Tracking adipogenesis during white adipose tissue devergeneration

Nature Medicine 19, 1338-1344

DOI: 10.1038/nm.3324

Citation Report

#	Article	IF	CITATIONS
1	Brown and beige fat: development, function and therapeutic potential. Nature Medicine, 2013, 19, 1252-1263.	15.2	1,846
2	Mechanical Stretching and Signaling Pathways in Adipogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 35-62.	0.7	2
3	Thrombospondin 1 Mediates High-Fat Diet-Induced Muscle Fibrosis and Insulin Resistance in Male Mice. Endocrinology, 2013, 154, 4548-4559.	1.4	64
4	Free Fatty Acids, Lipopolysaccharide and IL-1α Induce Adipocyte Manganese Superoxide Dismutase Which Is Increased in Visceral Adipose Tissues of Obese Rodents. PLoS ONE, 2014, 9, e86866.	1.1	24
5	Intermittent Cold Exposure Enhances Fat Accumulation in Mice. PLoS ONE, 2014, 9, e96432.	1.1	37
6	Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring. PLoS ONE, 2014, 9, e103337.	1.1	135
7	White Adipose Tissue Resilience to Insulin Deprivation and Replacement. PLoS ONE, 2014, 9, e106214.	1.1	9
8	The Great Roundleaf Bat (Hipposideros armiger) as a Good Model for Cold-Induced Browning of Intra-Abdominal White Adipose Tissue. PLoS ONE, 2014, 9, e112495.	1.1	7
9	Prenatal Metformin Exposure in a Maternal High Fat Diet Mouse Model Alters the Transcriptome and Modifies the Metabolic Responses of the Offspring. PLoS ONE, 2014, 9, e115778.	1.1	49
10	Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 33.	1.3	193
11	Adipose-derived stem cells: Implications in tissue regeneration. World Journal of Stem Cells, 2014, 6, 312.	1.3	278
12	Do adipose tissue macrophages promote insulin resistance or adipose tissue remodelling in humans?. Hormone Molecular Biology and Clinical Investigation, 2014, 20, 3-13.	0.3	11
13	The influence of sex steroids on adipose tissue growth and function. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 13-24.	0.3	37
14	The AdipoChaser mouse. Adipocyte, 2014, 3, 146-150.	1.3	47
15	How brown is brown fat that we can see?. Adipocyte, 2014, 3, 155-159.	1.3	5
16	Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems. Adipocyte, 2014, 3, 236-241.	1.3	31
17	Fighting obesity: When muscle meets fat. Adipocyte, 2014, 3, 280-289.	1.3	19
18	Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death and Disease, 2014, 5, e1527-e1527.	2.7	29

#	Article	IF	CITATIONS
19	Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity. Journal of Lipid Research, 2014, 55, 2124-2136.	2.0	67
20	Targeting FoxO1 with AS1842856 Suppresses Adipogenesis. Cell Cycle, 2014, 13, 3759-3767.	1.3	67
21	Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E793-E799.	1.8	67
22	Xenotransplantation of human fetal adipose tissue: a model of in vivo adipose tissue expansion and adipogenesis. Journal of Lipid Research, 2014, 55, 2685-2691.	2.0	2
23	Maintenance of white adipose tissue in man. International Journal of Biochemistry and Cell Biology, 2014, 56, 123-132.	1.2	19
24	The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Molecular Metabolism, 2014, 3, 834-847.	3.0	71
25	Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease. Adipocyte, 2014, 3, 333-338.	1.3	31
26	Adipocyte Hypertrophy, Inflammation and Fibrosis Characterize Subcutaneous Adipose Tissue of Healthy, Non-Obese Subjects Predisposed to Type 2 Diabetes. PLoS ONE, 2014, 9, e105262.	1.1	91
27	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	3.0	126
28	A Smooth Muscle-Like Origin for Beige Adipocytes. Cell Metabolism, 2014, 19, 810-820.	7.2	373
30	Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Hormones and Behavior, 2014, 66, 95-103.	1.0	73
31	Recent advances in brown adipose tissue biology. Science Bulletin, 2014, 59, 4030-4040.	1.7	4
32	MitoNEET-mediated effects on browning of white adipose tissue. Nature Communications, 2014, 5, 3962.	5.8	66
33	Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Seminars in Cell and Developmental Biology, 2014, 25-26, 43-51.	2.3	37
34	Weighing in on Adipocyte Precursors. Cell Metabolism, 2014, 19, 8-20.	7.2	201
35	What We Talk About When We Talk About Fat. Cell, 2014, 156, 20-44.	13.5	1,789
36	Loss of White Adipose Hyperplastic Potential Is Associated with Enhanced Susceptibility to Insulin Resistance. Cell Metabolism, 2014, 20, 1049-1058.	7.2	157
37	Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells. Nature Communications, 2014, 5, 5196.	5.8	46

#	Article	IF	CITATIONS
38	Small Ubiquitin-like Modifier (SUMO) Protein-specific Protease 1 De-SUMOylates Sharp-1 Protein and Controls Adipocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 22358-22364.	1.6	17
39	The lipid profile of brown adipose tissue is sex-specific in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1563-1570.	1.2	52
40	The Effects of Temperature and Seasons on Subcutaneous White Adipose Tissue in Humans: Evidence for Thermogenic Gene Induction. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2772-E2779.	1.8	83
41	Expression of Adipocyte Biomarkers in a Primary Cell Culture Models Reflects Preweaning Adipobiology. Journal of Biological Chemistry, 2014, 289, 18478-18488.	1.6	42
42	A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metabolism, 2014, 20, 433-447.	7.2	535
43	Inhibition of adipogenesis in 3T3-L1 cells and suppression of abdominal fat accumulation in high-fat diet-feeding C57BL/6J mice after downregulation of hyaluronic acid. International Journal of Obesity, 2014, 38, 1035-1043.	1.6	50
44	Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nature Medicine, 2014, 20, 911-918.	15.2	217
45	Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14466-14471.	3.3	178
46	Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. Journal of Lipid Research, 2014, 55, 605-624.	2.0	68
47	Manganese superoxide dismutase knock-down in 3T3-L1 preadipocytes impairs subsequent adipogenesis. Molecular and Cellular Biochemistry, 2014, 393, 69-76.	1.4	11
48	Macrophages and the Regulation of Adipose Tissue Remodeling. Annual Review of Nutrition, 2014, 34, 57-76.	4.3	91
49	MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes. Diabetes, 2014, 63, 4045-4056.	0.3	87
50	Thermogenic adipocytes: From cells to physiology and medicine. Metabolism: Clinical and Experimental, 2014, 63, 1238-1249.	1.5	46
51	Dissecting the Origin of Inducible Brown Fat in Adult Humans Through a Novel Adipose Stem Cell Model from Adipose Tissue Surrounding Pheochromocytoma. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1903-E1912.	1.8	19
52	Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females. Endocrinology, 2014, 155, 1313-1326.	1.4	21
53	IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. Cell, 2014, 158, 69-83.	13.5	239
54	MECHANISMS IN ENDOCRINOLOGY: White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. European Journal of Endocrinology, 2014, 170, R159-R171.	1.9	199
55	The different shades of fat. Nature, 2014, 510, 76-83.	13.7	378

ARTICLE IF CITATIONS Fat depot-specific gene signature and ECM remodeling of Sca1high adipose-derived stem cells. Matrix 1.5 27 Biology, 2014, 36, 28-38. Nutraceuticals and regulation of adipocyte life: Premises or promises. BioFactors, 2014, 40, 398-418. 2.6 Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science, 2014, 6.0 83 344, 1384-1389. Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling. Cell Metabólism, 2014, 20, 103-118. Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell 7.2 90 Metabolism, 2014, 19, 981-992. The "Big Bang―in obese fat: Events initiating obesityâ€induced adipose tissue inflammation. European Journal of Immunology, 2015, 45, 2446-2456. 1.6 Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Molecular Metabolism, 2015, 4, 771-778. 3.0 103 Not all the number of skeletal muscle fibers is determined prenatally. BMC Developmental Biology, 2.1 2015, 15, 42. Shaping fat distribution: New insights into the molecular determinants of depot- and sex-dependent 1.5 110 adipose biology. Obesity, 2015, 23, 1345-1352. Adipose tissue fibrosis. World Journal of Diabetes, 2015, 6, 548. 1.3 Shades of Brown: A Model for Thermogenic Fat. Frontiers in Endocrinology, 2015, 6, 71. 1.5 20 Intricate Transcriptional Networks of Classical Brown and Beige Fat Cells. Frontiers in 1.5 Endocrinology, 2015, 6, 124. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning. Frontiers 1.5 33 in Endocrinology, 2015, 6, 129. A New Role for Browning as a Redox and Stress Adaptive Mechanism?. Frontiers in Endocrinology, 1.5 2015, 6, 158. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death and Disease, 2015, 6, 2.7 61 e1586-e1586. Adipose Tissue Stem Cells. Handbook of Experimental Pharmacology, 2015, 233, 251-263. Fucoxanthin and lipid metabolism: A minireview. Nutrition, Metabolism and Cardiovascular Diseases, 1.1 64 2015, 25, 891-897.

CITATION REPORT

73	Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat. Cell Reports, 2015, 13, 1528-1537.	2.9	96
----	---	-----	----

#

56

58

59

60

62

64

66

68

70

	CITATION	CITATION REPORT	
#	Article	IF	Citations
74	Role of Irisin on the bone–muscle functional unit. BoneKEy Reports, 2015, 4, 765.	2.7	47
75	Human White and Brite Adipogenesis is Supported by MSCA1 and is Impaired by Immune Cells. Stem Cells, 2015, 33, 1277-1291.	1.4	44
76	Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis. Cell, 2015, 160, 74-87.	13.5	565
77	Potential novel therapeutic strategies from understanding adipocyte transdifferentiation mechanisms. Expert Review of Endocrinology and Metabolism, 2015, 10, 143-152.	1.2	1
78	Role of developmental transcription factors in white, brown and beige adipose tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 686-696.	1.2	45
79	Wt1, the mesothelium and the origins and heterogeneity of visceral fat progenitors. Adipocyte, 2015, 4, 217-221.	1.3	25
80	Conditional immortalization of primary adipocyte precursor cells. Adipocyte, 2015, 4, 203-211.	1.3	7
81	Myocardin-Related Transcription Factor A Regulates Conversion of Progenitors to Beige Adipocytes. Cell, 2015, 160, 105-118.	13.5	129
82	Insights into an adipocyte whitening program. Adipocyte, 2015, 4, 75-80.	1.3	9
83	The sexual dimorphism of obesity. Molecular and Cellular Endocrinology, 2015, 402, 113-119.	1.6	609
84	Brown and beige fat: the metabolic function, induction, and therapeutic potential. Frontiers of Medicine, 2015, 9, 162-172.	1.5	26
85	P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E496-E505.	1.8	25
86	BMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis. Diabetes, 2015, 64, 1670-1681	. 0.3	167
87	Epigenetic modulation of metabolic decisions. Current Opinion in Cell Biology, 2015, 33, 88-94.	2.6	26
88	Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology, 2015, 17, 376-385.	4.6	323
89	Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance Independent of Inflammation. Molecular and Cellular Biology, 2015, 35, 1686-1699.	1.1	192
90	Mitochondrial Turnover. Journal of Biological Chemistry, 2015, 290, 8243-8255.	1.6	44
91	The Ontogeny of Brown Adipose Tissue. Annual Review of Nutrition, 2015, 35, 295-320.	4.3	99

#	Article	IF	CITATIONS
92	Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnology Advances, 2015, 33, 962-979.	6.0	20
93	Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nature Communications, 2015, 6, 7906.	5.8	87
94	Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development (Cambridge), 2015, 142, 2623-2632.	1.2	63
95	Evaluation of the distribution of adipose tissues in fish using magnetic resonance imaging (MRI). Aquaculture, 2015, 448, 112-122.	1.7	38
96	The thermogenic circuit: Regulators of thermogenic competency and differentiation. Genes and Diseases, 2015, 2, 164-172.	1.5	13
97	Understanding adipocyte types and adipose tissue dynamics for obesity management. Clinical Lipidology, 2015, 10, 23-26.	0.4	0
98	Paracrine, endocrine and neurocrine controls of the adipocyte color phenotype: view from the chair. International Journal of Obesity Supplements, 2015, 5, S4-S6.	12.5	1
99	Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes. International Journal of Obesity Supplements, 2015, 5, S15-S20.	12.5	27
100	Brown adipose tissue and bone. International Journal of Obesity Supplements, 2015, 5, S23-S27.	12.5	24
101	Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice. Molecular Metabolism, 2015, 4, 543-550.	3.0	26
102	Adipose Tissue-Residing Progenitors (Adipocyte Lineage Progenitors and Adipose-Derived Stem Cells) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
103	Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Molecular Metabolism, 2015, 4, 392-405.	3.0	32
104	Angiotensin II directly impairs adipogenic differentiation of human preadipose cells. Molecular and Cellular Biochemistry, 2015, 408, 115-122.	1.4	12
105	FGF21, energy expenditure and weight loss – How much brown fat do you need?. Molecular Metabolism, 2015, 4, 605-609.	3.0	30
106	Cidea improves the metabolic profile through expansion of adipose tissue. Nature Communications, 2015, 6, 7433.	5.8	80
107	Adipocyte SIRT1 knockout promotes PPARÎ ³ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Molecular Metabolism, 2015, 4, 378-391.	3.0	129
108	Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 478-486.	3.9	547
109	RhoGDlβ Inhibits Bone Morphogenetic Protein 4 (BMP4)-induced Adipocyte Lineage Commitment and Favors Smooth Muscle-like Cell Differentiation. Journal of Biological Chemistry, 2015, 290, 11119-11129.	1.6	16

