Enhanced chemical weathering as a geoengineering stra dioxide, supply nutrients, and mitigate ocean acidificat

Reviews of Geophysics 51, 113-149 DOI: 10.1002/rog.20004

Citation Report

#	Article	IF	CITATIONS
1	Drivers, Trends and Mitigation. , 2015, , 351-412.		33
2	Six commercially viable ways to remove CO2 from the atmosphere and/or reduce CO2 emissions. Environmental Sciences Europe, 2013, 25, .	5.5	7
3	Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: An opportunity for passive carbon sequestration. International Journal of Greenhouse Gas Control, 2013, 17, 309-317.	4.6	74
4	Carbon Mineralization: From Natural Analogues to Engineered Systems. Reviews in Mineralogy and Geochemistry, 2013, 77, 305-360.	4.8	174
5	Climateâ€driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance. Geophysical Research Letters, 2014, 41, 3553-3558.	4.0	35
6	The Overlooked Compartment of the Critical-zone-complex, Considering the Evolution of Future Geogenic Matter Fluxes: Agricultural Topsoils. Procedia Earth and Planetary Science, 2014, 10, 339-342.	0.6	0
7	Carbon Dioxide Efficiency of Terrestrial Enhanced Weathering. Environmental Science & Technology, 2014, 48, 4809-4816.	10.0	119
8	Dissolution rate of antigorite from a whole-rock experimental study of serpentinite dissolution from 2 <ph<9 2015,="" 259-271.<="" 25űc:="" 61,="" applied="" at="" carbon="" enhanced="" for="" geochemistry,="" implications="" mitigation="" serpentinite="" td="" via="" weathering.=""><td>3.0</td><td>10</td></ph<9>	3.0	10
9	Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25). Biogeosciences, 2015, 12, 6791-6808.	3.3	12
10	Investing in negative emissions. Nature Climate Change, 2015, 5, 498-500.	18.8	67
11	Fossil fuels in a trillion tonne world. Nature Climate Change, 2015, 5, 419-423.	18.8	89
12	The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant, Cell and Environment, 2015, 38, 1947-1961.	5.7	60
13	A potential role of the negative emission of carbon dioxide in solving the climate problem. Russian Meteorology and Hydrology, 2015, 40, 443-455.	1.3	6
14	Reframing the policy approach to greenhouse gas removal technologies. Energy Policy, 2015, 78, 125-136.	8.8	69
15	Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling. Advances in Agronomy, 2015, 131, 111-172.	5.2	34
16	Proposed sources of methane along the Dead Sea Transform. Chemical Geology, 2015, 395, 165-175.	3.3	11
17	The dissolution of olivine added to soil: Implications for enhanced weathering. Applied Geochemistry, 2015, 61, 109-118.	3.0	99
18	Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream. Geochimica Et Cosmochimica Acta, 2015, 148, 1-22.	3.9	8

#	Article	IF	Citations
19	Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO ₂ removal experiment. Environmental Research Letters, 2016, 11, 024007.	5.2	58
20	Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations. Geophysical Research Letters, 2016, 43, 6493-6502.	4.0	46
21	Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations. Environmental Science and Pollution Research, 2016, 23, 22309-22330.	5.3	33
22	Weathering reactions and isometric log-ratio coordinates: Do they speak to each other?. Applied Geochemistry, 2016, 75, 189-199.	3.0	19
23	Rapid scale-up of negative emissions technologies: social barriers and social implications. Climatic Change, 2016, 139, 155-167.	3.6	103
24	Coupling of carbon and silicon geochemical cycles in rivers and lakes. Scientific Reports, 2016, 6, 35832.	3.3	13
25	Nesquehonite sequesters transition metals and CO2 during accelerated carbon mineralisation. International Journal of Greenhouse Gas Control, 2016, 55, 73-81.	4.6	24
26	Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?. Environmental Research Letters, 2016, 11, 074008.	5.2	29
27	Eutrophication, microbial-sulfate reduction and mass extinctions. Communicative and Integrative Biology, 2016, 9, e1115162.	1.4	17
28	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	2.5	11
29	Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach. Agricultural and Forest Meteorology, 2016, 220, 38-49.	4.8	31
30	Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change, 2016, 6, 402-406.	18.8	184
31	A spatially resolved surface kinetic model for forsterite dissolution. Geochimica Et Cosmochimica Acta, 2016, 174, 313-334.	3.9	58
32	CO ₂ diffusion into pore spaces limits weathering rate of an experimental basalt landscape. Geology, 2017, 45, 203-206.	4.4	13
33	Olivine Dissolution in Seawater: Implications for CO ₂ Sequestration through Enhanced Weathering in Coastal Environments. Environmental Science & Technology, 2017, 51, 3960-3972.	10.0	139
34	Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biology Letters, 2017, 13, 20160714.	2.3	88
35	Negative CO ₂ emissions via enhanced silicate weathering in coastal environments. Biology Letters, 2017, 13, 20160905.	2.3	74
36	Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 2017, 55, 636-674.	23.0	216

