Non-volatile memory based on the ferroelectric photov

Nature Communications 4, 1990

DOI: 10.1038/ncomms2990

Citation Report

#	Article	IF	Citations
1	Computer memory can be read with a flash of light. Nature, 2013, , .	27.8	0
2	Photovoltaic property of domain engineered epitaxial BiFeO3 films. Applied Physics Letters, 2014, 105, .	3.3	31
3	Effects of Interfaces on the Structure and Novel Physical Properties in Epitaxial Multiferroic BiFeO3 Ultrathin Films. Materials, 2014, 7, 5403-5426.	2.9	8
4	Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. Materials, 2014, 7, 6377-6485.	2.9	56
5	Photoconductivity and photo-detection response of multiferroic bismuth iron oxide. Applied Physics Letters, 2014, 104, .	3.3	19
6	Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films. Applied Physics Letters, 2014, 104, .	3.3	76
7	Resistance-Switchable Graphene Oxide-Polymer Nanocomposites for Molecular Electronics. ChemElectroChem, 2014, 1, 514-519. Emergence of Ferroelectricity at a Metal-Semiconductor Transition in as multimath	3.4	21
8	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>1</mml:mn><mml:mi>T</mml:mi></mml:mrow> Monolayer of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td></td><td>343 mml:mn></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>		343 mml:mn>
9	Physical Review Letters, 2014, 112, 157601. Arising applications of ferroelectric materials in photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 6027-6041.	10.3	408
10	Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15. Ceramics International, 2014, 40, 2635-2639.	4.8	65
11	Photovoltaic effect in transition metal modified polycrystalline BiFeO ₃ thin films. Journal Physics D: Applied Physics, 2014, 47, 075502.	2.8	54
12	Effects of $\langle b \rangle \langle i \rangle \hat{l}^3 \langle i \rangle \langle b \rangle$ -ray irradiation on ferroelectric properties of Pr and Mn co-substituted BiFeO $\langle sub \rangle 3 \langle sub \rangle$ thin films. Journal Physics D: Applied Physics, 2014, 47, 045310.	2.8	8
13	BiFeO ₃ epitaxial thin films and devices: past, present and future. Journal of Physics Condensed Matter, 2014, 26, 473201.	1.8	231
14	Ferroelectric and ferromagnetic properties in BaTiO3 thin films on Si (100). Journal of Applied Physics, 2014, 116, .	2.5	24
15	Strain-mediated multilevel ferroelectric random access memory operating through a magnetic field. RSC Advances, 2014, 4, 45382-45388.	3.6	9
16	Nonvolatile memory effects in an orthoconic smectic liquid crystal mixture doped with polymer-capped gold nanoparticles. Soft Matter, 2014, 10, 3842.	2.7	23
17	Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. Journal of Alloys and Compounds, 2014, 617, 240-246.	5.5	80
18	The role of Bi vacancies in the electrical conduction of BiFeO ₃ : a first-principles approach. Dalton Transactions, 2014, 43, 10787-10793.	3.3	47

#	Article	IF	Citations
19	An upconverted photonic nonvolatile memory. Nature Communications, 2014, 5, 4720.	12.8	121
20	The effect of H2 distribution in (Pb,La)(Zr,Ti)O3 capacitors with conductive oxide electrodes on the degradation of ferroelectric properties. Materials Research Society Symposia Proceedings, 2015, 1729, 93-98.	0.1	O
21	The orientation controlled (Pb,La)(Zr,Ti)O <inf> 3</inf> capacitor for improved reliabilities. , 2015, , .		0
22	Interband transitions in epitaxial ferroelectric films of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>NaNb</mml:mi><mml:msub><mml mathvariant="normal">O<mml:mn>3</mml:mn></mml></mml:msub></mml:mrow></mml:math> . Physical Review B. 2015. 92	:mi 3.2	13
23	Glass-ferroic composite caused by the crystallization of ferroic glass. Physical Review B, 2015, 92, .	3.2	12
24	Giant optical enhancement of strain gradient in ferroelectric BiFeO3 thin films and its physical origin. Scientific Reports, 2015, 5, 16650.	3.3	33
25	Functional ferroelectric tunnel junctions on silicon. Scientific Reports, 2015, 5, 12576.	3.3	51
26	Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films. Journal of Applied Physics, 2015, 118, .	2.5	30
27	Domain control of carrier density at a semiconductor-ferroelectric interface. Scientific Reports, 2015, 5, 14740.	3.3	6
28	Suppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films. Scientific Reports, 2015, 5, 10485.	3.3	14
29	Light memory function in a double pin SiC device. Microelectronic Engineering, 2015, 146, 99-104.	2.4	0
30	Low-energy phases, electronic and optical properties of Bilâ^'La FeO3 solid solution: Ab-initio LDA+U studies. Ceramics International, 2015, 41, 10940-10948.	4.8	16
31	Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms. Science and Technology of Advanced Materials, 2015, 16, 026002.	6.1	10
32	Multiferroic oxide thin films and heterostructures. Applied Physics Reviews, 2015, 2, .	11.3	131
33	Effect of Al-doped ZnO or Sn-doped In2O3electrode on ferroelectric properties of (Pb,La)(Zr,Ti)O3capacitors. Japanese Journal of Applied Physics, 2015, 54, 05ED03.	1.5	7
34	Self-interaction corrected LDA + U investigations of BiFeO < sub > 3 < / sub > properties: plane-wave pseudopotential method. Materials Research Express, 2015, 2, 116101.	1.6	30
35	Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 2015, 64, 519-626.	14.4	661
36	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 898-907.	4.6	266

#	Article	IF	CITATIONS
37	A new non-destructive readout by using photo-recovered surface potential contrast. Scientific Reports, 2014, 4, 6980.	3.3	18
38	Percolative nanoparticle-Ag/PbZr0.52Ti0.48O3 composite thin film with high dielectric and ferroelectric properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 448-455.	2.2	5
39	Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications. Scientific Reports, 2015, 5, 8494.	3.3	43
40	Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection. Scientific Reports, 2015, 5, 12415.	3.3	42
41	Structural evolution and physical properties of multiferroic Bi _{0.9â^²<i>x</i>} La _{0.1} Pb _{<i>x</i>} FeO _{3â^²<i>x</i>} 2ceramics. Journal Physics D: Applied Physics, 2015, 48, 305004.	2.8	7
42	Grain size and stoichiometry control over RF-sputtered multiferroic BiFeO3 thin films on silicon substrates. Thin Solid Films, 2015, 589, 551-555.	1.8	6
43	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	10.3	232
44	Effect of epitaxy on interband transitions in ferroelectric KNbO ₃ . New Journal of Physics, 2015, 17, 043048.	2.9	11
45	Strain-controlled optical absorption in epitaxial ferroelectric BaTiO3 films. Applied Physics Letters, 2015, 106, .	3.3	28
46	Ferroelectric domain wall motion induced by polarized light. Nature Communications, 2015, 6, 6594.	12.8	138
47	Large Photovoltage and Controllable Photovoltaic Effect in PbTiO ₃ â€Bi(Ni _{2/3+<i>x</i>} Nb _{1/3â€"<i>x</i>})O _{3â€"} 3â€" <i>sub>Ferroelectrics. Advanced Electronic Materials, 2015, 1, 1400051.</i>	>fsa∕sub>	6
48	Large resistive switching and switchable photovoltaic response in ferroelectric doped BiFeO ₃ -based thin films by chemical solution deposition. Journal of Materials Chemistry C, 2015, 3, 4706-4712.	5 . 5	43
49	Enhanced photo-collection in single BiFeO3 nanowire due to carrier separation from radial surface field. Nano Energy, 2015, 13, 240-248.	16.0	30
50	Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows. Applied Physics Letters, 2015, 107, .	3.3	24
51	Piezostrain-enhanced photovoltaic effects in BiFeO 3 /La 0.7 Sr 0.3 MnO 3 /PMN–PT heterostructures. Nano Energy, 2015, 18, 315-324.	16.0	47
52	High-sensitive switchable photodetector based on BiFeO3 film with in-plane polarization. Applied Physics Letters, 2015, 106, .	3.3	54
53	Selecting Steady and Transient Photocurrent Response in BaTiO ₃ Films. Advanced Electronic Materials, 2015, 1, 1500171.	5.1	30
54	Screening effect on photovoltaic performance in ferroelectric CH ₃ NH ₃ Pbl ₃ perovskite thin films. Journal of Materials Chemistry A, 2015, 3, 20352-20358.	10.3	22

