Progressive Macromolecular Selfâ€Assembly: From Bio Materials

Advanced Materials 25, 5215-5256

DOI: 10.1002/adma.201302215

Citation Report

#	Article	IF	CITATIONS
2	Selfâ€Oscillating Vesicles: Spontaneous Cyclic Structural Changes of Synthetic Diblock Copolymers. Angewandte Chemie - International Edition, 2014, 53, 11248-11252.	7.2	62
3	Thermo, pH and reduction responsive coaggregates comprising AB ₂ C ₂ star terpolymers for multi-triggered release of doxorubicin. Polymer Chemistry, 2014, 5, 3335-3345.	1.9	38
4	Foldamers to Nanotubes: Influence of Amino Acid Side Chains in the Hierarchical Assembly of α,γ ⁴ â€Hybrid Peptide Helices. Chemistry - A European Journal, 2014, 20, 16523-16528.	1.7	21
5	Catechol Chemistry Inspired Approach to Construct Self-Cross-Linked Polymer Nanolayers as Versatile Biointerfaces. Langmuir, 2014, 30, 14905-14915.	1.6	54
6	Programming Supramolecular Biohybrids as Precision Therapeutics. Accounts of Chemical Research, 2014, 47, 3471-3480.	7.6	43
7	Morphology-Controlled Self-Assembly and Synthesis of Photocatalytic Nanocrystals. Nano Letters, 2014, 14, 7175-7179.	4.5	119
9	Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nature Communications, 2014, 5, 4634.	5.8	112
10	pH responsive supramolecular prodrug micelles based on cucurbit[8]uril for intracellular drug delivery. Chemical Communications, 2014, 50, 9390-9392.	2.2	45
11	Dendronized supramolecular polymers. Chemical Communications, 2014, 50, 12221-12233.	2.2	51
12	A photoacoustic approach for monitoring the drug release of pH-sensitive poly(\hat{l}^2 -amino ester)s. Journal of Materials Chemistry B, 2014, 2, 6271-6282.	2.9	36
13	Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chemical Communications, 2014, 50, 11994-12017.	2.2	77
14	One-step synthesis of hollow polymeric nanospheres: self-assembly of amphiphilic azo polymers via hydrogen bond formation. RSC Advances, 2014, 4, 36882-36889.	1.7	10
15	Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy and Environmental Science, 2014, 7, 3727-3735.	15.6	218
16	Effects of Molecular Weight Distribution of Amphiphilic Block Copolymers on Their Solubility, Micellization, and Temperature-Induced Sol–Gel Transition in Water. Macromolecules, 2014, 47, 5895-5903.	2.2	88
17	Photo-responsive polymeric micelles. Soft Matter, 2014, 10, 6121-6138.	1.2	147
18	Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like Corecombinamer with a Concomitant Dual Physical Gelation Process. Biomacromolecules, 2014, 15, 3781-3793.	2.6	77
19	Tellurium-Containing Polymer Micelles: Competitive-Ligand-Regulated Coordination Responsive Systems. Journal of the American Chemical Society, 2014, 136, 5132-5137.	6.6	112
20	Polymeric Supra-amphiphiles Based on Terminal Group Electrostatic Interactions: Fabrication of Micelles with Modifiable Surfaces. Langmuir, 2014, 30, 8938-8944.	1.6	18

