Stretchable, Transparent, Ionic Conductors

Science 341, 984-987 DOI: 10.1126/science.1240228

Citation Report

#	Article	IF	CITATIONS
2	Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system. Nano Today, 2013, 8, 619-642.	6.2	141
3	Engineering Approaches to Illuminating Brain Structure and Dynamics. Neuron, 2013, 80, 568-577.	3.8	116
4	A Clear Advance in Soft Actuators. Science, 2013, 341, 968-969.	6.0	44
5	3D printed interactive speakers. , 2014, , .		69
6	Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Applied Physics Letters, 2014, 104, .	1.5	31
7	Temperature Influence on the Viscoelastic Electromechanical Deformation of Dielectric Elastomer. Advanced Materials Research, 0, 1052, 137-142.	0.3	0
8	Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Applied Physics Letters, 2014, 105, 112901.	1.5	55
9	Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Applied Physics Letters, 2014, 104, .	1.5	63
10	Design and Fabrication of Novel Stretchable Device Arrays on a Deformable Polymer Substrate with Embedded Liquidâ€Metal Interconnections. Advanced Materials, 2014, 26, 6580-6586.	11.1	88
11	Modeling of dielectric elastomer as electromechanical resonator. Journal of Applied Physics, 2014, 116, .	1.1	32
12	Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1055-1060.	2.4	94
13	Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 864-871.	2.4	38
14	Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Applied Physics Letters, 2014, 105, .	1.5	292
15	Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mechanics Letters, 2014, 1, 42-46.	2.0	38
16	Mechanics of dielectric elastomer-activated deformable transmission grating. Smart Materials and Structures, 2014, 23, 095010.	1.8	14
17	Adsorption–desorption oscillations of nanoparticles on a honeycomb-patterned pH-responsive hydrogel surface in a closed reaction system. Physical Chemistry Chemical Physics, 2014, 16, 25296-25305.	1.3	7
18	Pulsed actuation avoids failure in dielectric elastomer artificial muscles. International Journal of Smart and Nano Materials, 2014, 5, 217-226.	2.0	5
19	Dielectric elastomer actuators fabricated using a micro-molding process. Smart Materials and Structures, 2014, 23, 055004.	1.8	22

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Modeling of bi-equilibrium states in dielectric elastomer. Solid State Communications, 20	14, 181, 46-49.	0.9	1
21	Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science, 2014,	344, 70-74.	6.0	982
22	Optical Devices Constructed from Multiresponsive Microgels. Angewandte Chemie - Inter Edition, 2014, 53, 4827-4831.	national	7.2	81
23	Charge localization instability in a highly deformable dielectric elastomer. Applied Physics 2014, 104, 022905.	Letters,	1.5	17
24	Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and Applied Physics Reviews, 2014, 1, 021304.	application.	5.5	144
25	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.		3.2	170
26	Fabrication and application of flexible graphene silk composite film electrodes decorated Pt nanospheres. Nanoscale, 2014, 6, 4264-4274.	with spiky	2.8	94
27	Electrostatic desalting of micro-droplets to enable novel chemical/biosensing applications	s., 2014,,.		1
28	Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase ga electrodes. Journal of Applied Physics, 2014, 116, 144905.	llium-indium	1.1	35
29	Atomistic investigation of the nanoparticle size and shape effects on ionic conductivity o polymer electrolytes. Solid State Ionics, 2014, 268, 156-161.	fsolid	1.3	18
30	Ionic skin. Advanced Materials, 2014, 26, 7608-7614.		11.1	992
31	Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacito Nano, 2014, 8, 7138-7146.	rs. ACS	7.3	186
32	Super-tough and thermo-healable hydrogel – promising for shape-memory absorbent fi Materials Chemistry B, 2014, 2, 7631-7638.	ber. Journal of	2.9	100
33	Transparent and flexible capacitor fabricated using a metal wire network as a transparent electrode. RSC Advances, 2014, 4, 31108-31112.	conducting	1.7	22
34	In SituObservation of Ca2+Diffusion-Induced Superstructure Formation of a Rigid Polyani Macromolecules, 2014, 47, 7208-7214.	on.	2.2	20
35	Stiff, strong, and tough hydrogels with good chemical stability. Journal of Materials Chem 2014, 2, 6708-6713.	istry B,	2.9	302
36	Cardiac mechano-electric coupling research: Fifty years of progress and scientific innovat Progress in Biophysics and Molecular Biology, 2014, 115, 71-75.	ion.	1.4	58
37	Macroscopic Photocontrol of Ion-Transporting Pathways of a Nanostructured Imidazoliur Photoresponsive Liquid Crystal. Journal of the American Chemical Society, 2014, 136, 95	n-Based 52-9555.	6.6	116

