Molecular Structure of Î²-Amyloid Fibrils in Alzheimerâ

Cell 154, 1257-1268 DOI: 10.1016/j.cell.2013.08.035

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
3	The role of the gubernaculum in the descent and undescent of the testis. Therapeutic Advances in Urology, 2009, 1, 115-121.	0.9	43
4	Amyloid Structures from Alzheimer's Disease Patients. Structure, 2013, 21, 1722-1723.	1.6	2
5	A Template for New Drugs against Alzheimer's Disease. Cell, 2013, 154, 1182-1184.	13.5	14
7	Strain phenomenon in protein aggregation. Intrinsically Disordered Proteins, 2013, 1, e27130.	1.9	1
8	Inter-Species Cross-Seeding: Stability and Assembly of Rat - Human Amylin Aggregates. PLoS ONE, 2014, 9, e97051.	1.1	28
9	Somatic Mosaicism in the Human Genome. Genes, 2014, 5, 1064-1094.	1.0	122
10	Increased Levels of Plasma p3-Alcα35, a Major Fragment of Alcadeinα by γ-Secretase Cleavage, in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 39, 861-870.	1.2	13
11	Progress towards structural understanding of infectious sheep PrP-amyloid. Prion, 2014, 8, 344-358.	0.9	11
12	Direct Evidence for Self-Propagation of Different Amyloid-Î ² Fibril Conformations. Neurodegenerative Diseases, 2014, 14, 151-159.	0.8	17
13	Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands. Prion, 2014, 8, 319-329.	0.9	63
14	Alzheimer's Disease—A Panorama Glimpse. International Journal of Molecular Sciences, 2014, 15, 12631-12650.	1.8	14
15	The link between laughing death and Alzheimer's disease. Progress in Neurology and Psychiatry, 2014, 18, 9-12.	0.4	0
16	Copper(II) ions and the Alzheimer's amyloid- \hat{l}^2 peptide: Affinity and stoichiometry of binding. , 2014, , .		0
17	Distinguishing Closely Related Amyloid Precursors Using an RNA Aptamer. Journal of Biological Chemistry, 2014, 289, 26859-26871.	1.6	7
18	Stability of Amyloid Oligomers. Advances in Protein Chemistry and Structural Biology, 2014, 96, 113-141.	1.0	19
19	Preparation Protocols of Aβ(1–40) Promote the Formation of Polymorphic Aggregates and Altered Interactions with Lipid Bilayers. Biochemistry, 2014, 53, 7038-7050.	1.2	21
21	Mechanism of dilute-spin-exchange in solid-state NMR. Journal of Chemical Physics, 2014, 140, 124201.	1.2	1
22	A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution. Biochemistry, 2014, 53, 7724-7734.	1.2	26

#	Article	IF	CITATIONS
24	A Hexameric Peptide Barrel as Building Block of Amyloidâ€Î² Protofibrils. Angewandte Chemie - International Edition, 2014, 53, 12756-12760.	7.2	128
25	Structural Evolution and Membrane Interaction of the 40-Residue β Amyloid Peptides: Differences in the Initial Proximity between Peptides and the Membrane Bilayer Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2014, 53, 7503-7514.	1.2	32
27	The relationship between amyloid structure and cytotoxicity. Prion, 2014, 8, 192-196.	0.9	53
29	A distinct subfraction of Aβ is responsible for the highâ€affinity Pittsburgh compound Bâ€binding site in Alzheimer's disease brain. Journal of Neurochemistry, 2014, 131, 356-368.	2.1	32
30	Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiology of Disease, 2014, 65, 82-92.	2.1	135
31	The role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1217-1232.	1.5	36
32	Significant Structural Differences between Transient Amyloidâ€Î² Oligomers and Lessâ€Toxic Fibrils in Regions Known To Harbor Familial Alzheimer′s Mutations. Angewandte Chemie - International Edition, 2014, 53, 6888-6892.	7.2	84
33	The Molecular Structure of Alzheimer βâ€Amyloid Fibrils Formed in the Presence of Phospholipid Vesicles. Angewandte Chemie - International Edition, 2014, 53, 9294-9297.	7.2	62
34	Amyloid-based nanosensors and nanodevices. Chemical Society Reviews, 2014, 43, 5326.	18.7	152
35	Investigation of the Aggregation Process of Amyloid-β-(16-22) Peptides and the Dissolution of Intermediate Aggregates. Langmuir, 2014, 30, 3170-3175.	1.6	27
36	Apolipoproteins E and J interfere with amyloidâ€beta uptake by primary human astrocytes and microglia <i>in vitro</i> . Glia, 2014, 62, 493-503.	2.5	71
37	Conformational Distribution and α-Helix to β-Sheet Transition of Human Amylin Fragment Dimer. Biomacromolecules, 2014, 15, 122-131.	2.6	69
38	Induction of amyloidogenicity in wild type HEWL by a dialdehyde: Analysis involving multi dimensional approach. International Journal of Biological Macromolecules, 2014, 64, 36-44.	3.6	31
39	Inflammasomes in the CNS. Nature Reviews Neuroscience, 2014, 15, 84-97.	4.9	537
40	Familial Alzheimer A2 V Mutation Reduces the Intrinsic Disorder and Completely Changes the Free Energy Landscape of the Aβ1–28 Monomer. Journal of Physical Chemistry B, 2014, 118, 501-510.	1.2	65
41	A routine method for cloning, expressing and purifying Aβ(1–42) for structural NMR studies. Amino Acids, 2014, 46, 2415-2426.	1.2	14
42	The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chemical Society Reviews, 2014, 43, 4871-4893.	18.7	147
43	Binding of fullerenes to amyloid beta fibrils: size matters. Physical Chemistry Chemical Physics, 2014, 16, 20030.	1.3	27

#	Article	IF	CITATIONS
44	Specific aromatic foldamers potently inhibit spontaneous and seeded Aβ42 and Aβ43 fibril assembly. Biochemical Journal, 2014, 464, 85-98.	1.7	13
45	Mechanism of Amyloid-β Fibril Elongation. Biochemistry, 2014, 53, 6981-6991.	1.2	76
46	Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1–40) but leave the general fibril structure unchanged. Physical Chemistry Chemical Physics, 2014, 16, 7461-7471.	1.3	47
47	Characterizing Methylâ€Bearing Side Chain Contacts and Dynamics Mediating Amyloid β Protofibril Interactions Using ¹³ C _{methyl} â€ĐEST and Lifetime Line Broadening. Angewandte Chemie - International Edition, 2014, 53, 10345-10349.	7.2	45
48	Distinct synthetic AÎ ² prion strains producing different amyloid deposits in bigenic mice. Proceedings of the United States of America, 2014, 111, 10329-10334.	3.3	140
49	Physical and structural basis for polymorphism in amyloid fibrils. Protein Science, 2014, 23, 1528-1539.	3.1	206
50	Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature Medicine, 2014, 20, 130-138.	15.2	547
51	Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4615-22.	3.3	67
52	Turn Plasticity Distinguishes Different Modes of Amyloid-β Aggregation. Journal of the American Chemical Society, 2014, 136, 4913-4919.	6.6	39
53	X-ray Crystallographic Structures of Trimers and Higher-Order Oligomeric Assemblies of a Peptide Derived from Al² _{17–36} . Journal of the American Chemical Society, 2014, 136, 5595-5598.	6.6	85
54	â€~Click' assembly of glycoclusters and discovery of a trehalose analogue that retards Aβ40 aggregation and inhibits Aβ40-induced neurotoxicity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4523-4528.	1.0	27
55	The C-Terminal Threonine of Aβ43 Nucleates Toxic Aggregation via Structural and Dynamical Changes in Monomers and Protofibrils. Biochemistry, 2014, 53, 3095-3105.	1.2	36
56	Alzheimer's disease under strain. Nature, 2014, 512, 32-34.	13.7	32
57	Aggregation Interplay between Variants of the RepA-WH1 Prionoid in Escherichia coli. Journal of Bacteriology, 2014, 196, 2536-2542.	1.0	16
58	Amyloid Fibrils: Formation, Polymorphism, and Inhibition. Journal of Physical Chemistry Letters, 2014, 5, 607-614.	2.1	42
59	Synthesis and evaluation of antineurotoxicity properties of an amyloid-β peptide targeting ligand containing a triamino acid. Organic and Biomolecular Chemistry, 2014, 12, 6684-6693.	1.5	6
60	Crystal structure reveals conservation of amyloid- \hat{l}^2 conformation recognized by 3D6 following humanization to bapineuzumab. Alzheimer's Research and Therapy, 2014, 6, 31.	3.0	33
61	The Conformational Stability of Nonfibrillar Amyloid-β Peptide Oligomers Critically Depends on the C-Terminal Peptide Length. ACS Chemical Neuroscience, 2014, 5, 161-167.	1.7	21

#	Article	IF	CITATIONS
62	Fiber Diffraction of the Prion-Forming Domain HET-s(218–289) Shows Dehydration-Induced Deformation of a Complex Amyloid Structure. Biochemistry, 2014, 53, 2366-2370.	1.2	8
63	Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. Journal of the American Chemical Society, 2014, 136, 12489-12497.	6.6	254
64	Transient dynamics of Al̂² contribute to toxicity in Alzheimer's disease. Cellular and Molecular Life Sciences, 2014, 71, 3507-3521.	2.4	76
65	The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. Journal of Biological Inorganic Chemistry, 2014, 19, 623-634.	1.1	88
66	Serial propagation of distinct strains of Al̂ ² prions from Alzheimer's disease patients. Proceedings of the United States of America, 2014, 111, 10323-10328.	3.3	247
67	Effect of Taiwan Mutation (D7H) on Structures of Amyloid-β Peptides: Replica Exchange Molecular Dynamics Study. Journal of Physical Chemistry B, 2014, 118, 8972-8981.	1.2	36
68	Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chemical Society Reviews, 2014, 43, 6750-6764.	18.7	80
69	Amyloid-β and Tau. JAMA Neurology, 2014, 71, 505.	4.5	1,416
70	Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6661-6714.	23.0	391
71	Prion-like Properties of Tau Protein: The Importance of Extracellular Tau as a Therapeutic Target. Journal of Biological Chemistry, 2014, 289, 19855-19861.	1.6	169
72	Fibril Elongation by Aβ _{17–42} : Kinetic Network Analysis of Hybrid-Resolution Molecular Dynamics Simulations. Journal of the American Chemical Society, 2014, 136, 12450-12460.	6.6	127
73	Interactions of a Water-Soluble Fullerene Derivative with Amyloid-β Protofibrils: Dynamics, Binding Mechanism, and the Resulting Salt-Bridge Disruption. Journal of Physical Chemistry B, 2014, 118, 6733-6741.	1.2	50
74	Site-Specific Structural Variations Accompanying Tubular Assembly of the HIV-1 Capsid Protein. Journal of Molecular Biology, 2014, 426, 1109-1127.	2.0	49
75	Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: A long-range point of view beyond 2020. Biochemical Pharmacology, 2014, 88, 426-449.	2.0	105
76	Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42. ACS Chemical Neuroscience, 2014, 5, 646-657.	1.7	49
77	Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques to Quantify Biomolecular Dynamics. Analytical Chemistry, 2014, 86, 58-64.	3.2	23
78	Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies. Neuron, 2014, 82, 1271-1288.	3.8	822
79	Resting microglia react to Aβ42 fibrils but do not detect oligomers or oligomer-induced neuronal damage. Neurobiology of Aging, 2014, 35, 2444-2457.	1.5	32

#	Article	IF	CITATIONS
80	Molecular Basis of Substrate Recognition and Degradation by Human Presequence Protease. Structure, 2014, 22, 996-1007.	1.6	40
82	A Hexameric Peptide Barrel as Building Block of Amyloidâ€Î² Protofibrils. Angewandte Chemie, 2014, 126, 12970-12974.	1.6	8
83	Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angewandte Chemie - International Edition, 2014, 53, 1590-1593.	7.2	38
84	Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiopheneâ€Based Ligands to Distinguish βâ€Amyloid or Tau Polymorphic Aggregates. Chemistry - A European Journal, 2015, 21, 9072-9082.	1.7	44
85	Review: Prionâ€like mechanisms of transactive response DNA binding protein of 43 kDa (<scp>TDP</scp> â€43) in amyotrophic lateral sclerosis (<scp>ALS</scp>). Neuropathology and Applied Neurobiology, 2015, 41, 578-597.	1.8	76
86	Conformational Effects of the A21G Flemish Mutation on the Aggregation of Amyloid β Peptide. Biological and Pharmaceutical Bulletin, 2015, 38, 1668-1672.	0.6	12
87	Studies of Polymorphism of Amyloid-β 42 Peptide from Different Suppliers. Journal of Alzheimer's Disease, 2015, 47, 583-593.	1.2	32
88	Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking. Journal of Biological Chemistry, 2015, 290, 25062-25071.	1.6	24
89	All-atom Simulation of Amyloid Aggregates. Physics Procedia, 2015, 68, 61-68.	1.2	10
90	Opposite effect of Ca2+/Mg2+ ions on the aggregation of native and precursor-derived Aβ42. Structural Chemistry, 2015, 26, 1389-1403.	1.0	2
91	Membrane proteins in their native habitat as seen by solidâ€state NMR spectroscopy. Protein Science, 2015, 24, 1333-1346.	3.1	42
94	Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases. Journal of Parkinson's Disease, 2015, 5, 217-227.	1.5	107
95	Cannibals, molecular origami and Alzheimer's disease. Independent Nurse, 2015, 2015, 20-21.	0.0	0
96	Alternative salt bridge formation in Aβ—a hallmark of early-onset Alzheimer's disease?. Frontiers in Molecular Biosciences, 2015, 2, 14.	1.6	17
97	Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis. Molecules, 2015, 20, 7657-7682.	1.7	30
98	Structure-Based Peptide Design to Modulate Amyloid Beta Aggregation and Reduce Cytotoxicity. PLoS ONE, 2015, 10, e0129087.	1.1	37
99	Self-Assembly of Aβ40, Aβ42 and Aβ43 Peptides in Aqueous Mixtures of Fluorinated Alcohols. PLoS ONE, 2015, 10, e0136567.	1.1	16
100	Systematic Al ² Analysis in Drosophila Reveals High Toxicity for the 1-42, 3-42 and 11-42 Peptides, and Emphasizes N- and C-Terminal Residues. PLoS ONE, 2015, 10, e0133272.	1.1	30

#	Article	IF	CITATIONS
101	A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Scientific Reports, 2015, 5, 10062.	1.6	51
102	Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils. Biochemistry, 2015, 54, 3942-3949.	1.2	63
103	Competition between Fibrillation and Induction of Vesicle Fusion for the Membrane-Associated 40-Residue β-Amyloid Peptides. Biochemistry, 2015, 54, 3416-3419.	1.2	20
104	Molecular Design for Dual Modulation Effect of Amyloid Protein Aggregation. Journal of the American Chemical Society, 2015, 137, 8062-8068.	6.6	31
105	W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme. Prion, 2015, 9, 207-227.	0.9	10
106	Aggregates feel the strain. Nature, 2015, 522, 296-297.	13.7	12
107	On the lack of polymorphism in Aβâ€peptide aggregates derived from patient brains. Protein Science, 2015, 24, 923-935.	3.1	17
108	Adapting simultaneous analysis phylogenomic techniques to study complex disease gene relationships. Journal of Biomedical Informatics, 2015, 54, 10-38.	2.5	3
109	High Resolution Structural Characterization of Aβ ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR. Journal of the American Chemical Society, 2015, 137, 7509-7518.	6.6	103
110	Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Scientific Reports, 2015, 5, 7992.	1.6	134
111	Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Science Advances, 2015, 1, e1501087.	4.7	64
112	Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. Journal of Magnetic Resonance, 2015, 261, 149-156.	1.2	9
113	Disaggregation-induced fluorescence enhancement of NIAD-4 for the optical imaging of amyloid-Î ² fibrils. Physical Chemistry Chemical Physics, 2015, 17, 19718-19725.	1.3	24
114	Alzheimer's disease: New therapeutic strategies. Medicina ClÃnica (English Edition), 2015, 145, 76-83.	0.1	0
115	Quaternary Structure Defines a Large Class of Amyloid-Î ² Oligomers Neutralized by Sequestration. Cell Reports, 2015, 11, 1760-1771.	2.9	141
116	Inhibition of protein aggregation and amyloid formation by small molecules. Current Opinion in Structural Biology, 2015, 30, 50-56.	2.6	259
117	Modeling an In-Register, Parallel "Iowa―Aβ Fibril Structure Using Solid-State NMR Data from Labeled Samples with Rosetta. Structure, 2015, 23, 216-227.	1.6	101
118	Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases?. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1897-1907.	1.4	91