ARTICLE IF CITATIONS # FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications, 2015, 6, 110 5.8 186 6792. La redécouverte des adipocytes de type brun chez l'homme : un espoir pour la lutte contre les maladies métaboliques ?. Obesite, 2015, 10, 254-261. 111 0.1 Low ambient temperature during early postnatal development fails to cause a permanent induction of 112 0.2 27 brown adipocytes. FASEB Journal, 2015, 29, 3238-3252. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders 2.9 in male C57Bl/6J mice. Diabetologia, 2015, 58, 1601-1609. Notch signaling as a novel regulator of metabolism. Trends in Endocrinology and Metabolism, 2015, 114 3.1 135 26, 248-255. The cell biology of fat expansion. Journal of Cell Biology, 2015, 208, 501-512. 2.3 428 Immune Regulation of Metabolic Homeostasis in Health and Disease. Cell, 2015, 161, 146-160. 116 13.5 380 Can Brown Fat Win the Battle Against White Fat?. Journal of Cellular Physiology, 2015, 230, 2311-2317. 28 Nucleoredoxin promotes adipogenic differentiation through regulation of Wnt/l^2 -catenin signaling. 118 2.0 11 Journal of Lipid Research, 2015, 56, 294-303. Two paths to fat. Nature Cell Biology, 2015, 17, 360-361. 4.6 Formation and activation of thermogenic fat. Trends in Genetics, 2015, 31, 232-238. 120 2.9 29 NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nature 121 Immunology, 2015, 16, 376-385 Visceral Adipose Tissue Mesothelial Cells: Living on the Edge or Just Taking Up Space?. Trends in 122 3.1 25 Endocrinology and Metabolism, 2015, 26, 515-523. Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research, 123 104 2015, 56, 2061-2069. Effects of low-fat diet and aging on metabolic profiles of Creb3l4 knockout mice. Nutrition and 124 1.5 10 Diabetes, 2015, 5, e179-e179. 14-3-3ζ coordinates adipogenesis of visceral fat. Nature Communications, 2015, 6, 7671. 5.8 Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559. 126 7.2 763 Calorie hoarding and thrifting: Foxa3 finds a way. Adipocyte, 2015, 4, 325-328. 1.3

#	Article	IF	CITATIONS
128	Intermittent cold exposure improves glucose homeostasis associated with brown and white adipose tissues in mice. Life Sciences, 2015, 139, 153-159.	2.0	18
129	Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology, 2015, 17, 1099-1111.	4.6	111
130	E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Molecular Metabolism, 2015, 4, 653-664.	3.0	29
131	Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Research, 2015, 43, 7790-7804.	6.5	33
132	Highly Selective InÂVivo Labeling of Subcutaneous White Adipocyte Precursors with Prx1-Cre. Stem Cell Reports, 2015, 4, 541-550.	2.3	92
133	Immunological contributions to adipose tissue homeostasis. Seminars in Immunology, 2015, 27, 315-321.	2.7	68
134	Interactions between adipose tissue and the immune system in health and malnutrition. Seminars in Immunology, 2015, 27, 322-333.	2.7	70
135	An essential role for <scp>E</scp> wing sarcoma gene (<scp><i>EWS</i></scp>) in early white adipogenesis. Obesity, 2015, 23, 138-144.	1.5	10
136	Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. Journal of Functional Foods, 2015, 12, 208-218.	1.6	55
137	Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death and Differentiation, 2015, 22, 351-363.	5.0	53
138	Cellular origins of coldâ€induced brown adipocytes in adult mice. FASEB Journal, 2015, 29, 286-299.	0.2	242
139	The "Skinny―on brown fat, obesity, and bone. American Journal of Physical Anthropology, 2015, 156, 98-115.	2.1	24
140	Thermogenic Activity of UCP1 in Human White Fat-Derived Beige Adipocytes. Molecular Endocrinology, 2015, 29, 130-139.	3.7	85
141	Thermogenic brown and beige/brite adipogenesis in humans. Annals of Medicine, 2015, 47, 169-177.	1.5	68
142	Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes and Metabolism Journal, 2016, 40, 12.	1.8	180
143	Acute exercise regulates adipogenic gene expression in white adipose tissue. Biology of Sport, 2016, 33, 381-391.	1.7	30
144	Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. Journal of Clinical Biochemistry and Nutrition, 2016, 59, 207-214.	0.6	53
145	Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. BioMed Research International, 2016, 2016, 1-15.	0.9	63

	CHATION	CEPURI	
# 146	ARTICLE Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells International, 2016, 2016, 1-11.	lF 1.2	Citations
147	Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Research, 2016, 2016, 1-17.	1.1	14
148	Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Frontiers in Endocrinology, 2016, 7, 30.	1.5	792
149	High Risk of Metabolic and Adipose Tissue Dysfunctions in Adult Male Progeny, Due to Prenatal and Adulthood Malnutrition Induced by Fructose Rich Diet. Nutrients, 2016, 8, 178.	1.7	15
150	Relationship between the Balance of Hypertrophic/Hyperplastic Adipose Tissue Expansion and the Metabolic Profile in a High Glucocorticoids Model. Nutrients, 2016, 8, 410.	1.7	17
151	Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis. PLoS Genetics, 2016, 12, e1006474.	1.5	44
152	Targeting lκB kinase β in Adipocyte Lineage Cells for Treatment of Obesity and Metabolic Dysfunctions. Stem Cells, 2016, 34, 1883-1895.	1.4	24
153	Identification of Mouse Mesenteric and Subcutaneous in vitro Adipogenic Cells. Scientific Reports, 2016, 6, 21041.	1.6	4
154	PDGFA Makes Thin Skin Thicker: Molecular Regulation of Adipose Progenitor Maintenance. Cell Stem Cell, 2016, 19, 675-676.	5.2	1
155	Clozapine modifies the differentiation program of human adipocytes inducing browning. Translational Psychiatry, 2016, 6, e963-e963.	2.4	35
156	The Facial Adipose Tissue: A Revision. Facial Plastic Surgery, 2016, 32, 671-682.	0.5	68
157	Natural Products with Anti-obesity Effects and Different Mechanisms of Action. Journal of Agricultural and Food Chemistry, 2016, 64, 9571-9585.	2.4	141
158	BMP4 mediates the interplay between adipogenesis and angiogenesis during expansion of subcutaneous white adipose tissue. Journal of Molecular Cell Biology, 2016, 8, 302-312.	1.5	25
159	Visfatin expression analysis in association with recruitment and activation of human and rodent brown and brite adipocytes. Adipocyte, 2016, 5, 186-195.	1.3	10
160	Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 2016, 59, 1075-1088.	2.9	298
161	Pdcd4 restrains the self-renewal and white-to-beige transdifferentiation of adipose-derived stem cells. Cell Death and Disease, 2016, 7, e2169-e2169.	2.7	18
162	On the origin of human adipocytes and the contribution of bone marrow-derived cells. Adipocyte, 2016, 5, 312-317.	1.3	3
163	Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metabolism, 2016, 23, 1167-1184.	7.2	187

#	Article	IF	CITATIONS
164	Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague–Dawley rats fed prenatal low protein and postnatal high-fat diets. Journal of Nutritional Biochemistry, 2016, 31, 113-121.	1.9	27
165	Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function. Diabetes, 2016, 65, 2201-2213.	0.3	114
166	MECHANISMS IN ENDOCRINOLOGY: Brown adipose tissue in humans: regulation and metabolic significance. European Journal of Endocrinology, 2016, 175, R11-R25.	1.9	19
167	Surgical injury induces local and distant adipose tissue browning. Adipocyte, 2016, 5, 163-174.	1.3	19
168	Marrow Adipose Tissue: Trimming the Fat. Trends in Endocrinology and Metabolism, 2016, 27, 392-403.	3.1	171
169	The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of Cell and Developmental Biology, 2016, 32, 609-631.	4.0	43
170	The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice. Diabetologia, 2016, 59, 2645-2653.	2.9	8
171	Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2Âdependent signaling. Molecular Metabolism, 2016, 5, 937-947.	3.0	29
172	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
173	Genetic backgrounds determine brown remodeling of white fat in rodents. Molecular Metabolism, 2016, 5, 948-958.	3.0	25
174	Fat tissues, the brite and the dark sides. Pflugers Archiv European Journal of Physiology, 2016, 468, 1803-1807.	1.3	28
175	Macrophage and adipocyte <scp>IGF</scp> 1 maintain adipose tissue homeostasis during metabolic stresses. Obesity, 2016, 24, 172-183.	1.5	56
176	The critical period for brown adipocyte development: Genetic and environmental influences. Obesity, 2016, 24, 283-290.	1.5	18
177	Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot?. Experimental Dermatology, 2016, 25, 258-262.	1.4	50
178	Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 2016, 17, 691-702.	16.1	507
179	Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance. Cell Metabolism, 2016, 24, 402-419.	7.2	282
180	Bmp4 Promotes a Brown to White-like AdipocyteÂShift. Cell Reports, 2016, 16, 2243-2258.	2.9	95
181	Browning and thermogenic programing of adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 479-485.	2.2	29

#	Article	IF	CITATIONS
182	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	7.2	80
183	miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Molecular Metabolism, 2016, 5, 615-625.	3.0	54
184	SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation. Cell Reports, 2016, 16, 769-780.	2.9	24
185	Metabolic activity of brown, "beige,―and white adipose tissues in response to chronic adrenergic stimulation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E260-E268.	1.8	92
186	Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell, 2016, 19, 738-751.	5.2	105
187	Adipose tissue in control of metabolism. Journal of Endocrinology, 2016, 231, R77-R99.	1.2	423
188	A glucocorticoid- and diet-responsive pathway toggles adipocyte precursor cell activity in vivo. Science Signaling, 2016, 9, ra103.	1.6	29
189	ASK1 signalling regulates brown and beige adipocyte function. Nature Communications, 2016, 7, 11158.	5.8	59
190	Let-7i-5p represses brite adipocyte function in mice and humans. Scientific Reports, 2016, 6, 28613.	1.6	39
191	Disabled-2 Determines Commitment of a Pre-adipocyte Population in Juvenile Mice. Scientific Reports, 2016, 6, 35947.	1.6	11
192	Adipocyte nuclei captured from VAT and SAT. BMC Obesity, 2016, 3, 35.	3.1	16
193	Gender dimorphism in adipose tissue response to stress conditions. Journal of Trauma and Acute Care Surgery, 2016, 81, 1028-1034.	1.1	6
194	FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle, 2016, 15, 2033-2041.	1.3	50
195	The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity. Cell Metabolism, 2016, 24, 142-150.	7.2	240
196	Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Molecular Metabolism, 2016, 5, 113-121.	3.0	17
197	White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Molecular Metabolism, 2016, 5, 352-365.	3.0	110
198	Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte, 2016, 5, 251-269.	1.3	61
199	Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circulation Research, 2016, 118, 1786-1807.	2.0	455

#	Article	IF	CITATIONS
200	Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Molecular Metabolism, 2016, 5, 437-448.	3.0	14
201	Emerging Roles of Adipose Progenitor Cells in Tissue Development, Homeostasis, Expansion and Thermogenesis. Trends in Endocrinology and Metabolism, 2016, 27, 574-585.	3.1	82
202	Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews Drug Discovery, 2016, 15, 639-660.	21.5	518
203	NOV/CCN3: A New Adipocytokine Involved in Obesity-Associated Insulin Resistance. Diabetes, 2016, 65, 2502-2515.	0.3	48
204	Characterization of coldâ€induced remodelling reveals depotâ€specific differences across and within brown and white adipose tissues in mice. Acta Physiologica, 2016, 217, 311-324.	1.8	61
205	Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nature Communications, 2016, 7, 10184.	5.8	133
206	New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 2016, 8, 323rv2.	5.8	78
207	Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Molecular Metabolism, 2016, 5, 19-33.	3.0	78
208	14-3-3ζ: A numbers game in adipocyte function?. Adipocyte, 2016, 5, 232-237.	1.3	7
209	Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R55-R65.	0.9	77
210	Wnt inhibition enhances browning of mouse primary white adipocytes. Adipocyte, 2016, 5, 224-231.	1.3	24
211	Adipose cell hypertrophy precedes the appearance of small adipocytes by 3Âdays in C57BL/6 mouse upon changing to a high fat diet. Adipocyte, 2016, 5, 81-87.	1.3	16
212	Emerging Complexities in Adipocyte Origins and Identity. Trends in Cell Biology, 2016, 26, 313-326.	3.6	182
213	Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 2016, 7, 10686.	5.8	56
214	Morphogenetics in brown, beige and white fat development. Adipocyte, 2016, 5, 130-135.	1.3	12
215	Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte, 2016, 5, 119-129.	1.3	58
216	Obesogens: an emerging threat to public health. American Journal of Obstetrics and Gynecology, 2016, 214, 559-565.	0.7	173
217	Heterogeneity of white adipose tissue: molecular basis and clinical implications. Experimental and Molecular Medicine, 2016, 48, e215-e215.	3.2	150

#	Article	IF	CITATIONS
218	Convertible visceral fat as a therapeutic target to curb obesity. Nature Reviews Drug Discovery, 2016, 15, 405-424.	21.5	177
219	Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine and Growth Factor Reviews, 2016, 27, 105-118.	3.2	70
220	SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. Journal of Biological Chemistry, 2016, 291, 2119-2135.	1.6	33
221	Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice. Cell Metabolism, 2016, 23, 350-359.	7.2	259
222	Dermal Adipocytes: From Irrelevance to Metabolic Targets?. Trends in Endocrinology and Metabolism, 2016, 27, 1-10.	3.1	97
223	<i>De novo</i> generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. FASEB Journal, 2016, 30, 1096-1108.	0.2	49
224	Differential Development of Inflammation and Insulin Resistance in Different Adipose Tissue Depots Along Aging in Wistar Rats: Effects of Caloric Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 310-322.	1.7	33
225	Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1131-1140.	1.7	18
226	3D brown adipogenesis to create "Brown-Fat-in-Microstrands― Biomaterials, 2016, 75, 123-134.	5.7	19
227	Activated macrophages as key mediators of capsule formation on adipose constructs in tissue engineering chamber models. Cell Biology International, 2017, 41, 354-360.	1.4	3
228	HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2. Scientific Reports, 2017, 7, 40881.	1.6	34
229	Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Molecular Metabolism, 2017, 6, 111-124.	3.0	56
230	Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor. Cell Metabolism, 2017, 25, 448-462.	7.2	91
231	Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism, 2017, 5, 1.	2.4	284
232	Teneurin-2 (TENM2) deficiency induces UCP1 expression in differentiating human fat cells. Molecular and Cellular Endocrinology, 2017, 443, 106-113.	1.6	21
233	Regulation of Dipeptidyl Peptidase-4, its Substrate Chemokines, and Their Receptors in Adipose Tissue of ob/ob Mice. Hormone and Metabolic Research, 2017, 49, 380-387.	0.7	9
234	Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes, 2017, 66, 1611-1625.	0.3	24
235	Specific CpG hyper-methylation leads to Ankrd26 gene down-regulation in white adipose tissue of a mouse model of diet-induced obesity. Scientific Reports, 2017, 7, 43526.	1.6	34