#	Article	IF	CITATIONS
38	Electrostatics-driven shape transitions in soft shells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12673-12678.	3.3	30
39	Noncontact orientation of objects in three-dimensional space using magnetic levitation. Proceedings of the United States of America, 2014, 111, 12980-12985.	3.3	71
40	Highly Stretchable and Transparent Ionogels as Nonvolatile Conductors for Dielectric Elastomer Transducers. ACS Applied Materials & Interfaces, 2014, 6, 7840-7845.	4.0	226
41	Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140472.	1.0	56
42	Mechanical behavior of poly(methyl methacrylate)-based ionogels. Soft Matter, 2014, 10, 7993-8000.	1.2	24
43	Numerical study on interfacial delamination of thermal barrier coatings with multiple separations. Surface and Coatings Technology, 2014, 244, 117-122.	2.2	29
44	Smart hydrogels as functional biomimetic systems. Biomaterials Science, 2014, 2, 603-618.	2.6	193
45	An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nature Communications, 2014, 5, 4293.	5.8	446
47	Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014, 16, 3532.	1.3	47
48	Hybrid Hydrogels with Extremely High Stiffness and Toughness. ACS Macro Letters, 2014, 3, 520-523.	2.3	354
49	Soft Actuators and Robots that Are Resistant to Mechanical Damage. Advanced Functional Materials, 2014, 24, 3003-3010.	7.8	197
50	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
52	Strain and Pressure Gauges from Tough, Conducting and Edible Hydrogels. Materials Research Society Symposia Proceedings, 2015, 1795, 27-33.	0.1	4
53	Dynamic electromechanical instability of a dielectric elastomer balloon. Europhysics Letters, 2015, 112, 47003.	0.7	37
54	Ionic cable. Extreme Mechanics Letters, 2015, 3, 59-65.	2.0	179
55	Electrical breakdown of an acrylic dielectric elastomer: effects of hemispherical probing electrode's size and force. International Journal of Smart and Nano Materials, 2015, 6, 290-303.	2.0	5
56	Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model. Physical Review E, 2015, 92, 063020.	0.8	8
57	Columnar grown copper films on polyimides strained beyond 100%. Scientific Reports, 2015, 5, 13791.	1.6	11

#	Article	IF	CITATIONS
58	Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model. Applied Physics Letters, 2015, 107, .	1.5	52
59	An electronically tunable duct silencer using dielectric elastomer actuators. Journal of the Acoustical Society of America, 2015, 138, EL236-EL241.	0.5	40
60	Electromechanical Performance of Viscoelastic Dielectric Elastomer Actuator Undergoing Temperature Variation. , 2015, , .		0
61	Ionic Control of Crack Propagation in Biopolymer Hydrogels. Procedia IUTAM, 2015, 12, 3-9.	1.2	2
62	Transfer Printing of Metallic Microstructures on Adhesionâ€Promoting Hydrogel Substrates. Advanced Materials, 2015, 27, 3398-3404.	11.1	44
63	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
64	Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705.	7.8	52
65	Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small, 2015, 11, 6397-6403.	5.2	234
66	â€~Soft' amplifier circuits based on field-effect ionic transistors. Soft Matter, 2015, 11, 4793-4798.	1.2	12
67	Effect of Solvent Diffusion on Crack-Tip Fields and Driving Force for Fracture of Hydrogels. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	55
68	Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain. Review of Scientific Instruments, 2015, 86, 013901.	0.6	2
69	Multistimuliâ€responsive White Luminescent Fluids Using Hybrid Lanthanide Metal–Coordinate Complex Probes. Advanced Optical Materials, 2015, 3, 1041-1046.	3.6	31
70	Cost-Efficient Open Source Desktop Size Radial Stretching System With Force Sensor. IEEE Access, 2015, 3, 556-561.	2.6	21
71	Tunable active vibration attenuation using highly deformable dielectric elastomers. Smart Materials and Structures, 2015, 24, 115033.	1.8	11
72	Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions. ACS Applied Materials & Interfaces, 2015, 7, 27562-27570.	4.0	139
73	Instability in Nonlinear Oscillation of Dielectric Elastomers. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	20
74	Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	48
75	Optomechanics of Soft Materials. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	7

#	Article	IF	CITATIONS
76	Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy. ACS Nano, 2015, 9, 2677-2688.	7.3	72
77	Tunable force/displacement of a vibration shaker driven by a dielectric elastomer actuator. Extreme Mechanics Letters, 2015, 2, 72-77.	2.0	28
78	Ultrafast Allâ€Polymer Electrically Tunable Silicone Lenses. Advanced Functional Materials, 2015, 25, 1656-1665.	7.8	222
79	Stretchable Conductive Composites Based on Metal Wools for Use as Electrical Vias in Soft Devices. Advanced Functional Materials, 2015, 25, 1418-1425.	7.8	35
80	Electric field induced variation of temperature and entropy in dielectric elastomers. Journal of Mechanical Science and Technology, 2015, 29, 109-114.	0.7	7
81	Modelling of spring roll actuators based on viscoelastic dielectric elastomers. Applied Physics A: Materials Science and Processing, 2015, 119, 825-835.	1.1	28
82	Actuation and instability of interconnected dielectric elastomer balloons. Applied Physics A: Materials Science and Processing, 2015, 119, 443-449.	1.1	15
83	Graphene oxide overprints for flexible and transparent electronics. Applied Physics Letters, 2015, 106, .	1.5	42
84	Dynamic performance of a dielectric elastomer balloon actuator. Meccanica, 2015, 50, 2731-2739.	1.2	26
85	Selectively plated stretchable liquid metal wires for transparent electronics. Sensors and Actuators B: Chemical, 2015, 221, 1114-1119.	4.0	132
86	Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review. European Polymer Journal, 2015, 72, 344-364.	2.6	129
87	Transparent and conformal 'piezoionic' touch sensor. Proceedings of SPIE, 2015, , .	0.8	16
88	A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon, 2015, 94, 352-361.	5.4	17
89	Dielectric Elastomers. , 2015, , 568-576.		0
90	Stretchable Loudspeaker using Liquid Metal Microchannel. Scientific Reports, 2015, 5, 11695.	1.6	81
91	Ion-linked double-network hydrogel with high toughness and stiffness. Journal of Materials Science, 2015, 50, 5458-5465.	1.7	59
92	Caterpillarâ€inspired Design and Fabrication of A Selfâ€Walking Actuator with Anisotropy, Gradient, and Instant Response. Small, 2015, 11, 3494-3501.	5.2	54
93	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372