#	Article	IF	CITATIONS
119	Site‧pecific Solid‧tate NMR Studies of "Trigger Factor―in Complex with the Large Ribosomal Subunitâ€50S. Angewandte Chemie - International Edition, 2015, 54, 4367-4369.	7.2	42
120	Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis. Neurobiology of Aging, 2015, 36, 789-800.	1.5	21
121	Substitution of Proline32 by α-Methylproline Preorganizes β2-Microglobulin for Oligomerization but Not for Aggregation into Amyloids. Journal of the American Chemical Society, 2015, 137, 2524-2535.	6.6	17
122	Membrane Effects of N-Terminal Fragment of Apolipoprotein A-I: A Fluorescent Probe Study. Journal of Fluorescence, 2015, 25, 253-261.	1.3	7
123	Yeast Prions: Structure, Biology, and Prion-Handling Systems. Microbiology and Molecular Biology Reviews, 2015, 79, 1-17.	2.9	123
124	Photo-inhibition of AÎ ² fibrillation mediated by a newly designed fluorinated oxadiazole. RSC Advances, 2015, 5, 16540-16548.	1.7	31
125	Atomic-Level Study of the Effects of O4 Molecules on the Structural Properties of Protofibrillar Aβ Trimer: β-Sheet Stabilization, Salt Bridge Protection, and Binding Mechanism. Journal of Physical Chemistry B, 2015, 119, 2786-2794.	1.2	40
126	β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E127-36.	3.3	54
127	Amyloidogenesis of Bacterial Prionoid RepA-WH1 Recapitulates Dimer to Monomer Transitions of RepA in DNA Replication Initiation. Structure, 2015, 23, 183-189.	1.6	26
128	Inhibition of BACE2 counteracts hIAPPâ€induced insulin secretory defects in pancreatic βâ€cells. FASEB Journal, 2015, 29, 95-104.	0.2	18
129	Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proceedings of the United States of America, 2015, 112, 2996-3001.	3.3	123
130	A Structural Model for a Self-Assembled Nanotube Provides Insight into Its Exciton Dynamics. Journal of Physical Chemistry C, 2015, 119, 13948-13956.	1.5	21
131	Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9816-9821.	3.3	117
132	NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. Journal of Magnetic Resonance, 2015, 253, 60-70.	1.2	22
133	On the problem of resonance assignments in solid state NMR of uniformly 15N,13C-labeled proteins. Journal of Magnetic Resonance, 2015, 253, 166-172.	1.2	10
134	Molecular Mechanisms of Alzheimer's Biomarker FDDNP Binding to Aβ Amyloid Fibril. Journal of Physical Chemistry B, 2015, 119, 11568-11580.	1.2	14
135	Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. Advances in Experimental Medicine and Biology, 2015, 855, 175-211.	0.8	58
136	Successive Stages of Amyloid-Î ² Self-Assembly Characterized by Solid-State Nuclear Magnetic Resonance with Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2015, 137, 8294-8307.	6.6	103

ARTICLE IF CITATIONS # Structural Conversion of AÎ²17–42 Peptides from Disordered Oligomers to U-Shape Protofilaments via 137 1.5 41 Multiple Kinetic Pathways. PLoS Computational Biology, 2015, 11, e1004258. Lipids in Amyloid-Î² Processing, Aggregation, and Toxicity. Advances in Experimental Medicine and 0.8 Biology, 2015, 855, 67-94. Current and future implications of basic and translational research on amyloid-Î² peptide production 139 1.0 56 and removal pathways. Molecular and Cellular Neurosciences, 2015, 66, 3-11. Improving spectral resolution in biological solid-state NMR using phase-alternated rCW 140 1.2 heteronuclear decoupling. Chemical Physics Letters, 2015, 635, 339-344. High-resolution NMR characterization of low abundance oligomers of amyloid- \hat{l}^2 without purification. 141 101 1.6 Scientific Reports, 2015, 5, 11811. The Effect of (â^')-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. Advances in Experimental Medicine and Biology, 2015, 863, 139-161. 0.8 56 Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases. Advances in Experimental 143 0.8 7 Medicine and Biology, 2015, , . X-ray Crystallographic Structures of Oligomers of Peptides Derived from 144 6.6 36 Î² < sub > 2 </sub > - Microglobulin. Journal of the American Chemical Society, 2015, 137, 6304-6311. Structural Studies of Truncated Forms of the Prion Protein PrP. Biophysical Journal, 2015, 108, 145 0.2 25 1548-1554. Morphology-Dependent HIV-Enhancing Effect of Semen-Derived Enhancer of Viral Infection. 146 0.2 Biophysical Journal, 2015, 108, 2028-2037. 147 Layers of structure and function in protein aggregation. Nature Chemical Biology, 2015, 11, 373-377. 3.9 35 Nucleation of Polymorphic Amyloid Fibrils. Biophysical Journal, 2015, 108, 1176-1186. 148 Al²(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. 149 3.6 701 Nature Structural and Molecular Biology, 2015, 22, 499-505. An Early Folding Contact between Phe19 and Leu34 is Critical for Amyloid-Î² Oligomer Toxicity. ACS 1.7 Chemical Neuroscience, 2015, 6, 1290-1295. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron, 2015, 86, 632-645. 151 347 3.8 Neurodegenerative Diseases: Expanding the Prion Concept. Annual Review of Neuroscience, 2015, 38, 278 87-103. Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and 153 5.0128 ¹H Detection. Annual Review of Biochemistry, 2015, 84, 465-497. Study of early stages of amyloid AÎ²13-23 formation using molecular dynamics simulation in implicit 154 1.1 environments. Computational Biology and Chemistry, 2015, 56, 13-18.

#	Article	IF	CITATIONS
155	Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chemical Reviews, 2015, 115, 3518-3563.	23.0	530
156	Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4489-4494.	3.3	59
157	Structural Mechanism of the Interaction of Alzheimer Disease AÎ ² Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide. Journal of Biological Chemistry, 2015, 290, 28737-28745.	1.6	26
158	Stability of Osaka Mutant and Wild-Type Fibril Models. Journal of Physical Chemistry B, 2015, 119, 13063-13070.	1.2	20
159	Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases?. Cellular and Molecular Life Sciences, 2015, 72, 4795-4805.	2.4	33
160	Beta Amyloid Hallmarks: From Intrinsically Disordered Proteins to Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2015, 870, 401-421.	0.8	23
161	Protein structures in Alzheimer's disease: The basis for rationale therapeutic design. Archives of Biochemistry and Biophysics, 2015, 588, 1-14.	1.4	20
162	Steric Crowding of the Turn Region Alters the Tertiary Fold of Amyloid-β18–35 and Makes It Soluble. Journal of Biological Chemistry, 2015, 290, 30099-30107.	1.6	12
163	Two distinct Î ² -sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 4899-4913.	2.4	26
164	Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease?. Trends in Biochemical Sciences, 2015, 40, 719-727.	3.7	100
165	Site-specific dynamics of amyloid formation and fibrillar configuration of Aβ _{1–23} using an unnatural amino acid. Chemical Communications, 2015, 51, 7000-7003.	2.2	20
166	Low-threshold stimulated emission from lysozyme amyloid fibrils doped with a blue laser dye. Applied Physics Letters, 2015, 106, .	1.5	17
167	Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chemical Communications, 2015, 51, 13434-13450.	2.2	191
168	Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale, 2015, 7, 18725-18737.	2.8	101
169	Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13237-13242.	3.3	133
170	<i>In vitro</i> fibrillization of Alzheimer's amyloid-β peptide (1-42). AlP Advances, 2015, 5, .	0.6	48
171	Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 2-12.	1.3	43
172	Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models. Journal of the American Chemical Society, 2015, 137, 11312-11320.	6.6	25

#	Article	IF	CITATIONS
173	Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2015, 17, 23245-23256.	1.3	38
174	Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure. Prion, 2015, 9, 333-338.	0.9	2
175	Positively Charged Chitosan and <i>N</i> -Trimethyl Chitosan Inhibit Aβ40 Fibrillogenesis. Biomacromolecules, 2015, 16, 2363-2373.	2.6	43
176	Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum. Structure, 2015, 23, 1958-1966.	1.6	9
177	Advances in the therapy of Alzheimer's disease: targeting amyloid beta and tau and perspectives for the future. Expert Review of Neurotherapeutics, 2015, 15, 83-105.	1.4	64
178	Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease. Acta Neuropathologica, 2015, 129, 167-182.	3.9	224
179	The structure of fibrils from â€~misfolded' proteins. Current Opinion in Structural Biology, 2015, 30, 43-49.	2.6	61
180	β-amyloid Peptides and Amyloid Plaques in Alzheimer's Disease. Neurotherapeutics, 2015, 12, 3-11.	2.1	195
181	Atomicâ€Resolution Threeâ€Dimensional Structure of Amyloid β Fibrils Bearing the Osaka Mutation. Angewandte Chemie - International Edition, 2015, 54, 331-335.	7.2	245
182	Fibrillation of Î ² amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 266-276.	1.4	52
184	Influence of the Aqueous Environment on Protein Structure—A Plausible Hypothesis Concerning the Mechanism of Amyloidogenesis. Entropy, 2016, 18, 351.	1.1	17
185	Historical and Current Concepts of Fibrillogenesis and In vivo Amyloidogenesis: Implications of Amyloid Tissue Targeting. Frontiers in Molecular Biosciences, 2016, 3, 17.	1.6	19
186	NMR Meets Tau: Insights into Its Function and Pathology. Biomolecules, 2016, 6, 28.	1.8	25
187	Membrane-Induced Dichotomous Conformation of Amyloid \hat{l}^2 with the Disordered N-Terminal Segment Followed by the Stable C-Terminal \hat{l}^2 Structure. PLoS ONE, 2016, 11, e0146405.	1.1	18
188	Structural Characterization of Fibrils from Recombinant Human Islet Amyloid Polypeptide by Solid-State NMR: The Central FGAILS Segment Is Part of the β-Sheet Core. PLoS ONE, 2016, 11, e0161243.	1.1	38
189	Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases. Essays in Biochemistry, 2016, 60, 181-190.	2.1	11
190	The role of charge transfer in the photophysics of dithiophene-based (NIADs) fluorescent markers for amyloid-Î ² detection. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	2
191	Structural Insights into the Polymorphism of Selfâ€Assembled Amylin Oligomers. Israel Journal of Chemistry, 2016, 56, 590-598	1.0	5

		Report	
#	Article	IF	Citations
192	Chiral recognition in amyloid fiber growth. Journal of Peptide Science, 2016, 22, 290-304.	0.8	25
193	Polymorphismus von Amyloidfibrillen in vivo. Angewandte Chemie, 2016, 128, 4903-4906.	1.6	7
194	A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. Journal of Biomolecular NMR, 2016, 65, 127-141.	1.6	25
195	Polymorphism of Amyloid Fibrils In Vivo. Angewandte Chemie - International Edition, 2016, 55, 4822-4825.	7.2	109
196	Polymorphism of fibrillar structures depending on the size of assembled Aβ17-42 peptides. Scientific Reports, 2016, 6, 38196.	1.6	19
197	Highly efficient19F heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation. Physical Chemistry Chemical Physics, 2016, 18, 30990-30997.	1.3	4
198	The Mechanism Underlying Amyloid Polymorphism is Opened for Alzheimer's Disease Amyloid-β Peptide. Journal of Alzheimer's Disease, 2016, 54, 821-830.	1.2	30
199	Measurement of amyloid formation by turbidity assay—seeing through the cloud. Biophysical Reviews, 2016, 8, 445-471.	1.5	60
200	Proteopathic Strains and the Heterogeneity of Neurodegenerative Diseases. Annual Review of Genetics, 2016, 50, 329-346.	3.2	53
201	Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue. Scientific Reports, 2016, 6, 33079.	1.6	48
202	Anti-Viral Properties of Amyloid- \hat{l}^2 Peptides. Journal of Alzheimer's Disease, 2016, 54, 859-878.	1.2	70
203	A <i>Ĵ²</i> -Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Reviews in Molecular Medicine, 2016, 18, e13.	1.6	34
204	Nucleus factory on cavitation bubble for amyloid \hat{I}^2 fibril. Scientific Reports, 2016, 6, 22015.	1.6	39
205	Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1–40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. Scientific Reports, 2016, 6, 30983.	1.6	27
206	Familial Presenilin Mutations and Sporadic Alzheimer's Disease Pathology: Is the Assumption of Biochemical Equivalence Justified?. Journal of Alzheimer's Disease, 2016, 50, 645-658.	1.2	16
207	Ab initio fragment molecular orbital calculations on the specific interactions between amyloid- \hat{l}^2 peptides in an in vivo amyloid- \hat{l}^2 fibril. , 2016, , .		1
208	Phosphorylation modifies the molecular stability of β-amyloid deposits. Nature Communications, 2016, 7, 11359.	5.8	70
209	Identification and Structural Characterization of the N-terminal Amyloid Core of Orb2 isoform A. Scientific Reports, 2016, 6, 38265.	1.6	32

#	Article	IF	Citations
210	Binding interaction of a gamma-aminobutyric acid derivative with serum albumin: an insight by fluorescence and molecular modeling analysis. SpringerPlus, 2016, 5, 1121.	1.2	20
211	Quantitative analysis of amyloid polymorphism using height histograms to correct for tip convolution effects in atomic force microscopy imaging. RSC Advances, 2016, 6, 114286-114295.	1.7	12
212	Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models. Journal of Chemical Physics, 2016, 144, 015101.	1.2	4
213	The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Physical Chemistry Chemical Physics, 2016, 18, 12582-12591.	1.3	67
214	Molecular medicine – To be or not to be. Biophysical Chemistry, 2016, 214-215, 33-46.	1.5	4
215	Determination of size of folding nuclei of fibrils formed from recombinant Aβ(1-40) peptide. Biochemistry (Moscow), 2016, 81, 538-547.	0.7	14
216	Amyloid- <i>β</i> peptide aggregation and the influence of carbon nanoparticles. Chinese Physics B, 2016, 25, 018704.	0.7	16
217	Atomicâ€Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry - A European Journal, 2016, 22, 425-432.	1.7	25
218	Molecular architecture of Aβ fibrils grown in cerebrospinal fluid solution and in a cell culture model of Aβ plaque formation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2016, 23, 76-85.	1.4	2
219	Distinct Membrane Disruption Pathways Are Induced by 40-Residue Î ² -Amyloid Peptides. Journal of Biological Chemistry, 2016, 291, 12233-12244.	1.6	50
220	There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Research, 2016, 1647, 19-29.	1.1	133
221	Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments. Journal of Biological Chemistry, 2016, 291, 13098-13112.	1.6	15
222	Stability of a Recently Found Triple-β-Stranded Aβ1–42 Fibril Motif. Journal of Physical Chemistry B, 2016, 120, 4548-4557.	1.2	21
223	Conversion of Synthetic Aβ to <i>In Vivo</i> Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model. Journal of Neuroscience, 2016, 36, 5084-5093.	1.7	41
224	Sparse 13C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins. Journal of Biomolecular NMR, 2016, 65, 7-13.	1.6	14
225	Ionic Strength Modulation of the Free Energy Landscape of AÎ ² ₄₀ Peptide Fibril Formation. Journal of the American Chemical Society, 2016, 138, 6893-6902.	6.6	80
226	What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiology of Aging, 2016, 42, 205-212.	1.5	11
227	High-speed atomic force microscopy reveals structural dynamics of amyloid β _{1–42} aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5835-5840.	3.3	179