#	Article	IF	Citations
55	Design of an Electrically Written and Optically Read Non-volatile Memory Device Employing BiFeO ₃ /Au Heterostructures with Strong Absorption Resonance. Chinese Physics Letters, 2015, 32, 074204.	3.3	1
56	Atomic Visualization of the Phase Transition in Highly Strained BiFeO3 Thin Films with Excellent Pyroelectric Response. Nano Energy, 2015, 17, 72-81.	16.0	19
57	Influence of space charge on domain patterns and susceptibility in a rhombohedral ferroelectric film. Acta Materialia, 2015, 100, 323-332.	7.9	2
58	Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14, 193-198.	27.5	1,372
59	Effect of Mechanical Loads on Stability of Nanodomains in Ferroelectric Ultrathin Films: Towards Flexible Erasing of the Non-Volatile Memories. Scientific Reports, 2014, 4, 5339.	3.3	23
61	Nonâ€Volatile Polymer Electroluminescence Programmable with Ferroelectric Fieldâ€Induced Charge Injection Gate. Advanced Functional Materials, 2016, 26, 5391-5399.	14.9	20
62	Optically modulated resistive switching in BiFeO ₃ thin film. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2183-2188.	1.8	21
63	An Energyâ€Efficient, BiFeO ₃ â€Coated Capacitive Switch with Integrated Memory and Demodulation Functions. Advanced Electronic Materials, 2016, 2, 1500352.	5.1	19
64	Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions. Scientific Reports, 2016, 6, 23945.	3.3	45
65	Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34590-34597.	8.0	32
66	Effect of a semiconductor electrode on the tunneling electroresistance in ferroelectric tunneling junction. Applied Physics Letters, 2016, 109, .	3.3	20
67	Domain structures and magnetoelectric effects in multiferroic nanostructures. MRS Communications, 2016, 6, 330-340.	1.8	20
68	Tunable electronic and magnetism of SrTiO3/BiFeO3 (001) superlattice: For electrochemical applications. Applied Physics Letters, 2016, 108, 011602.	3.3	6
69	A multilevel nonvolatile magnetoelectric memory. Scientific Reports, 2016, 6, 34473.	3.3	48
70	Tuning the photovoltaic effect of multiferroic CoFe2O4/Pb(Zr, Ti)O3 composite films by magnetic fields. Applied Physics Letters, 2016, 108, .	3.3	10
71	Cooperative effect of oxygen-vacancy-rich layer and ferroelectric polarization on photovoltaic properties in BiFeO3 thin film capacitors. Applied Physics Letters, 2016, 108, .	3.3	41
72	Ferroelectric BiFeO3 thin-film optical modulators. Applied Physics Letters, 2016, 108, .	3.3	12
73	The enhanced photocurrent of epitaxial BiFeO3 film at 130 °C. Journal of Applied Physics, 2016, 119, .	2.5	28

#	ARTICLE	IF	Citations
74	Al:ZnO top electrodes deposited with various oxygen pressures for ferroelectric (Pb,La)(Zr,Ti)O 3 capacitors. Electronics Letters, 2016, 52, 230-232.	1.0	5
75	New modalities of strain-control of ferroelectric thin films. Journal of Physics Condensed Matter, 2016, 28, 263001.	1.8	86
76	Reliability of the Properties of (Pb,La)(Zr,Ti)O3 Capacitors with Nonâ€"noble Metal Oxide Electrodes stored in an H2 Atmosphere. MRS Advances, 2016, 1, 369-374.	0.9	3
77	Structural and electrical properties of KNbO3 thin film grown on a Pt/Ti/SiO2/Si substrate using the RF magnetron sputtering method. Acta Materialia, 2016, 112, 53-58.	7.9	15
78	Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceramics International, 2016, 42, 12838-12842.	4.8	57
79	Four-State Anti-Ferroelectric Random Access Memory. IEEE Electron Device Letters, 2016, 37, 1551-1554.	3.9	18
80	Enhanced ferroelectric photovoltaic effect based on converging depolarization field. Materials Research Bulletin, 2016, 84, 93-98.	5.2	11
81	Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects. Physical Review Applied, 2016, 6, .	3.8	61
82	Ferroelectric Resistive Switching in High-Density Nanocapacitor Arrays Based on BiFeO ₃ Ultrathin Films and Ordered Pt Nanoelectrodes. ACS Applied Materials & Interfaces, 2016, 8, 23963-23968.	8.0	33
83	Domain-reorientation-induced polarization wake-up of PbTiO3 based ferroelectric thin films. Ceramics International, 2016, 42, 19212-19217.	4.8	6
84	Self-Positioned Nanosized Mask for Transparent and Flexible Ferroelectric Polymer Nanodiodes Array. ACS Applied Materials & Damp; Interfaces, 2016, 8, 27074-27080.	8.0	9
85	Manipulation of Nanoscale Domain Switching Using an Electron Beam with Omnidirectional Electric Field Distribution. Physical Review Letters, 2016, 117, 027601.	7.8	35
86	Modulation of physical properties of oxide thin films by multiple fields. Chinese Physics B, 2016, 25, 067303.	1.4	3
87	Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nature Communications, 2016, 7, 10808.	12.8	158
88	Low-power resistive random access memory by confining the formation of conducting filaments. AIP Advances, $2016, 6, .$	1.3	24
89	Ferroelectric properties of (Pb,La)(Zr,Ti)O3capacitors employing Al-doped ZnO top electrodes prepared by pulsed laser deposition under different oxygen pressures. Japanese Journal of Applied Physics, 2016, 55, 06JB04.	1.5	0
90	Switchable photovoltaic effect in Au/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures. Materials Chemistry and Physics, 2016, 181, 277-283.	4.0	10
91	Photovoltaics with Ferroelectrics: Current Status and Beyond. Advanced Materials, 2016, 28, 5153-5168.	21.0	330

#	Article	IF	Citations
92	Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices. Nanoscale, 2016, 8, 1691-1697.	5.6	7
93	Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO ₃ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 6399-6405.	2.8	68
94	A flexible barium strontium titanate photodetector array. Extreme Mechanics Letters, 2016, 8, 47-54.	4.1	3
95	Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state. Journal of the European Ceramic Society, 2016, 36, 1149-1157.	5.7	57
96	Tunable dielectric properties induced by optical fields in barium strontium titanate/manganite heterostructures. Scripta Materialia, 2016, 112, 62-66.	5.2	22
97	Effect of Extrinsically Introduced Passive Interface Layer on the Performance of Ferroelectric Tunnel Junctions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5050-5055.	8.0	15
98	Ferroelectric Alignment of Organic Cations Inhibits Nonradiative Electron–Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 812-818.	4.6	52
99	Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe ₂ channels. 2D Materials, 2017, 4, 025036.	4.4	85
100	Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds. Journal of Alloys and Compounds, 2017, 708, 93-98.	5.5	40
101	Plasmonic assisted two wave mixing phenomenon for energy transfer in ferroelectric PZT film. Optical Materials, 2017, 66, 442-446.	3.6	3
102	Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12) ceramics at low temperature as evidenced by Raman and dielectric spectroscopy. AIP Advances, 2017, 7, 035105.	1.3	9
103	Switchable photoelectrochemical response controlled by ferroelectric polarization in (101)-oriented Pb(Zr0.2Ti0.8)O3 thin film. Materials and Design, 2017, 129, 186-191.	7.0	20
104	Investigation of structural, electronic and optical properties of hexagonal LuFeO3using first principles LDA  +  U. Materials Research Express, 2017, 4, 044001.	1.6	5
105	Effects of calcination temperature on the synthesis of [KNbO3]0.9– [BaNi0.5Nb0.5O3]0.1perovskite powders. Integrated Ferroelectrics, 2017, 177, 112-120.	0.7	4
106	Ferroelectric domains and phase evolution in (Fe:) KTa1â^'Nb O3 crystals. Applied Surface Science, 2017, 413, 1-6.	6.1	7
107	Large electroresistance and tunable photovoltaic properties of ferroelectric nanoscale capacitors based on ultrathin super-tetragonal BiFeO ₃ films. Journal of Materials Chemistry C, 2017, 5, 3323-3329.	5.5	29
108	Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Science Advances, 2017, 3, e1602164.	10.3	165
109	Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy, 2017, 35, 92-100.	16.0	67