#	ARTICLE	IF	CITATIONS
236	p107 Determines a Metabolic Checkpoint Required for Adipocyte Lineage Fates. Stem Cells, 2017, 35, 1378-1391.	1.4	7
237	Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance. Scientific Reports, 2017, 7, 43515.	1.6	25
238	Flow Cytometry Assisted Isolation of Adipose Tissue Derived Stem Cells. Methods in Molecular Biology, 2017, 1566, 17-24.	0.4	3
239	High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E58-E71.	1.8	54
240	Mast Cells Promote Seasonal White Adipose Beiging in Humans. Diabetes, 2017, 66, 1237-1246.	0.3	62
241	Gene Expression and Histological Analysis of Activated Brown Adipocytes in Adipose Tissue. Methods in Molecular Biology, 2017, 1566, 89-98.	0.4	1
242	VEGF-A–Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4–Independent Metabolic Improvements. Diabetes, 2017, 66, 1479-1490.	0.3	87
243	Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Scientific Reports, 2017, 7, 43261.	1.6	38
244	Sorting out adipocyte precursors and their role in physiology and disease. Genes and Development, 2017, 31, 127-140.	2.7	104
245	The kielin/chordin-like protein (KCP) attenuates high-fat diet-induced obesity and metabolic syndrome in mice. Journal of Biological Chemistry, 2017, 292, 9051-9062.	1.6	25
246	Extended vs. brief intermittent access to palatable food differently promote binge-like intake, rejection of less preferred food, and weight cycling in female rats. Physiology and Behavior, 2017, 177, 305-316.	1.0	29
247	A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue. Scientific Reports, 2017, 7, 44949.	1.6	22
248	Mesenchymal stem cells in obesity: insights for translational applications. Laboratory Investigation, 2017, 97, 1158-1166.	1.7	60
249	A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature Immunology, 2017, 18, 654-664.	7.0	139
250	MicroRNAs in dysfunctional adipose tissue: cardiovascular implications. Cardiovascular Research, 2017, 113, 1024-1034.	1.8	42
251	The significance of beige and brown fat in humans. Endocrine Connections, 2017, 6, R70-R79.	0.8	63
252	Lsd1 prevents age-programed loss of beige adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5265-5270.	3.3	39
253	Do Adipocytes Emerge from Mural Progenitors?. Cell Stem Cell, 2017, 20, 585-586.	5.2	20

# 254	ARTICLE CD36 Is a Marker of Human Adipocyte Progenitors with Pronounced Adipogenic and Triglyceride Accumulation Potential. Stem Cells, 2017, 35, 1799-1814.	IF 1.4	CITATIONS
255	Resveratrol supplementation of highâ€fat dietâ€fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. Journal of Physiology, 2017, 595, 1547-1562.	1.3	122
256	Maternal Retinoids Increase PDGFRα+ Progenitor Population and Beige Adipogenesis in Progeny by Stimulating Vascular Development. EBioMedicine, 2017, 18, 288-299.	2.7	30
257	Adipose tissue: between the extremes. EMBO Journal, 2017, 36, 1999-2017.	3.5	172
258	Impact of Growth Hormone on Regulation of Adipose Tissue. , 2017, 7, 819-840.		19
259	Identification of the ectoenzyme CD38 as a marker of committed preadipocytes. International Journal of Obesity, 2017, 41, 1539-1546.	1.6	13
260	The molecular mechanisms of obesity paradox. Cardiovascular Research, 2017, 113, 1074-1086.	1.8	191
261	Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature, 2017, 546, 107-112.	13.7	250
262	Nonâ€shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obesity Reviews, 2017, 18, 819-831.	3.1	54
263	Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Molecular Metabolism, 2017, 6, 715-724.	3.0	26
264	Adipocytes at the Core of Bone Function. Cell Stem Cell, 2017, 20, 739-740.	5.2	6
265	APMAP interacts with lysyl oxidase–like proteins, and disruption of <i>Apmap</i> leads to beneficial visceral adipose tissue expansion. FASEB Journal, 2017, 31, 4088-4103.	0.2	16
266	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	1.4	31
267	Amplification of Adipogenic Commitment by VSTM2A. Cell Reports, 2017, 18, 93-106.	2.9	18
268	Transcriptional Regulation of Adipogenesis. , 2017, 7, 635-674.		292
269	Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. International Journal of Obesity, 2017, 41, 1246-1255.	1.6	59
270	A classification system for zebrafish adipose tissues. DMM Disease Models and Mechanisms, 2017, 10, 797-809.	1.2	58
271	Annexin A6 regulates adipocyte lipid storage and adiponectin release. Molecular and Cellular Endocrinology, 2017, 439, 419-430.	1.6	20

#	Article	IF	CITATIONS
272	Genome-Wide Insights into the Development and Function of Thermogenic Adipocytes. Trends in Endocrinology and Metabolism, 2017, 28, 104-120.	3.1	29
273	Human White Adipocytes Convert Into "Rainbow―Adipocytes In Vitro. Journal of Cellular Physiology, 2017, 232, 2887-2899.	2.0	28
274	Adipose Tissue: A Safe Haven for Parasites?. Trends in Parasitology, 2017, 33, 276-284.	1.5	84
275	Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie, 2017, 134, 93-98.	1.3	12
276	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARÎ ³ . Scientific Reports, 2017, 7, 14087.	1.6	33
277	The Function and Diagnostic Potential of Adipocyte-Derived Factors in the Tumor Microenvironment. , 2017, , 129-166.		0
278	The genetic underpinnings of body fat distribution. Expert Review of Endocrinology and Metabolism, 2017, 12, 417-427.	1.2	3
279	Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARÎ ³ . Journal of Endocrinology, 2017, 235, 223-235.	1.2	46
280	Bone marrow adipocytes. Adipocyte, 2017, 6, 193-204.	1.3	151
281	The Role of Matrix Metalloproteinase-2 and Metalloproteinase-9 in Embryonic Neural Crest Cells and Their Derivatives. , 2017, , 27-48.		2
282	Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism. Journal of Biological Chemistry, 2017, 292, 18556-18564.	1.6	37
283	Fifty shades of white: Understanding heterogeneity in white adipose stem cells. Adipocyte, 2017, 6, 205-216.	1.3	36
284	Adipocyte Liver Kinase b1 Suppresses Beige Adipocyte Renaissance Through Class IIa Histone Deacetylase 4. Diabetes, 2017, 66, 2952-2963.	0.3	27
285	Hormonal Regulation of Adipogenesis. , 2017, 7, 1151-1195.		22
286	Brown and Beige Adipose Tissues in Health and Disease. , 2017, 7, 1281-1306.		127
287	Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	19
288	Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology, 2017, 158, 3109-3125.	1.4	60
289	Human brown adipose tissue as a target for obesity management; beyond coldâ€induced thermogenesis. Obesity Reviews, 2017, 18, 1227-1242.	3.1	69

#	Article	IF	CITATIONS
290	Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice. Scientific Reports, 2017, 7, 6648.	1.6	21
291	Browning deficiency and low mobilization of fatty acids in gonadal white adipose tissue leads to decreased cold-tolerance of transglutaminase 2 knock-out mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1575-1586.	1.2	6
292	A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 2017, 26, 375-393.e7.	7.2	42
293	BMP4 Gene Therapy in Mature Mice Reduces BAT Activation but Protects from Obesity by Browning Subcutaneous Adipose Tissue. Cell Reports, 2017, 20, 1038-1049.	2.9	62
294	Cold Exposure Differentially Stimulates Angiogenesis in BAT and WAT of Mice: Implication in Adrenergic Activation. Cellular Physiology and Biochemistry, 2017, 42, 974-986.	1.1	18
295	Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis. Adipocyte, 2017, 6, 224-233.	1.3	42
296	Characterization of the central neural projections to brown, white, and beige adipose tissue. FASEB Journal, 2017, 31, 4879-4890.	0.2	35
297	Trans -10, cis -12 conjugated linoleic acid (t 10- c 12 CLA) treatment and caloric restriction differentially affect adipocyte cell turnover in obese and lean mice. Journal of Nutritional Biochemistry, 2017, 49, 123-132.	1.9	29
298	Cellular Mechanisms Driving Sex Differences in Adipose Tissue Biology and Body Shape in Humans and Mouse Models. Advances in Experimental Medicine and Biology, 2017, 1043, 29-51.	0.8	61
299	A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nature Communications, 2017, 8, 2079.	5.8	52
300	Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Scientific Reports, 2017, 7, 16153.	1.6	22
301	PDGFRα / PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge), 2018, 145, .	1.2	77
302	Adipose Tissue Formation Utilizing Fat Flap Distraction Technique. Scientific Reports, 2017, 7, 5174.	1.6	5
303	A PPARÎ ³ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nature Communications, 2017, 8, 15926.	5.8	39
304	<i>Cre</i> Recombinase Strains Used for the Study of Adipose Tissues and Adipocyte Progenitors. Journal of Cellular Physiology, 2017, 232, 2698-2703.	2.0	11
305	The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. Molecular and Cellular Endocrinology, 2017, 445, 95-108.	1.6	62
306	Regulation of brown and beige fat by microRNAs. , 2017, 170, 1-7.		54
307	Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocrine Reviews, 2017, 38, 46-68.	8.9	50

#	Article	IF	CITATIONS
308	MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2017, 292, 1267-1287.	1.6	107
309	Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 2017, 68, 3-33.	1.3	745
310	Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Molecular Aspects of Medicine, 2017, 54, 37-49.	2.7	16
311	Metabolic programming of a beige adipocyte phenotype by genistein. Molecular Nutrition and Food Research, 2017, 61, 1600574.	1.5	38
312	Tissue Immunometabolism: Development, Physiology, and Pathobiology. Cell Metabolism, 2017, 25, 11-26.	7.2	96
313	Epigenetic Regulation of the Thermogenic Adipose Program. Trends in Endocrinology and Metabolism, 2017, 28, 19-31.	3.1	28
315	Inter-organ regulation of adipose tissue browning. Cellular and Molecular Life Sciences, 2017, 74, 1765-1776.	2.4	22
316	Reduction of Hypothalamic Endoplasmic Reticulum Stress Activates Browning of White Fat and Ameliorates Obesity. Diabetes, 2017, 66, 87-99.	0.3	90
317	UCP1 protein: The molecular hub of adipose organ plasticity. Biochimie, 2017, 134, 71-76.	1.3	34
318	Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet-induced obesity. Cell Death and Disease, 2017, 8, e3136-e3136.	2.7	20
319	Dietary and Hormonal Factors Involved in Healthy or Unhealthy Visceral Adipose Tissue Expansion. , 2017, , .		0
320	PDCFRα Regulated by miR-34a and FoxO1 Promotes Adipogenesis in Porcine Intramuscular Preadipocytes through Erk Signaling Pathway. International Journal of Molecular Sciences, 2017, 18, 2424.	1.8	31
321	Role of adipose tissue in facial aging. Clinical Interventions in Aging, 2017, Volume 12, 2069-2076.	1.3	46
322	Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. International Journal of Molecular Sciences, 2017, 18, 1621.	1.8	52
323	Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. ELife, 2017, 6, .	2.8	47
324	Prenatal PPARα activation by clofibrate increases subcutaneous fat browning in male C57BL/6J mice fed a high-fat diet during adulthood. PLoS ONE, 2017, 12, e0187507.	1.1	2
325	White adipose tissue browning and obesity. Journal of Biomedical Research, 2017, 31, 1.	0.7	28
326	The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. Journal of Exercise Nutrition & Biochemistry, 2017, 21, 39-47.	1.3	29

#	Article	IF	CITATIONS
327	Heterogeneity of adipose tissue in development and metabolic function. Journal of Experimental Biology, 2018, 221, .	0.8	147
328	Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1160-1171.	1.8	85
329	Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metabolism, 2018, 27, 588-601.e4.	7.2	110
330	White and beige adipocytes: are they metabolically distinct?. Hormone Molecular Biology and Clinical Investigation, 2018, 33, .	0.3	22
332	Peroxisome Proliferator-Activated Receptor <i>\hat{I}^3</i> and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Molecular and Cellular Biology, 2018, 38, .	1.1	33
333	Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages. Journal of Leukocyte Biology, 2018, 103, 615-628.	1.5	43
334	De novo adipocyte differentiation from Pdgfrβ+ preadipocytes protects against pathologic visceral adipose expansion in obesity. Nature Communications, 2018, 9, 890.	5.8	113
335	Stereoselective effects of lactate enantiomers on the enhancement of 3T3-L1 adipocyte differentiation. Biochemical and Biophysical Research Communications, 2018, 498, 105-110.	1.0	16
336	Sex differences in obesity, lipid metabolism, and inflammation—A role for the sex chromosomes?. Molecular Metabolism, 2018, 15, 35-44.	3.0	145
337	Jak-TGFβ cross-talk links transient adipose tissue inflammation to beige adipogenesis. Science Signaling, 2018, 11, .	1.6	41
338	Bone Marrow Adipocyte Developmental Origin and Biology. Current Osteoporosis Reports, 2018, 16, 312-319.	1.5	27
339	A Transcriptional Circuit Filters Oscillating Circadian Hormonal Inputs to Regulate Fat Cell Differentiation. Cell Metabolism, 2018, 27, 854-868.e8.	7.2	54
340	Metabolic Crosstalk Between Host and Parasitic Pathogens. Experientia Supplementum (2012), 2018, 109, 421-458.	0.5	7
341	Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 2018, 27, 1121-1137.e5.	7.2	168
342	Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 384-399.	2.9	36
343	<i>Perilipin 3</i> Deficiency Stimulates Thermogenic Beige Adipocytes Through <i>PPARα</i> Activation. Diabetes, 2018, 67, 791-804.	0.3	31
344	Insights into the neurochemical signature of the Innervation of Beige Fat. Molecular Metabolism, 2018, 11, 47-58.	3.0	15
345	Prenatal Exposure to Bisphenol A Disrupts Naturally Occurring Bimodal DNA Methylation at Proximal Promoter of fggy, an Obesity-Relevant Gene Encoding a Carbohydrate Kinase, in Gonadal White Adipose Tissues of CD-1 Mice. Endocrinology, 2018, 159, 779-794.	1.4	29