#	Article	IF	CITATIONS
228	Solid-state NMR sequential assignment of an Amyloid-β(1–42) fibril polymorph. Biomolecular NMR Assignments, 2016, 10, 269-276.	0.4	18
229	Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry, 2016, 55, 5272-5278.	1.2	25
230	Potential mechanisms and implications for the formation of tau oligomeric strains. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 482-496.	2.3	64
231	Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Selfâ€Assembly of Distinct Amyloid Structures. ChemBioChem, 2016, 17, 2274-2285.	1.3	9
232	Assembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Journal of the American Chemical Society, 2016, 138, 13882-13890.	6.6	34
233	Amyloid: a multifaceted player in human health and disease. Journal of Internal Medicine, 2016, 280, 136-138.	2.7	2
234	Conformational-Sensitive Fast Photochemical Oxidation of Proteins and Mass Spectrometry Characterize Amyloid Beta 1–42 Aggregation. Journal of the American Chemical Society, 2016, 138, 12090-12098.	6.6	60
235	Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a024083.	2.9	71
236	Determination of regions involved in amyloid fibril formation for $A\hat{I}^2(1-40)$ peptide. Biochemistry (Moscow), 2016, 81, 762-769.	0.7	14
237	Pathogenic mechanisms of prion protein, amyloidâ€Î² and αâ€ s ynuclein misfolding: the prion concept and neurotoxicity of protein oligomers. Journal of Neurochemistry, 2016, 139, 162-180.	2.1	77
238	Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure. Nature Communications, 2016, 7, 13527.	5.8	28
239	Structure of aggregates revealed. Nature, 2016, 537, 492-493.	13.7	38
240	Highly Efficient Destruction of Amyloid-β Fibrils by Femtosecond Laser-Induced Nanoexplosion of Gold Nanorods. ACS Chemical Neuroscience, 2016, 7, 1728-1736.	1.7	30
241	Motion controlled by sound. Nature, 2016, 537, 493-494.	13.7	9
242	Cell Damage in Light Chain Amyloidosis. Journal of Biological Chemistry, 2016, 291, 19813-19825.	1.6	58
243	Coassembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Journal of the American Chemical Society, 2016, 138, 13891-13900.	6.6	23
244	HSA targets multiple Al̂ ² 42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Al̂ ² 42 aggregates. RSC Advances, 2016, 6, 71165-71175.	1.7	18
245	12-Crown-4 Ether Disrupts the Patient Brain-Derived Amyloid-β-Fibril Trimer: Insight from All-Atom Molecular Dynamics Simulations. ACS Chemical Neuroscience, 2016, 7, 1433-1441.	1.7	37

#	Article	IF	CITATIONS
246	Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. Journal of the American Chemical Society, 2016, 138, 9840-9852.	6.6	79
247	Lecture 11., 2016, , 151-163.		1
248	Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture. Journal of Biological Chemistry, 2016, 291, 25217-25226.	1.6	13
249	Stability differences in the NMR ensembles of amyloid \hat{I}^2 fibrils. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650059.	1.8	4
250	Combined Solution―and Magic Angle Spinning NMR Reveals Regions of Distinct Dynamics in Amyloid β Protofibrils. ChemistrySelect, 2016, 1, 5850-5853.	0.7	4
251	The activities of amyloids from a structural perspective. Nature, 2016, 539, 227-235.	13.7	386
252	Hydralazine inhibits amyloid beta (Aβ) aggregation and glycation and ameliorates Aβ _{1–42} induced neurotoxicity. RSC Advances, 2016, 6, 108768-108776.	1.7	6
253	Mammalian prions and their wider relevance in neurodegenerative diseases. Nature, 2016, 539, 217-226.	13.7	193
254	An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Scientific Reports, 2016, 6, 33156.	1.6	25
255	Anionic Oligothiophenes Compete for Binding of Xâ€34 but not PIB to Recombinant Aβ Amyloid Fibrils and Alzheimer's Disease Brainâ€Đerived Aβ. Chemistry - A European Journal, 2016, 22, 18335-18338.	1.7	22
256	Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils. Scientific Reports, 2016, 6, 36499.	1.6	5
257	Suppression of amyloid fibrils using the GroEL apical domain. Scientific Reports, 2016, 6, 31041.	1.6	19
258	Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study. Journal of Computer-Aided Molecular Design, 2016, 30, 639-650.	1.3	11
259	Mechanism of Nucleation and Growth of AÎ ² 40 Fibrils from All-Atom and Coarse-Grained Simulations. Journal of Physical Chemistry B, 2016, 120, 12088-12097.	1.2	25
260	Fibrils of Truncated Pyroglutamyl-Modified Aβ Peptide Exhibit a Similar Structure as Wildtype Mature Aβ Fibrils. Scientific Reports, 2016, 6, 33531.	1.6	15
261	A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration. Scientific Reports, 2016, 6, 30182.	1.6	63
262	Glycation induces conformational changes in the amyloid-β peptide and enhances its aggregation propensity: molecular insights. Physical Chemistry Chemical Physics, 2016, 18, 31446-31458.	1.3	23
263	Understanding Amyloidâ€Î² Oligomerization at the Molecular Level: The Role of the Fibril Surface. Chemistry - A European Journal, 2016, 22, 8768-8772.	1.7	34

#	Article	IF	CITATIONS
264	Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-Î ² Fibrils. Journal of the American Chemical Society, 2016, 138, 8328-8331.	6.6	48
265	The Prion-Like Properties of Amyloid-Î ² Assemblies: Implications for Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a024398.	2.9	71
266	Biophysical insights into the membrane interaction of the core amyloid-forming Aβ ₄₀ fragment K16–K28 and its role in the pathogenesis of Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 16890-16901.	1.3	16
267	Biosilica and bioinspired silica studied by solid-state NMR. Coordination Chemistry Reviews, 2016, 327-328, 110-122.	9.5	23
268	RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis. Prion, 2016, 10, 41-49.	0.9	12
270	Amyloid and Amyloid Fibrils. Springer Theses, 2016, , 1-30.	0.0	0
271	Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease. Neurobiology of Aging, 2016, 44, 185-196.	1.5	34
272	Anti-arrhythmic Medication Propafenone a Potential Drug for Alzheimer's Disease Inhibiting Aggregation of Al²: In Silico and in Vitro Studies. Journal of Chemical Information and Modeling, 2016, 56, 1344-1356.	2.5	41
273	A Detailed Analysis of the Morphology of Fibrils of Selectively Mutated Amyloid β (1 – 40). ChemPhysChem, 2016, 17, 2744-2753.	1.0	15
274	Second harmonic generation correlation spectroscopy for characterizing translationally diffusing protein nanocrystals. Acta Crystallographica Section D: Structural Biology, 2016, 72, 849-859.	1.1	1
275	Atomic Resolution Structure of Monomorphic Aî² ₄₂ Amyloid Fibrils. Journal of the American Chemical Society, 2016, 138, 9663-9674.	6.6	695
276	Computational study on donor–acceptor optical markers for Alzheimer's disease: a game of charge transfer and electron delocalization. Physical Chemistry Chemical Physics, 2016, 18, 11634-11643.	1.3	9
277	Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease. Prion, 2016, 10, 9-17.	0.9	57
278	On the generation of OH· radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. Journal of Biological Inorganic Chemistry, 2016, 21, 197-212.	1.1	26
279	Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain, 2016, 139, 509-525.	3.7	74
280	Crystal Structures of IAPP Amyloidogenic Segments Reveal a Novel Packing Motif of Out-of-Register Beta Sheets. Journal of Physical Chemistry B, 2016, 120, 5810-5816.	1.2	61
281	Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mechanisms of Ageing and Development, 2016, 156, 1-13.	2.2	31
282	One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aî²40 and Aî²42. Journal of Structural Biology, 2016, 194, 404-414.	1.3	37

#	ARTICLE	IF	CITATIONS
283	Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry, 2016, 55, 1941-1944.	1.2	38
284	Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural and Molecular Biology, 2016, 23, 409-415.	3.6	802
285	Divergent Network Patterns of Amyloid-β Deposition in Logopenic and Amnestic Alzheimer's Disease Presentations. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 24-31.	1.1	3
286	Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron, 2016, 89, 433-448.	3.8	74
287	Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathologica, 2016, 131, 539-548.	3.9	127
288	Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity. Biochemistry, 2016, 55, 1839-1849.	1.2	42
289	A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. Journal of Structural Biology, 2016, 194, 61-67.	1.3	50
290	X-ray Crystallographic Structures of a Trimer, Dodecamer, and Annular Pore Formed by an Aβ _{17–36} β-Hairpin. Journal of the American Chemical Society, 2016, 138, 4634-4642.	6.6	69
291	Pathological α-synuclein distribution in subjects with coincident Alzheimer's and Lewy body pathology. Acta Neuropathologica, 2016, 131, 393-409.	3.9	123
292	New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11–20. Talanta, 2016, 148, 380-386.	2.9	16
293	Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime. Chemical Physics Letters, 2016, 644, 243-249.	1.2	8
294	Structure determination of helical filaments by solid-state NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E272-81.	3.3	25
295	Amyloid-β adopts a conserved, partially folded structure upon binding to zwitterionic lipid bilayers prior to amyloid formation. Chemical Communications, 2016, 52, 882-885.	2.2	66
296	Amylin–Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 2330-2338.	1.3	74
297	Cell Biology of Prions and Prionoids: A Status Report. Trends in Cell Biology, 2016, 26, 40-51.	3.6	113
298	Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy. Methods in Molecular Biology, 2016, 1345, 173-183.	0.4	7
299	Low Testosterone Level and Risk of Alzheimer's Disease in the Elderly Men: a Systematic Review and Meta-Analysis. Molecular Neurobiology, 2016, 53, 2679-2684.	1.9	103
300	Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophysical Chemistry, 2016, 210, 14-26.	1.5	23

#	Article	IF	CITATIONS
301	Thyrotropin and Alzheimer's Disease Risk in the Elderly: a Systematic Review and Meta-Analysis. Molecular Neurobiology, 2016, 53, 1229-1236.	1.9	4
302	Reversing the Amyloid Trend: Mechanism of Fibril Assembly and Dissolution of the Repeat Domain from a Human Functional Amyloid. Israel Journal of Chemistry, 2017, 57, 613-621.	1.0	17
303	Stereoisomers Probe Steric Zippers in Amyloid-β. Journal of Physical Chemistry B, 2017, 121, 1835-1842.	1.2	10
304	Line-Broadening in Low-Temperature Solid-State NMR Spectra of Fibrils. Journal of Biomolecular NMR, 2017, 67, 51-61.	1.6	26
305	A Two-Component Adhesive: Tau Fibrils Arise from a Combination of a Well-Defined Motif and Conformationally Flexible Interactions. Journal of the American Chemical Society, 2017, 139, 2639-2646.	6.6	27
306	Structural Model of the Tubular Assembly of the Rous Sarcoma Virus Capsid Protein. Journal of the American Chemical Society, 2017, 139, 2006-2013.	6.6	10
307	Specific interactions between amyloid-β peptides in an amyloid-β hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water. Chemical Physics Letters, 2017, 672, 13-20.	1.2	7
308	HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nature Structural and Molecular Biology, 2017, 24, 379-386.	3.6	66
309	Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. Journal of Alzheimer's Disease, 2017, 57, 1-28.	1.2	75
310	Phosphorylation at Ser8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils. Journal of Biological Chemistry, 2017, 292, 2611-2623.	1.6	29
311	Emerging structural details of transient amyloid-β oligomers suggest designs for effective small molecule modulators. Chemical Physics Letters, 2017, 675, 51-55.	1.2	17
312	Conformational Ensembles of the Wild-Type and S8C Aβ1–42 Dimers. Journal of Physical Chemistry B, 2017, 121, 2434-2442.	1.2	31
313	Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. Journal of Biological Chemistry, 2017, 292, 4638-4650.	1.6	145
314	Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochemistry and Cell Biology, 2017, 95, 329-337.	0.9	30
315	Insights into the Inhibitory Mechanism of Dicyanovinylâ€6ubstituted J147 Derivative against Aβ ₄₂ Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect, 2017, 2, 1645-1657.	0.7	25
316	The Levinthal Problem in Amyloid Aggregation: Sampling of a Flat Reaction Space. Journal of Physical Chemistry B, 2017, 121, 1576-1586.	1.2	14
317	Inclusions of R6/2 Mice Are Not Amyloid and Differ Structurally from Those of Huntington Disease Brain. Analytical Chemistry, 2017, 89, 5201-5209.	3.2	2
318	Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annual Review of Biochemistry, 2017, 86, 27-68.	5.0	1,929

#	Article	IF	CITATIONS
319	A molecular engineering toolbox for the structural biologist. Quarterly Reviews of Biophysics, 2017, 50, e7.	2.4	42
320	Physical Chemistry in Biomedical Research: From Cuvettes toward Cellular Insights. Journal of Physical Chemistry Letters, 2017, 8, 1943-1945.	2.1	Ο
321	The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends in Molecular Medicine, 2017, 23, 534-545.	3.5	74
322	Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data. CNS Drugs, 2017, 31, 495-509.	2.7	60
323	Curcumin Dictates Divergent Fates for the Central Salt Bridges in Amyloid- β 40 and Amyloid- β 42. Biophysical Journal, 2017, 112, 1597-1608.	0.2	16
324	3D MAS NMR Experiment Utilizing Through-Space ¹⁵ N– ¹⁵ N Correlations. Journal of the American Chemical Society, 2017, 139, 6518-6521.	6.6	18
325	Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Alzheimer immunotherapy. Journal of Biological Chemistry, 2017, 292, 12713-12724.	1.6	24
326	Solid-State-NMR-Structure-Based Inhibitor Design to Achieve Selective Inhibition of the Parallel-in-Register β-Sheet versus Antiparallel Iowa Mutant β-Amyloid Fibrils. Journal of Physical Chemistry B, 2017, 121, 5544-5552.	1.2	6
327	Gd3+-chelated lipid accelerates solid-state NMR spectroscopy of seven-transmembrane proteins. Journal of Biomolecular NMR, 2017, 68, 203-214.	1.6	11
328	Understanding the contribution of disulfide bridges to the folding and misfolding of an antiâ€Aβ scFv. Protein Science, 2017, 26, 1138-1149.	3.1	12
329	Amplification of distinct α-synuclein fibril conformers through protein misfolding cyclic amplification. Experimental and Molecular Medicine, 2017, 49, e314-e314.	3.2	39
330	Fluorescent Markers for Amyloidâ€Î² Detection: Computational Insights. Israel Journal of Chemistry, 2017, 57, 686-698.	1.0	2
331	Structural Biology of PrP Prions. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024455.	2.9	2
332	Crossâ€seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Letters, 2017, 591, 177-185.	1.3	42
333	Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. Nanoscale, 2017, 9, 2279-2290.	2.8	25
334	Structural variation in amyloid-l ² fibrils from Alzheimer's disease clinical subtypes. Nature, 2017, 541, 217-221.	13.7	528
335	Rosetta Stone for Amyloid Fibrils: The Key Role of Ring-Like Oligomers in Amyloidogenesis. Journal of Alzheimer's Disease, 2017, 59, 785-795.	1.2	26
336	Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids. Physical Chemistry Chemical Physics, 2017, 19, 28195-28206.	1.3	27