#	Article	IF	CITATIONS
110	Enhanced electrical and photocurrent characteristics of sol-gel derived Ni-doped PbTiO3 thin films. Ceramics International, 2017, 43, 7861-7865.	4.8	13
111	Multiferroic Double Perovskites <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>ScFe</mml:mtext><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo></mml:mrow></mml:msub></mml:math>	c/mml:mo:	· <mml:mi></mml:mi>

#	Article	IF	CITATIONS
128	Ferroelectric BiFeO ₃ as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions. Small, 2017, 13, 1602355.	10.0	53
129	Resistive switching and photovoltaic effects in ferroelectric BaTiO3-based capacitors with Ti and Pt top electrodes. Applied Physics Letters, 2017, 111, .	3.3	25
130	Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films. Journal of Applied Physics, 2017, 122, .	2.5	16
131	Optical NIR-VIS-VUV constants of advanced substrates for thin-film devices. Optical Materials Express, 2017, 7, 3844.	3.0	7
132	The Influence of Conductive Nanodomain Walls on the Photovoltaic Effect of BiFeO3 Thin Films. Crystals, 2017, 7, 81.	2.2	1
133	Synthesis by Low Temperature Solution Processing of Ferroelectric Perovskite Oxide Thin Films as Candidate Materials for Photovoltaic Applications. , 2018, , 45-81.		2
134	Ultrafast electron-phonon coupling and photo-induced strain in the morphotropic phase boundary of BixDy1â°'xFeO3 films. Scientific Reports, 2018, 8, 3258.	3.3	8
135	Enhanced Photocurrent in BiFeO ₃ Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System. ACS Applied Materials & Ditermo-Photography (1974) and the second s	8.0	115
136	Stripe domains in epitaxial BiFeO3 thin films on (100) SrTiO3 substrates. Journal of Applied Physics, 2018, 123, 044102.	2.5	8
137	Enhanced switchable photovoltaic response and ferromagnetic of Co-doped BiFeO3 based ferroelectric thin films. Journal of Alloys and Compounds, 2018, 742, 351-355.	5. 5	25
138	Monitoring the Bi/Fe ratio at different pH values in BiFeO3 nanoparticles derived by normal and reverse chemical co-precipitation: A comparative study on the purity, microstructure and magnetic properties. Ceramics International, 2018, 44, 5109-5115.	4.8	11
139	Roomâ€Temperature Nonvolatile Memory Based on a Singleâ€Phase Multiferroic Hexaferrite. Advanced Functional Materials, 2018, 28, 1705771.	14.9	7 3
140	Reversible optical control of macroscopic polarization in ferroelectrics. Nature Photonics, 2018, 12, 29-32.	31.4	97
141	Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films. Journal of Applied Physics, 2018, 123, .	2.5	9
142	Nonvolatile Electricâ€Optical Memory Controlled by Conductive Filaments in Tiâ€Doped BiFeO ₃ . Advanced Electronic Materials, 2018, 4, 1700551.	5.1	17
143	Exploring ferroelectric and magnetic properties of Tb-substituted $\langle i \rangle m = 5 \langle i \rangle$ layered Aurivillius phase thin films. Journal of Applied Physics, 2018, 123, .	2.5	17
144	Above-Band Gap Photoinduced Stabilization of Engineered Ferroelectric Domains. ACS Applied Materials & Company (Interfaces, 2018, 10, 12781-12789).	8.0	26
145	Elasto-optic behaviour in epitaxial films of perovskite oxide ferroelectrics. Advances in Applied Ceramics, 2018, 117, 62-65.	1.1	7

#	Article	IF	CITATIONS
146	Low-voltage-driven Pt/BiFeO3/DyScO3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory. Journal of Materials Science, 2018, 53, 4274-4282.	3.7	5
147	Nonlinear Optical Effects at Ferroelectric Domain Walls. , 2018, , .		0
148	Chemical Vapor-Deposited Vanadium Pentoxide Nanosheets with Highly Stable and Low Switching Voltages for Effective Selector Devices. ACS Applied Materials & Interfaces, 2018, 10, 42875-42881.	8.0	9
149	Epitaxial ferroelectric oxide thin films for optical applications. Applied Physics Reviews, 2018, 5, 041108.	11.3	46
150	Self-polarization effect on large photovoltaic response in lead free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 epitaxial film. Applied Physics Letters, 2018, 113, .	3.3	8
152	Enhancing Visible Light Absorption for Ferroelectric Sn ₂ P ₂ S ₆ by Se Anion Substitution. Journal of Physical Chemistry C, 2018, 122, 25565-25572.	3.1	7
153	Inâ€Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Advanced Materials, 2018, 30, e1803249.	21.0	76
154	Effect of strain on the Curie temperature and band structure of low-dimensional SbSI. Applied Physics Letters, 2018, 112, .	3.3	10
155	High-Performance Photovoltaic Readable Ferroelectric Nonvolatile Memory Based on La-Doped BiFeO ₃ Films. ACS Applied Materials & Interfaces, 2018, 10, 19836-19843.	8.0	45
156	Photoassisted Electric Field Modulation of Multiple Nonvolatile Resistance States in Highly Strained Epitaxial BiFeO ₃ Heterostructures. Advanced Electronic Materials, 2018, 4, 1800171.	5.1	14
157	Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy, 2018, 50, 417-424.	16.0	77
158	Crystalline Thin Layers of BaTiO3 for Gas Sensors Prepared by PLD. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 17-30.	0.3	0
159	Vertical Graphene Tunneling Heterostructure with Ultrathin Ferroelectric BaTiO ₃ Film as a Tunnel Barrier. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800205.	2.4	1
160	Enhanced photodielectric effect in (0.88–x)Bi0.5Na0.5TiO3–0.12BaTiO3 –xBa(Ti0.5Ni0.5)O3–δ (BNBTNC ceramics. Journal of the European Ceramic Society, 2018, 38, 4689-4693.)) 5.7	6
161	Light-Induced Capacitance Tunability in Ferroelectric Crystals. ACS Applied Materials & Emp; Interfaces, 2018, 10, 21804-21807.	8.0	28
162	Surface Chemistry Controls Anomalous Ferroelectric Behavior in Lithium Niobate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29153-29160.	8.0	20
163	Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12, 591-595.	31.4	135
164	Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices. Applied Physics Letters, 2018, 113, .	3.3	72