#	Article	IF	CITATIONS
346	The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology and Metabolism, 2018, 29, 191-200.	3.1	377
347	CCN5/WISP2 and metabolic diseases. Journal of Cell Communication and Signaling, 2018, 12, 309-318.	1.8	25
348	Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metabolism, 2018, 27, 226-236.e3.	7.2	208
349	Anti-Obesity Effect of <i>Allium hookeri</i> Leaf Extract in High-Fat Diet-Fed Mice. Journal of Medicinal Food, 2018, 21, 254-260.	0.8	17
350	Visualization and Quantification of Mesenchymal Cell Adipogenic Differentiation Potential with a Lineage Specific Marker. Journal of Visualized Experiments, 2018, , .	0.2	16
351	Adipose and skeletal muscle thermogenesis: studies from large animals. Journal of Endocrinology, 2018, 237, R99-R115.	1.2	68
352	Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal. Archives of Dermatological Research, 2018, 310, 453-462.	1.1	21
353	NAMPT-mediated NAD biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Molecular Metabolism, 2018, 11, 178-188.	3.0	55
354	Transcription factor 21 (TCF21) promotes proinflammatory interleukin 6 expression and extracellular matrix remodeling in visceral adipose stem cells. Journal of Biological Chemistry, 2018, 293, 6603-6610.	1.6	25
355	Adipose morphology and metabolic disease. Journal of Experimental Biology, 2018, 221, .	0.8	61
356	Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. Journal of Applied Physiology, 2018, 124, 482-496.	1.2	36
357	The dark side of browning. Protein and Cell, 2018, 9, 152-163.	4.8	32
358	Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews Endocrinology, 2018, 14, 77-87.	4.3	238
359	Characterization of two distinct lipomas: a comparative analysis from surgical perspective. Journal of Plastic Surgery and Hand Surgery, 2018, 52, 178-184.	0.4	6
360	Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. European Journal of Medicinal Chemistry, 2018, 143, 1345-1360.	2.6	41
361	The Fate of the Adipose-Derived Stromal Cells during Angiogenesis and Adipogenesis after Cell-Assisted Lipotransfer. Plastic and Reconstructive Surgery, 2018, 141, 365-375.	0.7	59
362	Brown adipocytes postnatally arise through both differentiation from progenitors and conversion from white adipocytes in Syrian hamster. Journal of Applied Physiology, 2018, 124, 99-108.	1.2	10
363	Do estrogens enhance activation of brown and beiging of adipose tissues?. Physiology and Behavior, 2018, 187, 24-31.	1.0	31

#	Article	IF	CITATIONS
364	A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue. International Journal of Obesity, 2018, 42, 507-517.	1.6	59
365	Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia, 2018, 61, 932-941.	2.9	37
366	Obesity phenotypes: depot-differences in adipose tissue and their clinical implications. Eating and Weight Disorders, 2018, 23, 3-14.	1.2	61
367	Causes and mechanisms of adipocyte enlargement and adipose expansion. Obesity Reviews, 2018, 19, 406-420.	3.1	136
368	Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nature Reviews Nephrology, 2018, 14, 105-120.	4.1	121
369	Regulation of immunometabolism in adipose tissue. Seminars in Immunopathology, 2018, 40, 189-202.	2.8	40
370	Deciphering adipose tissue heterogeneity. Annals of the New York Academy of Sciences, 2018, 1411, 5-20.	1.8	77
371	Fat Grafting Can Induce Browning of White Adipose Tissue. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1804.	0.3	14
372	Adipose Organ Development and Remodeling. , 2018, 8, 1357-1431.		127
373	Flow cytometry analysis of adrenoceptors expression in human adipose-derived mesenchymal stem/stromal cells. Scientific Data, 2018, 5, 180196.	2.4	9
374	Adipose Tissue Remodeling and Adipose Precursors. , 2018, , .		0
375	Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Marine Drugs, 2018, 16, 515.	2.2	12
376	Loss of Transcriptional Repression by BCL6 Confers Insulin Sensitivity in the Setting of Obesity. Cell Reports, 2018, 25, 3283-3298.e6.	2.9	28
377	Adipocyte ADRB3 Down-Regulated in Chinese Overweight Individuals Adipocyte ADRB3 in Overweight. Obesity Facts, 2018, 11, 524-533.	1.6	12
378	The Divergent Effect of Maternal Protein Restriction during Pregnancy and Postweaning High-Fat Diet Feeding on Blood Pressure and Adiposity in Adult Mouse Offspring. Nutrients, 2018, 10, 1832.	1.7	8
379	Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Scientific Reports, 2018, 8, 14567.	1.6	24
380	BATLAS: Deconvoluting Brown Adipose Tissue. Cell Reports, 2018, 25, 784-797.e4.	2.9	89
381	Transforming Growth Factor-β3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68

#	Article	IF	CITATIONS
382	Carboxytherapy-Induced Fat loss is Associated with VEGF-Mediated Vascularization. Aesthetic Plastic Surgery, 2018, 42, 1681-1688.	0.5	10
383	Sex differences in metabolism and cardiometabolic disorders. Current Opinion in Lipidology, 2018, 29, 404-410.	1.2	78
384	Brown Adipose Tissue Development and Metabolism. Handbook of Experimental Pharmacology, 2018, 251, 3-36.	0.9	60
385	Browning of Adipose Tissue and Sirtuin Involvement. , 0, , .		5
386	The Challenge of Obesity Treatment: A Review of Approved Drugs and New Therapeutic Targets. Journal of Epidemiology and Public Health Reviews, 2018, 04, .	0.1	5
387	Chronic phosphodiesterase type 5 inhibition has beneficial effects on subcutaneous adipose tissue plasticity in type 2 diabetic mice. Journal of Cellular Physiology, 2018, 233, 8411-8417.	2.0	9
388	Browning of Human Subcutaneous Adipose Tissue after Its Transplantation in Nude Mice. Plastic and Reconstructive Surgery, 2018, 142, 392-400.	0.7	24
389	Skin aging as a mechanical phenomenon: The main weak links. Nutrition and Healthy Aging, 2018, 4, 291-307.	0.5	45
390	Adipocytes spectrum — From homeostasia to obesity and its associated pathology. Annals of Anatomy, 2018, 219, 102-120.	1.0	20
391	Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. Contrast Media and Molecular Imaging, 2018, 2018, 1-7.	0.4	4
392	The Vitamin K Epoxide Reductase <i>Vkorc111</i> Promotes Preadipocyte Differentiation in Mice. Obesity, 2018, 26, 1303-1311.	1.5	9
393	Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice. Biochemical and Biophysical Research Communications, 2018, 503, 264-270.	1.0	35
394	The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB Journal, 2018, 32, 4727-4743.	0.2	58
395	Wnt/β-Catenin Signaling and Obesity. Frontiers in Physiology, 2018, 9, 792.	1.3	96
396	Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue. Journal of Visualized Experiments, 2018, , .	0.2	46
397	Cyclical Dedifferentiation and Redifferentiation of Mammary Adipocytes. Cell Metabolism, 2018, 28, 187-189.	7.2	14
398	PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function. Frontiers in Physiology, 2018, 9, 70.	1.3	103
399	TRPC1 regulates brown adipose tissue activity in a PPARÎ ³ -dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E825-E832.	1.8	14

# 400	ARTICLE The Complexity of Adipose Tissue. , 2018, , 205-223.	IF	Citations
401	Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology, 2018, 70, 1435-1445.	0.7	4
402	Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice. Nutrients, 2018, 10, 331.	1.7	33
403	Pink Adipocytes. Trends in Endocrinology and Metabolism, 2018, 29, 651-666.	3.1	80
404	Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation, 2018, 48, e12997.	1.7	408
405	Common traits between the beige fat-inducing stimuli. Current Opinion in Cell Biology, 2018, 55, 67-73.	2.6	16
406	Lessons from Cre-Mice and Indicator Mice. Handbook of Experimental Pharmacology, 2018, 251, 37-54.	0.9	6
407	Lactational programming of glucose homeostasis: a window of opportunity. Reproduction, 2018, 156, R23-R42.	1.1	49
408	Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity. Experimental and Molecular Pathology, 2018, 104, 212-221.	0.9	6
409	Caspases in metabolic disease and their therapeutic potential. Cell Death and Differentiation, 2018, 25, 1010-1024.	5.0	49
410	FSH, Bone Mass, Body Fat, and Biological Aging. Endocrinology, 2018, 159, 3503-3514.	1.4	40
412	TGF-β receptor 1 regulates progenitors that promote browning of white fat. Molecular Metabolism, 2018, 16, 160-171.	3.0	33
413	Induction of beige adipocytes by naturally occurring β3-adrenoceptor agonist p-synephrine. European Journal of Pharmacology, 2018, 836, 67-74.	1.7	19
414	The Heterogeneity of White Adipose Tissue. , 2018, , .		8
415	Stem Cell and Obesity: Current State and Future Perspective. Advances in Experimental Medicine and Biology, 2018, 1089, 1-22.	0.8	33
416	Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metabolism, 2018, 28, 282-288.e3.	7.2	116
417	Prediction of Adipose Browning Capacity by Systematic Integration of Transcriptional Profiles. Cell Reports, 2018, 23, 3112-3125.	2.9	57
418	Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM. Scientific Reports, 2018, 8, 8757.	1.6	19

#	Article	IF	CITATIONS
419	Development, activation, and therapeutic potential of thermogenic adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 13-19.	1.2	7
420	Cell proliferation and apoptosis inhibition: essential processes for recruitment of the full thermogenic capacity of brown adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 51-58.	1.2	29
421	Transcriptional brakes on the road to adipocyte thermogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 20-28.	1.2	19
422	MicroRNAs in brown and beige fat. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 29-36.	1.2	40
423	Brown and beige fat: From molecules to physiology and pathophysiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 37-50.	1.2	45
424	Brown and beige fat: From molecules to physiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 91-103.	1.2	26
425	A cellular perspective of adipogenesis transcriptional regulation. Journal of Cellular Physiology, 2019, 234, 1111-1129.	2.0	39
426	Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-α-acetylation of Pgc1α. Molecular Cell, 2019, 76, 500-515.e8.	4.5	27
427	Beige Fat, Adaptive Thermogenesis, and Its Regulation by Exercise and Thyroid Hormone. Biology, 2019, 8, 57.	1.3	19
428	Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Molecular Aspects of Medicine, 2019, 68, 6-17.	2.7	4
429	M2â€like macrophages serve as a niche for adipocyte progenitors in adipose tissue. Journal of Diabetes Investigation, 2019, 10, 1394-1400.	1.1	21
430	Effect of methyl tert-butyl ether on adipogenesis and glucose metabolism in vitro and in vivo. Journal of Environmental Sciences, 2019, 85, 208-219.	3.2	11
431	Targeting Cancer Cell Metastasis by Converting Cancer Cells into Fat. Cancer Research, 2019, 79, 5471-5475.	0.4	29
432	Maturation of White Adipose Tissue Function in C57BL/6j Mice From Weaning to Young Adulthood. Frontiers in Physiology, 2019, 10, 836.	1.3	4
433	Immune Cells Gate White Adipose Tissue Expansion. Endocrinology, 2019, 160, 1645-1658.	1.4	33
434	FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. Journal of Lipid Research, 2019, 60, 1547-1561.	2.0	19
435	Identification of a Paracrine Signaling Mechanism Linking CD34high Progenitors to the Regulation of Visceral Fat Expansion and Remodeling. Cell Reports, 2019, 29, 270-282.e5.	2.9	12
436	Preadipocyte factor 1 regulates adipose tissue browning via TNF-α-converting enzyme-mediated cleavage. Metabolism: Clinical and Experimental, 2019, 101, 153977.	1.5	11

#	Article	IF	CITATIONS
437	Protein Arginine Methyltransferase 1 Interacts With PGC1α and Modulates Thermogenic Fat Activation. Endocrinology, 2019, 160, 2773-2786.	1.4	17
438	Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes and Development, 2019, 33, 1657-1672.	2.7	25
439	Dietary Apigenin promotes lipid catabolism, thermogenesis, and browning in adipose tissues of HFD-Fed mice. Food and Chemical Toxicology, 2019, 133, 110780.	1.8	38
441	miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting <i>Fbxl19</i> . Genes and Development, 2019, 33, 1367-1380.	2.7	50
442	Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Reports, 2019, 28, 2905-2922.e5.	2.9	54
443	Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019, 68, 1874-1885.	0.3	98
444	Quantitative analyses of adiposity dynamics in zebrafish. Adipocyte, 2019, 8, 330-338.	1.3	5
445	Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 207-212.	1.0	20
446	Autologous Fat Grafting for Craniofacial Reconstruction in Oncologic Patients. Medicina (Lithuania), 2019, 55, 655.	0.8	7
447	Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 2019, 1, 189-200.	5.1	224
448	Effect of Enzymatic Treatment of Chrysanthemum indicum Linné Extracts on Lipid Accumulation and Adipogenesis in High-Fat-Diet-Induced Obese Male Mice. Nutrients, 2019, 11, 269.	1.7	14
449	Reduced delivery of epididymal adipocyteâ€derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice. Journal of Pineal Research, 2019, 66, e12561.	3.4	45
450	Orobol, an Enzyme-Convertible Product of Genistein, exerts Anti-Obesity Effects by Targeting Casein Kinase 1 Epsilon. Scientific Reports, 2019, 9, 8942.	1.6	17
451	Response to the photoperiod in the white and brown adipose tissues of Fischer 344 rats fed a standard or cafeteria diet. Journal of Nutritional Biochemistry, 2019, 70, 82-90.	1.9	10
452	A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metabolism, 2019, 30, 174-189.e5.	7.2	141
453	PGC-1α induced browning promotes involution and inhibits lactation in mammary glands. Cellular and Molecular Life Sciences, 2019, 76, 5011-5025.	2.4	5
454	A dietary vegetable, Moringa oleifera leaves (drumstick tree) induced fat cell apoptosis by inhibiting adipogenesis in 3T3-L1 adipocytes. Journal of Functional Foods, 2019, 59, 251-260.	1.6	16
455	Environmental and Nutritional Effects Regulating Adipose Tissue Function and Metabolism Across Generations. Advanced Science, 2019, 6, 1900275.	5.6	18