#	Article	IF	CITATIONS
337	Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences. Pharmaceutical Research, 2017, 34, 2628-2636.	1.7	1
338	Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 88, 1-14.	1.5	50
339	Conformation of Methylcellulose as a Function of Poly(ethylene glycol) Graft Density. ACS Macro Letters, 2017, 6, 1274-1279.	2.3	28
340	A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR. Journal of Magnetic Resonance, 2017, 285, 79-85.	1.2	2
341	Imaging Aβ(1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Physical Chemistry Chemical Physics, 2017, 19, 27987-27996.	1.3	57
342	Binding of protofibrillar Aβ trimers to lipid bilayer surface enhances Aβ structural stability and causes membrane thinning. Physical Chemistry Chemical Physics, 2017, 19, 27556-27569.	1.3	32
343	Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Cell, 2017, 171, 615-627.e16.	13.5	605
344	Distinct oligomerization and fibrillization dynamics of amyloid core sequences of amyloid-beta and islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2017, 19, 28414-28423.	1.3	43
345	A Hexamer of a Peptide Derived from Aβ _{16–36} . Biochemistry, 2017, 56, 6061-6071.	1.2	23
346	Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Biochemistry, 2017, 56, 4808-4818.	1.2	20
347	1H-Detected REDOR with Fast Magic-Angle Spinning of a Deuterated Protein. Journal of Physical Chemistry B, 2017, 121, 8503-8511.	1.2	11
348	Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level. Biophysical Journal, 2017, 113, 805-816.	0.2	32
349	Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. Solid State Nuclear Magnetic Resonance, 2017, 87, 45-53.	1.5	27
350	Molecular insights into Aβ ₄₂ protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. Journal of Molecular Recognition, 2017, 30, e2656.	1.1	24
351	Binding of Thioflavin T and Related Probes to Polymorphic Models of Amyloid-β Fibrils. Journal of Physical Chemistry B, 2017, 121, 8926-8934.	1.2	34
352	Pyroglutamateâ€Modified Amyloid β (11―40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry - A European Journal, 2017, 23, 15834-15838.	1.7	17
353	Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 8935-8945.	1.2	60
354	Perturbation of the F19-L34 Contact in Amyloid β (1-40) Fibrils Induces Only Local Structural Changes but Abolishes Cytotoxicity. Journal of Physical Chemistry Letters, 2017, 8, 4740-4745.	2.1	14

#	Article	IF	CITATIONS
355	Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. Journal of Biological Chemistry, 2017, 292, 18325-18343.	1.6	53
356	Synthesis of Thiopheneâ€Based Optical Ligands That Selectively Detect Tau Pathology in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23, 17127-17135.	1.7	32
357	Emerging Structural Understanding of Amyloid Fibrils by Solid-State NMR. Trends in Biochemical Sciences, 2017, 42, 777-787.	3.7	73
358	Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science, 2017, 358, 116-119.	6.0	801
359	Structural Biology outside the box — inside the cell. Current Opinion in Structural Biology, 2017, 46, 110-121.	2.6	72
360	Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 102-103, 120-195.	3.9	371
361	Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie, 2017, 140, 176-192.	1.3	59
362	The A2V mutation as a new tool for hindering AÎ ² aggregation: A neutron and x-ray diffraction study. Scientific Reports, 2017, 7, 5510.	1.6	9
363	Modulation of the extent of structural heterogeneity in α-synuclein fibrils by the small molecule thioflavin T. Journal of Biological Chemistry, 2017, 292, 16891-16903.	1.6	28
364	Dissecting the behaviour of βâ€amyloid peptide variants during oligomerization and fibrillation. Journal of Peptide Science, 2017, 23, 810-817.	0.8	5
365	Alpha-synuclein oligomers: a new hope. Acta Neuropathologica, 2017, 134, 819-838.	3.9	260
366	Elucidation of insulin assembly at acidic and neutral pH: Characterization of low molecular weight oligomers. Proteins: Structure, Function and Bioinformatics, 2017, 85, 2096-2110.	1.5	18
367	Ring-like N-fold Models of AÎ ² 42 fibrils. Scientific Reports, 2017, 7, 6588.	1.6	26
369	Size and Shape of Amyloid Fibrils Induced by Ganglioside Nanoclusters: Role of Sialyl Oligosaccharide in Fibril Formation. Langmuir, 2017, 33, 13874-13881.	1.6	32
370	Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13018-13023.	3.3	170
371	Peptides from sesame cake reduce oxidative stress and amyloid-β-induced toxicity by upregulation of SKN-1 in a transgenic Caenorhabditis elegans model of Alzheimer's disease. Journal of Functional Foods, 2017, 39, 287-298.	1.6	18
372	Toward a Soluble Model System for the Amyloid State. Journal of the American Chemical Society, 2017, 139, 16434-16437.	6.6	4
373	Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophysical Reviews, 2017, 9, 405-419.	1.5	74

		LEPORT	
# 374	ARTICLE Biophysical evaluation of amyloid fibril formation in bovine cytochrome c by sodium lauroyl sarcosinate (sarkosyl) in acidic conditions. Journal of Molecular Liquids, 2017, 241, 722-729.	IF 2.3	Citations
375	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
376	Molecular Origins of the Compatibility between Glycosaminoglycans and AÎ ² 40 Amyloid Fibrils. Journal of Molecular Biology, 2017, 429, 2449-2462.	2.0	23
377	Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 2017, 547, 185-190.	13.7	1,502
378	Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Human Genomics, 2017, 11, 12.	1.4	20
379	A Tetramer Derived from Islet Amyloid Polypeptide. Journal of Organic Chemistry, 2017, 82, 7905-7912.	1.7	14
380	$A\hat{I}^2$ seeds and prions: How close the fit?. Prion, 2017, 11, 215-225.	0.9	29
381	Conformational Change of Mutant form of Amyloid Precursor Protein by Carbon Nanotube Functionalized with Morin. Nano LIFE, 2017, 07, 1750001.	0.6	0
382	The Three-Dimensional Structures of Amyloids. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023572.	2.3	48
383	Probing oligomerization of amyloid beta peptide in silico. Molecular BioSystems, 2017, 13, 165-182.	2.9	20
384	Different conditions of fibrillogenesis cause polymorphism of lysozyme amyloid fibrils. Journal of Molecular Structure, 2017, 1140, 52-58.	1.8	27
385	Is there correlation between Aβ-heme peroxidase activity and the peptide aggregation state? A literature review combined with hypothesis. International Journal of Biological Macromolecules, 2017, 100, 18-36.	3.6	13
386	Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 419-430.	0.4	31
387	Drastic acceleration of fibrillation of insulin by transient cavitation bubble. Ultrasonics Sonochemistry, 2017, 36, 206-211.	3.8	20
388	Methodological approaches and insights on protein aggregation in biological systems. Expert Review of Proteomics, 2017, 14, 55-68.	1.3	2
389	Cellular Models for the Study of Prions. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024026.	2.9	18
390	Effects of donepezil on cognitive functions and the expression level of β-amyloid in peripheral blood of patients with Alzheimer's disease. Experimental and Therapeutic Medicine, 2017, 15, 1875-1878.	0.8	10
391	Molecular dynamics and ab initio molecular orbital calculations on conformational change of amyloid-ß monomers in an in vivo amyloid-ß nonamer. , 2017, , .		0

~		_	
CITATI	ON	REP	ORT

#	Article	IF	CITATIONS
392	Novel Multitarget Hybrid Compounds for the Treatment of Alzheimer's Disease. Current Topics in Medicinal Chemistry, 2017, 17, 1027-1043.	1.0	18
393	Development of surface-engineered PLGA nanoparticulate-delivery system of Tet-1-conjugated nattokinase enzyme for inhibition of Aβ ₄₀ plaques in Alzheimer's disease. International Journal of Nanomedicine, 2017, Volume 12, 8749-8768.	3.3	51
394	Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscience, 2017, 11, 64.	1.4	70
395	Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Frontiers in Pharmacology, 2017, 8, 39.	1.6	40
396	Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Frontiers in Cell and Developmental Biology, 2017, 5, 48.	1.8	160
397	Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. International Journal of Molecular Sciences, 2017, 18, 227.	1.8	24
398	APP—A Novel Player within the Presynaptic Active Zone Proteome. Frontiers in Molecular Neuroscience, 2017, 10, 43.	1.4	14
399	Alzheimer's amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS ONE, 2017, 12, e0174561.	1.1	24
400	Assemblies of amyloid-β30–36 hexamer and its G33V/L34T mutants by replica-exchange molecular dynamics simulation. PLoS ONE, 2017, 12, e0188794.	1.1	13
401	Calcium Dysregulation in Alzheimer's Disease: A Target for New Drug Development. , 2017, 7, .		78
402	Conversion between parallel and antiparallel β-sheets in wild-type and Iowa mutant Aβ40 fibrils. Journal of Chemical Physics, 2018, 148, 045103.	1.2	6
403	Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases. Accounts of Chemical Research, 2018, 51, 706-718.	7.6	93
404	Dynamics and Interactions of a 29 kDa Human Enzyme Studied by Solid-State NMR. Journal of Physical Chemistry Letters, 2018, 9, 1307-1311.	2.1	41
405	Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. Npj Vaccines, 2018, 3, 9.	2.9	45
406	Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophysical Journal, 2018, 114, 870-884.	0.2	88
407	The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex. Cell, 2018, 173, 1244-1253.e10.	13.5	216
408	Interactions between amyloid $\hat{\rm l}^2$ peptide and lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1663-1669.	1.4	82
409	Coexisting order and disorder within a common 40-residue amyloid-î² fibril structure in Alzheimer's disease brain tissue. Chemical Communications, 2018, 54, 5070-5073.	2.2	26

#	Article	IF	CITATIONS
410	Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Scientific Reports, 2018, 8, 6412.	1.6	182
411	Amyloid assembly and disassembly. Journal of Cell Science, 2018, 131, .	1.2	138
412	A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS Chemical Neuroscience, 2018, 9, 1591-1606.	1.7	21
413	3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods, 2018, 138-139, 26-38.	1.9	60
414	Propafenone effects on the stable structures of Aβ16-22 system. Chemical Physics Letters, 2018, 696, 55-60.	1.2	6
415	Competitive homo- and hetero- self-assembly of amyloid-β 1–42 and 1–40 in the early stage of fibrillation. International Journal of Mass Spectrometry, 2018, 428, 15-21.	0.7	10
416	Shedding light on aberrant interactions – a review of modern tools for studying protein aggregates. FEBS Journal, 2018, 285, 3604-3630.	2.2	10
417	Molecular subtypes of Alzheimer's disease. Scientific Reports, 2018, 8, 3269.	1.6	68
418	Advancements of the <scp>sFIDA</scp> method for oligomerâ€based diagnostics of neurodegenerative diseases. FEBS Letters, 2018, 592, 516-534.	1.3	10
419	Fibrillization of βâ€Amyloid Peptides via Chemically Modulated Pathway. Chemistry - A European Journal, 2018, 24, 4939-4943.	1.7	2
420	Islet Amyloid Polypeptide Promotes Amyloid-Beta Aggregation by Binding-Induced Helix-Unfolding of the Amyloidogenic Core. ACS Chemical Neuroscience, 2018, 9, 967-975.	1.7	39
421	Computational Study of the Azaâ€Michael Addition of the Flavonoid (+)â€Taxifolin in the Inhibition of βâ€Amyloid Fibril Aggregation. Chemistry - A European Journal, 2018, 24, 5813-5824.	1.7	11
422	Depletion of amyloidâ€Î² peptides from solution by sequestration within fibrilâ€seeded hydrogels. Protein Science, 2018, 27, 1218-1230.	3.1	6
423	Propagation of an Aβ Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophysical Journal, 2018, 114, 539-549.	0.2	12
424	To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of Al ² Peptide. Langmuir, 2018, 34, 2332-2343.	1.6	33
425	Distal amyloid βâ€protein fragments template amyloid assembly. Protein Science, 2018, 27, 1181-1190.	3.1	7
426	Out-of-Register AÎ ² ₄₂ Assemblies as Models for Neurotoxic Oligomers and Fibrils. Journal of Chemical Theory and Computation, 2018, 14, 1099-1110.	2.3	22
427	Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. Journal of Internal Medicine, 2018, 283, 218-237.	2.7	119

#	Article	IF	CITATIONS
428	<i>In Silico</i> Study of Recognition between Al² ₄₀ and Al² ₄₀ Fibril Surfaces: An N-Terminal Helical Recognition Motif and Its Implications for Inhibitor Design. ACS Chemical Neuroscience, 2018, 9, 935-944.	1.7	11
429	Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces. Langmuir, 2018, 34, 1266-1273.	1.6	5
430	Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 1081-1091.	1.2	44
431	Immunotherapy for neurodegenerative diseases: the Alzheimer's disease paradigm. Current Opinion in Chemical Engineering, 2018, 19, 59-67.	3.8	8
432	A longâ€lived Aβ oligomer resistant to fibrillization. Biopolymers, 2018, 109, e23096.	1.2	26
433	Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie, 2018, 147, 13-24.	1.3	95
434	Solid-state MAS NMR resonance assignment methods for proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2018, 106-107, 37-65.	3.9	27
435	FaptaSyme: A Strategy for Converting a Monomer/Oligomerâ€Nonselective Aptameric Sensor into an Oligomerâ€Selective One. ChemBioChem, 2018, 19, 1123-1126.	1.3	4
436	Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12–28) Peptides. Langmuir, 2018, 34, 4665-4672.	1.6	18
437	The on-fibrillation-pathway membrane content leakage and off-fibrillation-pathway lipid mixing induced by 40-residue β-amyloid peptides in biologically relevant model liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1670-1680.	1.4	15
438	Cause and consequence of Aβ – Lipid interactions in Alzheimer disease pathogenesis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1652-1662.	1.4	42
439	Studies of the Process of Amyloid Formation by AÎ ² Peptide. Biochemistry (Moscow), 2018, 83, S62-S80.	0.7	10
440	Biophysical insight reveals tannic acid as amyloid inducer and conformation transformer from amorphous to amyloid aggregates in Concanavalin A (ConA). Journal of Biomolecular Structure and Dynamics, 2018, 36, 1261-1273.	2.0	10
441	β-Amyloid Prions and the Pathobiology of Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a023507.	2.9	64
442	Peroxidase improves the activity of catalase by preventing aggregation during TFE-induced denaturation. Journal of Biomolecular Structure and Dynamics, 2018, 36, 551-560.	2.0	10
443	How the shapes of seeds can influence pathology. Neurobiology of Disease, 2018, 109, 201-208.	2.1	34
444	AÎ ² propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiology of Disease, 2018, 109, 191-200.	2.1	57
445	Distinct α-Synuclein strains and implications for heterogeneity among α-Synucleinopathies. Neurobiology of Disease, 2018, 109, 209-218.	2.1	121

