</i> . L. asiaticus'. Microbiology Spectrum, 2023, 11, .	1.2	0
2307	Bacterial and fungal diversities examined through high-throughput sequencing in response to lead contamination of tea garden soil. Frontiers in Microbiology, 0, 14, .	1.5	2
2308	Establishment of Residual Methods for Matrine in Quinoa Plants and Soil and the Effect on Soil Bacterial Community and Composition. Foods, 2023, 12, 1337.	1.9	2
2309	Assembly processes underlying bacterial community differentiation among geographically close mangrove forests. , 2023, 2, 73-88.		3
2312	Stimulation of PGP Bacteria on the Development of Seeds, Plants and Cuttings of the Obligate Halophyte Arthrocaulon (Arthrocnemum) macrostachyum (Moric.) Piirainen & G. Kadereit. Plants, 2023, 12, 1436.	1.6	1
2314	Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. Environmental Microbiomes, 2023, 18, .	2.2	15
2315	Mind the blind spot: lessons from fungal community sequencing in a plant–soil feedback experiment. CABI Agriculture and Bioscience, 2023, 4, .	1.1	0
2316	Legacy Effects of Phytoremediation on Plant-Associated Prokaryotic Communities in Remediated Subarctic Soil Historically Contaminated with Petroleum Hydrocarbons. Microbiology Spectrum, 2023, 11, .	1.2	0
2317	Rhizosphere Microbiome: Interactions with Plant and Influence in Triggering Plant Disease Resistance. , 2023, , 329-369.		0
2318	Health Management of Rhizospheric Microbiome. , 2023, , 179-224.		0

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
2319	The influence of beneficial microorganisms on the quality indicators and antioxidant prop potatoes. IOP Conference Series: Earth and Environmental Science, 2023, 1154, 012010.	erties of	0.2	0
2321	Deciphering the rhizosphere bacteriome associated with biological control of tobacco bla disease. Frontiers in Plant Science, 0, 14, .	ck shank	1.7	2
2322	Rhizosphere Effect and Bacterial Community Structure in the Horizons of Podzolic Soil ur Norway Spruce (Picea abies L.). Eurasian Soil Science, 2023, 56, 29-37.	ıder	0.5	0
2323	Rhizosphere carbon priming: a plant mechanism to enhance soil nitrogen accessibility?. P 2023, 488, 175-185.	ant and Soil,	1.8	3
2324	Mycorrhizal Networks: A Secret Interplant Communication System. , 2023, , 447-467.			0
2325	Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. N 2023, 11, .	Aicrobiome,	4.9	33
2326	Genomic Islands in Pseudomonas Species. , 2023, , 233-253.			0
2327	Microbial inoculant carriers: Soil health improvement and moisture retention in sustainab agriculture. Advances in Agronomy, 2023, , .	le	2.4	0
2328	Bacterial diversity and function shift of strawberry root in different cultivation substrates. Rhizosphere, 2023, 26, 100696.		1.4	0
2329	Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi. ISME 17, 931-942.	Journal, 2023,	4.4	5
2330	Domestication in wheat affects its rhizobiome recruitment capacity: a review. Grass Rese 0-0.	arch, 2023, 3,	0.6	0
2331	Biocontrol of plant pathogens in omics era—with special focus on endophytic bacilli. Cr Reviews in Biotechnology, 0, , 1-19.	tical	5.1	5
2332	Understanding the sugar beet holobiont for sustainable agriculture. Frontiers in Microbio	ogy, 0, 14,	1.5	5
2333	Screening the maize rhizobiome for consortia that improve Azospirillum brasilense root c and plant growth outcomes. Frontiers in Sustainable Food Systems, 0, 7, .	olonization	1.8	4
2334	The microbiome of the endosymbiotic Symbiodiniaceae in corals exposed to thermal stree Hydrobiologia, 2023, 850, 3685-3704.	3S.	1.0	4
2335	Bioactive Metabolite from Endophytic Aspergillus versicolor SB5 with Anti-Acetylcholinese Anti-Inflammatory and Antioxidant Activities: In Vitro and In Silico Studies. Microorganism 1062.	terase, hs, 2023, 11,	1.6	7
2336	Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and i organic carbon pool by optimizing bacterial community. Journal of Integrative Agriculture	mproves soil , 2023, , .	1.7	1
2337	Effects of biochar addition on aeolian soil microbial community assembly and structure. A Microbiology and Biotechnology, 0, , .	.pplied	1.7	0