#	Article	IF	CITATIONS
456	A Brain-Melanocortin-Vagus Axis Mediates Adipose Tissue Expansion Independently of Energy Intake. Cell Reports, 2019, 27, 2399-2410.e6.	2.9	20
457	Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. International Journal of Molecular Sciences, 2019, 20, 2358.	1.8	844
458	Role of Mitochondria in Adipose Tissues Metabolism and Plasticity. , 2019, , 173-194.		1
459	Dietary calories and lipids synergistically shape adipose tissue cellularity during postnatal growth. Molecular Metabolism, 2019, 24, 139-148.	3.0	16
460	Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. Journal of Experimental Medicine, 2019, 216, 1345-1358.	4.2	80
461	Adipocyte hyperplasia: the primary mechanism of supraspinatus intramuscular fat accumulation after a complete rotator cuff tendon tear: a study in the rabbit. Adipocyte, 2019, 8, 144-153.	1.3	3
462	GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1. Journal of Animal Science, 2019, 97, 2658-2673.	0.2	3
463	Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Molecular Metabolism, 2019, 24, 30-43.	3.0	85
464	Harnessing adipogenesis to prevent obesity. Adipocyte, 2019, 8, 98-104.	1.3	47
465	Identification of a natural beige adipose depot in mice. Journal of Biological Chemistry, 2019, 294, 6751-6761.	1.6	18
466	Maternal Obesity During Pregnancy and Lactation Influences Offspring Obesogenic Adipogenesis but Not Developmental Adipogenesis in Mice. Nutrients, 2019, 11, 495.	1.7	18
467	The Release of Adipose Stromal Cells from Subcutaneous Adipose Tissue Regulates Ectopic Intramuscular Adipocyte Deposition. Cell Reports, 2019, 27, 323-333.e5.	2.9	29
468	Impaired adrenergic agonist-dependent beige adipocyte induction in obese mice. Journal of Veterinary Medical Science, 2019, 81, 799-807.	0.3	6
469	Assembling the adipose organ: adipocyte lineage segregation and adipogenesis <i>in vivo</i> . Development (Cambridge), 2019, 146, .	1.2	63
470	Deficiency of heat shock protein A12A promotes browning of white adipose tissues in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1451-1459.	1.8	4
471	Insulin and Insulin Receptors in Adipose Tissue Development. International Journal of Molecular Sciences, 2019, 20, 759.	1.8	129
472	Adrenoceptors in white, brown, and brite adipocytes. British Journal of Pharmacology, 2019, 176, 2416-2432.	2.7	42
473	FSH Beyond Fertility. Frontiers in Endocrinology, 2019, 10, 136.	1.5	45

#	Article	IF	CITATIONS
474	Rosiglitazone remodels the lipid droplet and britens human visceral and subcutaneous adipocytes ex vivo. Journal of Lipid Research, 2019, 60, 856-868.	2.0	22
475	Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 3990-4000.	3.9	389
476	Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors. Diabetes and Metabolism Journal, 2019, 43, 752.	1.8	43
477	In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomedical Engineering, 2019, 1, .	1.7	22
478	Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Frontiers in Oncology, 2019, 9, 1409.	1.3	8
479	Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell, 2019, 179, 1289-1305.e21.	13.5	159
480	White Adipocyte Plasticity in Physiology and Disease. Cells, 2019, 8, 1507.	1.8	24
481	De Novo Lipogenesis as a Source of Second Messengers in Adipocytes. Current Diabetes Reports, 2019, 19, 138.	1.7	15
482	CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Research and Therapy, 2019, 10, 355.	2.4	21
483	Strategies to Counter Weight Loss-Induced Reductions in Metabolic Rate. Current Sports Medicine Reports, 2019, 18, 258-265.	0.5	4
484	Towards a Better Understanding of Beige Adipocyte Plasticity. Cells, 2019, 8, 1552.	1.8	32
485	Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming?. Nutrients, 2019, 11, 2966.	1.7	52
486	TP53INP2 Promotes Bovine Adipocytes Differentiation Through Autophagy Activation. Animals, 2019, 9, 1060.	1.0	8
487	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	5.1	39
488	An update on immune dysregulation in obesityâ€related insulin resistance. Scandinavian Journal of Immunology, 2019, 89, e12747.	1.3	61
489	Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	16.1	836
490	Transcriptional Control of Brown and Beige Fat Development and Function. Obesity, 2019, 27, 13-21.	1.5	77
491	Heterogeneity of White Adipose Tissue. , 2019, , 271-288.		0

#	Article	IF	CITATIONS
492	Metabolically healthy versus metabolically unhealthy obesity. Metabolism: Clinical and Experimental, 2019, 92, 51-60.	1.5	251
493	Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. International Journal of Obesity, 2019, 43, 2381-2393.	1.6	47
494	MicroRNA-Regulated Immune Cell Function in Obese Adipose Tissue. , 2019, , 647-663.		0
495	<i>Zic1</i> mRNA is transiently upregulated in subcutaneous fat of acutely coldâ€exposed mice. Journal of Cellular Physiology, 2019, 234, 2031-2036.	2.0	8
496	Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biology, 2019, 78-79, 284-291.	1.5	41
497	BMP4 facilitates beige fat biogenesis via regulating adipose tissue macrophages. Journal of Molecular Cell Biology, 2019, 11, 14-25.	1.5	28
498	Genetic and epigenetic control of adipose development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 3-12.	1.2	43
499	Effect of different combination of maternal and postnatal diet on adipose tissue morphology in male rat offspring. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 1838-1846.	0.7	5
500	Reduced SIRT1 and SIRT2 expression promotes adipogenesis of human visceral adipose stem cells and associates with accumulation of visceral fat in human obesity. International Journal of Obesity, 2020, 44, 307-319.	1.6	48
501	Phyllanthus emblica fruit extract attenuates lipid metabolism in 3T3-L1 adipocytes via activating apoptosis mediated cell death. Phytomedicine, 2020, 66, 153129.	2.3	31
502	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
503	The metabolic footprint during adipocyte commitment highlights ceramide modulation as an adequate approach for obesity treatment. EBioMedicine, 2020, 51, 102605.	2.7	3
504	<i>CTNNB1/</i> β <i>-catenin</i> dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Science Advances, 2020, 6, eaax9605.	4.7	50
505	CD137 negatively affects "browning―of white adipose tissue during cold exposure. Journal of Biological Chemistry, 2020, 295, 2034-2042.	1.6	13
506	BMP4 gene therapy enhances insulin sensitivity but not adipose tissue browning in obese mice. Molecular Metabolism, 2020, 32, 15-26.	3.0	16
507	Cd36 gene expression in adipose and hepatic tissue mediates the lipids accumulation in liver of obese rats with sucrose-induced hepatic steatosis. Prostaglandins and Other Lipid Mediators, 2020, 147, 106404.	1.0	8
508	Role of VEGFs in metabolic disorders. Angiogenesis, 2020, 23, 119-130.	3.7	33
509	HYPOTHesizing about central comBAT against obesity. Journal of Physiology and Biochemistry, 2020, 76, 193-211.	1.3	3

#	Article	IF	CITATIONS
510	Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression. Science of the Total Environment, 2020, 705, 135917.	3.9	18
511	Zinc-α2-glycoprotein promotes browning of white adipose tissue in cold-exposed male mice. Molecular and Cellular Endocrinology, 2020, 501, 110669.	1.6	14
512	The Transcriptional Role of Vitamin A and the Retinoid Axis in Brown Fat Function. Frontiers in Endocrinology, 2020, 11, 608.	1.5	7
513	Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Molecular Metabolism, 2020, 42, 101086.	3.0	16
514	Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biology and Evolution, 2020, 12, 1277-1301.	1.1	1
515	Effects of SFRP4 overexpression on the production of adipokines in transgenic mice. Adipocyte, 2020, 9, 374-383.	1.3	13
516	The Adipokines in Cancer Cachexia. International Journal of Molecular Sciences, 2020, 21, 4860.	1.8	25
517	Adipose Tissue Metabolic Function and Dysfunction: Impact of Burn Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 599576.	1.8	13
518	Sigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts. Cellular Signalling, 2020, 75, 109732.	1.7	6
519	Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State. Cell Stem Cell, 2020, 27, 784-797.e11.	5.2	15
520	Biomarkers of Browning in Cold Exposed Siberian Adults. Nutrients, 2020, 12, 2162.	1.7	3
522	Inhibition of hedgehog signaling promotes white adipose tissue browning. Molecular and Cellular Endocrinology, 2020, 518, 110970.	1.6	14
523	YAP and TAZ protect against white adipocyte cell death during obesity. Nature Communications, 2020, 11, 5455.	5.8	34
524	Molecular insights into therapeutic promise of targeting of Wnt/β-catenin signaling pathway in obesity. Molecular Biology Reports, 2020, 47, 8091-8100.	1.0	7
525	Beige Fat Maintenance; Toward a Sustained Metabolic Health. Frontiers in Endocrinology, 2020, 11, 634.	1.5	33
526	Extracellular Vesicles from Adipose Tissue Stem Cells in Diabetes and Associated Cardiovascular Disease; Pathobiological Impact and Therapeutic Potential. International Journal of Molecular Sciences, 2020, 21, 9598.	1.8	12
527	Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells, 2020, 9, 2646.	1.8	11
528	Age-associated telomere attrition in adipocyte progenitors predisposes to metabolic disease. Nature Metabolism, 2020, 2, 1482-1497.	5.1	39

#	Article	IF	CITATIONS
529	Lysyl oxidase inhibition enhances browning of white adipose tissue and adaptive thermogenesis. Genes and Diseases, 2022, 9, 140-150.	1.5	1
530	The Intricate Role of p53 in Adipocyte Differentiation and Function. Cells, 2020, 9, 2621.	1.8	16
531	Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Frontiers in Cardiovascular Medicine, 2020, 7, 583175.	1.1	31
532	Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends in Cell Biology, 2020, 30, 937-950.	3.6	69
533	Do Bariatric Surgeries Enhance Brown/Beige Adipose Tissue Thermogenesis?. Frontiers in Endocrinology, 2020, 11, 275.	1.5	20
534	Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nature Communications, 2020, 11, 2303.	5.8	76
535	Oral administration of <i>Lactobacillus fermentum</i> CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food and Function, 2020, 11, 3879-3894.	2.1	23
536	Suppressing adipocyte inflammation promotes insulin resistance in mice. Molecular Metabolism, 2020, 39, 101010.	3.0	47
537	RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro. Nature Communications, 2020, 11, 2797.	5.8	34
538	The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms. International Journal of Molecular Sciences, 2020, 21, 4104.	1.8	23
539	A Cecropia peltata ethanolic extract reduces insulin resistance and hepatic steatosis in rats fed a high-fat diet. Journal of Ethnopharmacology, 2020, 261, 113087.	2.0	4
540	Angiopoietin-2–integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nature Communications, 2020, 11, 2980.	5.8	30
541	Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes and Endocrinology,the, 2020, 8, 616-627.	5.5	326
542	Developmental and functional heterogeneity of thermogenic adipose tissue. Journal of Molecular Cell Biology, 2020, 12, 775-784.	1.5	9
543	<i>Lactobacillus plantarum</i> KFY04 prevents obesity in mice through the PPAR pathway and alleviates oxidative damage and inflammation. Food and Function, 2020, 11, 5460-5472.	2.1	37
544	Transglutaminase 2 Has Metabolic and Vascular Regulatory Functions Revealed by In Vivo Activation of Alpha1-Adrenergic Receptor. International Journal of Molecular Sciences, 2020, 21, 3865.	1.8	3
545	Effects of 23-epi-26-deoxyactein on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity in C57BL/6 mice. Phytomedicine, 2020, 76, 153264.	2.3	10
546	The obesity paradox: does it exist in the perioperative period?. International Anesthesiology Clinics, 2020, 58, 14-20.	0.3	0

#	Article	IF	CITATIONS
547	Online fat detection and evaluation in modelling digital physiological fish. Aquaculture Research, 2020, 51, 3175-3190.	0.9	0
548	Withings Body Cardio Versus Gold Standards of Pulse-Wave Velocity and Body Composition. Journal of Personalized Medicine, 2020, 10, 17.	1.1	9
549	Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity inÂvivo. Molecular Metabolism, 2020, 36, 100965.	3.0	12
550	Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 22.	1.1	614
551	Epidermal Mineralocorticoid Receptor Inactivation Affects the Homeostasis of All SkinÂLayers in Chronologically Aged Mice. Journal of Investigative Dermatology, 2020, 140, 1899-1908.	0.3	5
552	Fat Wasting Is Damaging: Role of Adipose Tissue in Cancer-Associated Cachexia. Frontiers in Cell and Developmental Biology, 2020, 8, 33.	1.8	35
553	EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. International Journal of Molecular Sciences, 2020, 21, 1664.	1.8	313
554	Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 1273-1298.	1.3	216
555	ESRRG and PERM1 Govern Mitochondrial Conversion in Brite/Beige Adipocyte Formation. Frontiers in Endocrinology, 2020, 11, 387.	1.5	7
556	Exploring Therapeutic Targets to Reverse or Prevent the Transition from Metabolically Healthy to Unhealthy Obesity. Cells, 2020, 9, 1596.	1.8	19
557	The colorful versatility of adipocytes: whiteâ€toâ€brown transdifferentiation and its therapeutic potential in humans. FEBS Journal, 2021, 288, 3628-3646.	2.2	27
558	RXRα cooperates with KLF8 to promote the differentiation of intramuscular preadipocytes in goat. Animal Biotechnology, 2020, 32, 1-11.	0.7	2
559	Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158676.	1.2	44
560	Early-life programming of adipose tissue. Nutrition Research Reviews, 2020, 33, 244-259.	2.1	33
561	Morphological differences between regenerating salivary glands after salivary gland duct ligation and embryonic salivary glands. Annals of Anatomy, 2020, 229, 151482.	1.0	4
562	Parallel Lineage-Tracing Studies Establish Fibroblasts as the Prevailing InÂVivo Adipocyte Progenitor. Cell Reports, 2020, 30, 571-582.e2.	2.9	50
563	Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex II. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2462-2472.	3.3	46
564	Importance of adipocyte browning in the evolution of endothermy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190134.	1.8	14

