Mixed-mode bursting oscillations: Dynamics created by spike-adding canard explosion in a square-wave burste

Chaos 23, 046106 DOI: 10.1063/1.4827026

Citation Report

#	Article	IF	CITATIONS
1	Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment. Chaos, 2013, 23, 046001.	2.5	10
2	Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos, 2014, 24, 023128.	2.5	57
3	Order and chaos in the stochastic Hindmarsh–Rose model of the neuron bursting. Nonlinear Dynamics, 2015, 82, 919-932.	5.2	22
4	Canards in a minimal piecewise-linear square-wave burster. Chaos, 2016, 26, 073111.	2.5	8
5	Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630022.	1.7	30
6	Stochastic Bifurcations and Noise-Induced Chaos in 3D Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630032.	1.7	25
7	Multiple timescale mixed bursting dynamics in a respiratory neuron model. Journal of Computational Neuroscience, 2016, 41, 245-268.	1.0	26
8	Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-Linear Slow-Fast Systems. SIAM Review, 2016, 58, 653-691.	9.5	46
9	Bifurcation and Spike Adding Transition in Chay–Keizer Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650090.	1.7	23
10	Spike-adding in parabolic bursters: The role of folded-saddle canards. Physica D: Nonlinear Phenomena, 2016, 331, 58-70.	2.8	30
11	Canard solutions in planar piecewise linear systems with three zones. Dynamical Systems, 2016, 31, 173-197.	0.4	14
12	Hindmarsh–Rose model: Close and far to the singular limit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 597-603.	2.1	22
13	Boundary-Crisis-Induced Complex Bursting Patterns in a Forced Cubic Map. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750051.	1.7	7
14	Analysis of mixed-mode oscillation-incrementing bifurcations generated in a nonautonomous constrained Bonhoeffer–van der Pol oscillator. Physica D: Nonlinear Phenomena, 2017, 353-354, 48-57.	2.8	24
15	Synchronization of weakly coupled canard oscillators. Physica D: Nonlinear Phenomena, 2017, 349, 46-61.	2.8	15
16	Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, 2017, 96, 032212.	2.1	38
17	Spatiotemporal canards in neural field equations. Physical Review E, 2017, 95, 042205.	2.1	14
18	Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis.	2.5	52

CITATION REPORT

#	Article	IF	CITATIONS
19	Analysis of noise effects in a map-based neuron model with Canard-type quasiperiodic oscillations. Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 261-270.	3.3	30
20	Methods of Stochastic Analysis of Complex Regimes in the 3D Hindmarsh–Rose Neuron Model. Fluctuation and Noise Letters, 2018, 17, 1850008.	1.5	18
21	Unpeeling a Homoclinic Banana in the FitzHugh–Nagumo System. SIAM Journal on Applied Dynamical Systems, 2018, 17, 236-349.	1.6	16
22	Mixed-mode oscillation-incrementing bifurcations and a devil's staircase from a nonautonomous, constrained Bonhoeffer–van der Pol oscillator. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	10
23	Complete mixed-mode oscillation synchronization in weakly coupled nonautonomous Bonhoeffer–van der Pol oscillators. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	8
24	Piecewise-Linear (PWL) Canard Dynamics. Understanding Complex Systems, 2018, , 67-86.	0.6	4
25	Stochastic Generation and Deformation of Toroidal Oscillations in Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850070.	1.7	13
26	Spike-Adding in a Canonical Three-Time-Scale Model: Superslow Explosion and Folded-Saddle Canards. SIAM Journal on Applied Dynamical Systems, 2018, 17, 1989-2017.	1.6	16
27	Saddle Slow Manifolds and Canard Orbits in R 4 \$mathbb{R}^{4}\$ and Application to the Full Hodgkin–Huxley Model. Journal of Mathematical Neuroscience, 2018, 8, 5.	2.4	12
28	Parabolic bursting, spike-adding, dips and slices in a minimal model. Mathematical Modelling of Natural Phenomena, 2019, 14, 406.	2.4	2
29	Conductance-Based Refractory Density Approach for a Population of Bursting Neurons. Bulletin of Mathematical Biology, 2019, 81, 4124-4143.	1.9	2
30	Extremely slow passages in low-pass filter-based memristive oscillator. Nonlinear Dynamics, 2019, 97, 2339-2353.	5.2	31
31	Black swans and canards in two predator – one prey model. Mathematical Modelling of Natural Phenomena, 2019, 14, 408.	2.4	2
32	Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe. Physical Review E, 2019, 99, 062408.	2.1	19
33	Nested mixed-mode oscillations. Physica D: Nonlinear Phenomena, 2020, 401, 132152.	2.8	21
34	Spike-adding structure in fold/hom bursters. Communications in Nonlinear Science and Numerical Simulation, 2020, 83, 105100.	3.3	22
35	Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dynamics, 2020, 101, 531-567.	5.2	22
36	Two bursting patterns induced by system solutions approaching infinity in a modified Rayleigh–Duffing oscillator. Pramana - Journal of Physics, 2020, 94, 1.	1.8	9