#	Article	IF	CITATIONS
165	Enhancing ferroelectric photovoltaic effect by polar order engineering. Science Advances, 2018, 4, eaat3438.	10.3	152
166	Tunable Magnetoelectric Nonvolatile Memory Devices Based on SmFeO ₃ /P(VDF-TrFE) Nanocomposite Films. ACS Applied Nano Materials, 2018, 1, 3196-3203.	5.0	32
167	Flexible, Fatigue-Free, and Large-Scale Bi _{3.25} La _{0.75} Ti ₃ O ₁₂ Ferroelectric Memories. ACS Applied Materials & Diterfaces, 2018, 10, 21428-21433.	8.0	35
168	A Molecular Ferroelectric Showing Roomâ€Temperature Recordâ€Fast Switching of Spontaneous Polarization. Angewandte Chemie, 2018, 130, 9981-9985.	2.0	13
169	A Molecular Ferroelectric Showing Roomâ€Temperature Recordâ€Fast Switching of Spontaneous Polarization. Angewandte Chemie - International Edition, 2018, 57, 9833-9837.	13.8	26
170	Giant Electric Biasâ€Induced Tunability of Photoluminescence and Photoresistance in Hybrid Perovskite Films on Ferroelectric Substrates. Advanced Optical Materials, 2019, 7, 1901092.	7.3	8
171	Reversible modulation of photoenergy in Sm-doped (K _{0.5} Na _{0.5})NbO ₃ transparent ceramics <i>via</i> photochromic behavior. Journal of Materials Chemistry A, 2019, 7, 19374-19384.	10.3	100
172	Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. Advanced Materials, 2019, 31, e1807376.	21.0	91
173	Nonvolatile Photoelectric Memory Induced by Interfacial Charge at a Ferroelectric PZTâ€Gated Black Phosphorus Transistor. Advanced Electronic Materials, 2019, 5, 1900458.	5.1	31
174	Epitaxial patterned Bi ₂ FeCrO ₆ nanoisland arrays with room temperature multiferroic properties. Nanoscale Advances, 2019, 1, 2139-2145.	4.6	6
175	A study on ionic gated MoS2 phototransistors. Science China Information Sciences, 2019, 62, 1.	4.3	8
176	Pulse-Driven Nonvolatile Perovskite Memory with Photovoltaic Read-Out Characteristics. ACS Applied Materials & Company (1988) 11, 33803-33810.	8.0	11
177	Perovskite based Low Power Synaptic Memristor Device for Neuromorphic application., 2019,,.		12
178	Photoinduced Phase Transitions in Ferroelectrics. Physical Review Letters, 2019, 123, 087601.	7.8	40
179	Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35169-35176.	8.0	35
180	Ferroelectricity-induced performance enhancement of V-doped ZnO/Si photodetector by direct energy band modulation. Nano Energy, 2019, 65, 104046.	16.0	36
181	Structural, electronic and magnetic properties of Ca, Sr and Ba heterovalent A-site ion substitution in BiFeO3 with different Fe oxidation states. Materials Today: Proceedings, 2019, 7, 686-691.	1.8	2
182	Enhanced photovoltaic efficiency and persisted photoresponse switchability in LaVO ₃ /Pb(Zr _{0.2} Ti _{0.8})O ₃ perovskite heterostructures. Journal of Materials Chemistry C, 2019, 7, 12482-12490.	5.5	7

#	Article	IF	CITATIONS
183	Domain and Switching Control of the Bulk Photovoltaic Effect in Epitaxial BiFeO3 Thin Films. Scientific Reports, 2019, 9, 13979.	3.3	8
184	Influence of chemical solution growth and vacuum annealing on the properties of (100) pseudocubic oriented BiFeO3 thin films. Journal of Applied Physics, 2019, 126, .	2.5	4
185	First-principles investigation of the ground state, structural phase transition, and magnetic ordering of strained BiVO ₃ . Journal of Applied Physics, 2019, 125, 082532.	2.5	4
186	Room-temperature Operation of Low-voltage, Non-volatile, Compound-semiconductor Memory Cells. Scientific Reports, 2019, 9, 8950.	3.3	17
187	High-performance energy storage and breakdown strength of low-temperature laser-deposited relaxor PLZT thin films on flexible Ti-foils. Journal of Alloys and Compounds, 2019, 802, 422-429.	5.5	19
188	Enhanced Adjustable Photovoltaic Response in Multilayer BiFeO ₃ Films. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
189	Ferroelectric polarization tuning the photovoltaic and diode-like effect of the Ni, Sm co-doped BiFeO3 film capacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 12163-12169.	2.2	8
190	Ferroelectric Photodetector with High Current on–off Ratio (â^¼1 × 10 ⁴ %) in Self-Assembled Topological Nanoislands. ACS Applied Electronic Materials, 2019, 1, 862-868.	4.3	38
191	Enhanced photovoltaic property based on reduced leakage current and band gap in Nd-doped BiFeO ₃ films. Materials Research Express, 2019, 6, 086426.	1.6	9
192	Towards Oxide Electronics: a Roadmap. Applied Surface Science, 2019, 482, 1-93.	6.1	236
193	A Ferroelectric-Photovoltaic Effect in SbSI Nanowires. Nanomaterials, 2019, 9, 580.	4.1	31
194	Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Materials, 2019, 11, .	7.9	60
195	Kinetic control of tunable multi-state switching in ferroelectric thin films. Nature Communications, 2019, 10, 1282.	12.8	47
196	Optical Control of Ferroelectric Domains: Nanoscale Insight into Macroscopic Observations. Advanced Optical Materials, 2019, 7, 1800858.	7.3	44
197	Sub-lattice polarization states in anti-ferroelectrics and their relaxation process. Current Applied Physics, 2019, 19, 651-656.	2.4	8
198	Composition-Dependent Ferroelectric Properties in Sputtered Hf _X Zr _{1â^'X} O ₂ Thin Films. IEEE Electron Device Letters, 2019, 40, 570-573.	3.9	35
199	Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO ₃ materials for simultaneously scavenging light and vibration energies. Energy and Environmental Science, 2019, 12, 1231-1240.	30.8	74
200	Dielectric and Ferroelectric Studies on High Dense Pb(Zr0.52Ti0.48)O3 Nanocrystalline Ceramics by High Energy Ball Milling and Spark Plasma Sintering. Ceramics, 2019, 2, 13-24.	2.6	12

#	Article	IF	CITATIONS
201	Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405â€nm light detection. Nano Energy, 2019, 60, 95-102.	16.0	55
202	Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohydrate Polymers, 2019, 214, 213-220.	10.2	54
203	Red shift of absorption edge and band gap shrinkage in perovskite Pb(Zr0.35Ti0.65)O3 thin film from heat generation for solar cells application. Applied Physics Express, 2019, 12, 022009.	2.4	1
204	Oxygen Vacancy Kinetics Mechanism of the Negative Forming-Free Process and Multilevel Resistance Based on Hafnium Oxide RRAM. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	12
205	Ferroelectric, Photoelectric, and Photovoltaic Performance of Silver Niobate Ceramics. Advanced Functional Materials, 2019, 29, 1900918.	14.9	42
206	Nonâ€Stoichiometry Induced Switching Behavior of Ferroelectric Photovoltaic Effect in BaTiO 3 Ceramics. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900074.	2.4	4
207	Optically Controlled Abnormal Photovoltaic Current Modulation with Temperature in BiFeO ₃ . Advanced Electronic Materials, 2019, 5, 1800791.	5.1	35
208	Near-ultraviolet photodetector based on hexagonal TmFeO3 ferroelectric semiconductor thin film with photovoltaic and pyroelectric effects. APL Materials, 2019, 7 , .	5.1	9
209	Real-space charge-density imaging with sub- \tilde{A} \text{\text{Ngstr}}\tilde{A}\text{\text{m}} m resolution by four-dimensional electron microscopy. Nature, 2019, 575, 480-484.	27.8	127
210	Hafnium nanocrystals observed in a HfTiO compound film bring about excellent performance of flexible selectors in memory integration. Nanoscale, 2019, 11, 20792-20796.	5.6	10
211	Ferromagnetic, Ferroelectric, and Optical Modulated Multiple Resistance States in Multiferroic Tunnel Junctions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1057-1064.	8.0	16
212	Tuning Ferroelectric, Dielectric, and Magnetic Properties of BiFeO ₃ Ceramics by Ca and Pb Coâ€Doping. Physica Status Solidi (B): Basic Research, 2019, 256, 1800499.	1.5	10
213	Room-temperature nonvolatile four-state memory based on multiferroic Sr3Co2Fe21.6O37.4. Journal of Alloys and Compounds, 2019, 779, 115-120.	5.5	18
214	Magnetic and morphological characterization of bulk Bi2Fe4O9 derived by reverse chemical co-precipitation: A comparative study of different sintering methods. Ceramics International, 2019, 45, 8087-8094.	4.8	7
215	Anomalous photovoltaic effect in Bi(Ni _{2/3} Ta _{1/3})O ₃ â€PbTiO ₃ ferroelectric solid solutions. Journal of the American Ceramic Society, 2019, 102, 3448-3456.	3.8	20
216	Unusual dynamic polarization response and scaling behaviors in Bi1/2Na1/2TiO3 ceramics. Materials Research Bulletin, 2019, 109, 134-140.	5. 2	6
217	Dielectric, ferroelectric, and photovoltaic properties of La-doped Bi(Ni2/3Ta1/3)O3–PbTiO3 ceramics. Journal of Alloys and Compounds, 2020, 815, 152191.	5.5	4
218	A review of flexible perovskite oxide ferroelectric films and their application. Journal of Materiomics, 2020, 6, 1-16.	5.7	136