#	Article	IF	CITATIONS
565	Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ as Negative Regulators of Adipogenesis. Cell Stem Cell, 2020, 26, 707-721.e5.	5.2	44
566	Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165811.	1.8	29
567	Sprouty1 Prevents Cellular Senescence Maintaining Proliferation and Differentiation Capacity of Human Adipose Stem/Progenitor Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2308-2319.	1.7	10
568	Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells, 2020, 9, 863.	1.8	26
569	Traditional Mexican foods as functional agents in the treatment of cardiometabolic risk factors. Critical Reviews in Food Science and Nutrition, 2021, 61, 1353-1364.	5.4	9
570	Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cellular and Molecular Life Sciences, 2021, 78, 227-247.	2.4	22
571	Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. Journal of Endocrinological Investigation, 2021, 44, 921-941.	1.8	32
572	SIAH2 is Expressed in Adipocyte Precursor Cells and Interacts with EBF1 and ZFP521 to Promote Adipogenesis. Obesity, 2021, 29, 98-107.	1.5	7
573	Untargeted Metabolomic Approach Shows No Differences in Subcutaneous Adipose Tissue of Diabetic and Non-Diabetic Subjects Undergoing Bariatric Surgery: An Exploratory Study. Biological Research for Nursing, 2021, 23, 109-118.	1.0	6
574	Celastrol alleviates metabolic disturbance in highâ€fat dietâ€induced obese mice through increasing energy expenditure by ameliorating metabolic inflammation. Phytotherapy Research, 2021, 35, 297-310.	2.8	14
575	A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue. Journal of Controlled Release, 2021, 329, 665-675.	4.8	27
576	Lactate fluxes mediated by the monocarboxylate transporter-1 are key determinants of the metabolic activityÂof beige adipocytes. Journal of Biological Chemistry, 2021, 296, 100137.	1.6	22
577	White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment. Molecular Metabolism, 2021, 44, 101137.	3.0	13
578	Control of adipogenic commitment by a STAT3-VSTM2A axis. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E259-E269.	1.8	8
579	Testosterone metabolites differentially regulate obesogenesis and fat distribution. Molecular Metabolism, 2021, 44, 101141.	3.0	36
580	BMP7 overexpression in adipose tissue induces white adipogenesis and improves insulin sensitivity in ob/ob mice. International Journal of Obesity, 2021, 45, 449-460.	1.6	12
581	Thermal Stress Induces Long-Term Remodeling of Adipose Tissue and Is Associated with Systemic Dysfunction. Shock, 2021, 56, 744-754.	1.0	5
582	Adipose tissue plasticity and the pleiotropic roles of BMP signaling. Journal of Biological Chemistry, 2021, 296, 100678.	1.6	22

		CITATION REPO	RT	
#	Article	IF	F	CITATIONS
583	Adiponectin, Leptin and Cardiovascular Disorders. Circulation Research, 2021, 128, 136-149.	2	0	158
584	Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense fu dermal adipocyte progenitors. Science Translational Medicine, 2021, 13, .	inction of 5	.8	25
585	Insights into current models for developing brown adipocytes from induced pluripotent stem 2021, , 95-115.	cells. ,		0
586	The protective effects of steamed ginger on adipogenesis in 3T3-L1 cells and adiposity in diet obese mice. Nutrition Research and Practice, 2021, 15, 279.	-induced o).7	5
587	Overexpression of Adiponectin Receptor 1 Inhibits Brown and Beige Adipose Tissue Activity ir International Journal of Molecular Sciences, 2021, 22, 906.	۱ Mice. 1	.8	3
589	Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Frontiers in C Developmental Biology, 2020, 8, 619888.	iell and 1	.8	27
590	Factors Affecting Metabolic Outcomes Post Bariatric Surgery: Role of Adipose Tissue. Journal Clinical Medicine, 2021, 10, 714.	of 1	.0	6
591	Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metabolism, 2021, 33, 437-453.e5.	7	.2	157
592	Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innot of subcutaneous fat. ELife, 2021, 10, .	ervation 2	2.8	24
593	The Role of Adipocyte Precursors in Development and Obesity. Frontiers in Endocrinology, 20 613606.	20, 11, 1	.5	11
594	Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics, 2021, 13	, 235-251. 1	.0	17
595	Early Childhood Fat Tissue Changes—Adipocyte Morphometry, Collagen Deposition, and Ex CD163+ Cells in Subcutaneous and Visceral Adipose Tissue of Male Children. International Joi Environmental Research and Public Health, 2021, 18, 3627.	pression of urnal of 1	.2	2
596	The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biol 2021, 22, 393-409.	ogy, 1	6.1	203
597	Browning of White Adipocytes in Fat Grafts Associated With Higher Level of Necrosis and Typ Macrophage Recruitment. Aesthetic Surgery Journal, 2021, 41, NP1092-NP1101.	pe 2 o).9	7
598	Generation and characterization of a Meflin-CreERT2 transgenic line for lineage tracing in whi adipose tissue. PLoS ONE, 2021, 16, e0248267.	te 1	.1	5
599	Beige Adipose Tissue Identification and Marker Specificity—Overview. Frontiers in Endocrino 12, 599134.	blogy, 2021, 1	.5	60
600	Investigation of Mitochondrial Adaptations to Modulation of Carbohydrate Supply during Adipogenesis of 3T3-L1 Cells by Targeted 1H-NMR Spectroscopy. Biomolecules, 2021, 11, 66	2. 1	.8	0
601	Glucoseâ€dependent insulinotropic polypeptide modifies adipose plasticity and promotes be adipogenesis of human omental adiposeâ€derived stem cells. FASEB Journal, 2021, 35, e2153	ige c 34).2	6

#	Article	IF	CITATIONS
602	Soyasaponin ameliorates obesity and reduces hepatic triacylglycerol accumulation by suppressing lipogenesis in highâ€fat dietâ€fed mice. Journal of Food Science, 2021, 86, 2103-2117.	1.5	8
603	Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell, 2021, 28, 685-701.e7.	5.2	57
604	Dickkopf (Dkk)-2 is a beige fat-enriched adipokine to regulate adipogenesis. Biochemical and Biophysical Research Communications, 2021, 548, 211-216.	1.0	5
605	Quantification of adipocyte numbers following adipose tissue remodeling. Cell Reports, 2021, 35, 109023.	2.9	12
606	Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metabolism, 2021, 33, 748-757.	7.2	51
607	Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. Journal of Innate Immunity, 2022, 14, 4-30.	1.8	49
608	Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Frontiers in Endocrinology, 2021, 12, 651763.	1.5	38
609	Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 2021, 128, 951-968.	2.0	243
610	Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism, 2021, 3, 469-484.	5.1	63
611	Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell and Bioscience, 2021, 11, 66.	2.1	26
612	A Comparison of Two Structurally Related Human Milk Oligosaccharide Conjugates in a Model of Diet-Induced Obesity. Frontiers in Immunology, 2021, 12, 668217.	2.2	3
613	Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion. Trends in Endocrinology and Metabolism, 2021, 32, 320-332.	3.1	16
615	Reduction in endoplasmic reticulum stress activates beige adipocytes differentiation and alleviates high fat diet-induced metabolic phenotypes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166099.	1.8	12
616	Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. International Journal of Molecular Sciences, 2021, 22, 5906.	1.8	14
617	Mice with Fabp4-Cre ablation of Arid5b are resistant to diet-induced obesity and hepatic steatosis. Molecular and Cellular Endocrinology, 2021, 528, 111246.	1.6	9
618	MYOD1 inhibits avian adipocyte differentiation via miRNA-206/KLF4 axis. Journal of Animal Science and Biotechnology, 2021, 12, 55.	2.1	12
619	<i>Trans</i> -palmitoleic acid reduces adiposity via increased lipolysis in a rodent model of diet-induced obesity. British Journal of Nutrition, 2022, 127, 801-809.	1.2	3
620	Partial Deficiency of Zfp217 Resists High-Fat Diet-Induced Obesity by Increasing Energy Metabolism in Mice. International Journal of Molecular Sciences, 2021, 22, 5390.	1.8	5

#	Article	IF	CITATIONS
621	Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release, 2021, 333, 339-351.	4.8	28
622	AP2-microRNA-26a overexpression reduces visceral fat mass and blood lipids. Molecular and Cellular Endocrinology, 2021, 528, 111217.	1.6	3
623	MYH9 facilitates autoregulation of adipose tissue depot development. JCI Insight, 2021, 6, .	2.3	3
624	PTIP Deficiency in B Lymphocytes Reduces Subcutaneous Fat Deposition in Mice. Biochemistry (Moscow), 2021, 86, 568-576.	0.7	0
625	Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Developmental Cell, 2021, 56, 1437-1451.e3.	3.1	51
626	The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1111-1119.	2.6	10
627	Ube2i deletion in adipocytes causes lipoatrophy in mice. Molecular Metabolism, 2021, 48, 101221.	3.0	9
628	Effects of Dietary Fatty Acid Composition on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients, 2021, 13, 2022.	1.7	4
629	A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell, 2021, 28, 1160-1176.e7.	5.2	74
630	Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Frontiers in Physiology, 2021, 12, 689747.	1.3	26
631	MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down?. European Journal of Endocrinology, 2021, 184, R243-R259.	1.9	24
632	Intercellular and inter-organ crosstalk in browning of white adipose tissue: molecular mechanism and therapeutic complications. Journal of Molecular Cell Biology, 2021, 13, 466-479.	1.5	8
633	Genistein improves systemic metabolism and enhances cold resistance by promoting adipose tissue beiging. Biochemical and Biophysical Research Communications, 2021, 558, 154-160.	1.0	7
634	Cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nature Communications, 2021, 12, 3482.	5.8	18
635	DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Reports, 2021, 35, 109281.	2.9	9
636	Plasticity and heterogeneity of thermogenic adipose tissue. Nature Metabolism, 2021, 3, 751-761.	5.1	29
637	Activation of Cx43 Hemichannels Induces the Generation of Ca2+ Oscillations in White Adipocytes and Stimulates Lipolysis. International Journal of Molecular Sciences, 2021, 22, 8095.	1.8	13
638	Single-Cell Proteomics Reveals the Defined Heterogeneity of Resident Macrophages in White Adipose Tissue. Frontiers in Immunology, 2021, 12, 719979.	2.2	24

#	Article	IF	CITATIONS
639	Functional triterpenoids from medicinal fungi Ganoderma applanatum: A continuous search for antiadipogenic agents. Bioorganic Chemistry, 2021, 112, 104977.	2.0	9
640	Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?. Physiology, 2021, 36, 246-255.	1.6	12
641	The Mechanism of Oral Melatonin Ameliorates Intestinal and Adipose Lipid Dysmetabolism Through Reducing Escherichia Coli-Derived Lipopolysaccharide. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1643-1667.	2.3	13
642	Maternal Nutrition and Developmental Programming of Male Progeny. Animals, 2021, 11, 2216.	1.0	7
643	Retinol-binding protein 4 in obesity and metabolic dysfunctions. Molecular and Cellular Endocrinology, 2021, 531, 111312.	1.6	37
644	ASCâ€1 transporterâ€dependent amino acid uptake is required for the efficient thermogenic response of human adipocytes to adrenergic stimulation. FEBS Letters, 2021, 595, 2085-2098.	1.3	22
645	Formation of thermogenic adipocytes: What we have learned from pigs. Fundamental Research, 2021, 1, 495-502.	1.6	8
646	Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101518.	2.2	14
647	Mesothelial cells are not a source of adipocytes in mice. Cell Reports, 2021, 36, 109388.	2.9	22
648	Brown adipose tissue in children and its metabolic function. Hormone Research in Paediatrics, 2021, , .	0.8	1
649	Đ"еÑ"Đ,цĐ,Ñ, PTIP Đ² Đ'-Đ»Đ,Đ¼Ñ"Đ¾Ñ†Đ,Ñ,Đ°Ñ ÑĐ½Đ,жаеÑ, заĐ;аÑĐ°Đ½Đ,е Đ;Đ¾ĐĐºĐ¾	ŧÐ ঀÐ /2о	4ÐØÐ¾Ð¶Ð
650	Breast Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in Lean and Obese Female Mice. Endocrinology, 2021, 162, .	1.4	14
651	Histone Deacetylase 3 Regulates Adipocyte Phenotype at Early Stages of Differentiation. International Journal of Molecular Sciences, 2021, 22, 9300.	1.8	6
652	Accelerated developmental adipogenesis programs adipose tissue dysfunction and cardiometabolic risk in offspring born to dams with metabolic dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E581-E591.	1.8	5
653	Fat biology and metabolic balance: On the significance of sex. Molecular and Cellular Endocrinology, 2021, 533, 111336.	1.6	10
654	Molecular Imaging of Brown Adipose Tissue Mass. International Journal of Molecular Sciences, 2021, 22, 9436.	1.8	13
655	Smad2/3 Activation Regulates Smad1/5/8 Signaling via a Negative Feedback Loop to Inhibit 3T3-L1 Adipogenesis. International Journal of Molecular Sciences, 2021, 22, 8472.	1.8	9
656	TMBIM1 is an inhibitor of adipogenesis and its depletion promotes adipocyte hyperplasia and improves obesity-related metabolic disease. Cell Metabolism, 2021, 33, 1640-1654.e8.	7.2	22

#	Article	IF	CITATIONS
657	The role of Wnt pathway in obesity induced inflammation and diabetes: a review. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1871-1882.	0.8	7
658	Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications, 2021, 12, 4829.	5.8	15
659	HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. Molecular Therapy - Nucleic Acids, 2022, 27, 200-210.	2.3	9
660	Heparan sulfate promotes differentiation of white adipocytes to maintain insulin sensitivity and glucose homeostasis. Journal of Biological Chemistry, 2021, 297, 101006.	1.6	7
661	Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver–Adipose Tissue Crosstalk. Antioxidants and Redox Signaling, 2021, 35, 753-774.	2.5	21
662	Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Experimental Gerontology, 2021, 155, 111561.	1.2	56
663	Caudatin suppresses adipogenesis in 3T3-L1 adipocytes and reduces body weight gain in high-fat diet-fed mice through activation of hedgehog signaling. Phytomedicine, 2021, 92, 153715.	2.3	11
664	Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Molecular Metabolism, 2021, 53, 101307.	3.0	14
665	Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Molecular Metabolism, 2021, 54, 101328.	3.0	9
666	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80.		2
666 667	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , .	0.2	2 8
666 667 668	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , . Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132.	0.2	2 8 12
666 667 668 669	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , . Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132. Endocrine Regulation of Brown and Beige Adipose Tissue. , 2021, , 247-259.	0.2	2 8 12 2
6667 6668 6669 670	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , . Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132. Endocrine Regulation of Brown and Beige Adipose Tissue. , 2021, , 247-259. Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	0.2 1.2 16.1	2 8 12 2 152
 666 667 668 669 670 671 	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , . Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132. Endocrine Regulation of Brown and Beige Adipose Tissue. , 2021, , 247-259. Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258. From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. Advances in Experimental Medicine and Biology, 2019, 1178, 207-225.	0.2 1.2 16.1 0.8	2 8 12 2 152 5
 666 667 668 669 670 671 672 	Insights into the adipose stem cell niche in health and disease., 2022,, 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021,, Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132. Endocrine Regulation of Brown and Beige Adipose Tissue., 2021,, 247-259. Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258. From White to Brown â€ ^a Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. Advances in Experimental Medicine and Biology, 2019, 1178, 207-225. Adipocyte Specific Signaling., 2020, 409-436.	0.2 1.2 16.1 0.8	2 8 12 2 152 5 2
 666 667 668 669 670 671 672 673 	Insights into the adipose stem cell niche in health and disease., 2022, , 57-80. Isolation and Differentiation of Primary White and Brown Preadipocytes from Newborn Mice. Journal of Visualized Experiments, 2021, , . Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132. Endocrine Regulation of Brown and Beige Adipose Tissue., 2021, , 247-259. Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258. From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. Advances in Experimental Medicine and Biology, 2019, 1178, 207-225. Adipocyte Specific Signaling., 2020, 409-436. Fat Cell and Fatty Acid Turnover in Obesity. Advances in Experimental Medicine and Biology, 2017, 960, 135-160.	0.2 1.2 16.1 0.8 0.8	2 8 12 2 152 5 2 2