CITATION REPORT

#	Article	IF	CITATIONS
37	Homoclinic organization in the Hindmarsh–Rose model: A three parameter study. Chaos, 2020, 30, 053132.	2.5	6
38	Spike-Adding Canard Explosion in a Class of Square-Wave Bursters. Journal of Nonlinear Science, 2020, 30, 2613-2669.	2.1	5
39	A novel chaotic hyperjerk circuit with bubbles of bifurcation: mixed-mode bursting oscillations, multistability, and circuit realization. Physica Scripta, 2020, 95, 075216.	2.5	39
40	Emergence of Mixed Mode Oscillations in Random Networks of Diverse Excitable Neurons: The Role of Neighbors and Electrical Coupling. Frontiers in Computational Neuroscience, 2020, 14, 49.	2.1	17
41	Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation. Chaos, Solitons and Fractals, 2020, 138, 109958.	5.1	12
42	Bifurcations and Slow-Fast Analysis in a Cardiac Cell Model for Investigation of Early Afterdepolarizations. Mathematics, 2020, 8, 880.	2.2	15
43	High-order study of the canard explosion in an aircraft ground dynamics model. Nonlinear Dynamics, 2020, 100, 1079-1090.	5.2	9
44	Nested mixed-mode oscillations, part II: Experimental and numerical study of a classical Bonhoeffer–van der Pol oscillator. Physica D: Nonlinear Phenomena, 2020, 406, 132493.	2.8	23
45	Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Science China Technological Sciences, 2020, 63, 1035-1044.	4.0	47
46	Post-canard symmetry breaking and other exotic dynamic behaviors in identical coupled chemical oscillators. Physical Review E, 2020, 101, 042222.	2.1	10
47	Canard-induced complex oscillations in an excitatory network. Journal of Mathematical Biology, 2020, 80, 2075-2107.	1.9	10
48	Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in a three-dimensional cardiac cell model. Nonlinear Dynamics, 2021, 103, 2881-2902.	5.2	19
49	Classification of fold/hom and fold/Hopf spike-adding phenomena. Chaos, 2021, 31, 043120.	2.5	9
50	Spike-adding and reset-induced canard cycles in adaptive integrate and fire models. Nonlinear Dynamics, 2021, 104, 2451-2470.	5.2	6
52	Bifurcation Structures of Nested Mixed-Mode Oscillations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150121.	1.7	6
53	Compound Bursting Behaviors in the Parametrically Amplified Mathieu–Duffing Nonlinear System. Journal of Vibration Engineering and Technologies, 2022, 10, 95-110.	2.2	6
54	Slow-fast motions induced by multi-stability and strong transient effects in an accelerating viscoelastic beam. Nonlinear Dynamics, 2021, 106, 45-66.	5.2	1
55	Canard solutions in neural mass models: consequences on critical regimes. Journal of Mathematical Neuroscience, 2021, 11, 11.	2.4	3

#	Article	IF	CITATIONS
56	Cascades of Periodic Solutions in a Neural Circuit With Delays and Slow-Fast Dynamics. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	1.3	0
57	Periodic bursting behaviors induced by pulse-shaped explosion or non-pulse-shaped explosion in a van der Pol-Mathieu oscillator with external excitation. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105959.	3.3	15
58	Oscillations. Applied Mathematical Sciences (Switzerland), 2015, , 397-430.	0.8	2
59	Complex aperiodic mixed mode oscillations induced by crisis and transient chaos in a nonlinear system with slow parametric excitation. Nonlinear Dynamics, 2020, 100, 659-677.	5.2	16
60	Stochastic Generation of Bursting Oscillations in the Three-dimensional Hindmarsh–Rose Model. Journal of Siberian Federal University - Mathematics and Physics, 2016, 9, 79-69.	0.3	3
61	Wild oscillations in a nonlinear neuron model with resets: (â) Bursting, spike-adding and chaos. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 3967-4002.	0.9	5
62	Bursting in Neurons and Small Networks. , 2014, , 1-17.		2
63	Analysis of noise-induced bursting in two-dimensional Hindmarsh-Rose model. Computer Research and Modeling, 2014, 6, 605-619.	0.3	0
64	A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 593-607.	1.5	3
67	Transition from Anti-coherence resonance to coherence resonance for mixed-mode oscillations and period-1 firing of nervous system. International Journal of Modern Physics B, 2021, 35, .	2.0	6
68	Fast–slow variable dissection with two slow variables related to calcium concentrations: a case study to bursting in a neural pacemaker model. Nonlinear Dynamics, 2022, 107, 1223-1245.	5.2	9
69	Emergent Dynamics and Spatio Temporal Patterns on Multiplex Neuronal Networks. Frontiers in Computational Neuroscience, 2021, 15, 774969.	2.1	3
70	Mapping the Stability and Dynamics of Optically Injected Dual State Quantum Dot Lasers. Photonics, 2022, 9, 101.	2.0	2
71	Wiggly canards: Growth of traveling wave trains through a family of fast-subsystem foci. Discrete and Continuous Dynamical Systems - Series S, 2022, .	1.1	2
72	Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator. Journal of Nonlinear Science, 2022, 32, 1.	2.1	11
73	Classification of bursting patterns: A tale of two ducks. PLoS Computational Biology, 2022, 18, e1009752.	3.2	10
74	Bursting in a next generation neural mass model with synaptic dynamics: a slow–fast approach. Nonlinear Dynamics, 2022, 108, 4261-4285.	5.2	16
76	Novel bursting dynamics and the mechanism analysis in a mechanical oscillator. Nonlinear Dynamics, 2022, 109, 1485-1499.	5.2	1

