Experimental sepsisâ€induced mitochondrial biogenes TLR9 signaling in liver

FASEB Journal 27, 4703-4711 DOI: 10.1096/fj.13-229476

Citation Report

#	Article	IF	CITATIONS
1	MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L604-L619.	1.3	74
2	CaMKIV-Dependent Preservation of mTOR Expression Is Required for Autophagy during Lipopolysaccharide-Induced Inflammation and Acute Kidney Injury. Journal of Immunology, 2014, 193, 2405-2415.	0.4	47
3	Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro. BioMed Research International, 2015, 2015, 1-12.	0.9	13
4	Mitochondrial Mechanisms in Septic Cardiomyopathy. International Journal of Molecular Sciences, 2015, 16, 17763-17778.	1.8	102
5	Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy, 2015, 11, 1341-1357.	4.3	139
6	DAMPs activating innate immune responses in sepsis. Ageing Research Reviews, 2015, 24, 54-65.	5.0	58
7	Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. Journal of Surgical Research, 2015, 194, 262-272.	0.8	91
8	Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia. Metabolic Brain Disease, 2015, 30, 1139-1150.	1.4	85
9	Effects of inhalation of low-dose nitrite or carbon monoxide on post-reperfusion mitochondrial function and tissue injury in hemorrhagic shock swine. Critical Care, 2015, 19, 184.	2.5	10
10	Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radical Biology and Medicine, 2015, 78, 179-189.	1.3	88
11	Autophagosome–lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nature Cell Biology, 2016, 18, 839-850.	4.6	140
12	Sepsis-induced acute kidney injury. Current Opinion in Critical Care, 2016, 22, 546-553.	1.6	213
13	Autophagy in sepsis: Degradation into exhaustion?. Autophagy, 2016, 12, 1073-1082.	4.3	111
14	Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy. Surgical Infections, 2016, 17, 286-293.	0.7	45
15	Autophagy in Pulmonary Diseases. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1196-1207.	2.5	62
16	The role of TLR9 in stress-dependent autophagy formation. Biochemical and Biophysical Research Communications, 2016, 481, 219-226.	1.0	13
17	Mitochondrial Function in Sepsis. Shock, 2016, 45, 271-281.	1.0	142
18	Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiology, 2016, 11, 293-314.	1.0	13

CITATION REPORT

#	Article	IF	CITATIONS
19	Metabolic reprogramming and tolerance during sepsis-induced AKI. Nature Reviews Nephrology, 2017, 13, 143-151.	4.1	113
20	The NF-ήB inhibitor celastrol attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats. Environmental Toxicology and Pharmacology, 2017, 50, 175-182.	2.0	14
21	The critical role played by endotoxin-induced liver autophagy in the maintenance of lipid metabolism during sepsis. Autophagy, 2017, 13, 1113-1129.	4.3	60
22	Calcium/calmodulinâ€dependent protein kinase regulates the PINK1/Parkin and DJâ€1 pathways of mitophagy during sepsis. FASEB Journal, 2017, 31, 4382-4395.	0.2	28
23	Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology, 2017, 66, 182-197.	3.6	89
24	The Role of Autophagy in Critical Illness-induced Liver Damage. Scientific Reports, 2017, 7, 14150.	1.6	28
25	Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Bioscience Reports, 2017, 37, .	1.1	52
26	Mechanisms of bile acid mediated inflammation in the liver. Molecular Aspects of Medicine, 2017, 56, 45-53.	2.7	174
27	Afzelin ameliorates Dâ€galactosamine and lipopolysaccharideâ€induced fulminant hepatic failure by modulating mitochondrial quality control and dynamics. British Journal of Pharmacology, 2017, 174, 195-209.	2.7	37
28	Autophagy: A Potential Therapeutic Target for Reversing Sepsis-Induced Immunosuppression. Frontiers in Immunology, 2017, 8, 1832.	2.2	45
29	Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight, 2017, 2, e90780.	2.3	181
30	Mechanisms of Organ Dysfunction in Sepsis. Critical Care Clinics, 2018, 34, 63-80.	1.0	145
31	Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Frontiers in Immunology, 2018, 9, 2217.	2.2	45
32	Protective role of thymoquinone in sepsis‑induced liver injury in BALB/c mice. Experimental and Therapeutic Medicine, 2019, 18, 1985-1992.	0.8	3
33	Pseudomonas aeruginosa Induced Host Epithelial Cell Mitochondrial Dysfunction. Scientific Reports, 2019, 9, 11929.	1.6	30
34	The Pathogenesis of Sepsis and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2019, 20, 5376.	1.8	349
35	Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle, 2019, 18, 425-436.	1.3	60
36	Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner. International Immunopharmacology, 2019, 71, 61-67.	1.7	43

