Knights in Action: Lectin Receptor-Like Kinases in Plan

Molecular Plant 6, 1405-1418

DOI: 10.1093/mp/sst033

Citation Report

#	Article	IF	CITATIONS
1	The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration. Frontiers in Plant Science, 2014, 5, 270.	1.7	9
2	Lectin domains at the frontiers of plant defense. Frontiers in Plant Science, 2014, 5, 397.	1.7	213
3	The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice Â. Plant Cell, 2014, 26, 2538-2553.	3.1	203
4	<i>Arabidopsis</i> Lectin Receptor Kinases LecRK-IX.1 and LecRK-IX.2 Are Functional Analogs in Regulating <i>Phytophthora</i> Resistance and Plant Cell Death. Molecular Plant-Microbe Interactions, 2015, 28, 1032-1048.	1.4	78
5	Protein-Carbohydrate Interactions as Part of Plant Defense and Animal Immunity. Molecules, 2015, 20, 9029-9053.	1.7	81
6	The tomato <i>lâ€3</i> gene: a novel gene for resistance to Fusarium wilt disease. New Phytologist, 2015, 207, 106-118.	3.5	169
7	Plant oligosaccharides — outsiders among elicitors?. Biochemistry (Moscow), 2015, 80, 881-900.	0.7	12
8	Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology, 2015, 88, 193-206.	2.0	58
9	Protein Dynamics in the Plant Extracellular Space. Proteomes, 2016, 4, 22.	1.7	33
10	Identification and Expression Profiling of the Lectin Gene Superfamily in Mulberry. Plant Genome, 2016, 9, plantgenome2015.10.0107.	1.6	22
11	Plant Reproduction: AMOR Enables Males to Respond to Female Signals. Current Biology, 2016, 26, R321-R323.	1.8	9
12	The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Current Biology, 2016, 26, 1091-1097.	1.8	103
13	Genome-wide identification and domain organization of lectin domains in cucumber. Plant Physiology and Biochemistry, 2016, 108, 165-176.	2.8	23
14	Genome-wide analysis of the lectin receptor-like kinase family in foxtail millet (Setaria italica L.). Plant Cell, Tissue and Organ Culture, 2016, 127, 335-346.	1.2	27
15	Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genomics, 2016, 17, 699.	1.2	72
16	Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene, 2016, 590, 5-17.	1.0	13
17	Polarized Defense Against Fungal Pathogens Is Mediated by the Jacalin-Related Lectin Domain of Modular Poaceae -Specific Proteins. Molecular Plant, 2016, 9, 514-527.	3.9	67
18	An update on cell surface proteins containing extensin-motifs. Journal of Experimental Botany, 2016, 67, 477-487.	2.4	68

#	ARTICLE	IF	CITATIONS
19	Prediction and validation of cis-regulatory elements in $5\hat{a}\in^2$ upstream regulatory regions of lectin receptor-like kinase gene family in rice. Protoplasma, 2017, 254, 669-684.	1.0	19
20	A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA. Journal of Biological Chemistry, 2017, 292, 5932-5942.	1.6	16
21	The L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis. Plant Growth Regulation, 2017, 81, 409-418.	1.8	17
22	Evaluation of multiple approaches to identify genome-wide polymorphisms in closely related genotypes of sweet cherry (Prunus avium L.). Computational and Structural Biotechnology Journal, 2017, 15, 290-298.	1.9	10
23	Molecular Mechanism of Plant Recognition of Extracellular ATP. Advances in Experimental Medicine and Biology, 2017, 1051, 233-253.	0.8	19
24	A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling. Plant Physiology, 2017, 174, 2501-2514.	2.3	70
25	Post genomics era for orchid research. , 2017, 58, 61.		29
26	Genomeâ€Wide Screening for Lectin Motifs in <i>Arabidopsis thaliana</i> . Plant Genome, 2017, 10, plantgenome2017.02.0010.	1.6	49
27	An Update on Jacalin-Like Lectins and Their Role in Plant Defense. International Journal of Molecular Sciences, 2017, 18, 1592.	1.8	71
28	Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Biology, 2017, 17, 141.	1.6	51
29	Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Scientific Reports, 2018, 8, 5861.	1.6	30
30	Pathogen-Associated Molecular Patterns and Their Perception in Plants. , 2018, , 79-113.		3
31	Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics, 2018, 19, 239.	1.2	35
32	Genome-wide identification of lectin receptor kinases in pear: Functional characterization of the L-type LecRLK gene PbLRK138. Gene, 2018, 661, 11-21.	1.0	15
33	Cutting in the middleman: hidden substrates at the interface between proteases and plant development. New Phytologist, 2018, 218, 916-922.	3.5	11
34	Capacitation in Plant and Animal Fertilization. Trends in Plant Science, 2018, 23, 129-139.	4.3	12
35	Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Science China Life Sciences, 2018, 61, 100-112.	2.3	27
36	Generation and characterization of expressed sequence tags (ESTs) from coralloid root cDNA library of Cycas debaoensis. Plant Diversity, 2018, 40, 245-252.	1.8	1