#	Article	IF	Citations
21	Protein-Triggered Supramolecular Disassembly: Insights Based on Variations in Ligand Location in Amphiphilic Dendrons. Journal of the American Chemical Society, 2014, 136, 5385-5399.	6.6	53
22	Glyco-Inside Micelles and Vesicles Directed by Protection–Deprotection Chemistry. ACS Macro Letters, 2014, 3, 534-539.	2.3	37
23	Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes. Chemical Communications, 2014, 50, 4740.	2.2	75
24	Cooperative Macromolecular Self-Assembly toward Polymeric Assemblies with Multiple and Bioactive Functions. Accounts of Chemical Research, 2014, 47, 1426-1437.	7.6	102
25	Virusâ€Inspired Mimics Based on Dendritic Lipopeptides for Efficient Tumorâ€Specific Infection and Systemic Drug Delivery. Advanced Functional Materials, 2015, 25, 5250-5260.	7.8	74
26	Glycocalyxâ€Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions. Small, 2015, 11, 4191-4200.	5.2	88
27	Supramolecular Glycoâ€nanoparticles Toward Immunological Applications. Small, 2015, 11, 6065-6070.	5.2	16
28	Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs. Molecules, 2015, 20, 19620-19646.	1.7	39
29	Discrete multiporphyrin pseudorotaxane assemblies from di- and tetravalent porphyrin building blocks. Beilstein Journal of Organic Chemistry, 2015, 11, 748-762.	1.3	3
30	Construction of antibody-like nanoparticles for selective protein sequestration in living cells. Nanoscale, 2015, 7, 7162-7167.	2.8	43
31	Strongly fluorescent organogels and self-assembled nanostructures from pyrene coupled coumarin derivatives: application in cell imaging. Journal of Materials Chemistry B, 2015, 3, 5690-5701.	2.9	40
32	A facile strategy to fabricate glucose-responsive vesicles <i>via</i> a template of thermo-sensitive micelles. Polymer Chemistry, 2015, 6, 3837-3846.	1.9	36
33	A rhythmic assembly system with fireflies' function based on reversible formation of dynamic covalent bonds driven by a pH oscillator. RSC Advances, 2015, 5, 106294-106297.	1.7	5
34	Hierarchal multi-lamellar silica vesicle clusters synthesized through self-assembly and mineralization. RSC Advances, 2015, 5, 102256-102260.	1.7	4
35	Novel Musselâ€Inspired Injectable Selfâ€Healing Hydrogel with Antiâ€Biofouling Property. Advanced Materials, 2015, 27, 1294-1299.	11.1	473
36	Thermoresponsive and self-assembly behaviors of poly(oligo(ethylene glycol) methacrylate) based cyclodextrin cored star polymer and pseudo-graft polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 178-189.	2.3	12
37	Chemically Reactive Supramolecular Hydrogel Coupled with a Signal Amplification System for Enhanced Analyte Sensitivity. Journal of the American Chemical Society, 2015, 137, 3360-3365.	6.6	119
38	Multifunctional Assembly of Micrometer-Sized Colloids for Cell Sorting. Small, 2015, 11, 2555-2563.	5.2	12

#	ARTICLE	IF	CITATIONS
39	Triggering Activity of Catalytic Rodâ€Like Supramolecular Polymers. Chemistry - A European Journal, 2015, 21, 3682-3690.	1.7	42
40	An efficient multiple healing conductive composite via host–guest inclusion. Chemical Communications, 2015, 51, 6377-6380.	2,2	45
41	Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles. Chinese Journal of Polymer Science (English Edition), 2015, 33, 661-668.	2.0	9
42	Self-assembly and morphological transitions of random amphiphilic poly (\hat{l}^2 - <scp>d</scp> -glucose-co-1-octyl) phosphazenes. Soft Matter, 2015, 11, 6266-6274.	1.2	7
43	Synthesis of molecular biomimetics. , 2015, , 3-31.		2
44	Multilevel and Multicomponent Layer-by-Layer Assembly for the Fabrication of Nanofibrillar Films. ACS Nano, 2015, 9, 7124-7132.	7.3	20
45	Structure and growth behavior of centimeter-sized helical oleate assemblies formed with assistance of medium-length carboxylic acids. Soft Matter, 2015, 11, 3550-3558.	1.2	13
46	Macrocyclic amphiphiles. Chemical Society Reviews, 2015, 44, 3568-3587.	18.7	188
47	Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chemical Reviews, 2015, 115, 7240-7303.	23.0	869
48	Effects of Molecular Weight and Its Distribution of PEG Block on Micellization and Thermogellability of PLGA–PEG–PLGA Copolymer Aqueous Solutions. Macromolecules, 2015, 48, 3662-3671.	2.2	95
49	Hyperbranched Self-Immolative Polymers (<i>h</i> SIPs) for Programmed Payload Delivery and Ultrasensitive Detection. Journal of the American Chemical Society, 2015, 137, 11645-11655.	6.6	126
50	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62
51	Self-healing poly(N-isopropylacrylamide) hydrogels. European Polymer Journal, 2015, 72, 12-22.	2.6	31
52	Water-soluble nano-fluorogens fabricated by self-assembly of bolaamphiphiles bearing AIE moieties: towards application in cell imaging. Journal of Materials Chemistry B, 2015, 3, 491-497.	2.9	32
53	Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chemical Reviews, 2015, 115, 7794-7839.	23.0	980
54	A novel calix[4]arene-based dimeric-cholesteryl derivative: synthesis, gelation and unusual properties. New Journal of Chemistry, 2015, 39, 639-649.	1.4	23
55	Photoresponsive Polymeric Reversible Nanoparticles via Self-Assembly of Reactive ABA Triblock Copolymers and Their Transformation to Permanent Nanostructures. Materials, 2016, 9, 980.	1.3	3
56	Selfâ€Propelled Microâ€∮Nanomotors Based on Controlled Assembled Architectures. Advanced Materials, 2016, 28, 1060-1072.	11.1	203