#	Article	IF	CITATIONS
446	Molecular Docking and Molecular Dynamics Simulation to Evaluate Compounds That Avoid the Amyloid Beta 1-42 Aggregation. Neuromethods, 2018, , 229-248.	0.2	6
447	Anti-Amyloid-β Monoclonal Antibodies for Alzheimer's Disease: Pitfalls and Promise. Biological Psychiatry, 2018, 83, 311-319.	0.7	408
448	Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chemical Neuroscience, 2018, 9, 475-481.	1.7	31
449	Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nature Reviews Neurology, 2018, 14, 22-39.	4.9	303
450	Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins. Journal of Magnetic Resonance, 2018, 286, 99-109.	1.2	31
451	Prion Protein as a Toxic Acceptor of Amyloid- \hat{I}^2 Oligomers. Biological Psychiatry, 2018, 83, 358-368.	0.7	66
452	Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Biotechnic and Histochemistry, 2018, 93, 543-556.	0.7	25
453	MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer's disease mice. International Journal of Molecular Medicine, 2019, 43, 91-102.	1.8	40
454	Polymorph-specific distribution of binding sites determines thioflavin-T fluorescence intensity in α-synuclein fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25, 189-196.	1.4	52
455	<scp>l</scp> -Dopa and dopamine conjugated naphthalenediimides modulate amyloid Î ² toxicity. Organic and Biomolecular Chemistry, 2018, 16, 7682-7692.	1.5	20
456	Synthesis and Characterization of Oligothiophene–Porphyrin-Based Molecules That Can Be Utilized for Optical Assignment of Aggregated Amyloid-β Morphotypes. Frontiers in Chemistry, 2018, 6, 391.	1.8	8
457	Structural characterization of the D290V mutation site in hnRNPA2 low-complexity–domain polymers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9782-E9791.	3.3	50
458	Solid-State NMR of Macromolecules. , 2018, , 414-414.		3
459	Protofibrillar and Fibrillar Amyloid-β Binding Proteins in Cerebrospinal Fluid. Journal of Alzheimer's Disease, 2018, 66, 1053-1064.	1.2	7
460	Should the Treatment of Amyloidosis Be Personified? Molecular Mechanism of Amyloid Formation by Aβ Peptide and Its Fragments. Journal of Alzheimer's Disease Reports, 2018, 2, 181-199.	1.2	13
461	The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 2018, 9, 4517.	5.8	124
462	Antioxidant Activity and Neuroprotective Activity of Stilbenoids in Rat Primary Cortex Neurons via the PI3K/Akt Signalling Pathway. Molecules, 2018, 23, 2328.	1.7	23
463	A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 755-773.	16.1	654

#	Article	IF	CITATIONS
464	Preparation of fibril nuclei of beta-amyloid peptides in reverse micelles. Chemical Communications, 2018, 54, 10459-10462.	2.2	30
465	Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity. Physical Chemistry Chemical Physics, 2018, 20, 17208-17217.	1.3	32
466	Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels. Methods in Molecular Biology, 2018, 1777, 23-68.	0.4	6
467	Solid-State NMR Studies of Amyloid Materials: A Protocol to Define an Atomic Model of Aβ(1–42) in Amyloid Fibrils. Methods in Molecular Biology, 2018, 1777, 407-428.	0.4	2
468	Aggregation kinetics of the Al̂²1–40 peptide monitored by NMR. Chemical Communications, 2018, 54, 7601-7604.	2.2	29
469	Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELife, 2018, 7, .	2.8	45
470	Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6741-E6750.	3.3	66
471	Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. Journal of Alzheimer's Disease, 2018, 64, S659-S672.	1.2	5
472	Copper Binding Induces Polymorphism in Amyloid-β Peptide: Results of Computational Models. Journal of Physical Chemistry B, 2018, 122, 7243-7252.	1.2	17
473	Spontaneous Fluctuations Can Guide Drug Design Strategies for Structurally Disordered Proteins. Biochemistry, 2018, 57, 4206-4213.	1.2	10
474	Visualization of Protein Assembly Dynamics by Using High-speed Atomic Force Microscopy. Seibutsu Butsuri, 2018, 58, 086-088.	0.0	0
475	Selenium-enriched yeast inhibited β-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer's disease. Metallomics, 2018, 10, 1107-1115.	1.0	26
476	Nonproductive Binding Modes as a Prominent Feature of Aβ ₄₀ Fiber Elongation: Insights from Molecular Dynamics Simulation. Journal of Chemical Information and Modeling, 2018, 58, 1576-1586.	2.5	11
477	Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. International Journal of Molecular Sciences, 2018, 19, 336.	1.8	51
478	Conformational Dynamics and Stability of U-Shaped and S-Shaped Amyloid Î ² Assemblies. International Journal of Molecular Sciences, 2018, 19, 571.	1.8	30
479	Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules, 2018, 23, 283.	1.7	45
480	Recent Insights on Alzheimer's Disease Originating from Yeast Models. International Journal of Molecular Sciences, 2018, 19, 1947.	1.8	29
481	Polymorphism of Alzheimer's Aβ Amyloid Fibrils and Oligomers. , 2018, , 333-347.		0

#	Article	IF	CITATIONS
482	Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns. Journal of Biological Chemistry, 2018, 293, 14146-14154.	1.6	44
483	Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. Journal of Molecular Biology, 2018, 430, 3631-3641.	2.0	43
484	The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation. Journal of Molecular Biology, 2018, 430, 1940-1949.	2.0	17
485	Residueâ€Specific Dynamics and Local Environmental Changes in Aβ40 Oligomer and Fibril Formation. Angewandte Chemie - International Edition, 2018, 57, 8017-8021.	7.2	16
486	Discriminating Strains of Self-Propagating Protein Aggregates Using a Conformational Stability Assay. Methods in Molecular Biology, 2018, 1777, 339-354.	0.4	5
487	Amyloid Core Wild-Type Apomyoglobin and Its Mutant Variants Is Formed by Different Regions of the Polypeptide Chain. Molecular Biology, 2018, 52, 42-51.	0.4	0
488	Recent Advances by In Silico and In Vitro Studies of Amyloid-β 1-42 Fibril Depicted a S-Shape Conformation. International Journal of Molecular Sciences, 2018, 19, 2415.	1.8	21
489	Side-chain moieties from the N-terminal region of AÎ ² are Involved in an oligomer-stabilizing network of interactions. PLoS ONE, 2018, 13, e0201761.	1.1	14
490	Residueâ€ S pecific Dynamics and Local Environmental Changes in Aβ40 Oligomer and Fibril Formation. Angewandte Chemie, 2018, 130, 8149-8153.	1.6	1
491	Establishment of Constraints on Amyloid Formation Imposed by Steric Exclusion of Globular Domains. Journal of Molecular Biology, 2018, 430, 3835-3846.	2.0	15
492	Prion-like mechanisms in Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 303-319.	1.0	42
493	Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. Journal of Chemical Physics, 2018, 148, 215106.	1.2	21
494	A Protofilament-Protofilament Interface in the Structure of Mouse α-Synuclein Fibrils. Biophysical Journal, 2018, 114, 2811-2819.	0.2	10
495	Multi-strand β-sheet of Alzheimer Aβ(1–40) folds to β-strip helix: implication for protofilament formation. Journal of Biomolecular Structure and Dynamics, 2019, 37, 2143-2153.	2.0	1
496	C-Terminal Plays as the Possible Nucleation of the Self-Aggregation of the S-Shape Aβ _{11–42} Tetramer in Solution: Intensive MD Study. ACS Omega, 2019, 4, 11066-11073.	1.6	8
497	Aβ42 fibril formation from predominantly oligomeric samples suggests a link between oligomer heterogeneity and fibril polymorphism. Royal Society Open Science, 2019, 6, 190179.	1.1	17
498	In vitro ON4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16357-16366.	3.3	76
499	Structure and Function of Alzheimer's Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein Journal, 2019, 38, 425-434.	0.7	21

#	Article	IF	CITATIONS
500	Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. Journal of Physical Chemistry B, 2019, 123, 6750-6756.	1.2	31
501	Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. Journal of Magnetic Resonance, 2019, 306, 42-47.	1.2	27
502	Diverse Misfolded Conformational Strains and Cross-seeding of Misfolded Proteins Implicated in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 158.	1.4	31
503	Nitroxide spin–labeled peptides for DNPâ€NMR inâ€cell studies. FASEB Journal, 2019, 33, 11021-11027.	0.2	27
504	Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Frontiers in Molecular Neuroscience, 2019, 12, 169.	1.4	29
505	Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Nature Communications, 2019, 10, 3357.	5.8	45
506	The molecular lifecycle of amyloid – Mechanism of assembly, mesoscopic organisation, polymorphism, suprastructures, and biological consequences. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140257.	1.1	35
507	Structure and Physicochemical Properties of the AÎ ² 42 Tetramer: Multiscale Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2019, 123, 7253-7269.	1.2	25
508	Molecular mechanisms of fibrillation of IDPs. , 2019, , 257-274.		0
509	Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ _{16Ⱂ22} fibrils: an all-atom simulation study. Physical Chemistry Chemical Physics, 2019, 21, 15686-15694.	1.3	18
510	His6, His13, and His14 residues in Aβ 1–40 peptide significantly and specifically affect oligomeric equilibria. Scientific Reports, 2019, 9, 9449.	1.6	10
511	Stability of Aβâ€fibril fragments in the presence of fatty acids. Protein Science, 2019, 28, 1973-1981.	3.1	3
512	Inhibitory Effect of a Flavonoid Dihydromyricetin against Aβ40 Amyloidogenesis and Its Associated Cytotoxicity. ACS Chemical Neuroscience, 2019, 10, 4696-4703.	1.7	44
513	Molecular basis for chirality-regulated AÎ ² self-assembly and receptor recognition revealed by ion mobility-mass spectrometry. Nature Communications, 2019, 10, 5038.	5.8	35
514	Oligomers imaging of amyloid- <i>β</i> ₁₋₄₂ by scanning tunneling microscopy. Japanese Journal of Applied Physics, 2019, 58, SIIB30.	0.8	5
515	AÎ ² Seeding as a Tool to Study Cerebral Amyloidosis and Associated Pathology. Frontiers in Molecular Neuroscience, 2019, 12, 233.	1.4	32
516	Structural and Binding Properties on AÎ ² Mature Fibrils Due to the Histidine Tautomeric Effect. ACS Chemical Neuroscience, 2019, 10, 4612-4618.	1.7	18
517	Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer's brain tissue. Nature Communications, 2019, 10, 4760.	5.8	411

#	Article		CITATIONS
518	Modulation of Amyloid-Î ² 42 Conformation by Small Molecules Through Nonspecific Binding. Journal of Chemical Theory and Computation, 2019, 15, 5169-5174.	2.3	28
519	Treatment with scFv-h3D6 Prevented Neuronal Loss and Improved Spatial Memory in Young 3xTg-AD Mice by Reducing the Intracellular Amyloid-β Burden. Journal of Alzheimer's Disease, 2019, 70, 1069-1091.	1.2	18
520	Parkinson's disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17963-17969.	3.3	103
521	Paramagnetic solid-state NMR of proteins. Solid State Nuclear Magnetic Resonance, 2019, 103, 9-16.	1.5	5
522	Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region. Journal of Physical Chemistry B, 2019, 123, 8727-8732.	1.2	17
523	Effect of Post-Translational Modifications and Mutations on Amyloid-β Fibrils Dynamics at NÂTerminus. Biophysical Journal, 2019, 117, 1524-1535.	0.2	15
524	Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. Journal of the American Chemical Society, 2019, 141, 16685-16695.	6.6	50
525	Amyloid-Î ² Peptide Targeting Peptidomimetics for Prevention of Neurotoxicity. ACS Chemical Neuroscience, 2019, 10, 1462-1477.	1.7	7
526	Free Energy Profile for Penetration of Pittsburgh Compound-B into the Amyloid β Fibril. ACS Chemical Neuroscience, 2019, 10, 1783-1790.	1.7	9
527	Molecular insights into the surface-catalyzed secondary nucleation of amyloid- $\hat{1}^2$ ₄₀ (A $\hat{1}^2$) Tj ETQq1 $\hat{1}$	l 0,784314 4.7	4 rgBT /Overi
528	Comparative Exploratory Analysis of Intrinsically Disordered Protein Dynamics Using Machine Learning and Network Analytic Methods. Frontiers in Molecular Biosciences, 2019, 6, 42.	1.6	22
529	Reorientational Dynamics of Amyloid-β from NMR Spin Relaxation and Molecular Simulation. Journal of Physical Chemistry Letters, 2019, 10, 3369-3375.	2.1	26
530	Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale, 2019, 11, 11933-11945.	2.8	47
531	Effects of <i>in vivo</i> conditions on amyloid aggregation. Chemical Society Reviews, 2019, 48, 3946-3996.	18.7	148
532	Atomic resolution map of the soluble amyloid beta assembly toxic surfaces. Chemical Science, 2019, 10, 6072-6082.	3.7	48
533	Network-Based Classification and Modeling of Amyloid Fibrils. Journal of Physical Chemistry B, 2019, 123, 5452-5462.	1.2	16
534	Molecular structure of an N-terminal phosphorylated β-amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11253-11258.	3.3	43
535	Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs. Nano Letters, 2019, 19, 4023-4028.	4.5	31

#	Article	IF	CITATIONS
536	Steady, Symmetric, and Reversible Growth and Dissolution of Individual Amyloid-Î ² Fibrils. ACS Chemical Neuroscience, 2019, 10, 2967-2976.	1.7	16
537	HIV and Alzheimer's disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. Journal of NeuroVirology, 2019, 25, 648-660.	1.0	29
538	Aβ and tau prion-like activities decline with longevity in the Alzheimer's disease human brain. Science Translational Medicine, 2019, 11, .	5.8	96
539	Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain. Brain, 2019, 142, 1441-1457.	3.7	74
540	Distinct Binding Dynamics, Sites and Interactions of Fullerene and Fullerenols with Amyloid-β Peptides Revealed by Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2019, 20, 2048.	1.8	28
541	Glutamine Side Chain 13Câ•18O as a Nonperturbative IR Probe of Amyloid Fibril Hydration and Assembly. Journal of the American Chemical Society, 2019, 141, 7320-7326.	6.6	13
542	Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Frontiers in Molecular Neuroscience, 2019, 12, 54.	1.4	58
543	Mechanical and thermodynamic properties of Aβ ₄₂ , Aβ ₄₀ , and α-synuclein fibrils: a coarse-grained method to complement experimental studies. Beilstein Journal of Nanotechnology, 2019, 10, 500-513.	1.5	30
544	Anti-prion systems in yeast. Journal of Biological Chemistry, 2019, 294, 1729-1738.	1.6	18
545	Directing curli polymerization with DNA origami nucleators. Nature Communications, 2019, 10, 1395.	5.8	22
546	Propagation of Protein Aggregation in Neurodegenerative Diseases. Annual Review of Biochemistry, 2019, 88, 785-810.	5.0	213
547	A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	1.6	6
548	Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chemical Reviews, 2019, 119, 6956-6993.	23.0	138
549	Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer's disease mice. Critical Care, 2019, 23, 63.	2.5	21
550	Proton-Transfer-Induced Fluorescence in Self-Assembled Short Peptides. Journal of Physical Chemistry A, 2019, 123, 1758-1765.	1.1	13
551	Effect of Zn ion on the structure and electronic states of Aβ nonamer: molecular dynamics and ab initio molecular orbital calculations. Molecular Simulation, 2019, 45, 706-715.	0.9	2
552	Longitudinal Relaxation Optimization Enhances 1 Hâ€Detected HSQC in Solidâ€State NMR Spectroscopy on Challenging Biological Systems. Chemistry - A European Journal, 2019, 25, 4115-4122.	1.7	6
553	Elucidating the Molecular Determinants of AÎ ² Aggregation with Deep Mutational Scanning. G3: Genes, Genomes, Genetics, 2019, 9, 3683-3689.	0.8	32