#	Article	IF	CITATIONS
675	CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. Advances in Experimental Medicine and Biology, 2020, 1276, 197-222.	0.8	17
676	PET Imaging of Human Brown Adipose Tissue with the TSPO Tracer [11C]PBR28. Molecular Imaging and Biology, 2018, 20, 188-193.	1.3	27
677	Deconstructing Adipogenesis Induced by β3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metabolism, 2018, 28, 300-309.e4.	7.2	250
678	Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Molecular Metabolism, 2018, 7, 35-44.	3.0	76
679	Identification and characterization of adipose surface epitopes. Biochemical Journal, 2020, 477, 2509-2541.	1.7	9
680	Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochemical Journal, 2020, 477, 583-600.	1.7	58
681	Epigenetic dynamics of the thermogenic gene program of adipocytes. Biochemical Journal, 2020, 477, 1137-1148.	1.7	14
682	Thermogenic adipocytes: lineage, function and therapeutic potential. Biochemical Journal, 2020, 477, 2071-2093.	1.7	18
683	Adipose stem cells in obesity: challenges and opportunities. Bioscience Reports, 2020, 40, .	1.1	32
684	Adipocyte dedifferentiation in health and diseases. Clinical Science, 2019, 133, 2107-2119.	1.8	45
685	Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clinical Science, 2019, 133, 2329-2344.	1.8	45
686	Supplementation of polar lipidsâ€enriched milk fat globule membrane in highâ€fat dietâ€fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB Journal, 2020, 34, 4619-4634.	0.2	16
687	Adipose tissue in health and disease. Open Biology, 2020, 10, 200291.	1.5	38
691	Lipodystrophy: A paradigm for understanding the consequences of "overloading" adipose tissue. Physiological Reviews, 2021, 101, 907-993.	13.1	35
692	Fat fibrosis: friend or foe?. JCI Insight, 2018, 3, .	2.3	98
693	Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight, 2017, 2, e90349.	2.3	66
694	Critical lipids link breastfeeding to healthy adipose tissue in infancy and adulthood. Journal of Clinical Investigation, 2019, 129, 2198-2200.	3.9	3
695	Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. Journal of Clinical Investigation, 2019, 130, 247-257.	3.9	134

#	Article	IF	CITATIONS
696	Contribution of adipogenesis to healthy adipose tissue expansion in obesity. Journal of Clinical Investigation, 2019, 129, 4022-4031.	3.9	326
697	Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. Journal of Clinical Investigation, 2019, 129, 4032-4040.	3.9	157
698	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	3.9	112
699	Cellular heterogeneity in brown adipose tissue. Journal of Clinical Investigation, 2019, 130, 65-67.	3.9	11
700	Targeting nuclear receptor NR4A1–dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. Journal of Clinical Investigation, 2018, 128, 4898-4911.	3.9	23
701	Exercise training regulates angiogenic gene expression in white adipose tissue. Journal of Exercise Rehabilitation, 2018, 14, 16-23.	0.4	12
702	Reduced UCP-1 Content in In Vitro Differentiated Beige/Brite Adipocytes Derived from Preadipocytes of Human Subcutaneous White Adipose Tissues in Obesity. PLoS ONE, 2014, 9, e91997.	1.1	67
703	Browning of White Adipose Tissue Uncouples Glucose Uptake from Insulin Signaling. PLoS ONE, 2014, 9, e110428.	1.1	42
704	Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells. PLoS ONE, 2016, 11, e0152129.	1.1	11
705	Total control of fat cells from adipogenesis to apoptosis using a xanthene analog. PLoS ONE, 2017, 12, e0179158.	1.1	9
706	Metabolic characteristics and therapeutic potential of brown and ?beige? adipose tissues. Diabetes Mellitus, 2014, 17, 5-15.	0.5	11
707	Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Reports, 2020, 21, e50085.	2.0	33
708	Adipose tissue browning in mice and humans. Journal of Endocrinology, 2019, 241, R97-R109.	1.2	97
709	A review on the current drugs and new targets for obesity. Journal of Applied Pharmaceutical Research, 2020, 8, 11-21.	0.1	3
710	Skin aging: are adipocytes the next target?. Aging, 2016, 8, 1457-1469.	1.4	48
712	Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution. International Journal of Molecular Sciences, 2021, 22, 261.	1.8	4
713	Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian Journal of Andrology, 2015, 17, 942.	0.8	36
714	General Theory of Body Contouring: 2. Modulation of Mechanical Properties of Subcutaneous Fat Tissue. Journal of Cosmetics Dermatological Sciences and Applications, 2014, 04, 117-127.	0.1	6

#	Article	IF	CITATIONS
715	Adipose-derived stromal/stem cells from different adipose depots in obesity development. World Journal of Stem Cells, 2019, 11, 147-166.	1.3	37
716	An alternative splicing program promotes adipose tissue thermogenesis. ELife, 2016, 5, .	2.8	55
717	Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice. ELife, 2017, 6, .	2.8	39
718	Distinct cellular and molecular mechanisms for \hat{I}^23 adrenergic receptor-induced beige adipocyte formation. ELife, 2017, 6, .	2.8	106
719	Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. ELife, 2018, 7, .	2.8	227
720	Single cell analysis reveals immune cell–adipocyte crosstalk regulating the transcription of thermogenic adipocytes. ELife, 2019, 8, .	2.8	110
721	Limitation of adipose tissue by the number of embryonic progenitor cells. ELife, 2020, 9, .	2.8	4
722	Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. ELife, 2020, 9, .	2.8	33
724	Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis. Molecular Metabolism, 2021, 54, 101357.	3.0	25
725	Boneâ€derived sclerostin and Wnt/βâ€catenin signaling regulate PDGFRα ⁺ adipoprogenitor cell differentiation. FASEB Journal, 2021, 35, e21957.	0.2	17
726	The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nature Reviews Endocrinology, 2021, 17, 726-744.	4.3	81
727	ZFP423 controls EBF2 coactivator recruitment and PPARÎ ³ occupancy to determine the thermogenic plasticity of adipocytes. Genes and Development, 2021, 35, 1461-1474.	2.7	15
728	Loss of the ciliary gene <i>Bbs4</i> results in defective thermogenesis due to metabolic inefficiency and impaired lipid metabolism. FASEB Journal, 2021, 35, e21966.	0.2	3
729	General Theory of Body Contouring: 1. Processes of Quick and Slow Modulation of Subcutaneous Fat Tissue. Journal of Cosmetics Dermatological Sciences and Applications, 2014, 04, 107-116.	0.1	1
730	Brown and Beige Fat: Therapeutic Potential in Obesity. Indonesian Biomedical Journal, 2014, 6, 65.	0.2	1
731	MicroRNA-Regulated Immune Cell Function in Obese Adipose Tissue. , 2017, , 1-18.		0
734	Adipoz doku ve adipoz dokudan salgılanan bazı proteinler. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2017, 5, 155-178.	0.3	5
736	Single-Cell RNA Sequencing Identifies Functionally Distinct Fibro-inflammatory and Adipogenic Pdgfrr Progenitor Subpopulations in Visceral Adipose Tissue. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
738	Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ As Negative Regulators of Adipogenesis. SSRN Electronic Journal, 0, , .	0.4	0
740	Role of small proliferative adipocytes: possible beige cell progenitors. Journal of Endocrinology, 2020, 245, 65-78.	1.2	5
741	Phenotypes of obesity in children, clinical manifestations and genetic associations. Zdorovʹe Rebenka, 2020, 15, 238-251.	0.0	2
742	Physical and Physiological Properties of Fat. Advances in Magnetic Resonance Technology and Applications, 2020, , 667-679.	0.0	1
743	Cardiometabolic and Cardiovascular Complications of Obesity in Children. International Journal of Pediatrics and Child Health, 2020, 8, 46-62.	0.1	0
744	An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming. ELife, 2020, 9, .	2.8	4
745	Identification of SCARA3 with potential roles in metabolic disorders. Aging, 2021, 13, 2149-2167.	1.4	12
746	Ajuba functions as a co-activator of C/EBPβ to induce expression of PPARγ and C/EBPα during adipogenesis. Molecular and Cellular Endocrinology, 2022, 539, 111485.	1.6	9
748	When Pandemics Collide: the Interplay of Obesity and COVID-19. Current Gastroenterology Reports, 2021, 23, 26.	1.1	5
751	In Lyl1 mice, adipose stem cell vascular niche impairment leads to premature development of fat tissues. Stem Cells, 2021, 39, 78-91.	1.4	3
752	EH Domain-Containing 2 Deficiency Restricts Adipose Tissue Expansion and Impairs Lipolysis in Primary Inguinal Adipocytes. Frontiers in Physiology, 2021, 12, 740666.	1.3	0
753	EH Domain-Containing 2 Deficiency Restricts Adipose Tissue Expansion and Impairs Lipolysis in Primary Inguinal Adipocytes. Frontiers in Physiology, 2021, 12, 740666.	1.3	3
755	A Nondestructive Method of Measuring Zebrafish Adipose Tissue Based on Micro-Computed Tomography (Micro-CT). Applied Sciences (Switzerland), 2021, 11, 10510.	1.3	5
756	Adipose Tissue Fibrosis in Obesity: Etiology and Challenges. Annual Review of Physiology, 2022, 84, 135-155.	5.6	49
757	SORLA is required for insulin-induced expansion of the adipocyte precursor pool in visceral fat. Journal of Cell Biology, 2021, 220, .	2.3	1
758	Stimuler les tissus adipeux bruns et beigesÂ: un levier thérapeutiqueÂ?. Medecine Des Maladies Metaboliques, 2021, 15, 753-753.	0.1	0
759	Conditional gene targeting using UCP1-Cre mice directly targets the central nervous system beyond thermogenic adipose tissues. Molecular Metabolism, 2022, 55, 101405.	3.0	16
760	In <i>Lyl1 â^'/â^'</i> mice, adipose stem cell vascular niche impairment leads to premature development of fat tissues. Stem Cells, 2021, 39, 78-91.	1.4	4

#	Article	IF	CITATIONS
761	Hepatocyte TGFâ€Î² Signaling Inhibiting WAT Browning to Promote NAFLD and Obesity Is Associated With Letâ€7bâ€5p. Hepatology Communications, 2022, 6, 1301-1321.	2.0	20
762	Equisetin is an anti-obesity candidate through targeting 11β-HSD1. Acta Pharmaceutica Sinica B, 2022, 12, 2358-2373.	5.7	5
763	From Obesity to Diabetes: The Role of the Adipose Organ. Handbook of Experimental Pharmacology, 2022, , 75-92.	0.9	10
764	Survivin is essential for thermogenic program and metabolic homeostasis in mice. Molecular Metabolism, 2022, 58, 101446.	3.0	4
765	A Cycle of Inflammatory Adipocyte Death and Regeneration in Murine Adipose Tissue. Diabetes, 2022, 71, 412-423.	0.3	4
766	Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metabolism, 2022, 34, 458-472.e6.	7.2	56
767	Telomerase reverse transcriptase expression marks a population of rare adipose tissue stem cells. Stem Cells, 2022, 40, 102-111.	1.4	1
768	Highâ€Fatâ€Dietâ€Induced Extracellular Matrix Deposition Regulates Integrin—FAK Signals in Adipose Tissue to Promote Obesity. Molecular Nutrition and Food Research, 2022, 66, e2101088.	1.5	7
769	Bisphenol F suppresses insulin-stimulated glucose metabolism in adipocytes by inhibiting IRS-1/PI3K/AKT pathway. Ecotoxicology and Environmental Safety, 2022, 231, 113201.	2.9	16
770	Adipose-tissue plasticity in health and disease. Cell, 2022, 185, 419-446.	13.5	252
771	Understanding the complexity of insulin resistance. Nature Reviews Endocrinology, 2022, , .	4.3	3
772	Novel insights into adipose tissue heterogeneity. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 5-12.	2.6	22
773	Melatonin induces fat browning by transdifferentiation of white adipocytes and <i>de novo</i> differentiation of mesenchymal stem cells. Food and Function, 2022, 13, 3760-3775.	2.1	5
774	Stable Isotope Tracing and Metabolomics to Study In Vivo Brown Adipose Tissue Metabolic Fluxes. Methods in Molecular Biology, 2022, 2448, 119-130.	0.4	4
775	Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cellular and Molecular Life Sciences, 2022, 79, 139.	2.4	28
776	Cold Exposure Induces Depot-Specific Alterations in Fatty Acid Composition and Transcriptional Profile in Adipose Tissues of Pigs. Frontiers in Endocrinology, 2022, 13, 827523.	1.5	4
777	Functional and Genetic Characterization of Porcine Beige Adipocytes. Cells, 2022, 11, 751.	1.8	2
778	Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Frontiers in Endocrinology, 2022, 13, 849877.	1.5	7