#	Article	IF	CITATIONS
37	Study on characteristics of various extractants for mineral carbonation of industrial wastes. Journal of Environmental Chemical Engineering, 2017, 5, 3803-3821.	6.7	11
38	Accelerating the carbon cycle: the ethics of enhanced weathering. Biology Letters, 2017, 13, 20160859.	2.3	19
39	Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biology Letters, 2017, 13, 20160715.	2.3	73
40	Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475, 176-187.	2.3	30
41	Silica Saves the Day. , 2017, , 177-201.		0
42	Characterization of potassium agrominerals: Correlations between petrographic features, comminution and leaching of ultrapotassic syenites. Minerals Engineering, 2017, 102, 42-57.	4.3	40
43	Effects of Synechococcus sp. cyanobacteria inert biomass on olivine dissolution: Implications for the application of enhanced weathering methods. Applied Geochemistry, 2017, 84, 162-172.	3.0	5
44	Enhanced weathering of olivine in seawater: The efficiency as revealed by thermodynamic scenario analysis. Science of the Total Environment, 2017, 575, 536-544.	8.0	24
45	Modelâ€Based Assessment of the CO ₂ Sequestration Potential of Coastal Ocean Alkalinization. Earth's Future, 2017, 5, 1252-1266.	6.3	34
46	Enhanced rock weathering: biological climate change mitigation with co-benefits for food security?. Biology Letters, 2017, 13, 20170149.	2.3	18
47	Response of the Changjiang (Yangtze River) water chemistry to the impoundment of Three Gorges Dam during 2010–2011. Chemical Geology, 2018, 487, 1-11.	3.3	25
48	Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Scientific Reports, 2018, 8, 5280.	3.3	31
49	Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 2018, 4, 138-147.	9.3	226
50	Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System. Earth's Future, 2018, 6, 149-168.	6.3	15
51	Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 2018, 13, 034010.	5.2	152
52	Are all lean principles equally eco-friendly? A panel data study. Journal of Cleaner Production, 2018, 177, 362-370.	9.3	43
53	Stabilization of Soil Organic Carbon as Influenced by Clay Mineralogy. Advances in Agronomy, 2018, 148, 33-84.	5.2	148
54	Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e521.	8.1	40

#	Article	IF	CITATIONS
55	CO2 Sequestration: Processes and Methodologies. , 2018, , 1-50.		1
56	Revealing the correlations between heavy metals and water quality, with insight into the potential factors and variations through canonical correlation analysis in an upstream tributary. Ecological Indicators, 2018, 90, 485-493.	6.3	26
57	Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. International Journal of Greenhouse Gas Control, 2018, 71, 155-167.	4.6	37
58	Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Science of the Total Environment, 2018, 615, 1-8.	8.0	31
59	Geoengineering the oceans: an emerging frontier in international climate change governance. Australian Journal of Maritime and Ocean Affairs, 2018, 10, 67-80.	2.0	23
60	Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 2018, 91, 197-207.	3.0	52
61	Olivine dissolution rates: A critical review. Chemical Geology, 2018, 500, 1-19.	3.3	114
62	Enhanced Rates of Regional Warming and Ocean Acidification After Termination of Large cale Ocean Alkalinization. Geophysical Research Letters, 2018, 45, 7120-7129.	4.0	11
63	Forsterite and pyrrhotite dissolution rates in a tailings deposit obtained from column leaching experiments and inverse modeling: A novel method for a mine tailings sample. Applied Geochemistry, 2018, 98, 65-74.	3.0	11
64	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	2.5	248
65	Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters, 2018, 13, 063003.	5.2	224
66	The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development, 2018, 11, 1133-1160.	3.6	113
67	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	5.2	823
68	The Role of SMEs' Green Business Models in the Transition to a Low-Carbon Economy: Differences in Their Design and Degree of Adoption Stemming from Business Size. Sustainability, 2018, 10, 2109.	3.2	20
69	Review and outlook for agromineral research in agriculture and climate mitigation. Soil Research, 2018, 56, 113.	1.1	15
70	The potential for implementation of Negative Emission Technologies in Scotland. International Journal of Greenhouse Gas Control, 2018, 76, 85-91.	4.6	38
71	Agricultural Land Use and the Global Carbon Cycle. , 2018, , 1-37.		4
72	The Effects of Carbon Dioxide Removal on the Carbon Cycle. Current Climate Change Reports, 2018, 4, 250-265.	8.6	58

#	Article	IF	CITATIONS
73	Atmospheric CO ₂ Sequestration in Iron and Steel Slag: Consett, County Durham, United Kingdom. Environmental Science & Technology, 2018, 52, 7892-7900.	10.0	52
74	Local fertilizers to achieve food self-sufficiency in Africa. Science of the Total Environment, 2019, 648, 669-680.	8.0	46
75	Role of the ocean in climate stabilization. , 2019, , 109-130.		3
76	Combating Climate Change Through Enhanced Weathering of Agricultural Soils. Elements, 2019, 15, 253-258.	0.5	37
77	Simulating Arctic Ice Clouds during Spring Using an Advanced Ice Cloud Microphysics in the WRF Model. Atmosphere, 2019, 10, 433.	2.3	2
78	Alkaline Mineral Soil Amendment: A Climate Change â€~Stabilization Wedge'?. Energies, 2019, 12, 2299.	3.1	28
79	Comparing Rates of Rock Weathering and Soil Formation between Two Temperate Forest Watersheds Differing in Parent Rock and Vegetation Type. Japan Agricultural Research Quarterly, 2019, 53, 169-179.	0.4	9
80	Enhancing Silicate Dissolution Kinetics in Hyperalkaline Environments. Journal of Physical Chemistry C, 2019, 123, 3687-3695.	3.1	12
81	Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 2019, 44, 255-286.	13.4	181
82	Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Communications, 2019, 10, 1983.	12.8	68
83	Millennial-scale evolution of elemental ratios in bulk sediments from the western Philippine Sea and implications for chemical weathering in Luzon since the Last Glacial Maximum. Journal of Asian Earth Sciences, 2019, 179, 127-137.	2.3	4
84	The negative emission potential of alkaline materials. Nature Communications, 2019, 10, 1401.	12.8	166
85	The potential environmental response to increasing ocean alkalinity for negative emissions. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1191-1211.	2.1	26
86	The kinetics of siderophoreâ€mediated olivine dissolution. Geobiology, 2019, 17, 401-416.	2.4	16
87	A governing framework for international ocean acidification policy. Marine Policy, 2019, 102, 10-20.	3.2	15
88	Nitrogen-fixing red alder trees tap rock-derived nutrients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5009-5014.	7.1	44
89	Characterization of Physically Fractionated Wollastonite-Amended Agricultural Soils. Minerals (Basel, Switzerland), 2019, 9, 635.	2.0	11
90	CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate, 2019, 1, .	2.8	107