#	Article	IF	Citations
57	Viruses, Artificial Viruses and Virusâ€Based Structures for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 1386-1400.	3.9	30
58	A General Strategy for Facile Synthesis and In Situ Screening of Selfâ€Assembled Polymerâ€Peptide Nanomaterials. Advanced Materials, 2016, 28, 1859-1867.	11.1	45
59	Morphological Evolution of Self-Assembled Structures Induced by the Molecular Architecture of Supra-Amphiphiles. Langmuir, 2016, 32, 13706-13715.	1.6	16
60	Physical Gelation of α-Helical Copolypeptides. Biomacromolecules, 2016, 17, 2384-2391.	2.6	16
61	Preparation of robust anti-smudge coatings via electrophoretic deposition. Chemical Engineering Journal, 2016, 302, 744-751.	6.6	29
62	Nitroarene Reduction by a Virus Protein Cage Based Nanoreactor. ACS Catalysis, 2016, 6, 3084-3091.	5.5	58
63	Natural and Synthetic Polymers for Designing Composite Materials. , 2016, , 233-286.		22
64	Multi-stimuli responsive amine-containing polyethers: Novel building blocks for smart assemblies. Polymer, 2016, 93, 221-239.	1.8	16
65	Self-Assembly of n-Shaped Rod–Coil Molecules into Thermoresponsive Nanoassemblies: Construction of Reversible Helical Nanofibers in Aqueous Environment. Macromolecules, 2016, 49, 5912-5920.	2.2	24
66	Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale, 2016, 8, 15323-15339.	2.8	70
67	pHâ€Responsive Indicator Displacement Assay of Acetylcholine Based on Acridine– <i>p</i> \$‧ulfonatocalix[4]arene Supramolecular System: Fluorescence Off/On Switching and Reversible pK _a Shift. ChemistrySelect, 2016, 1, 989-999.	0.7	26
68	Cooperative self-assembly of porphyrins with polymers possessing bioactive functions. Chemical Communications, 2016, 52, 13543-13555.	2.2	45
69	Nucleobaseâ€Functionalized Supramolecular Micelles with Tunable Physical Properties for Efficient Controlled Drug Release. Macromolecular Bioscience, 2016, 16, 1415-1421.	2.1	23
70	Novel Water-Soluble Cyclodextrin-Based Conjugated Polymer for Selective Host–Guest Interactions of Cationic Surfactant CTAB and Reverse FRET with Rhodamine B Tagged Adamantyl Guest. Macromolecules, 2016, 49, 5587-5598.	2.2	20
71	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	11.1	56
72	Polymers with tertiary amine groups for drug delivery and bioimaging. Science China Chemistry, 2016, 59, 991-1002.	4.2	27
73	Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules, 2016, 17, 4086-4094.	2.6	28
74	Anti-Inflammatory Dendrimers. , 2016, , 245-288.		0