#	Article	IF	Citations
94	Highly improved electro-actuation of dielectric elastomers by molecular grafting of azobenzenes to silicon rubber. Journal of Materials Chemistry C, 2015, 3, 4883-4889.	2.7	82
95	Bioâ€Inspired Chemical Fabrication of Stretchable Transparent Electrodes. Small, 2015, 11, 3444-3449.	5.2	58
96	Printed organic electronic device components from edible materials. Materials Research Society Symposia Proceedings, 2015, 1717, 7.	0.1	5
97	Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. Journal of Applied Physics, 2015, 117, .	1.1	40
98	Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.	2.9	44
99	Sensing Solvents with Ultrasensitive Porous Poly(ionic liquid) Actuators. Advanced Materials, 2015, 27, 2913-2917.	11.1	141
100	Highly Stretchable and Selfâ€Ðeformable Alternating Current Electroluminescent Devices. Advanced Materials, 2015, 27, 2876-2882.	11.1	238
101	Energy Conversion in Polyelectrolyte Hydrogels. ACS Macro Letters, 2015, 4, 857-861.	2.3	25
102	Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12332-12337.	3.3	89
103	A novel dielectric elastomer actuator based on compliant polyvinyl alcohol hydrogel electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26, 9213-9218.	1.1	17
104	Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels. International Journal of Applied Mechanics, 2015, 07, 1530001.	1.3	195
105	Stretchable and transparent electrodes based on in-plane structures. Nanoscale, 2015, 7, 14577-14594.	2.8	86
106	Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter, 2015, 11, 7483-7493.	1.2	46
107	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	11.1	268
108	Origin of large field-induced strain of azobenzene/polyurethane blend dielectric elastomers. RSC Advances, 2015, 5, 82215-82226.	1.7	12
109	A Finite Element Method for Inhomogeneous Deformation of Viscoelastic Dielectric Elastomers. International Journal of Applied Mechanics, 2015, 07, 1550069.	1.3	28
110	Energy harvesting performance of viscoelastic polyacrylic dielectric elastomers. International Journal of Smart and Nano Materials, 2015, 6, 162-170.	2.0	5
111	Versatile fabrication of PDMS-carbon electrodes for silicone dielectric elastomer transducers. , 2015, , .		7

	CITATION	Report	
#	Article	IF	CITATIONS
112	Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials, 2015, 14, 1032-1039.	13.3	807
113	High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors. ACS Applied Materials & Interfaces, 2015, 7, 18046-18053.	4.0	102
114	Dendrimers and Hyperbranched Polymers in Medicine. , 2015, , 534-540.		1
115	Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Journal of Neuroscience Methods, 2015, 256, 220-231.	1.3	62
116	Theoretical Analysis of Multiple Phase Coexistence in Polyelectrolyte Blends. Macromolecules, 2015, 48, 6008-6015.	2.2	20
117	Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, 2015, 51, 188-211.	11.8	369
118	Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechanics Letters, 2015, 5, 47-53.	2.0	126
119	Ultrastretchable and Flexible Copper Interconnectâ€Based Smart Patch for Adaptive Thermotherapy. Advanced Healthcare Materials, 2015, 4, 665-673.	3.9	66
120	Temporal evolution and instability in a viscoelastic dielectric elastomer. Journal of the Mechanics and Physics of Solids, 2015, 76, 47-64.	2.3	92
121	A hydrogel pen for electrochemical reaction and its applications for 3D printing. Nanoscale, 2015, 7, 994-1001.	2.8	31
122	Flexible transparent conductors based on metal nanowire networks. Materials Today, 2015, 18, 143-154.	8.3	209
123	An Imperceptible Plastic Electronic Wrap. Advanced Materials, 2015, 27, 34-40.	11.1	145
124	Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers. Scientific Reports, 2014, 4, 6492.	1.6	207
125	Development of a Partially-Transparent Nanofiber Mat Actuator. Journal of Fiber Science and Technology, 2016, 72, 195-199.	0.2	1
126	Reinventing Butyl Rubber for Stretchable Electronics. Advanced Functional Materials, 2016, 26, 5222-5229.	7.8	30
127	Electroluminescence of Giant Stretchability. Advanced Materials, 2016, 28, 4480-4484.	11.1	230
128	Stretchableâ€Fiberâ€Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced Functional Materials, 2016, 26, 4511-4517.	7.8	79
129	A Strainâ€Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels. Advanced Materials, 2016, 28, 1636-1643.	11.1	241