#	Article	IF	CITATIONS
91	Ideas and perspectives: Synergies from co-deployment of negative emission technologies. Biogeosciences, 2019, 16, 2949-2960.	3.3	27
92	CO2 Sequestration: Processes and Methodologies. , 2019, , 1-50.		0
93	Modelling seawater carbonate chemistry in shellfish aquaculture regions: Insights into CO2 release associated with shell formation and growth. Aquaculture, 2019, 501, 338-344.	3.5	27
94	Solubility of the hydrated Mg-carbonates nesquehonite and dypingite from 5 to 35â€ ⁻ °C: Implications for CO2 storage and the relative stability of Mg-carbonates. Chemical Geology, 2019, 504, 123-135.	3.3	70
95	Relationship between sea surface salinity and ocean circulation and climate change. Science China Earth Sciences, 2019, 62, 771-782.	5.2	51
96	Managing for soil carbon sequestration: Let's get realistic. Global Change Biology, 2019, 25, 386-389.	9.5	140
97	Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 2020, 244, 118896.	9.3	73
98	Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control, 2020, 94, 102895.	4.6	44
99	Graphene oxide grafted hyperbranched poly (vinyl imidazole) with ionic liquid components as a potential carbon dioxide scrubber. Reactive and Functional Polymers, 2020, 146, 104432.	4.1	3
100	Detectability of Artificial Ocean Alkalinization and Stratospheric Aerosol Injection in MPIâ€ESM. Earth's Future, 2020, 8, e2020EF001634.	6.3	3
101	Optimizing Inorganic Carbon Sequestration and Crop Yield With Wollastonite Soil Amendment in a Microplot Study. Frontiers in Plant Science, 2020, 11, 1012.	3.6	38
102	Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17, 2107-2133.	3.3	24
103	The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, 2020, 547, 119665.	3.3	77
104	Increased yield and CO ₂ sequestration potential with the C ₄ cereal <i>Sorghum bicolor</i> cultivated in basaltic rock dustâ€amended agricultural soil. Global Change Biology, 2020, 26, 3658-3676.	9.5	102
105	Chemical Weathering of Granite in Ice and Its Implication for Weathering in Polar Regions. Minerals (Basel, Switzerland), 2020, 10, 185.	2.0	6
106	Mineral Dissolution under Electric Stimulation. Journal of Physical Chemistry C, 2020, 124, 16515-16523.	3.1	1
107	Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chemical Geology, 2020, 550, 119628.	3.3	90
108	Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 2020, 583, 242-248.	27.8	263

#	Article	IF	CITATIONS
109	Chlorite in sandstones. Earth-Science Reviews, 2020, 204, 103105.	9.1	121
110	Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments. Science of the Total Environment, 2020, 714, 136599.	8.0	23
111	Enhanced Weathering and related element fluxes – a cropland mesocosm approach. Biogeosciences, 2020, 17, 103-119.	3.3	68
112	Assessing the impact of bivalve aquaculture on the carbon circular economy. Journal of Cleaner Production, 2021, 279, 123873.	9.3	47
113	The lithium and magnesium isotope signature of olivine dissolution in soil experiments. Chemical Geology, 2021, 560, 120008.	3.3	9
114	Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in Agronomy, 2021, 166, 131-196.	5.2	32
115	Potential implications of carbon dioxide removal for the sustainable development goals. Climate Policy, 2021, 21, 678-698.	5.1	59
116	Carbonâ€dioxide Removal and Biodiversity: A Threat Identification Framework. Global Policy, 2021, 12, 34-44.	1.7	18
117	Increased carbon capture by a silicate-treated forested watershed affected by acid deposition. Biogeosciences, 2021, 18, 169-188.	3.3	35
118	Adsorption: An Important Phenomenon in Controlling Soil Properties and Carbon Stabilization. , 2021, , 205-241.		0
119	Clay Mineralogy: Soil Carbon Stabilization and Organic Matter Interaction. , 2021, , 83-123.		2
120	Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering?. Plants People Planet, 2021, 3, 445-453.	3.3	25
121	Physiological responses of <i>SkeletonemaÂcostatum</i> to the interactions of seawater acidification and the combination of photoperiod and temperature. Biogeosciences, 2021, 18, 1439-1449.	3.3	21
122	Fuzzy optimization model for enhanced weathering networks using industrial waste. Clean Technologies and Environmental Policy, 2022, 24, 21-37.	4.1	11
123	Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Climatic Change, 2021, 165, 23.	3.6	16
124	How can carbon be stored in the built environment? A review of potential options. Architectural Science Review, 2023, 66, 91-107.	2.2	24
125	On life-cycle sustainability optimization of enhanced weathering systems. Journal of Cleaner Production, 2021, 289, 125836.	9.3	16
126	Possibilities of using silicate rock powder: An overview. Geoscience Frontiers, 2022, 13, 101185.	8.4	29