#	Article	IF	CITATIONS
219	Electro and photon double-driven non-volatile and non-destructive readout memory in Pt/Bi0.9Eu0.1FeO3/Nb:SrTiO3 heterostructures. Ceramics International, 2020, 46, 5126-5131.	4.8	12
220	Progress in BiFeO ₃ -based heterostructures: materials, properties and applications. Nanoscale, 2020, 12, 477-523.	5.6	94
221	Voltage controllable Pt/Co/AlO superparamagnetic films. Journal of Magnetism and Magnetic Materials, 2020, 497, 166006.	2.3	0
222	Boosting Photocurrent via Heating BiFeO ₃ Materials for Enhanced Selfâ€Powered UV Photodetectors. Advanced Functional Materials, 2020, 30, 1906232.	14.9	67
223	Ferroic tunnel junctions and their application in neuromorphic networks. Applied Physics Reviews, 2020, 7, .	11.3	91
224	Enhanced photovoltaic properties of gradient calcium-doped BiFeO3 films. Ceramics International, 2020, 46, 10083-10088.	4.8	20
225	Photochromic and energy storage properties in K0.5Na0.5NbO3-based ferroelectrics. Journal of Materials Science: Materials in Electronics, 2020, 31, 19277-19292.	2.2	6
226	Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. Nanomaterials, 2020, 10, 1990.	4.1	29
227	Pulse-Mediated Electronic Tuning of the MoS ₂ â€"Perovskite Ferroelectric Field Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 3843-3852.	4.3	2
228	Enhancing Photovoltaic and Photosensing Performances in Bismuth Ferrite via Polar Order Engineering. ACS Applied Electronic Materials, 2020, 2, 3773-3782.	4.3	17
229	Large Switchable Photoconduction within 2D Potential Well of a Layered Ferroelectric Heterostructure. Advanced Materials, 2020, 32, e2003033.	21.0	19
230	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
231	Reactive ion etching of an ovonic threshold switch (OTS) material using hydrogen-based plasmas for non-volatile phase change memories. RSC Advances, 2020, 10, 36141-36146.	3.6	1
232	Enhancement of the switchable diode effect by the surface hydroxylation of ferroelectric oxide thin films. AIP Advances, 2020, 10 , .	1.3	1
233	Optoelectronic Ferroelectric Domainâ€Wall Memories Made from a Single Van Der Waals Ferroelectric. Advanced Functional Materials, 2020, 30, 2004206.	14.9	67
234	Strain-induced robust magnetic anisotropy and room temperature magnetoelectric coupling effect in epitaxial SmFeO3 film. Science China Materials, 2020, 63, 2062-2070.	6.3	8
235	Nano-Domains Produced through a Two-Step Poling Technique in Lithium Niobate on Insulators. Materials, 2020, 13, 3617.	2.9	2
236	Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. Physical Review B, 2020, 102, .	3.2	9

#	Article	IF	CITATIONS
237	Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing. IScience, 2020, 23, 101874.	4.1	32
238	A perspective on electrode engineering in ultrathin ferroelectric heterostructures for enhanced tunneling electroresistance. Applied Physics Reviews, 2020, 7, .	11.3	12
239	Sm doped BiFeO3 nanofibers for improved photovoltaic devices. Chinese Journal of Physics, 2020, 66, 301-306.	3.9	9
240	Enhanced ferroelectric photovoltaic effect in semiconducting single-wall carbon nanotube/BiFeO ₃ heterostructures enabled by wide-range light absorption and efficient charge separation. Journal of Materials Chemistry A, 2020, 8, 10377-10385.	10.3	10
241	A construction strategy of ferroelectrics by the molten salt method and its application in the energy field. Journal of Materials Chemistry C, 2020, 8, 8704-8731.	5.5	30
242	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	11.9	49
243	Low-energy complementary ferroelectric-nanocrack logic. Nano Energy, 2020, 75, 104871.	16.0	3
244	Electro–opto–mechano driven reversible multi-state memory devices based on photocurrent in Bi0.9Eu0.1FeO3/La0.67Sr0.33MnO3/PMN-PT heterostructures. RSC Advances, 2020, 10, 15784-15793.	3.6	1
245	Nonvolatile Negative Optoelectronic Memory Based on Ferroelectric Thin Films. ACS Applied Electronic Materials, 2020, 2, 1035-1040.	4.3	18
246	Two-terminal optoelectronic memory device. , 2020, , 75-105.		0
247	Switchable ferroelectric diode and photovoltaic effects in polycrystalline BiFeO3 thin films grown on transparent substrates. Thin Solid Films, 2020, 698, 137851.	1.8	27
248	A chiral switchable photovoltaic ferroelectric 1D perovskite. Science Advances, 2020, 6, eaay4213.	10.3	119
249	A Semiâ€Floating Memory with 535% Enhancement of Refresh Time by Local Field Modulation. Advanced Functional Materials, 2020, 30, 1908089.	14.9	25
250	Scaled conductance quantization unravels the switching mechanism in organic ternary resistive memories. Journal of Materials Chemistry C, 2020, 8, 2964-2969.	5.5	5
251	Improvement on Thermal Stability of Nano-Domains in Lithium Niobate Thin Films. Crystals, 2020, 10, 74.	2.2	7
252	Photo-response in 2D metal chalcogenide-ferroelectric oxide heterostructure controlled by spontaneous polarization. Journal of Materials Chemistry C, 2020, 8, 3724-3729.	5.5	7
253	Effect of wake-up on the polarization switching dynamics of Si doped HfO2 thin films with imprint. Journal of Alloys and Compounds, 2020, 823, 153777.	5.5	14
254	Impact of fatigue behavior on energy storage performance in dielectric thin-film capacitors. Journal of the European Ceramic Society, 2020, 40, 1886-1895.	5.7	21