#	Article	IF	CITATIONS
75	Tripeptide Emulsifiers. Advanced Materials, 2016, 28, 1381-1386.	11.1	73
76	Stimuli-responsive polymersomes and nanoreactors. Journal of Materials Chemistry B, 2016, 4, 4632-4647.	2.9	179
77	Synthesis and self-assembly of a dual thermal and pH-responsive ternary graft copolymer for sustained release drug delivery. RSC Advances, 2016, 6, 2571-2581.	1.7	5
78	pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3693-3702.	4.0	22
79	Sphere-Like Protein–Glycopolymer Nanostructures Tailored by Polyassociation. Biomacromolecules, 2016, 17, 32-45.	2.6	9
80	Novel reversible thermoresponsive nanogel based on poly(ionic liquid)s prepared via RAFT crosslinking copolymerization. Journal of Polymer Science Part A, 2016, 54, 169-178.	2.5	24
81	Covalent Postassembly Modification and Water Adsorption of Pd ₃ Self-Assembled Trinuclear Barrels. Inorganic Chemistry, 2016, 55, 1562-1568.	1.9	27
82	Supramolecularly assisted modulations in chromophoric properties and their possible applications: an overview. Journal of Materials Chemistry C, 2016, 4, 2685-2706.	2.7	77
83	Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies. Progress in Organic Coatings, 2016, 90, 463-471.	1.9	72
84	Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. Nature Communications, 2017, 8, 14057.	5.8	70
85	In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese Journal of Polymer Science (English Edition), 2017, 35, 455-479.	2.0	77
86	Cyclic molecule aerogels: a robust cyclodextrin monolith with hierarchically porous structures for removal of micropollutants from water. Journal of Materials Chemistry A, 2017, 5, 4308-4313.	5.2	58
87	Alternative Route to Nanoscale Aggregates with a pH-Responsive Random Copolymer. Langmuir, 2017, 33, 2628-2638.	1.6	7
88	Computerâ€aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chemical Biology and Drug Design, 2017, 89, 257-268.	1.5	28
90	Dimethyl Labeling Coupled with Mass Spectrometry for Topographical Characterization of Primary Amines on Monoclonal Antibodies. Analytical Chemistry, 2017, 89, 4255-4263.	3.2	17
91	Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today, 2017, 14, 16-41.	6.2	128
92	General Approach of Stimuli-Induced Aggregation for Monitoring Tumor Therapy. ACS Nano, 2017, 11, 7301-7311.	7.3	60
93	Immobilization of catalytic virus-like particles in a flow reactor. Chemical Communications, 2017, 53, 7632-7634.	2.2	20

#	Article	IF	Citations
94	Aqueous solution behaviour of novel water-soluble amphiphilic copolymers with elevated hydrophobic unit content. Polymer Chemistry, 2017, 8, 4114-4123.	1.9	17
95	A light-driven artificial flytrap. Nature Communications, 2017, 8, 15546.	5.8	499
96	CO ₂ -Stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polymer Chemistry, 2017, 8, 2833-2840.	1.9	22
97	Role of Protecting Groups in Synthesis and Self-Assembly of Glycopolymers. Biomacromolecules, 2017, 18, 568-575.	2.6	8
98	Unusual C–I···O Halogen Bonding in Triazole Derivatives: Gelation Solvents at Two Extremes of Polarity and Formation of Superorganogels. Langmuir, 2017, 33, 311-321.	1.6	16
99	DNA Condensed Phase and DNA-Inorganic Hybrid Mesostructured Materials. ACS Symposium Series, 2017, , 49-79.	0.5	1
100	Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11844-11849.	3.3	85
101	Self-assembly of diphenylalanine with preclick components as capping groups. Physical Chemistry Chemical Physics, 2017, 19, 27038-27051.	1.3	8
102	Biomoleculeâ€Enabled Chiral Assembly of Plasmonic Nanostructures. ChemNanoMat, 2017, 3, 685-697.	1.5	41
103	Self-assembled composite microparticles with surface protrudent porphyrin nanoparticles enhance cellular uptake and photodynamic therapy. Materials Horizons, 2017, 4, 1135-1144.	6.4	16
104	Filamentous virus-based soft materials based on controlled assembly through liquid crystalline formation. Polymer Journal, 2017, 49, 639-647.	1.3	22
105	CO2-responsive bowl-shaped polymersomes. Macromolecular Research, 2017, 25, 635-639.	1.0	7
106	Inhomogeneous-collapse driven micelle–vesicle transition of amphiphilic block copolymers. Soft Matter, 2017, 13, 7106-7111.	1.2	4
107	Influence of Charge Density on Host–Guest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. Macromolecules, 2017, 50, 9734-9741.	2.2	8
108	Ultraviolet-responsive self-assembled metallomicelles for photocontrollable catalysis of asymmetric sulfoxidation in water. RSC Advances, 2017, 7, 54570-54580.	1.7	7
109	Synthesis and self-assembly of a dual-responsive monocleavable ABCD star quaterpolymer. Polymer Chemistry, 2017, 8, 6865-6878.	1.9	7
110	Biomimetic Bioactive Biomaterials: The Next Generation of Implantable Devices. ACS Biomaterials Science and Engineering, 2017, 3, 1172-1174.	2.6	18
111	Supramolecular polymer micelles as universal tools for constructing high-performance fluorescent nanoparticles. Dyes and Pigments, 2017, 137, 284-292.	2.0	14