		CITATION REPORT		
#	Article		IF	CITATIONS
127	Technologies to deliver food and climate security through agriculture. Nature Plants, 202	21, 7, 250-255.	9.3	63
128	Crack-enhanced weathering in inscribed marble: a possible application in epigraphy. Euro of Mineralogy, 2021, 33, 189-202.	ppean Journal	1.3	0
129	Effects of crushed mussel, <i>Perna canaliculus</i> , shell enrichment on seawater carbo buffering and development of conspecific larvae exposed to nearâ€future ocean acidific of the World Aquaculture Society, 2022, 53, 271-289.		2.4	4
130	Lithium and potassium isotope fractionation during silicate rock dissolution: An experim approach. Chemical Geology, 2021, 568, 120142.	ental	3.3	33
131	Navigating Potential Hype and Opportunity in Governing Marine Carbon Removal. Front 2021, 3, .	iers in Climate,	2.8	21
132	Carbon dioxide removal technologies are not born equal. Environmental Research Letter 074021.	s, 2021, 16,	5.2	45
133	A fuzzy optimization model for planning integrated terrestrial carbon management netw Technologies and Environmental Policy, 2022, 24, 289-301.	vorks. Clean	4.1	6
134	Potential CO2 removal from enhanced weathering by ecosystem responses to powdered Geoscience, 2021, 14, 545-549.	rock. Nature	12.9	69
136	The Sensitivity of the Marine Carbonate System to Regional Ocean Alkalinity Enhanceme Climate, 2021, 3, .	ent. Frontiers in	2.8	21
137	Global Carbon Dioxide Removal Potential of Waste Materials From Metal and Diamond N Frontiers in Climate, 2021, 3, .	Иining.	2.8	28
138	The role of hydrology on enhanced weathering for carbon sequestration II. From hydrocl scenarios to carbon-sequestration efficiencies. Advances in Water Resources, 2021, 154		3.8	9
139	The role of soils in the regulation of ocean acidification. Philosophical Transactions of the Society B: Biological Sciences, 2021, 376, 20200174.	e Royal	4.0	17
140	The role of hydrology on enhanced weathering for carbon sequestration I. Modeling rock-dissolution reactions coupled to plant, soil moisture, and carbon dynamics. Advanc Resources, 2021, 154, 103934.	es in Water	3.8	17
141	Deriving Nickel (Ni(II)) and Chromium (Cr(III)) Based Environmentally Safe Olivine Guidel Coastal Enhanced Silicate Weathering. Environmental Science & Technology, 2021	ines for , 55, 12362-12371.	10.0	22
142	The role of enhanced rock weathering deployment with agriculture in limiting future war protecting coral reefs. Environmental Research Letters, 2021, 16, 094005.	ming and	5.2	10
143	The role of soil in regulation of climate. Philosophical Transactions of the Royal Society E Sciences, 2021, 376, 20210084.	: Biological	4.0	55
144	Electrochemical Corrosion Behavior of API X120 Steel at Different Temperatures in CO2 NaCl solution in presence of 2-[2-(dimethylamino)ethoxy]ethanol as inhibitor. Internatio of Electrochemical Science, 2021, 16, 21093.	saturated nal Journal	1.3	3
145	Effects of mineralogy, chemistry and physical properties of basalts on carbon capture po plant-nutrient element release via enhanced weathering. Applied Geochemistry, 2021, 1		3.0	42

#	Article	IF	CITATIONS
146	A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena, 2021, 204, 105434.	5.0	40
147	The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal - Insights from a regional assessment. Journal of Cleaner Production, 2021, 315, 128178.	9.3	39
148	Ciclos del dióxido de carbono en la formación y utilización de combustibles fósiles y su efecto en el cambio climático. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, O, , .	0.2	1
149	Assessment of optimal conditions for the performance of greenhouse gas removal methods. Journal of Environmental Management, 2021, 294, 113039.	7.8	12
150	Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2106147118.	7.1	12
151	Contribution of Marine Phytoplankton and Bacteria to Alkalinity: An Uncharacterized Component. Geophysical Research Letters, 2021, 48, e2021GL093738.	4.0	5
152	A review of transformative strategies for climate mitigation by grasslands. Science of the Total Environment, 2021, 799, 149466.	8.0	23
153	Coastal Weatheringâ ⁻ †. , 2021, , .		0
154	Life cycle assessment of carbon dioxide removal technologies: a critical review. Energy and Environmental Science, 2021, 14, 1701-1721.	30.8	141
155	The Global Potential for Carbon Dioxide Removal. Issues in Environmental Science and Technology, 2014, , 52-79.	0.4	25
156	Wetness controls on global chemical weathering. Environmental Research Communications, 2020, 2, 085005.	2.3	14
157	Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives. , 2020, , 1-34.		7
159	Evaluation of Shale Source Rocks and Clay Mineral Diagenesis in the Permian Basin, USA: Inferences on Basin Thermal Maturity and Source Rock Potential. Geosciences (Switzerland), 2020, 10, 381.	2.2	8
160	Carbon Farming: Prospects and Challenges. Sustainability, 2021, 13, 11122.	3.2	15
161	Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the Total Environment, 2022, 807, 150976.	8.0	50
162	The Effects of Elevated Atmoshpheric CO2on Chemical Weathering of Forest Soils. Korean Journal of Agricultural and Forest Meteorology, 2014, 16, 169-180.	0.2	0
163	Rates and Mechanisms of Functional Mineral Reactions in Soils. , 2014, , 121-132.		0
166	CO2 Sequestration: Processes and Methodologies. , 2019, , 619-668.		2