#	Article	IF	CITATIONS
2338	Stimulating risk averse farmers to adopt microbial applications. Q Open, 0, , .	0.7	0
2339	Advanced study of plant-microbe interactions in photosynthesis. , 2023, , 205-228.		0
2340	The positive effects of mineral-solubilizing microbial inoculants on asymbiotic nitrogen fixation of abandoned mine soils are driven by keystone phylotype. Science of the Total Environment, 2023, 882, 163663.	3.9	4
2341	The Contribution of Anammox to Nitrogen Removal Is Greater in Bulk Soils Than in Rhizosphere Soils in Riparian Wetlands Along the Yangtze River. Global Biogeochemical Cycles, 2023, 37, .	1.9	2
2374	The Dynamics of Soil Microbiome Upon Anthropogenic Changes in Plant Diversity and Land Management Practices. , 2023, , 389-402.		0
2380	Plants antioxidant potential and its induction by microbial interaction. AIP Conference Proceedings, 2023, , .	0.3	0
2392	Emerging Roles of Plant Growth Promoting Rhizobacteria in Salt Stress Alleviation: Applications in Sustainable Agriculture. Rhizosphere Biology, 2023, , 397-437.	0.4	0
2429	Climate Change, Its Effects on Soil Health, and Role of Bioinoculants in Mitigating Climate Change. , 2023, , 23-55.		0
2432	Insights into the mechanisms of plant growth promotion by halotolerant rhizobacteria in saline-stressed plants. , 2023, , 245-270.		0
2438	Biostimulants signaling under Cd, Al, As, Zn, and Fe toxicity. , 2023, , 449-467.		0
2443	Recent advances in discovery of new drugs from plants-associated microbes. , 2023, , 329-343.		0
2451	The soil plastisphere. Nature Reviews Microbiology, 2024, 22, 64-74.	13.6	9
2469	The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 0, , .	13.6	23
2478	Enzyme activities in the rhizosphere of soil and groundwater. , 2023, , 387-427.		0
2480	Plant health: Feedback effect of root exudates and rhizobiome interactions. , 2023, , 345-375.		0
2484	Editorial: Rhizosphere interactions: root exudates and the rhizosphere microbiome. Frontiers in Plant Science, 0, 14, .	1.7	1
2489	Identification of Novel Microbial Strains for Reduced Pesticide Use in Millets. Rhizosphere Biology, 2023, , 97-120.	0.4	0
2497	Editorial: Drivers of host-microbiome interactions in the rhizosphere. Frontiers in Plant Science, 0, 14, .	1.7	0

CITATION REPORT

#	Article	IF	CITATIONS
2533	Cross Talk of Biostimulants with Other Signaling Molecules Under Abiotic Stress. , 2023, , 295-317.		0
2534	Biostimulants in Sustainable Agriculture. , 2023, , 535-548.		Ο
2548	Establishing Linkages of Soil Carbon Dynamics with Microbes Mediated Ecological Restoration of Degraded Ecosystems in Indian Himalayan Region. , 2023, , 125-145.		0
2571	Plant–microbiome interactions and their role in recovering ecosystems from persistent contaminants. Advances in Botanical Research, 2023, , .	0.5	0
2573	Interaction of Efficient Rhizospheric Bacteria and Responses in the Farmer's Field. , 2023, , 101-116.		0
2574	Microbial Biostimulants: Bioformulations for Enhanced Biofertilizer Efficacy and Sustainable Crop Management. , 2023, , 237-264.		0
2575	Metabolomics and Proteomics Behind Plant Growth-Promoting Potential of Rhizobacteria. , 2023, , 289-323.		0
2582	Soil Fungi-Medicinal Plants Interaction. , 2023, , 68-81.		0
2589	Amelioration of biotic stress by using rhizobacteria: Sustainable Crop Production. , 2024, , 311-339.		0
2599	Introduction to Arbuscular Mycorrhizal Fungi and Higher Plant Symbiosis: Characteristic Features, Functions, and Applications. , 2024, , 1-17.		0
2602	Fungal endophytes as a potential source in the agricultural industry: An idea for sustainable entrepreneurship. , 2024, , 329-341.		0
2606	Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. Plant and Soil, 0, , .	1.8	0
2617	Arbuscular Mycorrhizal Fungi and Attainment of Food Security. , 2024, , 31-50.		0
2618	Influence of Arbuscular Mycorrhizal Fungi on Soil Health Amelioration and Plant Fitness Under Hostile Environment. , 2024, , 227-248.		0
2619	Unraveling the Mysteries of Mycorrhiza-Plant Interactions: Mechanisms of Protection and Ecological Factors Influencing Symbioses. , 2024, , 197-226.		0
2623	Microbial-Based Products and Soil Management Practices to Control Nematodes in Organic Horticultural Crops. Sustainability in Plant and Crop Protection, 2024, , 3-31.	0.2	0
2624	Soil Microbiota and Mechanisms of Plant Parasitic Nematode Suppression. Sustainability in Plant and Crop Protection, 2024, , 49-87.	0.2	0
2630	Host-pathogen interactions with special reference to microbiota analysis and integration of systems biology approaches. , 2024, , 191-211.		0

CITATION REPORT

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
2658	Soil Microbiome as a Key Factor in Soil Health. Microorganisms for Sustainability, 2024, , 1-20.	0.4	0	