#	Article	IF	CITATIONS
255	Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS Nano, 2020, 14, 1645-1655.	14.6	38
256	Enhanced Photoelectrochemical Performance by Interface Engineering in Ternary gâ€C ₃ N ₄ /TiO ₂ /PbTiO ₃ Films. Advanced Materials Interfaces, 2020, 7, 2000185.	3.7	11
257	Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters, 2020, 12, 81.	27.0	150
258	Strain-induced structural phase transition, electric polarization and unusual electric properties in photovoltaic materials CsMI3 (M = Pb, Sn). RSC Advances, 2020, 10, 12432-12438.	3.6	7
259	Electronegativity, phase transition, and ferroelectricity of TeSe2 few-layers. Journal of Physics Condensed Matter, 2020, 32, 045301.	1.8	2
260	Polarization driven self-biased and enhanced UV–visible photodetector characteristics of ferroelectric thin film. Journal Physics D: Applied Physics, 2020, 53, 275302.	2.8	30
261	Active manipulation of plasmon-induced transparency based on a BiFeO3/Si hybrid metasurface in the terahertz range. Journal of Alloys and Compounds, 2021, 853, 157274.	5.5	2
262	Geometrical polarization approach: A semi-empirical tool to estimate the intrinsic polarization of polar dielectrics. Ceramics International, 2021, 47, 943-952.	4.8	4
263	Exploring a Fatigueâ€Free Layered Hybrid Perovskite Ferroelectric for Photovoltaic Nonâ€Volatile Memories. Angewandte Chemie - International Edition, 2021, 60, 10598-10602.	13.8	19
264	Recent progress in bismuth ferrite-based thin films as a promising photovoltaic material. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 83-108.	12.3	38
265	Non-volatile optical switch of resistance in photoferroelectric tunnel junctions. Nature Communications, 2021, 12, 382.	12.8	32
266	First-principle investigation of hybrid improper ferroelectricity of $\langle i \rangle n \langle i \rangle = 2$ Ruddlesden-Popper $Sr\langle sub \rangle 3 \langle sub \rangle \langle i \rangle B \langle i \rangle = 2r$, Hf). Wuli Xuebao/Acta Physica Sinica, 2021, 70, 116302-116302.	0.5	0
267	Recent advances on magnetoelectric coupling in BiFeO3: Technological achievements and challenges. Materials Today: Proceedings, 2022, 49, 3046-3049.	1.8	4
268	Large ferroelectric-polarization-modulated photovoltaic effects in bismuth layered multiferroic/semiconductor heterostructure devices. Journal of Materials Chemistry C, 2021, 9, 3287-3294.	5.5	14
269	Ultrafast photoinduced strain in super-tetragonal PbTiO3 ferroelectric films. Science China Materials, 2021, 64, 1679-1686.	6.3	5
270	Laser-modulated reversible polarization and enhanced electrical properties in PSN-PMN-PT ferroelectric crystal. Journal of Materials Science, 2021, 56, 10477-10487.	3.7	5
271	Recent Progress in Optical Control of Ferroelectric Polarization. Advanced Optical Materials, 2021, 9, 2002146.	7.3	37
272	Nonlinear photonic crystals: from 2D to 3D. Optica, 2021, 8, 372.	9.3	45

#	Article	IF	CITATIONS
273	Exploring a Fatigueâ€Free Layered Hybrid Perovskite Ferroelectric for Photovoltaic Nonâ€Volatile Memories. Angewandte Chemie, 2021, 133, 10692-10696.	2.0	0
274	Unit-cell-thick domain in free-standing quasi-two-dimensional ferroelectric material. Physical Review Materials, 2021, 5, .	2.4	3
275	Impedance spectroscopy and conduction mechanism of a BiFe0.95Mn0.05O3 thin film. Thin Solid Films, 2021, 724, 138616.	1.8	4
276	Switchable Optically Active Schottky Barrier in La _{0.7} Sr _{0.3} MnO ₃ /BaTiO ₃ /ITO Ferroelectric Tunnel Junction. Advanced Electronic Materials, 2021, 7, 2100069.	5.1	13
277	Electric field poling effect on the photosensitivity of samarium-doped bismuth ferrite ceramics. Ceramics International, 2021, 47, 12574-12582.	4.8	8
278	Localized Ferroelectric Domains via Laser Poling in Monodomain Calcium Barium Niobate Crystal. Laser and Photonics Reviews, 2021, 15, 2100088.	8.7	11
279	Large photocurrent density in polycrystalline hexagonal YMnO3 thin film induced by ferroelectric polarization and the positive driving effect of grain boundary. Solar Energy Materials and Solar Cells, 2021, 224, 111009.	6.2	19
280	Enhanced photovoltaic-pyroelectric coupled effect of BiFeO3/Au/ZnO heterostructures. Nano Energy, 2021, 85, 105968.	16.0	37
281	Oxide and Organic–Inorganic Halide Perovskites with Plasmonics for Optoelectronic and Energy Applications: A Contributive Review. Catalysts, 2021, 11, 1057.	3.5	10
282	Strain-induced band gap tuning in flexible ferroelectric/mica thin films. Thin Solid Films, 2021, 731, 138741.	1.8	0
283	Effect of polarization on performance of inverted solar cells based on molecular ferroelectric Hexane-1,6-diammonium pentaiodobismuth without electron transport layer. Materials Letters, 2021, 307, 130951.	2.6	0
284	Controllable Distribution and Reversible Migration of Charges in BiFeO (sub) 3 (sub) -Based Films on Si Substrates. ACS Applied Materials & Interfaces, 2021, 13, 43787-43794.	8.0	4
285	Room temperature tuning of non volatile magnetoelectric memory in Al doped Sr3Co2Fe24O41. Ceramics International, 2021, 47, 29261-29266.	4.8	4
286	Domain switching kinetics in ferroelectric PbTiO3 nanostructures. Scripta Materialia, 2021, 205, 114208.	5.2	1
287	Strain tuning of negative capacitance in epitaxial PZT thin films. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 187701-187701.	0.5	0
288	Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nature Communications, 2020, 11, 2571.	12.8	93
289	Switchable ferroelectric photovoltaic effects in epitaxial $\langle i \rangle h \langle i \rangle -RFeO \langle sub \rangle 3 \langle sub \rangle$ thin films. Nanoscale, 2018, 10, 13261-13269.	5.6	35
290	Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range. PLoS ONE, 2016, 11, e0153261.	2.5	7

#	Article	IF	CITATIONS
291	Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO ₃ /Nb-doped SrTiO ₃ heterojunction. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 127301.	0.5	3
292	Spontaneous Polarization in Nanoparticles. IEEE Electron Device Letters, 2021, 42, 1838-1840.	3.9	3
293	Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. Npj 2D Materials and Applications, 2021, 5, .	7.9	20
295	Magneto-electric coupled ordered PMN-PT/NiFe2O4 composite nanostructures. Applied Physics Letters, 2021, 119, .	3.3	7
296	First-principles study of R3c-MgSnX3 (X O, S and Se) for photovoltaic and ferroelectric application. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 422, 127774.	2.1	5
297	Symmetry-aware recursive image similarity exploration for materials microscopy. Npj Computational Materials, 2021, 7, .	8.7	5
299	Photovoltaic effect in ferroelectrics. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 157801.	0.5	8
301	Optimization of electrical and photovoltaic properties of Au-BiFeO ₃ nanocomposite films. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 127709.	0.5	1
302	Effect of Polarization on Performance of Inverted Solar Cells Based on Molecular Ferroelectric 1,6-Hexanediamine Pentaiodide Bismuth with PCBM as Electron Transport Layer. Applied Sciences (Switzerland), 2021, 11, 10494.	2.5	0
303	Pyroelectric effect mediated infrared photoresponse in Bi ₂ Te ₃ fb(Mg _{1/3} Nb _{2/3})O ₃ –PbTiO ₃ optothermal ferroelectric field-effect transistors. Nanoscale, 2021, 13, 20657-20662.	u b x6	6
304	Photovoltaic sensing of a memristor based in LSMO/BTO/ITO ferroionic tunnel junctions. Applied Physics Letters, 2022, 120, .	3.3	7
305	The fourth fundamental circuit element: principle and applications. Journal Physics D: Applied Physics, 0, , .	2.8	1
306	Direct evidence for bulk photovoltaic charge transport in a ferroelectric polycrystalline film. Scripta Materialia, 2022, 211, 114498.	5.2	5
307	Large-Scale Epitaxial Growth of Ultralong Stripe BiFeO3 Films and Anisotropic Optical Properties. ACS Applied Materials & Diterfaces, 2022, , .	8.0	1
308	Crossover between Bulk and Interface Photovoltaic Mechanisms in a Ferroelectric Vertical Heterostructure. Physical Review Applied, 2022, 17, .	3.8	6
309	Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nature Communications, 2022, 13, 1707.	12.8	81
310	Textured Bi ₄ Ti ₃ O ₁₂ Ceramics: Oneâ€5tep Spark Plasma Sintering and Their Singleâ€Crystalâ€Like Polar Anisotropy. Advanced Engineering Materials, 2022, 24, .	3.5	6
311	Quick screening stable double perovskite oxides for photovoltaic applications by machine learning. Ceramics International, 2022, 48, 18074-18082.	4.8	10