#	Article	IF	CITATIONS
167	Moral Conflicts of several "Green―terrestrial Negative Emission Technologies regarding the Human Right to Adequate Food – A Review. Advances in Geosciences, 0, 49, 37-45.	12.0	2
169	Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?. Global Change Biology, 2022, 28, 711-726.	9.5	32
170	Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions. Minerals (Basel, Switzerland), 2021, 11, 1261.	2.0	2
171	Kinetics-informed global assessment of mine tailings for CO2 removal. Science of the Total Environment, 2022, 808, 152111.	8.0	17
172	Potential of enhanced weathering of calcite in packed bubble columns with seawater for carbon dioxide removal. Chemical Engineering Journal, 2022, 431, 134096.	12.7	11
173	Phytoprevention of Heavy Metal Contamination From Terrestrial Enhanced Weathering: Can Plants Save the Day?. Frontiers in Climate, 2022, 3, .	2.8	5
174	The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Science of the Total Environment, 2022, 817, 152973.	8.0	16
175	The Dissolution of Olivine Added to Soil at 4°C: Implications for Enhanced Weathering in Cold Regions. Frontiers in Climate, 2022, 4, .	2.8	12
176	Response of a Coastal Microbial Community to Olivine Addition in the Muping Marine Ranch, Yantai. Frontiers in Microbiology, 2021, 12, 805361.	3.5	3
177	Natural and Anthropogenic Driving Forces of Carbonate Weathering and the Related Carbon Sink Flux: A Model Comparison Study at Global Scale. Global Biogeochemical Cycles, 2022, 36, .	4.9	4
178	The role of silicon in the supply of terrestrial ecosystem services. Environmental Chemistry Letters, 2022, 20, 2109-2121.	16.2	9
179	Kinetics of Olivine Weathering in Seawater: An Experimental Study. Frontiers in Climate, 2022, 4, .	2.8	29
180	Can silicon in glacial rock flour enhance phosphorus availability in acidic tropical soil?. Plant and Soil, 2022, 477, 241-258.	3.7	4
181	A global temperature control of silicate weathering intensity. Nature Communications, 2022, 13, 1781.	12.8	45
182	Optimization of enhanced weathering networks with alternative transportation modes. Carbon Resources Conversion, 2022, 5, 167-176.	5.9	7
183	Taking it outside: Exploring social opposition to 21 early-stage experiments in radical climate interventions. Energy Research and Social Science, 2022, 90, 102594.	6.4	31
184	Urban Soil Carbon: Processes and Patterns. , 2022, , 65-100.		2
188	Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nature Geoscience, 2022, 15, 382-389.	12.9	48

#	Article	IF	CITATIONS
189	The Availability of Limestone and Other Raw Materials for Ocean Alkalinity Enhancement. Global Biogeochemical Cycles, 2022, 36, .	4.9	16
190	A Code of Conduct Is Imperative for Ocean Carbon Dioxide Removal Research. Frontiers in Marine Science, 2022, 9, .	2.5	7
191	Environmental and health impacts of atmospheric CO2 removal by enhanced rock weathering depend on nations' energy mix. Communications Earth & Environment, 2022, 3, .	6.8	16
192	Carbon Accounting for Enhanced Weathering. Frontiers in Climate, 2022, 4, .	2.8	14
193	CO2-assisted †Weathering' of Steel Slag-Derived Calcium Silicate Hydrate: A Generalized Strategy for Recycling Noble Metals and Constructing SiO2-Based Nanocomposites. Journal of Colloid and Interface Science, 2022, 622, 1008-1019.	9.4	8
194	Enhanced Weathering Using Basalt Rock Powder: Carbon Sequestration, Co-benefits and Risks in a Mesocosm Study With Solanum tuberosum. Frontiers in Climate, 2022, 4, .	2.8	25
195	Geochemical Negative Emissions Technologies: Part I. Review. Frontiers in Climate, 0, 4, .	2.8	20
196	The Carbon-Capture Efficiency of Natural Water Alkalinization: Implications For Enhanced weathering. Science of the Total Environment, 2022, 838, 156524.	8.0	13
197	Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9. Geoscientific Model Development, 2022, 15, 4959-4990.	3.6	4
198	Litterfall dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula) stands in Estonia. Forest Ecology and Management, 2022, 520, 120417.	3.2	4
199	Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre. Frontiers in Climate, 0, 4, .	2.8	6
200	Enhanced weathering potentials—the role of in situ CO2 and grain size distribution. Frontiers in Climate, 0, 4, .	2.8	7
201	The efficacy of enhancing carbonate weathering for carbon dioxide sequestration. Frontiers in Climate, 0, 4, .	2.8	7
202	Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites. Biogeosciences, 2022, 19, 3877-3896.	3.3	11
203	Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement. Biogeosciences, 2022, 19, 3683-3697.	3.3	14
204	Mineral stabilities in soils: how minerals can feed the world and mitigate climate change. Clay Minerals, 2022, 57, 31-40.	0.6	5
205	Harvesting, storing, and converting carbon from the ocean to create a new carbon economy: Challenges and opportunities. Frontiers in Energy Research, 0, 10, .	2.3	2
207	Geochemical Negative Emission Technologies. RSC Energy and Environment Series, 2022, , 138-193.	0.5	0