#	Article	IF	CITATIONS
112	Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. International Journal of Nanomedicine, 2017, Volume 12, 3697-3710.	3.3	22
113	Nanostructured biocomposites for tissue engineering scaffolds. , 2017, , 501-542.		4
114	Macroscopic Supramolecular Assembly and Its Applications. Chinese Journal of Polymer Science (English Edition), 2018, 36, 306-321.	2.0	34
115	Probing of ferrocenylanilines on model micelle/reverse micelle membrane and their enhanced reactivity for reactive oxidants. Applied Organometallic Chemistry, 2018, 32, e4334.	1.7	4
116	Thermoresponsive Polymeric Assemblies and Their Biological Applications. Nanomedicine and Nanotoxicology, 2018, , 155-183.	0.1	2
117	Hierarchical selfâ€assembly of Yâ€shaped amphiphilic triblock polyurethane/poly(acrylic acid) complexes: Giant vesicles, vesicles, 3D network, and bulk structures. Journal of Applied Polymer Science, 2018, 135, 46503.	1.3	1
118	Thermoresponse and self-assembly of an ABC star quarterpolymer with O ₂ and redox dual-responsive Y junctions. Polymer Chemistry, 2018, 9, 1095-1108.	1.9	10
119	A Versatile Method to Prepare Protein Nanoclusters for Drug Delivery. Macromolecular Bioscience, 2018, 18, 1700282.	2.1	15
120	Anisotropic convergence of dendritic macromolecules facilitated by a heteroleptic metal–organic polyhedron scaffold. Chemical Communications, 2018, 54, 5209-5212.	2.2	16
121	Synthesis, self-assembly and drug release behaviors of reduction-labile multi-responsive block miktobrush quaterpolymers with linear and V-shaped grafts. Polymer Chemistry, 2018, 9, 1947-1960.	1.9	12
122	Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Frontiers of Chemical Science and Engineering, 2018, 12, 252-261.	2.3	9
123	Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection. Biosensors and Bioelectronics, 2018, 100, 497-503.	5.3	56
124	A Green and Sustainable Route to Carbohydrate Vinyl Ethers for Accessing Bioinspired Materials with a Unique Microspherical Morphology. ChemSusChem, 2018, 11, 292-298.	3.6	29
125	Highly functional ellipsoidal block copolymer nanoparticles: a generalized approach to nanostructured chemical ordering in phase separated colloidal particles. Polymer Chemistry, 2018, 9, 1638-1649.	1.9	38
126	In Situ Gluten–Chitosan Interlocked Selfâ€Assembled Supramolecular Architecture Reduces Tâ€Cellâ€Mediated Immune Response to Gluten in Celiac Disease. Molecular Nutrition and Food Research, 2018, 62, e1800646.	1.5	9
127	Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Materials Chemistry Frontiers, 2018, 2, 2152-2174.	3.2	102
128	Necklace-like Molecularly Imprinted Nanohybrids Based on Polymeric Nanoparticles Decorated Multiwalled Carbon Nanotubes for Highly Sensitive and Selective Melamine Detection. ACS Applied Materials & Decorated Materials & Decorated Naterials &	4.0	44
129	Macroscopic Chiral Recognition by Calix[4]areneâ€Based Host–Guest Interactions. Chemistry - A European Journal, 2018, 24, 15502-15506.	1.7	22