#	Article	IF	CITATIONS
554	ATP Converts AÎ ² ₄₂ Oligomer into Off-Pathway Species by Making Contact with Its Backbone Atoms Using Hydrophobic Adenosine. Journal of Physical Chemistry B, 2019, 123, 9922-9933.	1.2	19
555	Caffeine destabilizes preformed Aβ protofilaments: insights from all atom molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 22067-22080.	1.3	30
556	The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 1154.	1.4	70
557	Combining molecular dynamics simulations and experimental analyses in protein misfolding. Advances in Protein Chemistry and Structural Biology, 2019, 118, 33-110.	1.0	9
558	Huntingtin's N-Terminus Rearrangements in the Presence of Membranes: A Joint Spectroscopic and Computational Perspective. ACS Chemical Neuroscience, 2019, 10, 472-481.	1.7	18
559	Advances in instrumentation and methodology for solid-state NMR of biological assemblies. Journal of Structural Biology, 2019, 206, 73-89.	1.3	12
560	Explicit-Solvent All-Atom Molecular Dynamics of Peptide Aggregation. Springer Series on Bio- and Neurosystems, 2019, , 541-558.	0.2	0
561	Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ ₄₂ aggregation and protofibril destabilization: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3183-3197.	2.0	34
562	Effects of a Hydrophilic/Hydrophobic Interface on Amyloid-β Peptides Studied by Molecular Dynamics Simulations and NMR Experiments. Journal of Physical Chemistry B, 2019, 123, 160-169.	1.2	36
563	Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study. ACS Chemical Neuroscience, 2019, 10, 1585-1594.	1.7	83
564	Physical and toxicological profiles of human IAPP amyloids and plaques. Science Bulletin, 2019, 64, 26-35.	4.3	24
565	Alkali ion influence on structure and stability of fibrillar amyloid-Î ² oligomers. Journal of Molecular Modeling, 2019, 25, 37.	0.8	14
566	Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity. Journal of Inorganic Biochemistry, 2019, 190, 15-23.	1.5	15
567	Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the Nâ€ŧerminal region. Chemical Biology and Drug Design, 2019, 94, 1615-1625.	1.5	2
568	DNP-Assisted NMR Investigation of Proteins at Endogenous Levels in Cellular Milieu. Methods in Enzymology, 2019, 615, 373-406.	0.4	14
569	Amyloid selfâ€assembling peptides: Potential applications in nanovaccine engineering and biosensing. Peptide Science, 2019, 111, e24095.	1.0	23
570	Amyloid structure of high-order assembly of Leucine-rich amelogenin revealed by solid-state NMR. Journal of Structural Biology, 2019, 206, 29-35.	1.3	8
571	Comparison of the 3D structures of mouse and human α-synuclein fibrils by solid-state NMR and STEM. Journal of Structural Biology, 2019, 206, 43-48.	1.3	14

#	Article	IF	CITATIONS
572	A complete catalog of wild-type Sup35 prion variants and their protein-only propagation. Current Genetics, 2020, 66, 97-122.	0.8	10
573	Aminoacid substitutions in the glycine zipper affect the conformational stability of amyloid beta fibrils. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3908-3915.	2.0	8
574	βâ€amyloid model core peptides: Effects of hydrophobes and disulfides. Protein Science, 2020, 29, 527-541.	3.1	5
575	Structural Insight into IAPPâ€Derived Amyloid Inhibitors and Their Mechanism of Action. Angewandte Chemie - International Edition, 2020, 59, 5771-5781.	7.2	17
576	PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathologica, 2020, 139, 503-526.	3.9	110
577	Pyrazolones Activate the Proteasome by Gating Mechanisms and Protect Neuronal Cells from βâ€Amyloid Toxicity. ChemMedChem, 2020, 15, 302-316.	1.6	15
578	The Structural Basis of Amyloid Strains in Alzheimer's Disease. ACS Biomaterials Science and Engineering, 2020, 6, 2498-2505.	2.6	9
579	Non-uniform sampling in quantitative assessment of heterogeneous solid-state NMR line shapes. Journal of Biomolecular NMR, 2020, 74, 71-82.	1.6	6
580	Peptide-Based Vaccines: Current Progress and Future Challenges. Chemical Reviews, 2020, 120, 3210-3229.	23.0	352
581	Molecular structure in biomolecular condensates. Current Opinion in Structural Biology, 2020, 60, 17-26.	2.6	91
582	Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2020, 59, 364-378.	1.2	31
583	lodine staining as a useful probe for distinguishing insulin amyloid polymorphs. Scientific Reports, 2020, 10, 16741.	1.6	8
584	One or more β-amyloid(s)? New insights into the prion-like nature of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2020, 175, 213-237.	0.9	1
585	Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis. Biosensors and Bioelectronics, 2020, 167, 112511.	5.3	58
586	Structural polymorphisms in fibrillar aggregates associated with exfoliation syndrome. Scientific Reports, 2020, 10, 15860.	1.6	4
587	Structural characteristics of oligomers formed by pyroglutamate-modified amyloid β peptides studied by solid-state NMR. Physical Chemistry Chemical Physics, 2020, 22, 16887-16895.	1.3	11
588	From monomer to fibril: Abetaâ€amyloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1592-1606.	1.5	12
589	N-Terminal Modified Al̂ ² Variants Enable Modulations to the Structures and Cytotoxicity Levels of Wild-Type Al̂ ² Fibrils through Cross-Seeding. ACS Chemical Neuroscience, 2020, 11, 2058-2065.	1.7	10

#	Article	IF	CITATIONS
590	Self- and Cross-Seeding on α-Synuclein Fibril Growth Kinetics and Structure Observed by High-Speed Atomic Force Microscopy. ACS Nano, 2020, 14, 9979-9989.	7.3	28
591	Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiology of Disease, 2020, 144, 105010.	2.1	81
592	Molecular simulations of amyloid beta assemblies. Advances in Physics: X, 2020, 5, 1770627.	1.5	16
593	Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Nature Communications, 2020, 11, 5735.	5.8	76
594	Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Frontiers in Molecular Neuroscience, 2020, 13, 609073.	1.4	35
595	Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Frontiers in Neuroscience, 2020, 14, 611285.	1.4	52
596	Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. International Journal of Molecular Sciences, 2020, 21, 8920.	1.8	8
597	Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. International Journal of Molecular Sciences, 2020, 21, 9186.	1.8	20
598	Tandem-Homodimer of a β-Sheet-Forming Short Peptide Inhibits Random-to-β Structural Transition of Its Original Monomer. Processes, 2020, 8, 1421.	1.3	2
599	Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. Journal of Molecular Biology, 2020, 432, 4722-4744.	2.0	34
600	Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining Long-Range ¹³ C– ¹³ C and ¹⁵ N– ¹³ C Distance Restraints. Journal of Physical Chemistry B, 2020, 124, 7138-7151.	1.2	11
601	Differences in the free energies between the excited states of A <i>β</i> 40 and A <i>β</i> 42 monomers encode their aggregation propensities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19926-19937.	3.3	49
602	Modulating disease-relevant tau oligomeric strains by small molecules. Journal of Biological Chemistry, 2020, 295, 14807-14825.	1.6	35
603	Insights into the Effect of Curcumin and (–)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1–40) Monomers by Means of Molecular Dynamics. International Journal of Molecular Sciences, 2020, 21, 5462.	1.8	18
604	The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 17-39.	3.9	35
605	Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Al² ₄₂ Oligomers. ACS Chemical Neuroscience, 2020, 11, 2741-2752.	1.7	25
606	Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chemical Neuroscience, 2020, 11, 3233-3244.	1.7	12
607	Cross-Species and Cross-Polymorph Seeding of Lysozyme Amyloid Reveals a Dominant Polymorph. Frontiers in Molecular Biosciences, 2020, 7, 206.	1.6	11

		CITATION REPORT		
#	Article		IF	CITATIONS
608	Fluorescence-Labeled Amyloid Beta Monomer: A Molecular Dynamical Study. Molecules,	, 2020, 25, 3524.	1.7	3
609	Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated a Nature Structural and Molecular Biology, 2020, 27, 1048-1056.	assembly.	3.6	71
610	Time-Dependent Lipid Dynamics, Organization and Peptide-Lipid Interaction in Phospho with Incorporated 12-Amyloid Oligomers. Journal of Physical Chemistry Letters, 2020, 11	lipid Bilayers , 8329-8336.	2.1	12
611	Synthetic and Biophysical Studies on the Toxic Conformer in Amyloid \hat{l}^2 with the E22 \hat{l} " MAL Alzheimer Pathology. ACS Chemical Neuroscience, 2020, 11, 3017-3024.	Autation in	1.7	2
612	Charge guides pathway selection in \hat{l}^2 -sheet fibrillizing peptide co-assembly. Communica 2020, 3, .	ations Chemistry,	2.0	17
613	Natural Compounds as Inhibitors of AÎ ² Peptide Aggregation: Chemical Requirements ar Mechanisms. Frontiers in Neuroscience, 2020, 14, 619667.	nd Molecular	1.4	59
614	Atomistic fibrillar architectures of polar prion-inspired heptapeptides. Chemical Science, 13143-13151.	2020, 11,	3.7	9
615	Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms a in Cytotoxicity. International Journal of Molecular Sciences, 2020, 21, 7659.	ind Changes	1.8	7
616	Conformational Selection as the Driving Force of Amyloid \hat{I}^2 Chiral Inactivation. ChemBi 21, 2945-2949.	oChem, 2020,	1.3	8
617	Differentiating Al²40 and Al²42 in amyloid plaques with a small molecule fluorescence μ Science, 2020, 11, 5238-5245.	probe. Chemical	3.7	30
618	Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State N Magnetic Resonance. Biochemistry, 2020, 59, 2237-2248.	uclear	1.2	30
619	Older, non-demented apolipoprotein $\hat{I}\mu$ 4 carrier males show hyperactivation and structuin odor memory regions: a blood-oxygen-level-dependent and structural magnetic reson study. Neurobiology of Aging, 2020, 93, 25-34.	ral differences ance imaging	1.5	4
620	Functionalized Mesoporous Silicas Direct Structural Polymorphism of Amyloid-β Fibrils. 2020, 36, 7345-7355.	Langmuir,	1.6	3
621	Spot the Difference: Function versus Toxicity in Amyloid Fibrils. Trends in Biochemical So 45, 635-636.	tiences, 2020,	3.7	12
622	Alzheimer's Disease "Non-amyloidogenic―p3 Peptide Revisited: A Case for Amy Neuroscience, 2020, 11, 1539-1544.	/loid-α. ACS Chemical	1.7	23
623	Collagen hydrogel confinement of Amyloid-β (Aβ) accelerates aggregation and reduces effects. Acta Biomaterialia, 2020, 112, 164-173.	cytotoxic	4.1	11
624	Out-of-Register Parallel β-Sheets and Antiparallel β-Sheets Coexist in 150-kDa Oligomer Amyloid-β(1–42). Journal of Molecular Biology, 2020, 432, 4388-4407.	's Formed by	2.0	27
625	NCIPLOT4: Fast, Robust, and Quantitative Analysis of Noncovalent Interactions. Journal Theory and Computation, 2020, 16, 4150-4158.	of Chemical	2.3	151

#	Article	IF	CITATIONS
626	Molecular interactions between monoclonal oligomer-specific antibody 5E3 and its amyloid beta cognates. PLoS ONE, 2020, 15, e0232266.	1.1	0
627	Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nature Structural and Molecular Biology, 2020, 27, 653-659.	3.6	98
628	High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. International Journal of Molecular Sciences, 2020, 21, 4287.	1.8	27
629	Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils. Journal of Molecular Liquids, 2020, 314, 113618.	2.3	4
630	Fibrillization of 40-residue β-Amyloid Peptides in Membrane-Like Environments Leads to Different Fibril Structures and Reduced Molecular Polymorphisms. Biomolecules, 2020, 10, 881.	1.8	11
631	Utilisation of the OliveNetâ,,¢ Library to investigate phenolic compounds using molecular modelling studies in the context of Alzheimer's disease. Computational Biology and Chemistry, 2020, 87, 107271.	1.1	4
632	Innovative IgG Biomarkers Based on Phage Display Microbial Amyloid Mimotope for State and Stage Diagnosis in Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 1013-1026.	1.7	17
633	MAS NMR detection of hydrogen bonds for protein secondary structure characterization. Journal of Biomolecular NMR, 2020, 74, 247-256.	1.6	13
634	Incorporation of the Nonproteinogenic Amino Acid β-Methylamino-alanine Affects Amyloid β Fibril Properties and Toxicity. ACS Chemical Neuroscience, 2020, 11, 1038-1047.	1.7	15
635	Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. Progress in Molecular Biology and Translational Science, 2020, 170, 461-504.	0.9	12
636	Heat-induced degradation of fibrils: Exponential vs logistic kinetics. Journal of Chemical Physics, 2020, 152, 115101.	1.2	6
637	Protein transmission in neurodegenerative disease. Nature Reviews Neurology, 2020, 16, 199-212.	4.9	330
638	Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in <i>Drosophila</i> . Science, 2020, 367, 1230-1234.	6.0	140
639	Maturation of the functional mouse CRES amyloid from globular form. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16363-16372.	3.3	7
640	FiXR: a framework to reconstruct fiber cross-sections from X-ray fiber diffraction experiments. Acta Crystallographica Section D: Structural Biology, 2020, 76, 102-117.	1.1	0
641	Protein Structure and Function in Aging and Age-Related Diseases. , 2020, , 3-26.		1
642	X-ray Crystallography Reveals Parallel and Antiparallel β-Sheet Dimers of a β-Hairpin Derived from Aβ _{16–36} that Assemble to Form Different Tetramers. ACS Chemical Neuroscience, 2020, 11, 2340-2347.	1.7	18
643	Mixing Aβ(1–40) and Aβ(1–42) peptides generates unique amyloid fibrils. Chemical Communications, 2020, 56, 8830-8833.	2.2	39

#	Article	IF	CITATIONS
644	Structural Insight into IAPPâ€Derived Amyloid Inhibitors and Their Mechanism of Action. Angewandte Chemie, 2020, 132, 5820-5830.	1.6	3
645	Cyanidin-3- <i>O</i> -glucoside inhibits Aβ40 fibrillogenesis, disintegrates preformed fibrils, and reduces amyloid cytotoxicity. Food and Function, 2020, 11, 2573-2587.	2.1	26
646	The Properties of α-Synuclein Secondary Nuclei Are Dominated by the Solution Conditions Rather than the Seed Fibril Strain. ACS Chemical Neuroscience, 2020, 11, 909-918.	1.7	29
647	Versatile NMR simulations using SIMPSON. Annual Reports on NMR Spectroscopy, 2020, 100, 1-59.	0.7	13
648	Denaturant effect on amyloid fibrils: Declasterization, depolymerization, denaturation and reassembly. International Journal of Biological Macromolecules, 2020, 150, 681-694.	3.6	15
649	Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Analytical Chemistry, 2020, 92, 2953-2960.	3.2	21
650	Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination. Biochemistry, 2020, 59, 639-646.	1.2	32
651	Neurodegenerative diseases distinguished through protein-structure analysis. Nature, 2020, 578, 223-224.	13.7	9
652	Synthesis and Characterization of Thiopheneâ€based Donor–Acceptor–Donor Heptameric Ligands for Spectral Assignment of Polymorphic Amyloidâ€Î² Deposits. Chemistry - A European Journal, 2020, 26, 7425-7432.	1.7	13
653	Polymorphic α-Synuclein Strains Modified by Dopamine and Docosahexaenoic Acid Interact Differentially with Tau Protein. Molecular Neurobiology, 2020, 57, 2741-2765.	1.9	25
654	Complete aggregation pathway of amyloid β (1-40) and (1-42) resolved on an atomically clean interface. Science Advances, 2020, 6, eaaz6014.	4.7	88
655	A Spectroscopic Marker for Structural Transitions Associated with Amyloid-β Aggregation. Biochemistry, 2020, 59, 1813-1822.	1.2	20
656	Protein assembly systems in natural and synthetic biology. BMC Biology, 2020, 18, 35.	1.7	44
657	Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells. MBio, 2020, 11, .	1.8	8
658	Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6866-6874.	3.3	54
659	Conformational Characterization of Native and L17A/F19A-Substituted Dutch-Type β-Amyloid Peptides. International Journal of Molecular Sciences, 2020, 21, 2571.	1.8	5
660	Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules, 2020, 25, 1659.	1.7	60
661	A DFT study of structure and stability of pleated and rippled crossâ $\in \hat{\mathbf{F}}^2$ sheets with hydrophobic sidechains. Biopolymers, 2021, 112, e23391.	1.2	11