ARTICLE IF CITATIONS Quantification of CO2 removal in a large-scale enhanced weathering field trial on an oil palm 208 2.8 14 plantation in Sabah, Malaysia. Frontiers in Climate, 0, 4, . Destabilization of carbon in tropical peatlands by enhanced weathering. Communications Earth & 209 6.8 Environment, 2022, 3, . Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and 210 2.58 support atmospheric CO2 uptake in coastal seas. Frontiers in Marine Science, 0, 9, . Biocement from the ocean: Hybrid microbial-electrochemical mineralization of CO2. IScience, 2022, 25, 105156. Detection and quantification of low levels of carbonate mineral species using thermogravimetric-mass spectrometry to validate CO2 drawdown via enhanced rock weathering. 212 3.0 4 Applied Geochemistry, 2022, 146, 105465. Ocean Acidification and Blue Economies., 2022, , 319-340. Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering. Environmental Science & amp; 214 10.0 17 Technology, 2022, 56, 15261-15272. Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK. 19 Applied Geochemistry, 2022, 147, 105482. River chemistry constraints on the carbon capture potential of surficial enhanced rock weathering. 216 3.1 14 Limnology and Oceanography, 2022, 67, . Macro-level economic and environmental sustainability of negative emission technologies; Case study 5.7 of crushed silicate production for enhanced weathering. Ecological Economics, 2023, 204, 107636. Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering. Chemical Engineering Journal, 2023, 454, 218 12.7 6 139997. Considering Uncertainty in Economic and Environmental Evaluation and Assessment of Integrated 0.1 Technological Approaches. World-systems Evolution and Global Futures, 2022, , 167-179. Nutrient-doped synthetic silicates for enhanced weathering, remineralization and fertilization on agricultural lands of global cold regions– A perspective on the research ahead. IScience, 2022, 25, 220 4.1 3 105556. Impacts of dissolved phosphorus and soil-mineral-fluid interactions on CO2 removal through 221 enhanced weathering of wollastonite in soils. Applied Geochemistry, 2023, 148, 105511. Peridotite dissolution in the presence of green microalgae: Implications for a geoengineering strategy 222 2.32 of CO2 sequestration. Journal of Asian Earth Sciences, 2023, 241, 105486. Eco-engineering approaches for ocean negative carbon emission. Science Bulletin, 2022, 67, 2564-2573. Multi-period optimization for CO2 sequestration potential of enhanced weathering using 224 10.8 4 non-hazardous industrial wastes. Resources, Conservation and Recycling, 2023, 189, 106766. Potential risks of CO2 removal project based on carbonate pump to marine ecosystem. Science of the Total Environment, 2023, 862, 160728.

#	Article	IF	CITATIONS
226	Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community. Biogeosciences, 2022, 19, 5375-5399.	3.3	14
227	Sustainable scale-up of negative emissions technologies and practices: where to focus. Environmental Research Letters, 2023, 18, 023001.	5.2	7
228	Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2. Frontiers in Climate, 0, 4, .	2.8	6
229	Methods for Measuring Carbon Dioxide Uptake and Permanence: Review and Implications for Macroalgae Aquaculture. Journal of Marine Science and Engineering, 2023, 11, 175.	2.6	5
230	Land use and hydrological factors control concentrations and diffusive fluxes of riverine dissolved carbon dioxide and methane in low-order streams. Water Research, 2023, 231, 119615.	11.3	17
231	Geochemical carbon dioxide removal potential of Spain. Science of the Total Environment, 2023, 867, 161287.	8.0	8
232	Earth's persistent thermostat. Science, 2023, 379, 329-330.	12.6	5
233	Potential accumulation of toxic trace elements in soils during enhanced rock weathering. European Journal of Soil Science, 2023, 74, .	3.9	15
234	Machine learning based techno-economic process optimisation for CO2 capture via enhanced weathering. Energy and Al, 2023, 12, 100234.	10.6	5
235	Quantification of CO2 uptake by enhanced weathering of silicate minerals applied to acidic soils. International Journal of Greenhouse Gas Control, 2023, 125, 103872.	4.6	10
236	Techno-fixing non-compliance - Geoengineering, ideal theory and residual responsibility. Technology in Society, 2023, 73, 102236.	9.4	3
237	Effects of carbonate minerals and exogenous acids on carbon flux from the chemical weathering of granite and basalt. Clobal and Planetary Change, 2023, 221, 104053.	3.5	19
238	Size-Fractionated Weathering of Olivine, Its CO2-Sequestration Rate, and Ecotoxicological Risk Assessment of Nickel Release. Minerals (Basel, Switzerland), 2023, 13, 235.	2.0	4
239	Surrogate modelling-assisted comparison of reactor schemes for carbon dioxide removal by enhanced weathering of minerals using seawater. Chemical Engineering Journal, 2023, 461, 141804.	12.7	0
240	Artificial Upwellingâ \in "A Refined Narrative. Geophysical Research Letters, 2023, 50, .	4.0	3
241	Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nature Climate Change, 2023, 13, 341-350.	18.8	25
242	Opportunity for Increasing the Soil Quality of Non-arable and Depleted Soils in South Africa: a Review. Journal of Soil Science and Plant Nutrition, 2023, 23, 2476-2487.	3.4	2
244	Electrocatalytic Activation and Conversion of CO2 at Solid–Liquid Model Interfaces: Computational Perspectives. Green Chemistry and Sustainable Technology, 2023, , 329-359.	0.7	Ο