#	Article	IF	CITATIONS
130	Bio-Inspired Fast Actuation by Mechanical Instability of Thermoresponding Hydrogel Structures. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	16
131	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	5.5	141
132	Method to Control Dynamic Snap-Through Instability of Dielectric Elastomers. Physical Review Applied, 2016, 6, .	1.5	27
133	Engineering of ion channels topology in self-assembled wedge-shaped amphiphiles by combination of temperature and solvent vapor treatment. AIP Conference Proceedings, 2016, , .	0.3	5
134	Small, fast, and tough: Shrinking down integrated elastomer transducers. Applied Physics Reviews, 2016, 3, 031105.	5.5	110
135	Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides. AIP Advances, 2016, 6, 055320.	0.6	27
136	Voltage-induced buckling of dielectric films using fluid electrodes. Applied Physics Letters, 2016, 108, .	1.5	24
137	Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. Journal of Applied Physics, 2016, 119, .	1.1	25
138	Soft tunable diffractive optics with multifunctional transparent electrodes enabling integrated actuation. Applied Physics Letters, 2016, 109, .	1.5	11
139	Liquid Metals for Soft and Stretchable Electronics. Microsystems and Nanosystems, 2016, , 3-30.	0.1	15
140	A novel transparent dielectric elastomer sensor for compressive force measurements. , 2016, , .		5
141	Electrically tunable, optical microcavity based on metallized and ultra-soft PDMS gel. , 2016, , .		1
142	Design of super-conformable, foldable materials via fractal cuts and lattice kirigami. MRS Bulletin, 2016, 41, 130-138.	1.7	54
143	Large area transparent ZnO photodetectors with Au wire network electrodes. RSC Advances, 2016, 6, 44668-44672.	1.7	21
144	A highly stretchable autonomous self-healing elastomer. Nature Chemistry, 2016, 8, 618-624.	6.6	1,133
145	Enhanced dielectric strength and actuation of acrylic elastomer with silicone gel encapsulation. Proceedings of SPIE, 2016, , .	0.8	2
146	Modeling and control of a dielectric elastomer actuator. Proceedings of SPIE, 2016, , .	0.8	0
147	Here today, gone tomorrow: biodegradable soft robots. Proceedings of SPIE, 2016, , .	0.8	25

#	Article	IF	CITATIONS
148	A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. Journal of the Mechanics and Physics of Solids, 2016, 94, 127-147.	2.3	82
149	Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. ACS Applied Materials & Interfaces, 2016, 8, 12764-12771.	4.0	74
150	From stretchable to reconfigurable inorganic electronics. Extreme Mechanics Letters, 2016, 9, 245-268.	2.0	52
151	Electrically Actuated Hydraulic Solids. Advanced Engineering Materials, 2016, 18, 1710-1715.	1.6	36
152	Dielectric Elastomers (DEs) as EAPs: Materials. , 2016, , 687-714.		1
153	Polymer nanofiber reinforced double network gel composite: Strong, tough and transparent. Extreme Mechanics Letters, 2016, 9, 165-170.	2.0	23
154	ENGINEERING APPLICATIONS OF OFETs IN FLEXIBLE AND STRETCHABLE ELECTRONICS. Materials and Energy, 2016, , 85-114.	2.5	0
155	Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science, 2016, 353, 687-690.	6.0	149
156	Highly stretchable, transparent ionic touch panel. Science, 2016, 353, 682-687.	6.0	818
157	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	3.9	175
158	Thin-film organic semiconductor devices: from flexibility to ultraflexibility. Science China Materials, 2016, 59, 589-608.	3.5	32
159	Stretchable Organic Semiconductor Devices. Advanced Materials, 2016, 28, 9243-9265.	11.1	188
160	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie, 2016, 128, 12229-12232.	1.6	44
161	Facile Synthesis of Tough Double Network Hydrogel. MRS Advances, 2016, 1, 1953-1958.	0.5	7
162	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie - International Edition, 2016, 55, 12050-12053.	7.2	210
163	Nanomaterial-based stretchable and transparent electrodes. Journal of Information Display, 2016, 17, 131-141.	2.1	33
164	Guided Folding of Nematic Liquid Crystal Elastomer Sheets into 3D via Patterned 1D Microchannels. Advanced Materials, 2016, 28, 9637-9643.	11.1	131
165	Toughening hydrogels by immersing with oppositely charged polymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2432-2441.	2.4	8

		CITATION REPORT		
#	Article		IF	CITATIONS
166	Fracture toughness of hydrogels: measurement and interpretation. Soft Matter, 2016,	12, 8069-8086.	1.2	181
167	Dielectric Elastomers as EAPs: How to Start Experimenting with Them. , 2016, , 767-78	7.		2
168	Polymer Gels as EAPs: Applications. , 2016, , 83-99.			0
169	Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch. Materials, 2016, 28, 8058-8063.	Advanced	11.1	185
170	Voltage-induced pinnacle response in the dynamics of dielectric elastomers. Physical Re 93, 052506.	eview E, 2016,	0.8	31
171	Polymer Gels as EAPs: Applications. , 2016, , 1-17.			0
172	Electrically Controllable Actuators Based on Supramolecular Peptide Hydrogels. Advanc Functional Materials, 2016, 26, 9053-9062.	ed	7.8	102
173	Ionic Conductivity in Polyelectrolyte Hydrogels. Macromolecules, 2016, 49, 9239-9246		2.2	40
174	Energy gels: A bio-inspired material platform for advanced energy applications. Nano To 738-762.	oday, 2016, 11,	6.2	144
175	Responsive nanoporous metals: recoverable modulations on strength and shape by wa Nanotechnology, 2016, 27, 325501.	tering.	1.3	11
176	Hydrogel microphones for stealthy underwater listening. Nature Communications, 201	6, 7, 12316.	5.8	91
177	Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Scientific Reports, 2	.016, 6, 31110.	1.6	751
178	Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional micro Nature Communications, 2016, 7, 12028.	ostructures.	5.8	696
179	Development of a flexible and bendable vibrotactile actuator based on wave-shaped po Structures, 2016, 25, 115020.	ly(vinyl) Tj ETQq1 1 0.7843	14 rgBT /(1.8	Overlock 1 31
180	Transparent capacitive sensor for structural health monitoring applications. Internation of Applied Electromagnetics and Mechanics, 2016, 52, 1577-1584.	ial Journal	0.3	1
181	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. Advanced M 28, 4490-4496.	aterials, 2016,	11.1	193
182	Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electro 2016, 2, 1500407.	onic Materials,	2.6	245
183	Stretchable Hydrogel Electronics and Devices. Advanced Materials, 2016, 28, 4497-450	D5.	11.1	550