#	Article	IF	CITATIONS
130	Prodrug-Based Cascade Self-Assembly Strategy for Precisely Controlled Combination Drug Therapy. ACS Applied Materials & Drug Therapy. 10, 21149-21159.	4.0	23
131	Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coordination Chemistry Reviews, 2018, 372, 31-51.	9.5	32
132	Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Emerging Biomimetic Applications of DNA Nanotechnology.	4.0	43
133	Insight into the Polymerization-Induced Self-Assembly via a Realistic Computer Simulation Strategy. Macromolecules, 2019, 52, 6169-6180.	2.2	23
134	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	2.6	21
135	Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Advanced Drug Delivery Reviews, 2019, 151-152, 94-129.	6.6	63
136	Protrusion of nanospikes on cholesterol-containing microgels by reduction-responsive self-assembly in cell milieu and its influence on cell functions. Materials Chemistry Frontiers, 2019, 3, 233-241.	3.2	7
137	Molecular engineering of polymeric supra-amphiphiles. Chemical Society Reviews, 2019, 48, 989-1003.	18.7	90
138	Fabricating an intelligent cell-like nano-prodrug <i>via</i> hierarchical self-assembly based on the DNA skeleton for suppressing lung metastasis of breast cancer. Biomaterials Science, 2019, 7, 3652-3661.	2.6	30
139	Aziridines and azetidines: building blocks for polyamines by anionic and cationic ring-opening polymerization. Polymer Chemistry, 2019, 10, 3257-3283.	1.9	88
140	Temperature and solvent isotope dependent hierarchical self-assembly of a heterografted block copolymer. Chemical Communications, 2019, 55, 5709-5712.	2.2	20
141	Hierarchy of Hybrid Materials—The Place of Inorganics-in-Organics in it, Their Composition and Applications. Frontiers in Chemistry, 2019, 7, 179.	1.8	172
142	An Artificial Nocturnal Flower via Humidityâ€Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019, 31, e1805985.	11.1	154
143	Advanced Nearâ€Infrared Lightâ€Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800090.	1.6	27
144	The effect of dendritic pendants on the folding of amphiphilic copolymers via supramolecular interactions. Journal of Polymer Science Part A, 2019, 57, 411-421.	2.5	7
145	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	11.8	135
146	From a body temperature-triggered reversible shape-memory material to high-sensitive bionic soft actuators. Applied Materials Today, 2020, 18, 100463.	2.3	29
147	Synthesis and properties of penta-responsive ABC star quaterpolymers. Polymer Journal, 2020, 52, 153-163.	1.3	5