#	ARTICLE	IF	CITATIONS
245	Environmental, human health, and CO2 payback estimation and comparison of enhanced weathering for carbon capture using wollastonite. Journal of Cleaner Production, 2023, 414, 137625.	9.3	3
247	Broaden Research on Ocean Alkalinity Enhancement to Better Characterize Social Impacts. Environmental Science & Technology, 2023, 57, 8863-8869.	10.0	5
248	Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China. Agricultural Systems, 2023, 210, 103691.	6.1	5
249	Constraining the Capacity of Global Croplands to CO ₂ Drawdown via Mineral Weathering. ACS Earth and Space Chemistry, 2023, 7, 1294-1305.	2.7	8
250	Recent Advances and Future Perspectives in Carbon Capture, Transportation, Utilization, and Storage (CCTUS) Technologies: A Comprehensive Review. Fuel, 2023, 351, 128913.	6.4	39
251	Coccolithophores and diatoms resilient to ocean alkalinity enhancement: A glimpse of hope?. Science Advances, 2023, 9, .	10.3	5
252	The environmental controls on efficiency of enhanced rock weathering in soils. Scientific Reports, 2023, 13, .	3.3	5
253	Silicon Biogeochemistry in Terrestrial Ecosystems. , 2023, , 1-16.		0
254	The Ocean as a Solution to Climate Change: Five Opportunities for Action. , 2023, , 619-680.		0
255	Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed. Biogeosciences, 2023, 20, 1963-1977.	3.3	3
256	Do Southeast Asia's paleoâ€Antarctic trees cool the planet?. New Phytologist, 2023, 239, 1556-1566.	7.3	2
257	Editorial: Enhanced weathering and synergistic combinations with other CDR methods. Frontiers in Climate, 0, 5, .	2.8	2
259	Potential contribution of chlorella vulgaris to carbon–nitrogen turnover in freshwater ecosystems after a great sandstorm event. Environmental Research, 2023, 234, 116569.	7.5	3
260	CO ₂ Consumption Rates in the Glacierized Himalayan Headwaters: The Importance of Sulfuric and Nitric Acidâ€Mediated Chemical Weathering Reactions in Geologic Carbon Cycle. Geochemistry, Geophysics, Geosystems, 2023, 24, .	2.5	0
261	Consequences of elevated CO2 on soil acidification, cation depletion, and inorganic carbon: A column-based experimental investigation. Soil and Tillage Research, 2023, 234, 105839.	5.6	0
262	Ocean storage and ocean CDR methods. , 2023, , 357-390.		0
263	Inorganic Hydrogeochemistry in the 21st Century. Ground Water, 2024, 62, 174-183.	1.3	0
265	Past changes in and present status of the coastal carbon cycle. , 2023, 1, .		0

#	Article	IF	CITATIONS
266	Lithium partition and isotopic fractionation for cation exchange in clay: Insights from molecular simulations. Geochimica Et Cosmochimica Acta, 2023, 358, 148-161.	3.9	0
267	Ocean-based negative emissions technologies: a governance framework review. Frontiers in Marine Science, 0, 10, .	2.5	1
268	The effects of dunite fertilization on growth and elemental composition of barley and wheat differ with dunite grain size and rainfall regimes. Frontiers in Environmental Science, 0, 11, .	3.3	0
269	Constraining the sources and cycling of dissolved inorganic carbon in an alpine river, eastern Qinghai-Tibet Plateau. Science of the Total Environment, 2023, 901, 166262.	8.0	0
270	Improved net carbon budgets in the <scp>US</scp> Midwest through direct measured impacts of enhanced weathering. Global Change Biology, 2023, 29, 7012-7028.	9.5	7
271	Enhanced olivine dissolution in seawater through continuous grain collisions. Geochimica Et Cosmochimica Acta, 2023, 359, 84-99.	3.9	9
272	The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation. Agronomy, 2023, 13, 2406.	3.0	0
273	Overview of negative emissions technologies. , 2023, , 19-39.		0
274	Soil pollution in Indian coal mines, available remediation techniques and rock dust application: A review. Journal of Earth System Science, 2023, 132, .	1.3	1
275	Heavy metal removal potential of olivine. Water Research, 2023, 245, 120583.	11.3	2
276	Basalt addition improves the performance of young grassland monocultures under more persistent weather featuring longer dry and wet spells. Agricultural and Forest Meteorology, 2023, 340, 109610.	4.8	2
277	Improving food security and farmland carbon sequestration in China through enhanced rock weathering: Field evidence and potential assessment in different humid regions. Science of the Total Environment, 2023, 903, 166118.	8.0	0
279	Alkalinity biases in CMIP6 Earth system models and implications for simulated CO ₂ drawdown via artificial alkalinity enhancement. Biogeosciences, 2023, 20, 3717-3735.	3.3	2
280	Chemical Alteration of Riverine Particles in Seawater and Marine Sediments: Effects on Seawater Composition and Atmospheric CO ₂ . Numerische Mathematik, 0, 323, .	1.4	0
281	Fate and migration of enhanced rock weathering products through soil horizons; implications of irrigation and percolation regimes. Catena, 2023, 233, 107524.	5.0	3
282	Direct evidence for atmospheric carbon dioxide removal via enhanced weathering in cropland soil. Environmental Research Communications, 2023, 5, 101004.	2.3	3
283	Effects of biomass co-pyrolysis and herbaceous plant colonization on the transformation of tailings into soil like substrate. Journal of Environmental Sciences, 2023, , .	6.1	0
284	Opportunities and Challenges to Collaborative Governance of Carbon Dioxide Removal: Lessons From an Ocean Alkalinity Enhancement Project in Dominican Republic. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
285	Feasibility of increasing marine carbon storage through olivine addition. Journal of Environmental Chemical Engineering, 2023, 11, 111221.	6.7	0
286	The enhanced weathering potential of a range of silicate and carbonate additions in a UK agricultural soil. Science of the Total Environment, 2024, 907, 167701.	8.0	1
287	pCO2 decrement through alkalinity enhancement and biological production in a shallow-water ecosystem constructed using steelmaking slag. Marine Environmental Research, 2023, 192, 106223.	2.5	1
288	Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Science Reviews, 2023, 246, 104598.	9.1	2
289	H2-driven reduction of CO2 to formate using bacterial plasma membranes. Bioresource Technology, 2023, 390, 129921.	9.6	0
290	Achieving net-zero CO2 emissions from indirect co-combustion of biomass and natural gas with carbon capture using a novel amine blend. International Journal of Greenhouse Gas Control, 2023, 130, 104005.	4.6	0
291	Origin, formation, and transformation of different forms of silica in Xuanwei Formation coal, China, and its' emerging environmental problem. Environmental Science and Pollution Research, 2023, 30, 120735-120748.	5.3	0
292	Stabilisation of soil organic matter with rock dust partially counteracted by plants. Global Change Biology, 2024, 30, .	9.5	1
293	Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement. Biogeosciences, 2023, 20, 4669-4682.	3.3	2
294	Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS). , 0, , .		0
295	The biological carbon pump. , 2023, , .		0
296	Remediating the sky: the role of geoenvironmental engineers and applied geoscientists in geochemical carbon dioxide removal. Quarterly Journal of Engineering Geology and Hydrogeology, 2024, 57, .	1.4	0
297	Initial Validation of a Soil-Based Mass-Balance Approach for Empirical Monitoring of Enhanced Rock Weathering Rates. Environmental Science & Technology, 2023, 57, 19497-19507.	10.0	4
299	Short-term impact assessment of ocean liming: A copepod exposure test. Marine Pollution Bulletin, 2024, 198, 115833.	5.0	0
300	Discontinuous Dissolution Mechanism of Olivine Deduced from a Topography Observation Method. Langmuir, 2023, 39, 19008-19015.	3.5	1
301	Localized governance of carbon dioxide removal in small island developing states. Environmental Development, 2024, 49, 100942.	4.1	1
302	Potential CO2 capture via enhanced weathering by basaltic sand spreading on golf courses in the U.S International Journal of Greenhouse Gas Control, 2024, 131, 104032.	4.6	0
303	The Mining Industry's Role in Enhanced Weathering and Mineralization for CO ₂ Removal. Environmental Science & Technology, 2024, 58, 43-53.	10.0	2