	CITATION R	EPORT	
#	ARTICLE Effect of initial stretch ratio on the electromechanical responses of dielectric elastomer actuators.	IF 1.1	CITATIONS
101	Applied Physics A: Materials Science and Processing, 2016, 122, 1.		10
185	Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	15
186	Dielectric Elastomers (DEs) as EAPs: Materials. , 2016, , 1-28.		0
187	Dielectric Elastomers as EAPs: How to Start Experimenting with Them. , 2016, , 1-21.		1
188	Modeling of dielectric viscoelastomers with application to electromechanical instabilities. Journal of the Mechanics and Physics of Solids, 2016, 95, 213-229.	2.3	66
189	Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films. Advanced Materials, 2016, 28, 4507-4512.	11.1	190
190	Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Research, 2016, 9, 401-414.	5.8	128
191	Telemedical Wearable Sensing Platform for Management of Chronic Venous Disorder. Annals of Biomedical Engineering, 2016, 44, 2282-2291.	1.3	32
192	The brain's functional network architecture reveals human motives. Science, 2016, 351, 1074-1078.	6.0	111
193	Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016, 351, 1071-1074.	6.0	1,106
194	Nonlinear vibration of dielectric elastomer incorporating strain stiffening. International Journal of Solids and Structures, 2016, 87, 70-80.	1.3	52
195	A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator. IEEE Robotics and Automation Letters, 2016, 1, 624-631.	3.3	198
196	Reduced graphene oxide nanoshells for flexible and stretchable conductors. Nanotechnology, 2016, 27, 095301.	1.3	8
197	Dielectric elastomer-based laser beam pointing method with ultraviolet and visible wavelength. , 2016, , .		0
198	Dissipative performance of dielectric elastomers under various voltage waveforms. Soft Matter, 2016, 12, 2348-2356.	1.2	30
199	An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field. ACS Applied Materials & Interfaces, 2016, 8, 1289-1296.	4.0	48
200	Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. Journal of Materials Science, 2016, 51, 2771-2805.	1.7	295
201	Tough bonding of hydrogels to diverse non-porousÂsurfaces. Nature Materials, 2016, 15, 190-196.	13.3	807

	CITATION R	PORT	
#	ARTICLE	IF	CITATIONS
202	Adhesion between highly stretchable materials. Soft Matter, 2016, 12, 1093-1099.	1.2	93
203	Carbon nanofillers incorporated electrically conducting poly ε-caprolactone nanocomposite films and their biocompatibility studies using MG-63 cell line. Polymer Bulletin, 2016, 73, 1037-1053.	1.7	21
204	Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. ACS Applied Materials & Interfaces, 2017, 9, 5486-5494.	4.0	63
205	Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer, 2017, 111, 168-176.	1.8	153
206	3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Advanced Materials, 2017, 29, 1604827.	11.1	364
207	Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites. ACS Applied Materials & amp; Interfaces, 2017, 9, 5237-5243.	4.0	74
208	Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 2017, 8, 14230.	5.8	760
209	A survey on dielectric elastomer actuators for soft robots. Bioinspiration and Biomimetics, 2017, 12, 011003.	1.5	323
210	Materials and devices for transparent stretchable electronics. Journal of Materials Chemistry C, 2017, 5, 2202-2222.	2.7	118
211	Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 7505-7514.	4.0	36
212	Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging. Advanced Materials, 2017, 29, 1606346.	11.1	79
213	Electromechanical response of polyol-polyurethane blends as dielectric elastomer flexible mirco-actuator material. Journal of Materials Science: Materials in Electronics, 2017, 28, 3560-3570.	1.1	4
214	Bioinspired microporous elastomer with enhanced and tunable stretchability for strain sensing device. , 2017, , .		1
215	Imperceptible organic electronics. MRS Bulletin, 2017, 42, 124-130.	1.7	42
216	Large-Area Highly Conductive Transparent Two-Dimensional Ti ₂ CT _{<i>x</i>} Film. Journal of Physical Chemistry Letters, 2017, 8, 859-865.	2.1	118
217	Engineering Electroactive Dielectric Elastomers for Miniature Electromechanical Transducers. Polymer Reviews, 2017, 57, 369-396.	5.3	24
218	Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model. Applied Physics Letters, 2017, 110, .	1.5	68
219	Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines. Smart Materials and Structures, 2017, 26, 045008.	1.8	55