#	Article	IF	CITATIONS
662	Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coordination Chemistry Reviews, 2021, 428, 213612.	9.5	11
663	Green tea extract EGCG plays a dual role in $\hat{A^2}$ 42 protofibril disruption and membrane protection: A molecular dynamic study. Chemistry and Physics of Lipids, 2021, 234, 105024.	1.5	19
664	Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophysical Chemistry, 2021, 268, 106506.	1.5	14
665	Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals. Cell Systems, 2021, 12, 141-158.e9.	2.9	32
666	Dialysis-related amyloidosis associated with a novel β ₂ -microglobulin variant. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2021, 28, 42-49.	1.4	13
668	Biophysical characteristics of lipidâ€induced Aβ oligomers correlate to distinctive phenotypes in transgenic mice. FASEB Journal, 2021, 35, e21318.	0.2	12
669	Defining the Neuropathological Aggresome across <i>in Silico</i> , <i>in Vitro</i> , and <i>ex Vivo</i> Experiments. Journal of Physical Chemistry B, 2021, 125, 1974-1996.	1.2	5
670	Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism. Journal of Materials Chemistry B, 2021, 9, 6902-6914.	2.9	13
671	Solid-state NMR spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	196
672	Molecular Simulations and Alzheimer× ³ s Disease. , 2021, , 54-70.		0
673	Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Physical Chemistry Chemical Physics, 2021, 23, 20406-20418.	1.3	16
674	Serotonin and Melatonin Show Different Modes of Action on Aβ ₄₂ Protofibril Destabilization. ACS Chemical Neuroscience, 2021, 12, 799-809.	1.7	24
675	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
677	Effect of Lauric Acid on the Stability of Aβ ₄₂ Oligomers. ACS Omega, 2021, 6, 5795-5804.	1.6	3
679	The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations. ELife, 2021, 10, .	2.8	34
680	Using stable isotope labeling to advance our understanding of Alzheimer's disease etiology and pathology. Journal of Neurochemistry, 2021, 159, 318-329.	2.1	7
681	Evaluating the Multifunctionality of a New Modulator of Zinc-Induced AÎ ² Aggregation Using a Novel Computational Approach. Journal of Chemical Information and Modeling, 2021, 61, 1383-1401.	2.5	3
682	Pentameric Thiophene as a Probe to Monitor EGCG's Remodeling Activity of Mature Amyloid Fibrils: Overcoming Signal Artifacts of Thioflavin T. ACS Omega, 2021, 6, 8700-8705.	1.6	6

#	Article	IF	CITATIONS
683	Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641372.	2.0	30
686	Aggregation of Aβ40/42 chains in the presence of cyclic neuropeptides investigated by molecular dynamics simulations. PLoS Computational Biology, 2021, 17, e1008771.	1.5	5
687	Identification of the Rigid Core for Aged Liquid Droplets of an RNA-Binding Protein Low Complexity Domain. Journal of the American Chemical Society, 2021, 143, 6657-6668.	6.6	27
688	Comparative analysis of 13C chemical shifts of β-sheet amyloid proteins and outer membrane proteins. Journal of Biomolecular NMR, 2021, 75, 151-166.	1.6	2
689	Transport of Alzheimer's associated amyloid-β catalyzed by P-glycoprotein. PLoS ONE, 2021, 16, e0250371.	1.1	19
690	Phe-Gly motifs drive fibrillization of TDP-43's prion-like domain condensates. PLoS Biology, 2021, 19, e3001198.	2.6	17
691	Molecular mechanisms of amyloid disaggregation. Journal of Advanced Research, 2022, 36, 113-132.	4.4	14
692	Application of DNP-enhanced solid-state NMR to studies of amyloid-β peptide interaction with lipid membranes. Chemistry and Physics of Lipids, 2021, 236, 105071.	1.5	7
693	Trypsin Induced Degradation of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4828.	1.8	14
694	Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathologica Communications, 2021, 9, 83.	2.4	14
695	Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. Molecules, 2021, 26, 2897.	1.7	15
696	The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. Journal of Neuropathology and Experimental Neurology, 2021, 80, 514-529.	0.9	11
697	Molecular and Ionic Diffusion in Ion Exchange Membranes and Biological Systems (Cells and Proteins) Studied by NMR. Membranes, 2021, 11, 385.	1.4	16
698	Exploring interactions between lipids and amyloid-forming proteins: A review on applying fluorescence and NMR techniques. Chemistry and Physics of Lipids, 2021, 236, 105062.	1.5	5
699	Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chemical Reviews, 2021, 121, 8285-8307.	23.0	98
700	Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils. Journal of Chemical Physics, 2021, 154, 235102.	1.2	0
701	Polyphenolâ€solubility alters amyloid fibril formation of αâ€synuclein. Protein Science, 2021, 30, 1701-1713.	3.1	14
702	Multipronged Regulatory Functions of Serum Albumin in Early Stages of Amyloid-Î ² Aggregation. ACS Chemical Neuroscience, 2021, 12, 2409-2420.	1.7	10

#	Article	IF	CITATIONS
703	Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer's amyloid beta. Nano Today, 2021, 38, 101125.	6.2	44
704	Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Frontiers in Molecular Biosciences, 2021, 8, 681855.	1.6	5
705	Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation. Methods, 2021, , .	1.9	1
706	Critical Appraisal of Amyloid Lowering Agents in AD. Current Neurology and Neuroscience Reports, 2021, 21, 39.	2.0	57
707	Thiopheneâ€Based Optical Ligands That Selectively Detect Aβ Pathology in Alzheimer's Disease. ChemBioChem, 2021, 22, 2568-2581.	1.3	8
708	Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. Journal of Neurochemistry, 2021, 159, 234-257.	2.1	8
709	Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Frontiers in Molecular Neuroscience, 2021, 14, 670513.	1.4	18
710	Sensitivity-Enhanced Solid-State NMR Detection of Structural Differences and Unique Polymorphs in Pico- to Nanomolar Amounts of Brain-Derived and Synthetic 42-Residue Amyloid-Î ² Fibrils. Journal of the American Chemical Society, 2021, 143, 11462-11472.	6.6	24
711	Nanoparticle Size Effects in Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 6471-6496.	2.4	90
712	Biophysical applications in structural and molecular biology. Biological Chemistry, 2021, 402, 1155-1177.	1.2	1
715	Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. International Journal of Biological Macromolecules, 2021, 183, 1184-1190.	3.6	8
716	On the Structural Diversity and Individuality of Polymorphic Amyloid Protein Assemblies. Journal of Molecular Biology, 2021, 433, 167124.	2.0	33
717	Huntingtin fibrils with different toxicity, structure, and seeding potential can be interconverted. Nature Communications, 2021, 12, 4272.	5.8	25
718	Integrative Structural Biology in the Era of Accurate Structure Prediction. Journal of Molecular Biology, 2021, 433, 167127.	2.0	36
720	Elevated Expression of MiR-17 in Microglia of Alzheimer's Disease Patients Abrogates Autophagy-Mediated Amyloid-β Degradation. Frontiers in Immunology, 2021, 12, 705581.	2.2	34
721	Early Divergence in Misfolding Pathways of Amyloidâ€Beta Peptides. ChemPhysChem, 2021, 22, 2158-2163.	1.0	4
722	Identification of key stabilizing interactions of amyloidâ€ <i>β</i> oligomers based on fragment molecular orbital calculations on macrocyclic <scp><i>β</i>â€hairpin</scp> peptides. Proteins: Structure, Function and Bioinformatics, 2022, 90, 229-238.	1.5	6
723	Challenges in sample preparation and structure determination of amyloids by cryo-EM. Journal of Biological Chemistry, 2021, 297, 100938.	1.6	20

#	Article	IF	CITATIONS
724	Constraints on the Structure of Fibrils Formed by a Racemic Mixture of Amyloid-β Peptides from Solid-State NMR, Electron Microscopy, and Theory. Journal of the American Chemical Society, 2021, 143, 13299-13313.	6.6	17
725	The Proteome Folding Problem and Cellular Proteostasis. Journal of Molecular Biology, 2021, 433, 167197.	2.0	22
726	Redox Properties of Small Molecules Essential for Multiple Reactivities with Pathological Factors in Alzheimer's Disease. Bulletin of the Korean Chemical Society, 2021, 42, 1272-1280.	1.0	8
727	Curvature of the Retroviral Capsid Assembly Is Modulated by a Molecular Switch. Journal of Physical Chemistry Letters, 2021, 12, 7768-7776.	2.1	8
729	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478
731	Cross-Seeded Fibrillation Induced by Pyroglutamate-3 and Truncated Aβ ₄₀ Variants Leads to Aβ ₄₀ Structural Polymorphism Modulation and Elevated Toxicity. ACS Chemical Neuroscience, 2021, 12, 3625-3637.	1.7	11
732	A Comprehensive Insight into the Mechanisms of Dopamine in Disrupting Aβ Protofibrils and Inhibiting Aβ Aggregation. ACS Chemical Neuroscience, 2021, 12, 4007-4019.	1.7	28
733	Effects of Al²-derived peptide fragments on fibrillogenesis of Al². Scientific Reports, 2021, 11, 19262.	1.6	10
734	Frustrated peptide chains at the fibril tip control the kinetics of growth of amyloid-β fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
735	Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nature Structural and Molecular Biology, 2021, 28, 724-730.	3.6	48
736	Human cerebral vascular amyloid contains both antiparallel and parallel in-register Aβ40 fibrils. Journal of Biological Chemistry, 2021, 297, 101259.	1.6	12
737	The amyloid concentric βâ€barrel hypothesis: Models of synuclein oligomers, annular protofibrils, lipoproteins, and transmembrane channels. Proteins: Structure, Function and Bioinformatics, 2022, 90, 512-542.	1.5	3
738	From structure to application: Progress and opportunities in peptide materials development. Current Opinion in Chemical Biology, 2021, 64, 131-144.	2.8	18
739	Exploring amyloid oligomers with peptide model systems. Current Opinion in Chemical Biology, 2021, 64, 106-115.	2.8	23
740	Atomic-level differences between brain parenchymal- and cerebrovascular-seeded AÎ ² fibrils. Scientific Reports, 2021, 11, 247.	1.6	12
741	Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ ₄₂ aggregation and disruption of Aβ ₄₂ protofibril: similarities and differences. Physical Chemistry Chemical Physics, 2021, 23, 18843-18854.	1.3	31
742	Dual Effect of Prussian Blue Nanoparticles on Aβ40 Aggregation: β-Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules, 2021, 22, 430-440.	2.6	11
743	Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer's disease brain tissue. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	108

	CITATION R	EPORT	
#	Article	IF	CITATIONS
744	Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metalâ€Free and Metalâ€Associated Amyloidâ€Î². Bulletin of the Korean Chemical Society, 2021, 42, 17-24.	1.0	10
745	Preparation of Amyloid Fibrils Seeded from Brain and Meninges. Methods in Molecular Biology, 2016, 1345, 299-312.	0.4	11
746	Polymorphism of Alzheimer's Aβ Amyloid Fibrils and Oligomers. , 2017, , 1-15.		1
747	Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ ₄₂ Protofibril. ACS Chemical Neuroscience, 2020, 11, 1841-1851.	1.7	73
748	Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini. ACS Omega, 2017, 2, 712-720.	1.6	20
749	The red-hot debate about transmissible Alzheimer's. Nature, 2016, 531, 294-297.	13.7	15
750	Amyloid structure. Essays in Biochemistry, 2014, 56, 1-10.	2.1	15
751	Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14, 67-75.	0.9	46
757	Hydrogen bonds are a primary driving force for <i>de novo</i> protein folding. Acta Crystallographica Section D: Structural Biology, 2017, 73, 955-969.	1.1	9
758	Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. PLoS ONE, 2015, 10, e0122714.	1.1	16
759	Characterization of a Novel Mouse Model of Alzheimer's Disease—Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS ONE, 2015, 10, e0126317.	1.1	23
760	Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph. PLoS ONE, 2017, 12, e0172862.	1.1	6
761	Role of the N-terminus for the stability of an amyloid-Î ² fibril with three-fold symmetry. PLoS ONE, 2017, 12, e0186347.	1.1	31
762	Cross-seeding of prions by aggregated α-synuclein leads to transmissible spongiform encephalopathy. PLoS Pathogens, 2017, 13, e1006563.	2.1	42
763	Strains of Pathological Protein Aggregates in Neurodegenerative Diseases. Discoveries, 2017, 5, e78.	1.5	8
764	Protein Folding, Misfolding, Aggregation And Amyloid Formation: Mechanisms of AÎ ² Oligomer Mediated Toxicities. Journal of Biochemistry and Molecular Biology Research, 2015, 1, 36-45.	0.3	3
765	AÎ ² Plaques. Free Neuropathology, 2020, 1, .	2.4	21
767	Key Peptides and Proteins in Alzheimer's Disease. Current Protein and Peptide Science, 2019, 20, 577-599.	0.7	30

		CITATION R	EPORT	
#	Article		IF	CITATIONS
768	New Mechanism of Amyloid Fibril Formation. Current Protein and Peptide Science, 201	.9, 20, 630-640.	0.7	16
769	Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Narrative Review of Current Clinical Trials. Current Molecular Pharmacology, 2020, 13,	Approaches: A 273-294.	0.7	16
770	Protective Effect of Zeaxanthin against Tunicamycin-induced Cell Damage in SH-SY5Y Science and Technology Research, 2018, 24, 1101-1109.	Cell. Food	0.3	3
771	Challenges in understanding the structure/activity relationship of $A\hat{I}^2$ oligomers. AIMS 6, 1-22.	Biophysics, 2019,	0.3	3
772	Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on incubated with amyloid-beta42. Neural Regeneration Research, 2015, 10, 1292.	PC12 cells	1.6	15
773	Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin flanking the polyQ tract. ELife, 2016, 5, .	by domains	2.8	62
774	Structural mapping of oligomeric intermediates in an amyloid assembly pathway. ELife	, 2019, 8, .	2.8	44
775	Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ, 2019, 7, e820	8.	0.9	20
776	Destabilization of Alzheimer's AÎ ² ₄₂ protofibrils with acyclovir, carmustin tetracycline: insights from molecular dynamics simulations. New Journal of Chemistry, 21031-21048.	e, curcumin, and 2021, 45,	1.4	6
777	Structural Study of Membrane Glycoprotein-Precursor of β-Amyloid and Proteins Invol Proteolysis. Crystallography Reports, 2021, 66, 737-750.	ved in Its	0.1	1
778	Molecular Profiles of Amyloid-β Proteoforms in Typical and Rapidly Progressive Alzhein Molecular Neurobiology, 2022, 59, 17-34.	ıer's Disease.	1.9	8
780	Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a N-Terminal Salt Bridges in Amyloid-Beta. Journal of Physical Chemistry Letters, 2021, 1	Role for 2, 9933-9939.	2.1	4
782	Nanoâ€Assemblies of a Synthetic Peptide: Illuminating Aggregation Potential, Amyloid Cytotoxicity. ChemistrySelect, 2021, 6, 11103-11107.	ogenicity and	0.7	1
783	From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR Reviews, 2022, 122, 9848-9879.	. Chemical	23.0	29
784	Aggregation and structure of amyloid \hat{I}^2 -protein. Neurochemistry International, 2021,	151, 105208.	1.9	19
786	Protein Misfolding and Amyloid Formation in Alzheimer's Disease. , 2015, , 119-13	5.		0
788	Imaging Agent Binding to Amyloid Protofibrils. Springer Theses, 2016, , 43-61.		0.0	0
789	NMR Spectroscopy in the Analysis of Protein-Protein Interactions. , 2017, , 1-34.			1