#	Article	IF	CITATIONS
304	Invitation to submit a manuscript to Emerging Investigator series: Responsive CO2 capture: Predictive multi-objective optimisation for managing intermittent flue gas and renewable energy supply. Reaction Chemistry and Engineering, 0, , .	3.7	0
305	Exploratory Review on Environmental Aspects of Enhanced Weathering as a Carbon Dioxide Removal Method. Minerals (Basel, Switzerland), 2024, 14, 75.	2.0	1
306	KARAKTERISASI INDIKATOR KESESUAIAN LAHAN KOMODITI NANAS LOKAL (Ananas comosus) KABUPATEN MAJENE. Jurnal Tanah Dan Sumberdaya Lahan, 2024, 11, 223-232.	0.4	0
307	Soil electrical conductivity as a proxy for enhanced weathering in soils. Frontiers in Climate, 0, 5, .	2.8	1
309	The beneficial use of basalt flour combined to a microbial consortium to improve soil quality in basalt and carbonatic dismissed quarries. Catena, 2024, 237, 107820.	5.0	0
310	The additionality problem of ocean alkalinity enhancement. Biogeosciences, 2024, 21, 261-277.	3.3	0
311	Oxalate and oxalotrophy: an environmental perspective. , 2024, 1, .		0
312	Enhanced Weathering to Enhance Carbon Sequestration in Sandy Soils. Progress in Soil Science, 2023, , 125-132.	0.8	0
314	Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement. Biogeosciences, 2024, 21, 761-772.	3.3	0
315	The geochemical evolution of basalt Enhanced Rock Weathering systems quantified from a natural analogue. Geochimica Et Cosmochimica Acta, 2024, 370, 66-77.	3.9	0
316	A state of the art of review on factors affecting the enhanced weathering in agricultural soil: strategies for carbon sequestration and climate mitigation. Environmental Science and Pollution Research, 2024, 31, 19047-19070.	5.3	0
317	Carbon dioxide removal via weathering of sugarcane mill ash under different soil conditions. Applied Geochemistry, 2024, 165, 105940.	3.0	0
318	Wollastonite powder application increases rice yield and CO2 sequestration in a paddy field in Northeast China. Plant and Soil, 0, , .	3.7	0
319	Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
320	The rise, fall and rebirth of ocean carbon sequestration as a climate 'solution'. Global Environmental Change, 2024, 85, 102820.	7.8	0
321	Sedimentary paleoenvironment and its control on organic matter enrichment in the Mesoproterozoic hydrocarbon source rocks in the Ordos Basin, southern margin of the North China Craton. Petroleum Science, 2024, , .	4.9	0
322	Public engagement and collaboration for carbon dioxide removal: lessons from a project in the Dominican Republic. Frontiers in Climate, 0, 6, .	2.8	0
323	Policy suggestions for tapping the potential of ocean carbon sinks in the context of "double carbon― goals in China. Frontiers in Marine Science, 0, 11, .	2.5	0