#	Article	IF	CITATIONS
148	Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science, 2020, 2, 264-280.	3.9	35
149	Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydrate Polymers, 2020, 229, 115557.	5.1	32
150	Flexible electromagnetic capturer with a rapid ejection feature inspired by a biological ballistic tongue. Bioinspiration and Biomimetics, 2020, 15, 066002.	1.5	2
151	Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering. Journal of Chemical Physics, 2020, 153, 184902.	1.2	3
152	Morphological and constituent viral-mimicking self-assembled nanoparticles promote cellular uptake and improve cancer therapeutic efficiency in vivo. Giant, 2020, 3, 100026.	2.5	5
153	Investigation of Morphology ontrolled Ultrafast Relaxation Processes of Aggregated Porphyrin. ChemPhysChem, 2020, 21, 2196-2205.	1.0	6
154	Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Advanced Science, 2020, 7, 2001379.	5.6	171
155	Synthesis and optoelectronic properties of benzodithiophene-based conjugated polymers with hydrogen bonding nucleobase side chain functionality. Polymer Chemistry, 2020, 11, 5735-5749.	1.9	13
156	Supramolecular and suprabiomolecular photochemistry: a perspective overview. Physical Chemistry Chemical Physics, 2020, 22, 23433-23463.	1.3	7
157	Rational design of nonlinear crystalline-amorphous-responsive terpolymers for pH-guided fabrication of 0D–3D nano-objects. Polymer Chemistry, 2020, 11, 6259-6272.	1.9	6
158	Temperature-responsive supramolecular hydrogels. Journal of Materials Chemistry B, 2020, 8, 9197-9211.	2.9	75
159	Unraveling Decisive Structural Parameters for the Self-Assembly of Supramolecular Polymer Bottlebrushes Based on Benzene Trisureas. Macromolecules, 2020, 53, 7552-7560.	2.2	10
160	Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water. Nanomaterials, 2020, 10, 2006.	1.9	8
161	Does the degree of substitution on the cyclodextrin hosts impact their affinity towards guest binding?. Photochemical and Photobiological Sciences, 2020, 19, 956-965.	1.6	11
162	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	2.7	40
163	Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. Advanced Science, 2020, 7, 1902701.	5.6	26
164	Multiblock Copolymers toward Segmentation-Driven Morphological Transition. Macromolecules, 2020, 53, 5992-6001.	2.2	21
165	Strain-controlled power devices as inspired by human reflex. Nature Communications, 2020, 11, 326.	5.8	53

#	Article	IF	CITATIONS
166	Formation of Poly- <scp>l</scp> -lysine Monolayers on Silica: Modeling and Experimental Studies. Journal of Physical Chemistry C, 2020, 124, 4571-4581.	1.5	19
167	Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB) < sub > m < /sub > C miktobrush-coil terpolymers. Polymer Chemistry, 2020, 11, 3003-3017.	1.9	18
168	A cationic cyclodextrin assisted aggregation of an anionic pyrene derivative and its stimuli responsive behavior. Journal of Molecular Liquids, 2021, 321, 114499.	2.3	12
169	Direct synthesis of light-emitting triblock copolymers from RAFT polymerization. Polymer Chemistry, 2021, 12, 216-225.	1.9	4
170	Integrating DNA Nanotechnology with Aptamers for Biological and Biomedical Applications. Matter, 2021, 4, 461-489.	5.0	64
171	<i>In situ</i> formation of tetraphenylethylene nano-structures on microgels inside living cells <i>via</i> reduction-responsive self-assembly. Nanoscale, 2021, 13, 138-149.	2.8	5
172	Solution self-assembly of fluorinated polymers, an overview. Polymer Chemistry, 2021, 12, 3852-3877.	1.9	23
173	Temperature sensitive self-assembling hydroxybutyl chitosan nanoparticles with cationic enhancement effect for multi-functional applications. Carbohydrate Polymers, 2021, 254, 117199.	5.1	12
175	Recent Advancements in Biomimetic 3D Printing Materials With Enhanced Mechanical Properties. Frontiers in Materials, 2021, 8, .	1.2	22
176	Aggregation and Rheology of a Triblock Supra-amphiphilic Polymer Prepared by Ionic Self-Assembly of a Double-Hydrophilic Polyelectrolyte with an Oppositely Charged Surfactant in Aqueous Solution. Macromolecules, 2021, 54, 5498-5508.	2.2	4
177	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 17629-17637.	7.2	34
178	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie, 2021, 133, 17770-17778.	1.6	4
179	Supramolecular Polydimethylsiloxane Elastomer with Enhanced Mechanical Properties and Self-Healing Ability Engineered by Synergetic Dynamic Bonds. ACS Applied Polymer Materials, 2021, 3, 3373-3382.	2.0	31
180	Hydrogen bonding induced enhancement for constructing anisotropic sugarcane composite hydrogels. Journal of Applied Polymer Science, 2021, 138, 51374.	1.3	6
181	Fibrous Scaffolds From Elastin-Based Materials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652384.	2.0	12
182	Kinetics and morphologies in polymerizationâ€induced cooperative assembly: a computer simulation investigation. Polymer International, 0, , .	1.6	4
183	Carbohydrate Modified Non-Metallic Nanomaterials and Their Application Against Infectious Diseases. , 2021, , 406-432.		0
184	Natural and Synthetic Polymers for Designing Composite Materials. , 2015, , 1-54.		6