#	Article	IF	CITATIONS
220	Soft Multifunctional Composites and Emulsions with Liquid Metals. Advanced Materials, 2017, 29, 1605985.	11.1	301
221	Fluid electrodes for submersible robotics based on dielectric elastomer actuators. Proceedings of SPIE, 2017, , .	0.8	7
222	Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4875-4880.	3.3	67
223	Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano, 2017, 11, 4859-4865.	7.3	45
224	Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.	11.1	1,222
225	Healable Transparent Electronic Devices. Advanced Functional Materials, 2017, 27, 1606339.	7.8	118
226	Tough and tunable adhesion of hydrogels: experiments and models. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 543-554.	1.5	62
227	Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Materials, 2017, 16, 834-840.	13.3	578
228	A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers. Smart Materials and Structures, 2017, 26, 085018.	1.8	20
229	Synthesis of strong and stretchable double network (DN) hydrogels of PVA-borax and P(AM-co-HEMA) and study of their swelling kinetics and mechanical properties. Polymer, 2017, 119, 263-273.	1.8	61
230	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
231	Electrochemical actuation of nickel hydroxide/oxyhydroxide at sub-volt voltages. Sensors and Actuators B: Chemical, 2017, 248, 657-664.	4.0	19
232	Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices. ACS Applied Materials & Interfaces, 2017, 9, 16466-16473.	4.0	32
233	Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering. Journal of Materials Chemistry C, 2017, 5, 6834-6841.	2.7	25
234	Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017, 3, e1700053.	4.7	359
235	Toward a versatile toolbox for cucurbit[<i>n</i>]urilâ€based supramolecular hydrogel networks through <i>in situ</i> polymerization. Journal of Polymer Science Part A, 2017, 55, 3105-3109.	2.5	20
236	Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017, 8, 15894.	5.8	325
237	Instabilities in confined elastic layers under tension: Fringe, fingering and cavitation. Journal of the Mechanics and Physics of Solids, 2017, 106, 229-256.	2.3	37

#	Article	IF	CITATIONS
238	Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy, 2017, 38, 91-100.	8.2	80
239	Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances, 2017, 3, e1700015.	4.7	920
240	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	1.6	707
241	Conducting hydrogels for edible electrodes. Journal of Materials Chemistry B, 2017, 5, 5318-5328.	2.9	29
242	Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Roomâ€Temperature Selfâ€Healing. Advanced Materials, 2017, 29, 1605325.	11.1	347
243	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	23.0	624
244	Large stable deformation of dielectric elastomers driven on mode of steady electric field. Smart Materials and Structures, 2017, 26, 05LT01.	1.8	5
245	Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.	4.7	621
246	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 10128-10135.	4.0	272
247	Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Science Advances, 2017, 3, e1602200.	4.7	283
248	A Transparent, Selfâ€Healing, Highly Stretchable Ionic Conductor. Advanced Materials, 2017, 29, 1605099.	11.1	447
249	Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect. Smart Materials and Structures, 2017, 26, 015010.	1.8	19
250	Soft Actuators for Smallâ€Scale Robotics. Advanced Materials, 2017, 29, 1603483.	11.1	973
251	Unified solution for poroelastic oscillation indentation on gels for spherical, conical and cylindrical indenters. Soft Matter, 2017, 13, 852-861.	1.2	38
252	Selective Mineralization of Tough Hydrogel Lumens for Simulating Arterial Plaque. Advanced Engineering Materials, 2017, 19, 1600591.	1.6	3
253	Elastocapillarity: Surface Tension and the Mechanics of Soft Solids. Annual Review of Condensed Matter Physics, 2017, 8, 99-118.	5.2	247
254	Preparation of Highâ€Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. Advanced Materials, 2017, 29, 1704253.	11.1	308
255	Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale, 2017, 9, 18474-18481.	2.8	79

#	Article	IF	CITATIONS
256	Photothermal Surface Plasmon Resonance and Interband Transitionâ€Enhanced Nanocomposite Hydrogel Actuators with Handâ€Like Dynamic Manipulation. Advanced Optical Materials, 2017, 5, 1700442.	3.6	59
257	Self-powered hydrogels induced by ion transport. Nanoscale, 2017, 9, 17080-17090.	2.8	17
258	Identification and characterization of the out-of-plane resonance in a dielectric elastomer to drive an agile robotic cube. Journal of Applied Physics, 2017, 122, .	1.1	10
259	Microsphereâ€Assisted Robust Epidermal Strain Gauge for Static and Dynamic Gesture Recognition. Small, 2017, 13, 1702108.	5.2	26
260	Bioinspired Antiâ€Moiré Random Grids via Patterning Foams. Advanced Optical Materials, 2017, 5, 1700751.	3.6	17
261	Super Bulk and Interfacial Toughness of Physically Crosslinked Doubleâ€Network Hydrogels. Advanced Functional Materials, 2017, 27, 1703086.	7.8	180
262	Stretchable 3D lattice conductors. Soft Matter, 2017, 13, 7731-7739.	1.2	13
263	Onâ€Skin Triboelectric Nanogenerator and Selfâ€Powered Sensor with Ultrathin Thickness and High Stretchability. Small, 2017, 13, 1702929.	5.2	108
264	50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. Macromolecules, 2017, 50, 8297-8316.	2.2	301
265	Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium. ACS Applied Materials & Interfaces, 2017, 9, 30900-30908.	4.0	38
266	Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels. ACS Applied Materials & Interfaces, 2017, 9, 33100-33106.	4.0	85
267	Organic liquid-crystal devices based on ionic conductors. Materials Horizons, 2017, 4, 1102-1109.	6.4	76
268	Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter, 2017, 13, 6390-6395.	1.2	35
269	Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress. Smart Materials and Structures, 2017, 26, 115019.	1.8	39
270	Towards ultra-responsive biodegradable polysaccharide humidity sensors. Materials Today Chemistry, 2017, 6, 1-12.	1.7	18
271	Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices. Advanced Energy Materials, 2017, 7, 1701369.	10.2	63
272	A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers. Acta Mechanica Solida Sinica, 2017, 30, 374-389.	1.0	13
273	Mechanical behavior of PDMS at low pressure. Materials Research Express, 2017, 4, 075306.	0.8	4