#	Article	IF	CITATIONS
792	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0
793	NMR Spectroscopy in the Analysis of Protein-Protein Interactions. , 2018, , 2099-2132.		0
805	Real-time in-situ ¹ H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation. Pure and Applied Chemistry, 2020, 92, 1575-1583.	0.9	4
807	Amyloidâ€Î²40 <scp>E22K</scp> fibril in familial Alzheimer's disease is more thermostable and susceptible to seeding. IUBMB Life, 2022, 74, 739-747.	1.5	1
811	The Role of Aβ in the Development of Alzheimer's Disease and its Mechanisms. E3S Web of Conferences, 2020, 218, 03041.	0.2	0
817	Structural differences in amyloid-β fibrils from brains of nondemented elderly individuals and Alzheimer's disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
819	Structural biology of cell surface receptors implicated in Alzheimer's disease. Biophysical Reviews, 2022, 14, 233-255.	1.5	5
820	Proteotoxicity and Autophagy in Neurodegenerative and Cardiovascular Diseases. , 2022, , 219-237.		0
821	Proteolysis of Amyloid Î ² by Lysosomal Enzymes as a Function of Fibril Morphology. ACS Omega, 2021, 6, 31520-31527.	1.6	5
822	Biological and methodological complexities of betaâ€amyloid peptide: Implications for Alzheimer's disease research. Journal of Neurochemistry, 2022, 160, 434-453.	2.1	12
823	Knowledge of Dementia Treatment : Prospects for Disease-modifying Therapy in Alzheimer's Disease. Japanese Journal of Neurosurgery, 2021, 30, 840-844.	0.0	0
824	Protein nanofibrils and their use as building blocks of sustainable materials. RSC Advances, 2021, 11, 39188-39215.	1.7	29
825	Inactivation of seeding activity of amyloid βâ€protein aggregates in vitro. Journal of Neurochemistry, 2021, , .	2.1	2
826	Binding Sites of a Positron Emission Tomography Imaging Agent in Alzheimer's β-Amyloid Fibrils Studied Using ¹⁹ F Solid-State NMR. Journal of the American Chemical Society, 2022, 144, 1416-1430.	6.6	22
827	Amyloid-beta peptide and tau protein crosstalk in Alzheimer's disease. Neural Regeneration Research, 2022, 17, 1666.	1.6	87
828	Cryo-EM structures of amyloid- \hat{l}^2 42 filaments from human brains. Science, 2022, 375, 167-172.	6.0	228
829	The roles of gold nanoparticles in the detection of amyloid-Î ² peptide for Alzheimer's disease. Colloids and Interface Science Communications, 2022, 46, 100579.	2.0	26
830	Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nature Communications, 2022, 13, 85.	5.8	15

ARTICLE IF CITATIONS # Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and 831 23.0 23 Dynamical Studies in Biological Systems. Chemical Reviews, 2022, 122, 9880-9942. A calcium-sensitive antibody isolates soluble amyloid-β aggregates and fibrils from Alzheimer's disease 3.7 brain. Brain, 2022, , . Molecular Dynamics of Lysozyme Amyloid Polymorphs Studied by Incoherent Neutron Scattering. 833 7 1.6 Frontiers in Molecular Biosciences, 2021, 8, 812096. The amyloid concentric $\hat{l}^2 \hat{a} \in$ barrel hypothesis: Models of amyloid beta 42 oligomers and annular 834 protofibrils. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1190-1209. Passion fruit seed extract protects beta $\hat{\epsilon}$ amyloid $\hat{\epsilon}$ induced neuronal cell death in a differentiated human 835 1.5 8 neuroblastoma SHâ€SY5Y cell model. Food Science and Nutrition, 2022, 10, 1461-1468. The amyloid state of proteins: A boon or bane?. International Journal of Biological Macromolecules, 3.6 2022, 200, 593-617 Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field. Methods in Molecular 837 0.4 1 Biology, 2022, 2340, 79-104. Molecular dynamics simulations of amyloid- \hat{I}^2 peptides in heterogeneous environments. Biophysics and 838 Physicobiológy, 2022, 19, n/a. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods in 839 0.4 1 Molecular Biology, 2022, 2405, 95-113. 1-(7-Chloroquinolin-4-yl)-N-(4-Methoxybenzyl)-5-Methyl-1H-1,2, 3-Triazole-4- carboxamide Reduces AÎ² 840 Formation and Tau Phosphorylation in Cellular Models of Alzheimer's Disease. Neurochemical 1.6 Research, 2022, 47, 1110-1122. Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-Î² 42. Proceedings of the National Academy of Sciences of the United States of America, 2022, 841 12 3.3 119, e2116736119. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discovery Today, 842 3.2 2022, 27, 1604-1621. Transmission of Cerebral Î²-Amyloidosis Among Individuals. Neurochemical Research, 2022, 47, 2469-2477. 843 1.6 5 Cross-Seeding Controls AÎ² Fibril Populations and Resulting Functions. Journal of Physical Chemistry B, 2022, 126, 2217-2229. 844 1.2 Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic 845 2.8 121 traumatic encephalopathy. ELife, 2022, 11, . Solid-State NMR: Methods for Biological Solids. Chemical Reviews, 2022, 122, 9643-9737. 847 $\langle \sup > 1 \langle \sup > H$ detection and dynamic nuclear polarization $\hat{a} \in enhanced NMR$ of $A\hat{l}^2 \langle \sup > 1-42 \langle ub > 1-42 \rangle$ 848 3.3 24 fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . Probing the Influence of Single-Site Mutations in the Central Cross-Î² Region of Amyloid Î² (1–40) 849 1.8 Peptides. Biomolecules, 2021, 11, 1848.

#	Article	IF	CITATIONS
850	Peptide backbone modifications of amyloid β (1–40) impact fibrillation behavior and neuronal toxicity. Scientific Reports, 2021, 11, 23767.	1.6	6
851	Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-Î ² Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules, 2022, 27, 2483.	1.7	8
852	Use of vector formalism in the analysis of hydrophobic and electric driving forces in biological assemblies. Quarterly Reviews of Biophysics, 2022, 55, 1-50.	2.4	2
853	Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer's Disease: A Focus on Aducanumab and Lecanemab. Frontiers in Aging Neuroscience, 2022, 14, 870517.	1.7	91
855	Static and dynamic disorder in AÎ ² 40 fibrils. Biochemical and Biophysical Research Communications, 2022, 610, 107-112.	1.0	1
858	Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. Journal of Colloid and Interface Science, 2022, 622, 804-818.	5.0	17
859	Biochemical Purification and Proteomic Characterization of Amyloid Fibril Cores from the Brain. Journal of Visualized Experiments, 2022, , .	0.2	0
860	New Evidence on a Distinction between Aβ40 and Aβ42 Amyloids: Thioflavin T Binding Modes, Clustering Tendency, Degradation Resistance, and Cross-Seeding. International Journal of Molecular Sciences, 2022, 23, 5513.	1.8	7
861	Thermodynamic analysis of amyloid fibril structures reveals a common framework for stability in amyloid polymorphs. Structure, 2022, 30, 1178-1189.e3.	1.6	11
862	Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nature Reviews Neuroscience, 2022, 23, 523-534.	4.9	43
864	Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chemical Science, 2022, 13, 8526-8535.	3.7	8
865	Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BioMed Research International, 2022, 2022, 1-9.	0.9	2
866	Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. Journal of Biological Chemistry, 2022, 298, 102197.	1.6	6
867	The association of lipids with amyloid fibrils. Journal of Biological Chemistry, 2022, 298, 102108.	1.6	16
869	An Outlook on the Complexity of Protein Morphogenesis in Health and Disease. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
872	Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Molecules, 2022, 27, 4787.	1.7	6
873	Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. Journal of Physical Chemistry B, 2022, 126, 5832-5841.	1.2	16
874	Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB Journal, 2022, 36, .	0.2	11

#	Article	IF	CITATIONS
875	A hybrid structural method for investigating low molecular weight oligomeric structures of amyloid beta. ChemBioChem, 0, , .	1.3	1
876	Enhancing the Amyloid-Î ² Anti-Aggregation Properties of Curcumin via Arene-Ruthenium(II) Derivatization. International Journal of Molecular Sciences, 2022, 23, 8710.	1.8	6
877	Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	6
879	Early stage β-amyloid-membrane interactions modulate lipid dynamics and influence structural interfaces and fibrillation. Journal of Biological Chemistry, 2022, 298, 102491.	1.6	12
880	Ganglioside-Enriched Phospholipid Vesicles Induce Cooperative AÎ ² Oligomerization and Membrane Disruption. Biochemistry, 2022, 61, 2206-2220.	1.2	9
881	Curvature model for nanoparticle size effects on peptide fibril stability and molecular dynamics simulation data. Data in Brief, 2022, 45, 108598.	0.5	2
882	Preparation and Fractionation of Heterogeneous Aβ42 Oligomers with Different Aggregation Properties. Methods in Molecular Biology, 2023, , 29-39.	0.4	0
883	Time-Resolved In Situ AFM Measurement of Growth Rates of Aβ40 Fibrils. Methods in Molecular Biology, 2023, , 63-77.	0.4	0
884	Solid-State NMR Structure of Amyloid-β Fibrils. Methods in Molecular Biology, 2023, , 53-62.	0.4	2
885	The co-effect of copper and lipid vesicles on Aβ aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184082.	1.4	2
886	Insights into Molecular Mechanisms of EGCG and Apigenin on Disrupting Amyloid-Beta Protofibrils Based on Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2022, 126, 8155-8165.	1.2	9
887	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	23.0	23
888	Structural Determinant of \hat{l}^2 -Amyloid Formation: From Transmembrane Protein Dimerization to \hat{l}^2 -Amyloid Aggregates. Biomedicines, 2022, 10, 2753.	1.4	8
889	Suppression of amyloid- \hat{l}^2 fibril growth by drug-engineered polymorph transformation. Journal of Biological Chemistry, 2022, 298, 102662.	1.6	1
890	Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer's Disease. Jacs Au, 2022, 2, 2571-2584.	3.6	20
891	Nanoscale Infrared Spectroscopy Identifies Parallel to Antiparallel β-Sheet Transformation of Aβ Fibrils. Journal of Physical Chemistry Letters, 2022, 13, 10522-10526.	2.1	9
892	Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. International Journal of Biological Macromolecules, 2022, 223, 143-160.	3.6	12
893	Aβ and Tau Prions Causing Alzheimer's Disease. Methods in Molecular Biology, 2023, , 293-337.	0.4	6

#	Article	IF	CITATIONS
894	The roles of prion-like domains in amyloid formation, phase separation, and solubility. , 2023, , 397-426.		0
895	Multiple acquisitions in a single scan: exhausting abundant 1H polarization at fast MAS. Journal of Magnetic Resonance, 2023, 346, 107338.	1.2	4
896	Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chemical Biology, 2023, 4, 121-131.	2.0	7
897	Impact of Aβ40 and Aβ42 Fibrils on the Transcriptome of Primary Astrocytes and Microglia. Biomedicines, 2022, 10, 2982.	1.4	2
898	Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure. IScience, 2022, 25, 105645.	1.9	10
900	The interactions of amyloid Î ² aggregates with phospholipid membranes and the implications for neurodegeneration. Biochemical Society Transactions, 2023, 51, 147-159.	1.6	5
901	Modulation of Aβ42 Aggregation Kinetics and Pathway by Lowâ€Molecularâ€Weight Inhibitors. ChemBioChem, 2023, 24, .	1.3	2
902	Molecular Dynamics Simulations of Highâ€Performance, Dissipationless Desalination across Selfâ€Assembled Amyloid Beta Nanotubes. Small, 0, , 2205420.	5.2	0
903	Small Molecule Decoys of Aggregation for Elimination of AÎ ² -Peptide Toxicity. ACS Chemical Neuroscience, 2023, 14, 1575-1584.	1.7	2
904	Molecular Mechanisms of Amyloid-β Self-Assembly Seeded by In Vivo-Derived Fibrils and Inhibitory Effects of the BRICHOS Chaperone. ACS Chemical Neuroscience, 0, , .	1.7	2
905	Structural polymorphism and cytotoxicity of brainâ€derived βâ€amyloid extracts. Protein Science, 2023, 32,	3.1	4
906	Familial Alzheimer's Disease-Related Mutations Differentially Alter Stability of Amyloid-Beta Aggregates. Journal of Physical Chemistry Letters, 2023, 14, 1427-1435.	2.1	2
907	Solid-state NMR studies of amyloids. Structure, 2023, 31, 230-243.	1.6	2
908	Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR. Solid State Nuclear Magnetic Resonance, 2023, 124, 101858.	1.5	0
909	The Strategies of Development of New Non-Toxic Inhibitors of Amyloid Formation. International Journal of Molecular Sciences, 2023, 24, 3781.	1.8	2
910	Network of hotspot interactions cluster tau amyloid folds. Nature Communications, 2023, 14, .	5.8	10
911	How Single Site Mutations Can Help Understanding Structure Formation of Amyloid <i>β</i> _{1â^'40} . Macromolecular Bioscience, 2023, 23, .	2.1	3
912	Sodium Oligomannate Electrostatically Binds to Al ² and Blocks Its Aggregation. Journal of Physical Chemistry B, 2023, 127, 1983-1994.	1.2	0

#	Article	IF	Citations
914	Thiopheneâ€Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphicâ€Diseaseâ€Associated Protein Aggregates. ChemBioChem, 2023, 24, .	1.3	4
915	Structures of brain-derived 42-residue amyloid-β fibril polymorphs with unusual molecular conformations and intermolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
916	Energy landscapes of Aβ monomers are sculpted in accordance with Ostwald's rule of stages. Science Advances, 2023, 9, .	4.7	11
918	Release of frustration drives corneal amyloid disaggregation by brain chaperone. Communications Biology, 2023, 6, .	2.0	0
919	Measuring Dipolar Order Parameters in Nondeuterated Proteins Using Solid-State NMR at the Magic-Angle-Spinning Frequency of 100 kHz. Journal of Physical Chemistry Letters, 2023, 14, 3627-3635.	2.1	2
920	Ultra-sensitive Detection of Alzheimer's Biosmarkers Using Plasmonic Optical Fiber Sensors. , 2022, , .		0
953	Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature, 2023, 621, 701-710.	13.7	18
958	Electrochemical biosensor-based detection assays for early diagnosis of neurodegenerative disorders. , 2024, , 155-177.		0
961	Positive and Negative Aspects of Protein Aggregation Induced by Phase Separation. , 2023, , 71-92.		0