3

#	ARTICLE	IF	CITATIONS
37	Comparative whole genome re-sequencing analysis in upland New Rice for Africa: insights into the breeding history and respective genome compositions. Rice, 2018, 11, 33.	1.7	9
38	Genome-wide classification, evolutionary analysis and gene expression patterns of the kinome in Gossypium. PLoS ONE, 2018, 13, e0197392.	1.1	12
39	Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Frontiers in Plant Science, 2018, 9, 1387.	1.7	232
40	Callose balancing at plasmodesmata. Journal of Experimental Botany, 2018, 69, 5325-5339.	2.4	91
41	Ectopic Expression of GsSRK in Medicago sativa Reveals Its Involvement in Plant Architecture and Salt Stress Responses. Frontiers in Plant Science, 2018, 9, 226.	1.7	32
42	Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics, 2018, 19, 289.	1.2	29
43	Genome-Wide Analysis of Lectin Receptor-Like Kinases in Tomato (Solanum lycopersicum) and Its Association with the Infection of Tomato Yellow Leaf Curl Virus. Plant Molecular Biology Reporter, 2018, 36, 429-438.	1.0	14
44	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	4.7	42
45	Magnesium Deficiency Induced Global Transcriptome Change in Citrus sinensis Leaves Revealed by RNA-Seq. International Journal of Molecular Sciences, 2019, 20, 3129.	1.8	28
46	Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling. Plant Journal, 2019, 98, 492-510.	2.8	19
47	Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis. International Journal of Molecular Sciences, 2019, 20, 5970.	1.8	18
48	Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 2019, 5, 54-62.	4.7	172
49	Receptor-Like Kinases Control the Development, Stress Response, and Senescence in Plants., 2019,, 199-210.		8
50	Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. Tree Physiology, 2020, 40, 129-141.	1.4	21
51	An integrated RNA-Seq and physiological study reveals gene responses involving in the initial imbibition of seed germination in rice. Plant Growth Regulation, 2020, 90, 249-263.	1.8	14
52	Lectin receptor kinase OsLecRKâ€6.7 is required for pollen development and male fertility. Journal of Integrative Plant Biology, 2020, 62, 1227-1245.	4.1	24
53	Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. Frontiers in Plant Science, 2020, 11, 545748.	1.7	21
54	A Plant Lectin Receptor-like Kinase Phosphorylates the Bacterial Effector AvrPtoB to Dampen Its Virulence in Arabidopsis. Molecular Plant, 2020, 13, 1499-1512.	3.9	20