#	Article	IF	CITATIONS
312	Influence of sputtering power on the switching and reliability of ferroelectric Al _{0.7} Sc _{0.3} N films. Japanese Journal of Applied Physics, 2022, 61, SH1003.	1.5	7
313	Current-induced control of the polarization state in a polar metal based heterostructure SnSe/WTe2. Europhysics Letters, 0, , .	2.0	1
314	Enhanced Ferroelectric and Piezoelectric Properties in Graphene-Electroded Pb(Zr,Ti)O ₃ Thin Films. ACS Applied Materials & Interfaces, 2022, 14, 17987-17994.	8.0	5
315	Ferromagnetic properties of conducting filament nanodots formed on epitaxial BiFeO3 thin film. Journal of Materials Research and Technology, 2022, 18, 2232-2239.	5.8	3
316	Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Progress in Materials Science, 2022, 127, 100943.	32.8	40
317	Electric field modulated photoluminescence in ferroelectric ceramics for photosensitive device applications. Materials Research Bulletin, 2022, 152, 111831.	5.2	0
318	Quantitative investigation of polarization-dependent photocurrent in ferroelectric thin films. Journal of Physics Condensed Matter, 2022, 34, 104003.	1.8	5
319	Stabilizing Remanent Polarization during Cycling in HZOâ€Based Ferroelectric Device by Prolonging Wakeâ€up Period. Advanced Electronic Materials, 2022, 8, .	5.1	7
320	Back-End, CMOS-Compatible Ferroelectric FinFET for Synaptic Weights. Frontiers in Electronic Materials, 2022, 2, .	3.1	3
322	Deterministic control of ferroelectric polarization by ultrafast laser pulses. Nature Communications, 2022, 13, 2566.	12.8	18
323	Enhanced photocurrent in ferroelectric Bi0.5Na0.5TiO3 materials via ferro-pyro-phototronic effect. Nano Energy, 2022, 98, 107312.	16.0	20
324	High-performance self-driven photodetectors based on self-polarized Bi0.9Eu0.1FeO3/Nb-doped SrTiO3 p-n heterojunctions. Journal of Alloys and Compounds, 2022, 915, 165451.	5.5	9
325	Resistive Switching in Ferroelectric Bi ₂ FeCrO ₆ Thin Films and Impact on the Photovoltaic Effect. Advanced Electronic Materials, 2022, 8, .	5.1	9
326	A Van Der Waals Photoâ€Ferroelectric Synapse. Advanced Electronic Materials, 2022, 8, .	5.1	5
327	Improved resistive switching of RGO and SnO2 based resistive memory device for non-volatile memory application. Journal of Alloys and Compounds, 2022, 923, 166196.	5.5	13
328	A minireview on 2D materials-enabled optoelectronic artificial synaptic devices. APL Materials, 2022, 10, .	5.1	12
329	Antimonyâ€Doped pâ€Type In ₂ Se ₃ for Heterophase Homojunction with Highâ€Performance Reconfigurable Broadband Photovoltaic Effect. Advanced Electronic Materials, 2022, 8, .	5.1	3
330	Engineering Photoresponse in Epitaxial BiFe _{0.5} Cr _{0.5} O ₃ Thin Films through Structural Distortion. Journal of Physical Chemistry C, 2022, 126, 14329-14338.	3.1	0

#	Article	IF	CITATIONS
331	Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system. Nature Communications, 2022, 13 , .	12.8	24
332	Ultimate electromechanical energy conversion performance and energy storage capacity of ferroelectric materials under high excitation levels. Applied Energy, 2022, 326, 119984.	10.1	4
333	Switchable ferroelectric photovoltaic in the low bandgap cobalt-substituted BiFeO3 epitaxial thin films. Applied Surface Science, 2022, 606, 154898.	6.1	7
334	Control of up-to-down/down-to-up light-induced ferroelectric polarization reversal. Materials Horizons, 2022, 9, 2345-2352.	12.2	8
335	Nonâ€stoichiometric BZTâ€BCT ferroelectrics with visible/nearâ€infrared photoresponse for broadband photodetection. Journal of the American Ceramic Society, 0, , .	3.8	1
336	Narrow Bandgap Inorganic Ferroelectric Thin Film Materials. Advanced Materials Interfaces, 2022, 9, .	3.7	8
337	Controllable chemical composition in double-perovskite Bi0.5Sm0.5FeO3 epitaxial thin films for ferroelectric, photovoltaic, and ferromagnetic properties. Chemical Engineering Journal, 2023, 453, 139726.	12.7	7
338	High performance, amorphous InGaZnO thin-film transistors with ferroelectric ZrO2 gate insulator by one step annealing. Applied Surface Science, 2023, 611, 155533.	6.1	4
339	Broadband and Highâ€Sensitivity Photodetector Based on BiFeO ₃ /Si Heterojunction. Advanced Optical Materials, 2023, 11, .	7.3	4
340	Optical reading of multistate nonvolatile oxide memories based on the switchable ferroelectric photovoltaic effect. Applied Physics Letters, 2022, 121, .	3.3	5
341	Three-dimensional morphology and elastic strain revealed in individual photoferroelectric SbSI nanowire. MRS Bulletin, 2023, 48, 467-474.	3.5	1
342	Cation ordering induced two-dimensional vertical ferroelectricity in tungsten and molybdenum trioxides. Physical Review B, 2022, 106, .	3.2	0
343	Emerging Halide Perovskite Ferroelectrics. Advanced Materials, 2023, 35, .	21.0	30
344	Understanding effect of distortions and vacancies in wurtzite AlScN ferroelectric memory materials: Vacancy-induced multiple defect state types and relaxation dependence in transition energy levels. AIP Advances, 2022, 12, .	1.3	2
345	Study on magnetic field modulation of photocurrent in BiFeO ₃ film. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
346	Reduced Leakage Current and Enhanced Photovoltaic Effect in Zn-Doped BiFeO ₃ Thin Films. ACS Applied Electronic Materials, 2023, 5, 1234-1242.	4.3	3
347	Stress-tuning the bulk photovoltaic response in polycrystalline bismuth ferrite films. Applied Physics Letters, 2023, 122, .	3.3	3
348	The joint impact of crystal-cell thickness and biaxial ([110]) strain on the ferroelectricity of KNbO <mml:math altimg="si93.svg" display="inline" id="d1e980" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow mml:mrow=""></mml:mrow></mml:msub></mml:math> in bulk/thin-film form.	4.0	o