#	Article	IF	CITATIONS
779	A single-cell atlas of human and mouse white adipose tissue. Nature, 2022, 603, 926-933.	13.7	277
780	Suppression of Adipogenesis and Fat Accumulation by Vitexin Through Activation of Hedgehog Signaling in 3T3-L1 Adipocytes. Journal of Medicinal Food, 2022, 25, 313-323.	0.8	3
781	Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice. Physiological Reports, 2022, 10, e15205.	0.7	17
782	Quercetin May Improve Fat Graft Survival by Promoting Fat Browning Peripherally. Aesthetic Plastic Surgery, 2022, 46, 2517-2525.	0.5	5
783	Exercise and/or Cold Exposure Alters the Gene Expression Profile in the Fat Body and Changes the Heart Function in Drosophila. Frontiers in Endocrinology, 2022, 13, 790414.	1.5	4
784	It Is Not Just Fat: Dissecting the Heterogeneity of Adipose Tissue Function. Current Diabetes Reports, 2022, 22, 177-187.	1.7	4
785	The shades of grey in adipose tissue reprogramming. Bioscience Reports, 2022, 42, .	1.1	5
786	New Insights Into the Interplay Among Autophagy, the NLRP3 Inflammasome and Inflammation in Adipose Tissue. Frontiers in Endocrinology, 2022, 13, 739882.	1.5	7
788	Immune Cell Regulation of White Adipose Progenitor Cell Fate. Frontiers in Endocrinology, 2022, 13, 859044.	1.5	5
789	Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Frontiers in Endocrinology, 2022, 13, 812802.	1.5	5
790	Ketogenic diet and cancer: Fad or fabulous?. Journal of Parenteral and Enteral Nutrition, 2021, 45, 26-32.	1.3	5
791	CHRNA2: a new paradigm in beige thermoregulation and metabolism. Trends in Cell Biology, 2022, 32, 479-489.	3.6	4
792	FGF1 promotes the differentiation of goat intramuscular and subcutaneous preadipocytes. Animal Biotechnology, 2023, 34, 1196-1208.	0.7	6
793	Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. International Journal of Molecular Sciences, 2022, 23, 322.	1.8	8
794	Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche. Biomolecules, 2021, 11, 1906.	1.8	8
795	Impact of microRNA Regulated Macrophage Actions on Adipose Tissue Function in Obesity. Cells, 2022, 11, 1336.	1.8	7
796	Tetracycline response element driven Cre causes ectopic recombinase activity independent of transactivator element. Molecular Metabolism, 2022, 61, 101501.	3.0	4
797	Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metabolism, 2022, 34, 783-799.e7.	7.2	24

#	Article	IF	CITATIONS
806	Adipocyte-Derived Serum Amyloid A Promotes Angiotensin II–Induced Abdominal Aortic Aneurysms in Obese C57BL/6J Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 632-643.	1.1	4
808	Time-specific changes in DNA methyltransferases associated with the leptin promoter during the development of obesity. Nutricion Hospitalaria, 2014, 30, 1248-55.	0.2	15
809	Adiponectin Deficiency Alters Placenta Function but Does Not Affect Fetal Growth in Mice. International Journal of Molecular Sciences, 2022, 23, 4939.	1.8	4
810	YAP-dependent Wnt5a induction in hypertrophic adipocytes restrains adiposity. Cell Death and Disease, 2022, 13, 407.	2.7	4
811	Discovery and functional assessment of a novel adipocyte population driven by intracellular Wnt/β-catenin signaling in mammals. ELife, 2022, 11, .	2.8	5
812	Prepubertal androgen signaling is required to establish male fat distribution. Stem Cell Reports, 2022, 17, 1081-1088.	2.3	3
813	Integrated lipidomics and RNA sequencing analysis reveal novel changes during 3T3-L1 cell adipogenesis. PeerJ, 2022, 10, e13417.	0.9	4
814	Role of adipose tissue macrophages in obesity-related disorders. Journal of Experimental Medicine, 2022, 219, .	4.2	31
815	Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biology, 2022, 110, 106-128.	1.5	12
817	Monocarboxylate transporter 1 deficiency impacts CD8+ T lymphocytes proliferation and recruitment to adipose tissue during obesity. IScience, 2022, 25, 104435.	1.9	12
818	Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2022, 23, 5986.	1.8	4
819	Lipolysis-Derived Linoleic Acid Drives Beige Fat Progenitor Cell Proliferation via CD36. SSRN Electronic Journal, 0, , .	0.4	0
820	CircRNA Profiling Reveals CircPPARÎ ³ Modulates Adipogenic Differentiation via Sponging miR-92a-3p. Journal of Agricultural and Food Chemistry, 2022, 70, 6698-6708.	2.4	7
821	Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Reports, 2022, 23, .	2.0	3
822	Participation of lipopolysaccharide in hyperplasic adipose expansion: Involvement of <scp>NADPH</scp> oxidase/ <scp>ROS</scp> /p42/p44 <scp>MAPK</scp> â€dependent Cyclooxygenaseâ€2. Journal of Cellular and Molecular Medicine, 2022, 26, 3850-3861.	1.6	3
823	White, Brown and Beige Adipocytes: From the Tissue to the Single-Cell Level. , 2022, , .		0
824	Adipocyte-specific ablation of the Ca2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue. Molecular Metabolism, 2022, 63, 101535.	3.0	3
825	Irisin reduces the abnormal reproductive and metabolic phenotypes of PCOS by regulating the activity of brown adipose tissue in mice. Biology of Reproduction, 0, , .	1.2	7

#	Article	IF	Citations
826	Role of adipocyte browning in prostate and breast tumor microenvironment. Tzu Chi Medical Journal, 2022, 34, 359.	0.4	1
827	Angiotensin II Promotes White Adipose Tissue Browning and Lipolysis in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	2
828	Knockdown of VEGFB/VEGFR1 Signaling Promotes White Adipose Tissue Browning and Skeletal Muscle Development. International Journal of Molecular Sciences, 2022, 23, 7524.	1.8	3
829	Induction of beigeâ€like adipocyte markers and functions in 3T3â€⊾1 cells by Clk1 and PKCβII inhibitory molecules. Journal of Cellular and Molecular Medicine, 0, , .	1.6	1
830	The Role of Thermogenic Fat Tissue in Energy Consumption. Current Issues in Molecular Biology, 2022, 44, 3166-3179.	1.0	2
831	Angiogenesis in adipose tissue and obesity. Angiogenesis, 2022, 25, 439-453.	3.7	28
832	Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells, 2022, 11, 2310.	1.8	12
833	Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson's disease. Behavioural Brain Research, 2022, 434, 114019.	1.2	1
834	Thermogenic adipose tissue aging: Mechanisms and implications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10
835	Ceiling culture of human mature white adipocytes with a browning agent: A novel approach to induce transdifferentiation into beige adipocytes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
836	Overexpression of Pregnancy Zone Protein in Fat Antagonizes Diet-Induced Obesity Under an Intermittent Fasting Regime. Frontiers in Physiology, 0, 13, .	1.3	2
837	The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. Fermentation, 2022, 8, 376.	1.4	5
839	Distinct functional properties of murine perinatal and adult adipose progenitor subpopulations. Nature Metabolism, 2022, 4, 1055-1070.	5.1	10
840	Dysregulated adipose tissue expansion and impaired adipogenesis in Prader-Willi syndrome children before obesity-onset. Metabolism: Clinical and Experimental, 2022, 136, 155295.	1.5	5
841	The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	15
842	Of mice and men: Pinpointing species differences in adipose tissue biology. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
843	Pathophysiology of obesity. , 2023, , 31-47.		0
844	Physiology of obesity and metabolism. , 2023, , 7-21.		0

#	ARTICLE Effects of long-term administration of theasinensin A on healthy C57BL/6J mice: Enhancing the	IF	CITATIONS
845	function of epididymal white adipose tissue and regulating the colonic microenvironment. Food Chemistry, 2023, 403, 134477.	4.2	3
846	Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity. International Journal of Molecular Sciences, 2022, 23, 9871.	1.8	1
847	Adipose Tissue Remodeling in Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 71-93.	9.6	26
848	Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nature Metabolism, 2022, 4, 1166-1184.	5.1	16
849	The Adipose Organ Is a Unitary Structure in Mice and Humans. Biomedicines, 2022, 10, 2275.	1.4	10
850	Adipose extracellular matrix deposition is an indicator of obesity and metabolic disorders. Journal of Nutritional Biochemistry, 2023, 111, 109159.	1.9	9
851	Macrophages, Chronic Inflammation, and Insulin Resistance. Cells, 2022, 11, 3001.	1.8	41
852	The role of RNA m6A methylation in lipid metabolism. Frontiers in Endocrinology, 0, 13, .	1.5	16
854	Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism: Clinical and Experimental, 2023, 138, 155328.	1.5	6
855	Obesity, inflammation, and cancer in dogs: Review and perspectives. Frontiers in Veterinary Science, 0, 9, .	0.9	6
856	miR-379 mediates insulin resistance and obesity through impaired angiogenesis and adipogenesis regulated by ER stress. Molecular Therapy - Nucleic Acids, 2022, 30, 115-130.	2.3	5
857	The Single-Cell Revelation of Thermogenic Adipose Tissue. Molecules and Cells, 2022, 45, 673-684.	1.0	2
858	Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings?. International Journal of Molecular Sciences, 2022, 23, 13142.	1.8	5
859	Maternal inappropriate calcium intake aggravates dietary-induced obesity in male offspring by affecting the differentiation potential of mesenchymal stem cells. World Journal of Stem Cells, 0, 14, 756-776.	1.3	3
861	Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues. Pharmaceuticals, 2022, 15, 1305.	1.7	2
862	Chronic cAMP activation induces adipocyte browning through discordant biphasic remodeling of transcriptome and chromatin accessibility. Molecular Metabolism, 2022, 66, 101619.	3.0	3
863	Depot-specific adipose tissue modulation by SGLT2 inhibitors and GLP1 agonists mediates their cardioprotective effects in metabolic disease. Clinical Science, 2022, 136, 1631-1651.	1.8	2
865	Twoâ€sided roles of adipose tissue: Rethinking the obesity paradox in various human diseases from a new perspective. Obesity Reviews, 2023, 24, .	3.1	3

#	Article	IF	CITATIONS
866	Sex Differences in Adipose Tissue Distribution Determine Susceptibility to Neuroinflammation in Mice With Dietary Obesity. Diabetes, 2023, 72, 245-260.	0.3	4
867	Oleic acid regulates the circadian rhythm of adipose tissue in obesity. Pharmacological Research, 2023, 187, 106579.	3.1	0
868	Circular RNA circZEB1 regulates goat brown adipocytes differentiation and thermogenesis through miR-326–3p. Small Ruminant Research, 2023, 218, 106884.	0.6	1
869	Ciliary control of adipocyte progenitor cell fate regulates energy storage. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
870	Characterization of sclerostin's response within white adipose tissue to an obesogenic diet at rest and in response to acute exercise in male mice. Frontiers in Physiology, 0, 13, .	1.3	0
871	Stage-specific nutritional management and developmental programming to optimize meat production. Journal of Animal Science and Biotechnology, 2023, 14, .	2.1	4
872	Depot-Dependent Impact of Time-Restricted Feeding on Adipose Tissue Metabolism in High Fat Diet-Induced Obese Male Mice. Nutrients, 2023, 15, 238.	1.7	5
873	Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants, 2023, 12, 196.	2.2	2
874	Diabetes Mellitus: Quantum MicroRNA Language with Artificial Intelligence (MIRAI) as an Early Diagnostic Tool for Type 2 Diabetes Mellitus for Sustainable Healthcare. , 2023, , 79-101.		0
875	Fibroblast Growth Factor 6 Promotes Adipocyte Progenitor Cell Proliferation for Adipose Tissue Homeostasis. Diabetes, 2023, 72, 467-482.	0.3	3
876	Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice. Mechanisms of Ageing and Development, 2023, 210, 111775.	2.2	3
878	Adipogenic effects of Ostreae Testa water extract on white adipocytes. Molecular and Cellular Toxicology, 2024, 20, 159-165.	0.8	0
880	Swimming in cold water upregulates genes involved in thermogenesis and the browning of white adipose tissues. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2023, 265, 110834.	0.7	2
881	Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Reports, 2023, 42, 112390.	2.9	3
882	Involvement of a novel cAMP signaling mediator for beige adipogenesis. Metabolism: Clinical and Experimental, 2023, 143, 155536.	1.5	2
883	CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sciences, 2023, 322, 121652.	2.0	0
884	Growth of meat animals/adipose tissue development. , 2022, , .		0
885	Endotrophin neutralization through targeted antibody treatment protects from renal fibrosis in a podocyte ablation model. Molecular Metabolism, 2023, 69, 101680.	3.0	3

#	Article	IF	CITATIONS
886	GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Molecular Metabolism, 2023, 69, 101682.	3.0	3
887	Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Medicine, 2023, 21, .	2.3	7
888	Capturing the multifaceted function of adipose tissue macrophages. Frontiers in Immunology, 0, 14, .	2.2	2
889	An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Frontiers in Endocrinology, 0, 14, .	1.5	19
890	Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Reports, 2023, 42, 112166.	2.9	2
891	Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Frontiers in Immunology, 0, 14, .	2.2	8
892	Adipose tissue at single-cell resolution. Cell Metabolism, 2023, 35, 386-413.	7.2	30
893	Obesity and the risk of cardiometabolic diseases. Nature Reviews Cardiology, 2023, 20, 475-494.	6.1	48
894	Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. IScience, 2023, 26, 106289.	1.9	2
895	Thermogenic adipose tissue in energy regulation and metabolic health. Frontiers in Endocrinology, 0, 14, .	1.5	8
897	An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nature Communications, 2023, 14, .	5.8	35
898	White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients, 2023, 15, 1722.	1.7	8
899	Ctnnb1/ \hat{l}^2 -catenin inactivation in UCP1-positive adipocytes augments the browning of white adipose tissue. IScience, 2023, 26, 106552.	1.9	0
900	BAP31 depletion inhibited adipogenesis, repressed lipolysis and promoted lipid droplets abnormal growth via attenuating Perilipin1 proteasomal degradation. International Journal of Biological Sciences, 2023, 19, 1713-1730.	2.6	0
901	Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals, 2023, 16, 572.	1.7	3
902	Methods for Single Cell Transcriptomic Analysis of Adipose Tissue. Methods in Molecular Biology, 2023, , 241-249.	0.4	0
903	Impact of Adipose Tissue Depot Harvesting Site on the Multilineage Induction Capacity of Male Rat Adipose-Derived Mesenchymal Stem Cells: An In Vitro Study. International Journal of Molecular Sciences, 2023, 24, 7513.	1.8	16
904	CX3CR1hi macrophages sustain metabolic adaptation by relieving adipose-derived stem cell senescence in visceral adipose tissue. Cell Reports, 2023, 42, 112424.	2.9	5

	CITATION REPORT		
#	Article	IF	CITATIONS
919	Maintenance of adipose progenitors in adipogenesis. Nature Metabolism, 2023, 5, 917-919.	5.1	1
941	Mitochondrial heterogeneity in diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3
967	White adipocyte dysfunction and obesity-associated pathologies in humans. Nature Reviews Molecular Cell Biology, 0, , .	16.1	3
969	Adipose Tissue Plasticity and Insulin Signaling in the Pathogenesis of Type 2 Diabetes. Diabetology International, 0, , .	0.7	0
986	Adipose Tissues. , 2024, , 469-515.		0