#	Article	IF	CITATIONS
77	Bursting behaviors induced by the bifurcation delay in a generalized parametrically forced van der Pol-Duffing system. Indian Journal of Physics, 2022, 96, 4269-4282.	1.8	5
78	Dynamic Response and Failure Mechanism of Concrete Arch Dams under Extreme Loadings: A Solid Foundation for Real-World Actions to Reduce Dam Collapse Losses during Wartime or Terrorist Attacks. Water (Switzerland), 2022, 14, 1648.	2.7	1
79	Bursting in Neurons and Small Networks. , 2022, , 582-596.		0
80	Nested mixed-mode oscillations in a canard-generating driven Bonhoeffer–van der Pol oscillator. Physica D: Nonlinear Phenomena, 2022, 440, 133438.	2.8	4
81	Extreme bursting events via pulse-shaped explosion in mixed Rayleigh-Liénard nonlinear oscillator. European Physical Journal Plus, 2022, 137, .	2.6	10
82	Emergence of Canard induced mixed mode oscillations in a slow–fast dynamics of a biophysical excitable model. Chaos, Solitons and Fractals, 2022, 164, 112669.	5.1	3
83	Stochastic generation of bursting oscillations in the spiking region of a 3D neuron model with the Lukyanov-Shilnikov bifurcation. AIP Conference Proceedings, 2022, , .	0.4	0
84	Bursting dynamics and the bifurcation mechanism of a modified Rayleigh-van der Pol-Duffing oscillator. Physica Scripta, 2022, 97, 105208.	2.5	5
86	How noise transforms spiking into bursting in a neuron model having the Lukyanov–Shilnikov bifurcation. Communications in Nonlinear Science and Numerical Simulation, 2023, 118, 106992.	3.3	1
87	Complex bifurcation structures and bursting oscillations of an extended Duffingâ€van der Pol oscillator. Mathematical Methods in the Applied Sciences, 0, , .	2.3	0
88	Pulse-shaped explosion-induced and non-pulse-shaped explosion-induced bursting dynamics in a parametrically and externally forced Rayleigh–van der Pol oscillator. Nonlinear Dynamics, 2023, 111, 6199-6211.	5.2	2
89	Nested mixed-mode oscillations, Part III: Comparison of bifurcation structures between a driven Bonhoeffer–van der Pol oscillator and Nagumo–Sato piecewise-linear discontinuous one-dimensional map. Physica D: Nonlinear Phenomena, 2023, 446, 133667.	2.8	3
90	The mechanism of periodic and chaotic bursting patterns in an externally excited memcapacitive system. Chaos, Solitons and Fractals, 2023, 171, 113407.	5.1	2
91	Excitable dynamics in a molecularly-explicit model of cell motility: Mixed-mode oscillations and beyond. Journal of Theoretical Biology, 2023, 564, 111450.	1.7	2
92	Dynamics of excitable cells: spike-adding phenomena in action. SeMA Journal, 0, , .	2.0	0
93	Canard Mechanism and Rhythm Dynamics of Neuron Models. Mathematics, 2023, 11, 2874.	2.2	1
94	Complex bursting oscillations induced by pulse-shaped explosion and integer frequency ratios in a Rayleigh–van der Pol system. Pramana - Journal of Physics, 2023, 97, .	1.5	0
95	Mathematical birth of early afterdepolarizations in a cardiomyocyte model. Mathematical Biosciences, 2023, , 109088.	1.9	0

CITATION REPORT

		TION REPORT		
#	Article	IF	CITATIONS	
96	Bifurcation and Geometric Singular Perturbation Analysis of a Multi-timescale Pituitary Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2023, 33, .	1.7	0	
97	Noise-Induced Toroidal Bursting Oscillations and Coherence Resonance in the Morris–Lecar–Terman Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2023, 33, .	1.7	Ο	
98	Nested mixed-mode oscillations in the forced van der Pol oscillator. Communications in Nonlinear Science and Numerical Simulation, 2024, 133, 107932.	3.3	0	
99	Occurrence of mixed-mode oscillations in a system consisting of a Van der Pol system and a Duffing oscillator with two potential wells. Nonlinear Dynamics, 2024, 112, 5997-6013.	5.2	0	