#	ARTICLE	IF	CITATIONS
55	Genomeâ€wide and structural analyses of pseudokinases encoded in the genome of <scp><i>Arabidopsis thaliana</i></scp> provide functional insights. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1620-1638.	1.5	9
56	Transcriptional Modulation of Resistance against Xanthomonas oryzae pv. oryzae Korean Race K2 in japonica Rice. Agronomy, 2020, 10, 960.	1.3	2
57	Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiology Reviews, 2020, 44, 845-856.	3.9	21
58	Genome-Wide Identification and Characterization of Lectin Receptor-Like Kinase Gene Family in Cucumber and Expression Profiling Analysis under Different Treatments. Genes, 2020, 11, 1032.	1.0	15
59	Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. Frontiers in Plant Science, 2020, 11, 596301.	1.7	61
60	Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Computational and Structural Biotechnology Journal, 2020, 18, 2556-2567.	1.9	7
61	Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. International Journal of Molecular Sciences, 2020, 21, 4000.	1.8	71
62	Tomato SD1, encoding a kinase-interacting protein, is a major locus controlling stem development. Journal of Experimental Botany, 2020, 71, 3575-3587.	2.4	12
63	Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nature Plants, 2020, 6, 394-403.	4.7	29
64	De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. Frontiers in Plant Science, 2020, 11, 191.	1.7	9
65	Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor. BMC Plant Biology, 2020, 20, 174.	1.6	2
66	Plant plasma membraneâ€resident receptors: Surveillance for infections and coordination for growth and development. Journal of Integrative Plant Biology, 2021, 63, 79-101.	4.1	50
67	Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts. Canadian Journal of Forest Research, 2021, 51, 420-432.	0.8	14
68	Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). Journal of Applied Genetics, 2021, 62, 223-234.	1.0	10
69	Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stress. Computational and Structural Biotechnology Journal, 2021, 19, 2133-2147.	1.9	15
70	An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development (Cambridge), 2021, 148, dev196378.	1.2	16
71	Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biology, 2021, 21, 175.	1.6	15
72	Genome-Wide Identification, Diversification, and Expression Analysis of Lectin Receptor-Like Kinase (LecRLK) Gene Family in Cucumber under Biotic Stress. International Journal of Molecular Sciences, 2021, 22, 6585.	1.8	12

#	ARTICLE	IF	CITATIONS
73	Identification of LecRLK gene family in Cerasus humilis through genomic-transcriptomic data mining and expression analyses. PLoS ONE, 2021, 16, e0254535.	1.1	5
74	Transcriptome and DNA Methylome Reveal Insights Into Phytoplasma Infection Responses in Mulberry (Morus multicaulis Perr.). Frontiers in Plant Science, 2021, 12, 697702.	1.7	9
75	Mapping and mining of major genomic regions conferring resistance to Bruchine (Callosobruchus) Tj ETQq0 0	0 rgBT/Ονι	erlock 10 Tf 5
76	A balancing act: the role of a lectin receptor kinase in determining seed size and quantity. Plant Physiology, 2021, 187, 21-23.	2.3	0
77	Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods in Molecular Biology, 2016, 1363, 133-144.	0.4	30
78	Identification and functional analysis of <i>LecRLK</i> genes in <i>Taxodium</i> â€~Zhongshanshan'. PeerJ, 2019, 7, e7498.	0.9	7
79	Genome-wide analysis of lectin receptor-like kinases family from potato (<i>Solanum tuberosum</i>) Tj ETQq0	0 0 rgBT /C	Overlock 10 Tf
82	A Gâ€type lectin receptorâ€like kinase regulates the perception of oomycete apoplastic expansinâ€like proteins. Journal of Integrative Plant Biology, 2022, 64, 183-201.	4.1	21
83	Genome-wide analysis of lectin receptor-like kinases (LecRLKs) in sweet cherry (Prunus avium) and reveals PaLectinL16 enhances sweet cherry resistance with salt stress. Environmental and Experimental Botany, 2022, 194, 104751.	2.0	7
84	GmLecRlk, a Lectin Receptor-like Protein Kinase, Contributes to Salt Stress Tolerance by Regulating Salt-Responsive Genes in Soybean. International Journal of Molecular Sciences, 2022, 23, 1030.	1.8	13
85	Expression Levels of Genes Encoding Proteins Involved in the Cell Wall–Plasma Membrane–Cytoskeleton Continuum Are Associated With the Maturation-Related Adventitious Rooting Competence of Pine Stem Cuttings. Frontiers in Plant Science, 2021, 12, 783783.	1.7	5
86	Overexpression of Lectin Receptor-Like Kinase 1 in Tomato Confers Resistance to Fusarium oxysporum f. sp. Radicis-Lycopersici. Frontiers in Plant Science, 2022, 13, 836269.	1.7	2
87	Genome wide study of cysteine rich receptor like proteins in Gossypium sp Scientific Reports, 2022, 12, 4885.	1.6	12
103	Function of Protein Kinases in Leaf Senescence of Plants. Frontiers in Plant Science, 2022, 13, 864215.	1.7	2
104	The Apple Receptor-Like Kinase MdSRLK3 Positively Regulates Resistance Against Pathogenic Fungus <i>Valsa mali</i> by Affecting the Ca ²⁺ SignalingÂPathway. Phytopathology, 2022, 112, 2187-2197.	1.1	6
105	Genomics and Pathways Involved in Maize Resistance to Fusarium Ear Rot and Kernel Contamination With Fumonisins. Frontiers in Plant Science, 2022, 13, 866478.	1.7	8
106	Plasma Membrane-Associated Proteins Identified in Arabidopsis Wild Type, lbr2-2 and bak1-4 Mutants Treated with LPSs from PseudomonasÂsyringae and Xanthomonas campestris. Membranes, 2022, 12, 606.	1.4	1
107	Cell wall integrity regulation across plant species. Plant Molecular Biology, 2022, 109, 483-504.	2.0	23

