A Shell-Based Inverse Approach of Stress Analysis in In

Annals of Biomedical Engineering 41, 1505-1515 DOI: 10.1007/s10439-013-0751-4

Citation Report

#	Article	IF	CITATIONS
1	Digital image correlation-based point-wise inverse characterization of heterogeneous material properties of gallbladder <i>in vitro</i> . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140152.	2.1	34
2	Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms. Biomechanics and Modeling in Mechanobiology, 2015, 14, 967-978.	2.8	34
3	Solving membrane stress on deformed configuration using inverse elastostatic and forward penalty methods. Computer Methods in Applied Mechanics and Engineering, 2016, 308, 134-150.	6.6	13
4	On referential and spatial formulations of inverse elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 189-207.	6.6	3
5	Determining the reference geometry of plastically deformed material body undergone monotonic loading and moderately large deformation. Finite Elements in Analysis and Design, 2017, 130, 1-11.	3.2	3
6	Nondestructive mechanical characterization of developing biological tissues using inflation testing. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 438-447.	3.1	7
7	Hyperelasticity of Soft Tissues and Related Inverse Problems. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , 37-66.	0.6	8
8	Machine learning–aided exploration of relationship between strength and elastic properties in ascending thoracic aneurysm. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2977.	2.1	17
9	Prediction of local strength of ascending thoracic aortic aneurysms. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104284.	3.1	17
10	Adaptive Remodeling in the Elastase-Induced Rabbit Aneurysms. Experimental Mechanics, 2021, 61, 263-283.	2.0	1
11	Estimating aortic thoracic aneurysm rupture risk using tension–strain data in physiological pressure range: an in vitro study. Biomechanics and Modeling in Mechanobiology, 2021, 20, 683-699.	2.8	10
12	Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1833-1850.	2.8	6
13	Analysis of Cerebral Aneurysm Wall Tension and Enhancement Using Finite Element Analysis and High-Resolution Vessel Wall Imaging. Frontiers in Neurology, 2021, 12, 764063.	2.4	4
14	Explicit consideration of fiber recruitment in vascular constitutive formulation using beta functions. Journal of the Mechanics and Physics of Solids, 2022, 163, 104837.	4.8	3
15	On strain-based rupture criterion for ascending aortic aneurysm: The role of fiber waviness. Acta Biomaterialia, 2022, 149, 51-59.	8.3	1
16	Characterizing the Biomechanics of an Endovascular Intervention in Cerebral Aneurysms Using Kirchhoff–Love Shells of Nonuniform Thickness. , 2022, , 39-52.		0
17	Brain Aneurysm Biology: What Can We Learn From Imaging?. , 2022, 2, .		0
18	Association of local solid mechanical, hemodynamic and morphological characteristics with ruptured intracranial aneurysm. International Journal for Numerical Methods in Biomedical Engineering, 0, , .	2.1	0

#	Article	IF	CITATIONS
19	Numerical investigation on circular and elliptical bulge tests for inverse soft tissue characterization. Biomechanics and Modeling in Mechanobiology, 0, , .	2.8	1

CITATION REPORT