#	Article	IF	CITATIONS
349	Revisiting the Ferroelectric Photovoltaic Properties of Vertical BiFeO ₃ Capacitors: A Comprehensive Study. ACS Applied Materials & Sumplements (2023), 15, 12070-12077.	8.0	4
350	The First Demonstration of Strainâ€Controlled Periodic Ferroelectric Domains with Superior Piezoelectric Response in Molecular Materials. Advanced Materials, 2023, 35, .	21.0	5
351	Selfâ€Rollingâ€Up Enabled Ultrahighâ€Density Information Storage in Freestanding Singleâ€Crystalline Ferroic Oxide Films. Advanced Functional Materials, 2023, 33, .	14.9	5
352	Research progress in architecture and application of RRAM with computing-in-memory. Nanoscale Advances, 2023, 5, 1559-1573.	4.6	3
353	Photovoltaic Devices and Photodetectors. Nanoscience and Technology, 2023, , 95-125.	1.5	1
354	Conclusions and Future Prospects. Nanoscience and Technology, 2023, , 179-197.	1.5	0
355	Effect of a ZrO2 Seed Layer on an Hf0.5Zr0.5O2 Ferroelectric Device Fabricated via Plasma Enhanced Atomic Layer Deposition. Materials, 2023, 16, 1959.	2.9	1
356	Temperature-dependent UV-Vis dielectric functions of BaTiO ₃ across ferroelectric-paraelectric phase transition. Optics Express, 2023, 31, 12357.	3.4	1
357	Ferroelectricity in Low-Permittivity SrZrO ₃ Epitaxial Films. Chemistry of Materials, 2023, 35, 2967-2974.	6.7	2
358	Edge-Based Two-Dimensional α-In ₂ Se ₃ â€"MoS ₂ Ferroelectric Field Effect Device. ACS Applied Materials & Samp; Interfaces, 2023, 15, 18505-18515.	8.0	10
359	Si-integrated lanthanide doped ferroelectrics for photomemory based on photochromic reaction. Optics Letters, 0, , . Enhanced Ferroelectric Polarization in Entravial complements	3.3	1
360	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>Bi</mml:mi><mml:mi>Fe</mml:mi><mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub> <mml:mstyle <="" displaystyle="false" td=""><td>3.8</td><td>0</td></mml:mstyle>	3.8	0
361	Self-Powered Bipolar Photodetector Based on a Ce-BaTiO ₃ PTCR Semiconductor for Logic Gates. ACS Applied Materials & Self-Powered Bipolar Photodetector Based on a Ce-BaTiO ₃ PTCR Semiconductor for Logic Gates. ACS Applied Materials & Self-Powered Bipolar Photodetector Based on a Ce-BaTiO ₃ 39100 - 10	nml:mi>M 8.0	g
362	Thickness-Dependent Evolutions of Surface Reconstruction and Band Structures in Epitaxial $\hat{l}^2\hat{a}$ \(\text{"In2Se3}\) Thin Films. Nanomaterials, 2023, 13, 1533.	4.1	0
363	First-principles study of thermal transport properties in ferroelectric HfO ₂ and related fluorite-structure ferroelectrics. Physical Chemistry Chemical Physics, 2023, 25, 17257-17263.	2.8	1
364	Recent progress in functional two-dimensional photovoltaic photodetectors and related emerging applications. Journal of Materials Chemistry A, 2023, 11, 11548-11571.	10.3	5
365	Strain engineering of the electro-optic effect in polycrystalline BiFeO ₃ films [Invited]. Optical Materials Express, 2023, 13, 2061.	3.0	1
366	Role of Nanomodification and Nanofertilizers in Crop Production and Soil Health., 2023,, 381-408.		0

#	Article	IF	CITATIONS
367	Effect of sintering temperature on structural, electrical, and magnetic properties of Bi2Fe4O9 polycrystalline materials. Materials Today: Proceedings, 2023, , .	1.8	0
368	Laboratory experiments based on tip probe 5Scanning probe detection and regulation of ferroelectric domains and their microscopic physical properties. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 207501.	0.5	0
369	Building Blockâ€Inspired Hybrid Perovskite Derivatives for Ferroelectric Channel Layers with Gateâ€Tunable Memory Behavior. Angewandte Chemie, 0, , .	2.0	0
370	Building Blockâ€Inspired Hybrid Perovskite Derivatives for Ferroelectric Channel Layers with Gateâ€Tunable Memory Behavior. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
371	Flexoelectric effect via piezoresponse force microscopy of domain switching in epitaxial PbTiO3 thin films. Journal of the Korean Ceramic Society, 0, , .	2.3	0
372	Tuning the Multiferroic Properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>BiFeO</mml:mi></mml:mrow><mml:mrow><u .<="" 131,="" 2023,="" letters,="" physical="" review="" strain.="" td="" under="" uniaxial=""><td>าทฟิลาท>3</td><td><!--<b-->onml:mn></td></u></mml:mrow></mml:msub></mml:mrow></mml:math>	าท ฟิล าท>3	<b onml:mn>
373	Ferroics in Hybrid Organicâ€Inorganic Perovskites: Fundamentals, Design Strategies and Implementation. Advanced Materials, 0, , .	21.0	0
375	Creation of a Periodic Domain Structure in MgOLN by Femtosecond Laser Irradiation. Photonics, 2023, 10, 1211.	2.0	1
376	Interfacial electronic states and self-formed asymmetric Schottky contacts in polar \hat{l} ±-In2Se3/Au contacts. Scientific Reports, 2023, 13, .	3.3	0
377	Applications of biodegradable carboxymethyl cellulose-based composites. Results in Materials, 2023, 20, 100481.	1.8	0
378	Advances in the modulation engineering of ferroelectrics and multiferroics with non-chemical agents and factors: a review. Journal of Materials Chemistry A, 2024, 12, 567-591.	10.3	0
379	The Use of Semiconductor Quantum Dots with Large, Built-In Spontaneous Polarizations for the Electric Potential Stimulation of Biological Structures on the Nanoscale. Nanomaterials, 2023, 13, 3143.	4.1	0
380	Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P,) Tj ETQq0 C	0.rgBT /O	verlock 10 T
381	Electrically Detectable Photoinduced Polarization Switching in a Molecular Prussian Blue Analogue. Journal of the American Chemical Society, 0, , .	13.7	0
382	Oxide Phases in Bismuth Ferrite (BFO)â€"Key for Photovoltaic Application. Nanostructure Science and Technology, 2024, , 139-155.	0.1	0
383	Two-Dimensional Molecular Ferroelectric Thin Films for Polarization-Driven Tunable Photovoltaic Devices with High Photocurrent Density. ACS Applied Nano Materials, 2024, 7, 1767-1774.	5. 0	0
384	Ba2FeCrO6 double perovskite oxides: structural characterization and magnetic, dielectric and transport properties. Emergent Materials, 0, , .	5.7	0
385	Phase transition and electrical conversion properties of Ge/Sb nano-multilayer films on flexible substrates. Npj Flexible Electronics, 2024, 8, .	10.7	0

#	ARTICLE	IF	CITATIONS
386	Photovoltaic-driven dual optical writing and non-destructive voltage-less reading of polarization in ferroelectric Hf0.5Zr0.5O2 for energy efficient memory devices. Nano Energy, 2024, 123, 109384.	16.0	0
387	Magnetic field tuning of photoelectric and photoluminescence effects in BiFe _{0.9} Co _{0.1} O ₃ thin film. Applied Physics Express, 2024, 17, 033001.	2.4	0
388	Impedance spectroscopy, ferroelectric and ferromagnetic properties of 60Bi2O3–10SrO–30Fe2O3 glass-ceramic nano-composites for energy storage applications. Ceramics International, 2024, 50, 17499-17512.	4.8	0
389	Optical Modulation of MoTe ₂ /Ferroelectric Heterostructure via Interface Doping. ACS Applied Materials & Doping. ACS	8.0	0
390	Emergence of Improper Electronic Ferroelectricity and Flat Band in Twisted Bilayer Tl ₂ S. Nano Letters, 2024, 24, 3231-3236.	9.1	0
391	Ferroelectric switching assisted by laser illumination. Physical Review B, 2024, 109, .	3.2	0
392	Bulk photovoltaic effect of a hybrid ferroelectric semiconductor. Physical Review B, 2024, 109, .	3.2	0
393	Multifunctionality in Electrically Poled PMN–PT/Ni–Mn–In Multiferroic Heterostructure for Flexible Magnetic Field Sensing and Nonvolatile Memory Applications. ACS Applied Electronic Materials, 2024, 6, 1959-1970.	4.3	0
394	Stoner instability-mediated large magnetoelectric effects in 2D stacking electrides. Npj Computational Materials, 2024, 10, .	8.7	0