#	Article	IF	CITATIONS
274	Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials, 2017, 6, 1700496.	3.9	49
275	Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template. ACS Applied Materials & Interfaces, 2017, 9, 26468-26475.	4.0	69
276	Highly Elastic, Transparent, and Conductive 3Dâ€Printed Ionic Composite Hydrogels. Advanced Functional Materials, 2017, 27, 1701807.	7.8	162
277	Fatigue fracture of tough hydrogels. Extreme Mechanics Letters, 2017, 15, 91-96.	2.0	209
278	Inverted battery design as ion generator for interfacing with biosystems. Nature Communications, 2017, 8, 15609.	5.8	21
279	Highly Transparent, Stretchable, and Selfâ€Healing Ionicâ€5kin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications. Advanced Materials, 2017, 29, 1702181.	11.1	322
280	Thermoplastic Dielectric Elastomer of Triblock Copolymer with High Electromechanical Performance. Macromolecular Rapid Communications, 2017, 38, 1700268.	2.0	30
281	Recent progresses on flexible tactile sensors. Materials Today Physics, 2017, 1, 61-73.	2.9	227
282	Localized Deformation in Plastic Liquids on Elastomers. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	5
283	A Single Dropletâ€Printed Doubleâ€Side Universal Soft Electronic Platform for Highly Integrated Stretchable Hybrid Electronics. Advanced Functional Materials, 2017, 27, 1701912.	7.8	42
284	Perspective and potential of smart optical materials. Smart Materials and Structures, 2017, 26, 093001.	1.8	26
285	Electrically Tunable Dye Emission via Microcavity Integrated PDMS Gel Actuator. ACS Applied Materials & Interfaces, 2017, 9, 29193-29202.	4.0	3
286	Highly stretchable, transparent, and colorless electrodes from a diblock copolymer electrolyte. Journal of Materials Chemistry C, 2017, 5, 9865-9872.	2.7	5
287	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chemical Reviews, 2017, 117, 11239-11268.	23.0	418
288	Porous double network gels with high toughness, high stretchability and fast solvent-absorption. Soft Matter, 2017, 13, 6852-6857.	1.2	25
289	Bionic ion channel and single-ion conductor design for artificial skin sensors. Journal of Materials Chemistry B, 2017, 5, 7126-7132.	2.9	32
290	Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer. Physical Review Applied, 2017, 8, .	1.5	21
291	Kinetic Monte Carlo Simulation for Quantification of the Gel Point of Polymer Networks. ACS Macro Letters, 2017, 6, 1414-1419.	2.3	64

		CITATION REPORT		
#	Article		IF	CITATIONS
292	Stretchable bioelectronicsâ \in "Current and future. MRS Bulletin, 2017, 42, 960-967.		1.7	14
295	Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Ri Applied Materials & Interfaces, 2017, 9, 43239-43249.	ubber. ACS	4.0	15
296	Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curvec array. Nature Communications, 2017, 8, 1664.	l image sensor	5.8	381
297	3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Matter, 2017, 13, 5558-5568.	Soft	1.2	223
298	Leakage current and induced electrical energy dissipation in nonlinear oscillation of diele elastomer actuators. Journal Physics D: Applied Physics, 2017, 50, 365602.	ctric	1.3	3
299	A Stretchable Multimodal Sensor for Soft Robotic Applications. IEEE Sensors Journal, 201 5678-5686.	7, 17,	2.4	41
300	Wearable and Washable Conductors for Active Textiles. ACS Applied Materials & amp; Int 25542-25552.	erfaces, 2017, 9,	4.0	118
301	Highâ€Adhesion Stretchable Electrodes Based on Nanopile Interlocking. Advanced Mater 1603382.	ials, 2017, 29,	11.1	168
302	Dissolvable tattoo sensors: from science fiction to a viable technology. Physica Scripta, 2 013001.	017, 92,	1.2	20
303	Flaw sensitivity of highly stretchable materials. Extreme Mechanics Letters, 2017, 10, 50-	57.	2.0	151
304	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. Advanced Ma 2017, 29, 1604209.	iterials,	11.1	150
305	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Cross for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	â€Links Hydrogels	5.6	728
306	Fatigue fracture of hydrogels. Extreme Mechanics Letters, 2017, 10, 24-31.		2.0	151
307	Flashâ€Induced Selfâ€Limited Plasmonic Welding of Silver Nanowire Network for Transpa Energy Harvester. Advanced Materials, 2017, 29, 1603473.	arent Flexible	11.1	207
309	Effect of constrained fibers on electromechanical actuation of charge-controlled dielectri elastomers. Europhysics Letters, 2017, 120, 67001.	с	0.7	1
310	Dielectric Elastomer Sensors. , 0, , .			13
311	Dielectric-elastomer-based fabrication method for varifocal microlens array. Optics Expres 31708.	ss, 2017, 25,	1.7	19
312	The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166.		2.1	235