#	Article	IF	Citations
185	Supramolecular Single-Chain Polymeric Nanoparticles. CCS Chemistry, 0, , 64-82.	4.6	66
186	Amphiphilic AlEgenâ€polymer aggregates: Design, selfâ€assembly and biomedical applications. Aggregate, 2022, 3, e128.	5 . 2	49
187	Hybrid Supramolecular Assemblies of Cucurbit[<i>n</i>]uril-supported Metal and Other Inorganic Nanoparticles. RSC Smart Materials, 2019, , 95-119.	0.1	2
188	Liposomes encapsulating artificial cytosol as drug delivery system. Biophysical Chemistry, 2022, 281, 106728.	1.5	7
189	Supramolecular Assembly and Reversible Transition and of Chitosan Fluorescent Micelles by Noncovalent Modulation. Advances in Polymer Technology, 2021, 2021, 1-10.	0.8	1
190	Learn from nature: Bioâ€inspired structure design for lithiumâ€ion batteries. EcoMat, 2022, 4, .	6.8	8
191	A facile synthesis of amphiphilic $\langle i \rangle N \langle i \rangle$ -glycosyl naphthalimides and fabrication of flexible semiconductors using molecular self-assembly. Green Chemistry, 2022, 24, 2451-2463.	4.6	6
192	Precise Self-assembly of Janus Pyramid Heteroclusters into Core-Corona Nanodots and Nanodot Supracrystals: Implications for the Construction of Virus-like Particles and Nanomaterials. ACS Applied Nano Materials, 2022, 5, 5558-5568.	2.4	3
193	Bioinspired Materials for Energy Storage. Small Methods, 2022, 6, e2101076.	4.6	25
194	Morphological transitions of micelles induced by the block arrangements of copolymer blocks: dissipative particle dynamics simulation. Physical Chemistry Chemical Physics, 2022, 24, 10757-10764.	1.3	2
195	Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1042-1058.	1.8	4
196	Direct Metal-Free Synthesis of Uracil- and Pentaazaphenalene-Functionalized Porous Organic Polymers via Quadruple Mannich Cyclization and Their Nucleobase Recognition Activities. Macromolecules, 2022, 55, 10197-10209.	2.2	7
197	Stimuliâ€Responsive Complexation Based on Twisted Cucurbit[14]uril and <i>p</i> â€Diaminoazobenzene. ChemistrySelect, 2022, 7, .	0.7	2
198	Mechanical Bond-Assisted Full-Spectrum Investigation of Radical Interactions. Journal of the American Chemical Society, 2022, 144, 23168-23178.	6.6	5
199	Self-healing aeronautical nanocomposites. , 2023, , 263-296.		0
200	Electronically Robust Selfâ€Assembled Supramolecular Gel as a Potential Material in Triboelectric Nanogenerators. Chemistry - A European Journal, 2023, 29, .	1.7	1
201	Tribological Behavior of Bioinspired Surfaces. Biomimetics, 2023, 8, 62.	1.5	2
202	Review on Biomedical Advances of Hybrid Nanocomposite Biopolymeric Materials. Bioengineering, 2023, 10, 279.	1.6	2

#	Article	IF	CITATIONS
203	Recent Biomedical Applications of Coupling Nanocomposite Polymeric Materials Reinforced with Variable Carbon Nanofillers. Biomedicines, 2023, 11, 967.	1.4	5
206	Piezotronic Transistors and Arrays. Microtechnology and MEMS, 2023, , 105-159.	0.2	0