#	Article	IF	CITATIONS
108	Molecular Mechanisms of Plant Responses to Salt Stress. Frontiers in Plant Science, 0, 13, .	1.7	26
109	Overexpression of a Phosphatidylinositol-Specific Phospholipase C Gene from Populus simonii ×  P. nigra Improves Salt Tolerance in Transgenic Tobacco. Journal of Plant Biology, 0, , .	0.9	3
110	The L-Type Lectin-like Receptor Kinase Gene TaLecRK-IV.1 Regulates the Plant Height in Wheat. International Journal of Molecular Sciences, 2022, 23, 8208.	1.8	6
111	Defense Surveillance System at the Interface: Response of Rice Towards <i>Rhizoctonia solani</i> During Sheath Blight Infection. Molecular Plant-Microbe Interactions, 2022, 35, 1081-1095.	1.4	1
112	TMT-based quantitative membrane proteomics identified PRRs potentially involved in the perception of MSP1 in rice leaves. Journal of Proteomics, 2022, 267, 104687.	1.2	12
113	Integrated genomics, QTL mapping, and co-expression analyses identifying candidates of low-temperature tolerance in Brassica napus L Industrial Crops and Products, 2022, 187, 115437.	2.5	3
114	Analysis of lectin receptor-like kinases and their functions in higher plants. , 2023, , 139-154.		1
115	Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorous conditions in wheat (Triticum aestivum L.). Frontiers in Genetics, 0, 13, .	1.1	1
116	Role of receptor-like kinases in plant-pathogen interaction. , 2023, , 121-147.		0
117	Unraveling Genomic Regions Controlling Root Traits as a Function of Nitrogen Availability in the MAGIC Wheat Population WM-800. Plants, 2022, 11, 3520.	1.6	1
118	Wheat Pore-forming toxin-like protein confers broad-spectrum resistance to fungal pathogens in Arabidopsis. Molecular Plant-Microbe Interactions, 0, , .	1.4	0
119	Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture, 2023, 22, 3394-3407.	1.7	3
123	Signaling Pathway of Reactive Oxygen Species in Crop Plants Under Abiotic Stress., 2023,, 249-262.		0