Non-Aqueous Suspensions of Antibodies are Much Less Aqueous Solutions

Pharmaceutical Research 30, 1749-1757 DOI: 10.1007/s11095-013-1017-4

Citation Report

#	Article	IF	CITATIONS
1	Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody. Analytical Chemistry, 2014, 86, 8932-8936.	6.5	28
2	Concentration Dependent Viscosity of Monoclonal Antibody Solutions: Explaining Experimental Behavior in Terms of Molecular Properties. Pharmaceutical Research, 2014, 31, 3161-3178.	3.5	105
3	Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic <i>versus</i> electrostatic inter-molecular interactions. MAbs, 2015, 7, 212-230.	5.2	83
4	Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers. Lab on A Chip, 2015, 15, 3670-3676.	6.0	41
5	Advanced protein formulations. Protein Science, 2015, 24, 1031-1039.	7.6	85
6	Quality considerations of paediatric investigation plans for monoclonal antibodies: A regulatory perspective from the MHRA. International Journal of Pharmaceutics, 2015, 492, 338-340.	5.2	0
7	Markedly lowering the viscosity of aqueous solutions of DNA by additives. International Journal of Pharmaceutics, 2015, 494, 66-72.	5.2	5
8	Viscosity Reduction of a Concentrated Monoclonal Antibody with Arginine·HCl and Arginine·Glutamate. Industrial & Engineering Chemistry Research, 2016, 55, 11225-11234.	3.7	30
9	High concentration tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities. Journal of Membrane Science, 2016, 508, 113-126.	8.2	40
10	Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Development and Industrial Pharmacy, 2017, 43, 519-530.	2.0	73
11	Introduction to High-Concentration Proteins. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 99-123.	0.6	1
12	Subcutaneous delivery of monoclonal antibodies: How do we get there?. Journal of Controlled Release, 2018, 286, 301-314.	9.9	138
14	Science and art of protein formulation development. International Journal of Pharmaceutics, 2019, 568, 118505.	5.2	66
16	Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics, 2019, 11, 486.	4.5	69
17	Enhancing Stability and Reducing Viscosity of a Monoclonal Antibody With Cosolutes by Weakening Protein-Protein Interactions. Journal of Pharmaceutical Sciences, 2019, 108, 2517-2526.	3.3	16
18	Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica Surfaces. Langmuir, 2020, 36, 9215-9224.	3.5	14
19	Control of viscosity in biopharmaceutical protein formulations. Journal of Colloid and Interface Science, 2020, 580, 308-317.	9.4	19
20	Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. Journal of Pharmaceutical Sciences, 2020, 109, 3579-3589.	3.3	14

CITATION REPORT

#	Article	IF	CITATIONS
21	Powder suspensions in non-aqueous vehicles for delivery of therapeutic proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 161, 37-49.	4.3	11
22	Oral inhalation for delivery of proteins and peptides to the lungs. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 198-211.	4.3	55
23	Chapter 14: Practical Considerations in High Concentration Formulation Development for Monoclonal Antibody Drug Products. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 343-372.	0.6	2
24	Spray-Dried Monoclonal Antibody Suspension for High-Concentration and Low-Viscosity Subcutaneous Injection. Molecular Pharmaceutics, 2022, 19, 1505-1514.	4.6	6
25	Drug Product Characterization of High Concentration Non-Aqueous Protein Powder Suspensions. Journal of Pharmaceutical Sciences, 2023, 112, 61-75.	3.3	2
26	Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 181, 173-182.	4.3	4