#	Article	IF	CITATIONS
37	Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. Journal of Molecular Medicine, 2019, 97, 451-462.	1.7	53
38	Endotoxin Engages Mitochondrial Quality Control <i>via</i> an iNOS-Reactive Oxygen Species Signaling Pathway in Hepatocytes. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	1.9	13
39	Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis. Molecular and Cellular Endocrinology, 2019, 479, 39-53.	1.6	70
40	Sepsis-Induced Acute Kidney Injury. , 2019, , 524-533.e3.		5
41	Multiple Organ Dysfunction. , 2019, , 205-208.e2.		2
42	Hydrogen alleviated organ injury and dysfunction in sepsis: The role of cross-talk between autophagy and endoplasmic reticulum stress: Experimental research. International Immunopharmacology, 2020, 78, 106049.	1.7	28
43	CaMKIV regulates mitochondrial dynamics during sepsis. Cell Calcium, 2020, 92, 102286.	1.1	7
44	Drinking Hydrogen-Rich Water Alleviates Chemotherapy-Induced Neuropathic Pain Through the Regulation of Gut Microbiota. Journal of Pain Research, 2021, Volume 14, 681-691.	0.8	19
45	Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Frontiers in Cell and Developmental Biology, 2021, 9, 664896.	1.8	12
46	Mitochondrial Dynamics in Drug-Induced Liver Injury. Livers, 2021, 1, 102-115.	0.8	18
47	Pathogenetic mechanisms of septic cardiomyopathy. Journal of Cellular Physiology, 2022, 237, 49-58.	2.0	27
48	Importance of Toll-like Receptor 2 in Mitochondrial Dysfunction during Polymicrobial Sepsis. Anesthesiology, 2014, 121, 1236-1247.	1.3	19
49	Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. Journal of Clinical Investigation, 2020, 130, 5858-5874.	3.9	87
50	Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice. PLoS ONE, 2014, 9, e100912.	1.1	36
51	Mitochondrial Injury and Targeted Intervention in Septic Cardiomyopathy. Current Pharmaceutical Design, 2019, 25, 2060-2070.	0.9	32
52	Clinical significance of miR‑181a in patients with neonatal sepsis and its regulatory role in the lipopolysaccharide‑induced inflammatory response. Experimental and Therapeutic Medicine, 2020, 19, 1977-1983.	0.8	15
53	Ginsenoside Rb1 alleviates liver injury induced by 3â€chloroâ€1,2â€propanediol by stimulating autophagic flux. Journal of Food Science, 2021, 86, 5503-5515.	1.5	3
54	PI3K/mTOR inhibition prevents anal cancer in mice with established low-grade anal dysplasia. Experimental and Molecular Pathology, 2022, 125, 104752.	0.9	2

CITATION REPORT

	CITAT	ATION REPORT		
#	Article	IF	CITATIONS	
56	Regulation of Oxidative Phosphorylation of Liver Mitochondria in Sepsis. Cells, 2022, 11, 1598.	1.8	7	
57	Cardiomyocyte death in sepsis:ÂMechanisms and regulation (Review). Molecular Medicine Reports, 2022, 26, .	1.1	8	
62	Quantification of intracellular and mitochondrial ATP content in macrophages during lipopolysaccharide-induced inflammatory response. Methods in Cell Biology, 2024, , .	0.5	0	