ARTICLE IF CITATIONS # Enhanced Design of a Soft Thin-Film Vibrotactile Actuator Based on PVC Gel. Applied Sciences 313 1.3 10 (Switzerland), 2017, 7, 972. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Science 314 Robotics, 2017, 2, . Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic 315 0.3 0 acids as fuel. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012095. DESIGNING DIELECTRIC ELASTOMERS OVER MULTIPLE LENGTH SCALES FOR 21ST CENTURY SOFT MATERIALS 316 TECHNOLOGIES. Rubber Chemistry and Technology, 2017, 90, 207-224. Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance 317 11.1 208 Enabled by Liquidâ€Metal Particles. Advanced Materials, 2018, 30, e1706157. Soft Robotics. Angewandte Chemie - International Edition, 2018, 57, 4258-4273. 534 Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, 319 1.1 13 entanglements, and finite deformations. Journal of Applied Physics, 2018, 123, . Bonding dissimilar polymer networks in various manufacturing processes. Nature Communications, 5.8 209 2018, 9, 846. 321 3D printed electrically-driven soft actuators. Extreme Mechanics Letters, 2018, 21, 1-8. 2.0 100 Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions. 44 Polymer Chemistry, 2018, 9, 2905-2912. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science 323 9.9 229 Robotics, 2018, 3, . Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. 324 Biomacromolecules, 2018, 19, 2742-2749. Fatigue fracture of nearly elastic hydrogels. Soft Matter, 2018, 14, 3563-3571. 325 1.2 105 Extreme Toughening of Soft Materials with Liquid Metal. Advanced Materials, 2018, 30, e1706594. 11.1 Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal 327 2.9 173 of Materials Chemistry B, 2018, 6, 3246-3253. Performance improvement of planar dielectric elastomer actuators by magnetic modulating 1.8 mechanism. Smart Materials and Structures, 2018, 27, 065007. Dielectric-elastomer-based capacitive force sensing with tunable and enhanced sensitivity. Extreme 329 2.0 14 Mechanics Letters, 2018, 21, 49-56. Soft electrodes combining hydrogel and liquid metal. Soft Matter, 2018, 14, 3296-3303. 1.2 99

#	Article	IF	CITATIONS
331	Fatigue Fracture of Self-Recovery Hydrogels. ACS Macro Letters, 2018, 7, 312-317.	2.3	105
332	Sewable soft shields for the $\hat{1}^3$ -ray radiation. Scientific Reports, 2018, 8, 1852.	1.6	9
333	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	2.8	91
334	Highly enhanced electromechanical properties of PVDF-TrFE/SWCNT nanocomposites using an efficient polymer compatibilizer. Composites Science and Technology, 2018, 157, 21-29.	3.8	41
335	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	8.3	163
336	Ionotactile Stimulation: Nonvolatile Ionic Gels for Human–Machine Interfaces. ACS Omega, 2018, 3, 662-666.	1.6	24
337	Bubble inductors: Pneumatic tuning of a stretchable inductor. AIP Advances, 2018, 8, .	0.6	8
338	Visually Imperceptible Liquidâ€Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing. Advanced Materials, 2018, 30, e1706937.	11.1	161
339	Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators. Sensors and Actuators B: Chemical, 2018, 261, 135-143.	4.0	64
340	A Highly Stretchable Transparent Selfâ€Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Advanced Materials, 2018, 30, e1706738.	11.1	315
341	Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming. IEEE Robotics and Automation Letters, 2018, 3, 688-695.	3.3	42
342	Method towards optimal design of dielectric elastomer actuated soft machines. Science China Technological Sciences, 2018, 61, 959-964.	2.0	2
343	Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. Journal of the American Chemical Society, 2018, 140, 2284-2291.	6.6	180
344	Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay /poly(<i>N</i> -isopropylacrylamide). Journal of Materials Chemistry A, 2018, 6, 3091-3099.	5.2	110
345	Photocurable ABA triblock copolymer-based ion gels utilizing photodimerization of coumarin. RSC Advances, 2018, 8, 3418-3422.	1.7	19
346	Large Converse Piezoelectric Effect Measured on a Single Molecule on a Metallic Surface. Journal of the American Chemical Society, 2018, 140, 940-946.	6.6	33
347	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	8.2	178
348	Artificial Muscles: Mechanisms, Applications, and Challenges. Advanced Materials, 2018, 30, 1704407.	11.1	701

# 349	ARTICLE Transparent and Waterproof Ionic Liquid-Based Fibers for Highly Durable Multifunctional Sensors and Strain-Insensitive Stretchable Conductors. ACS Applied Materials & Interfaces, 2018, 10, 4305-4314.	IF 4.0	CITATIONS 85
350	Fully Printed Flexible Smart Hybrid Hydrogels. Advanced Functional Materials, 2018, 28, 1705365.	7.8	121
351	Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, 2018, 3, .	9.9	336
352	An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles. IEEE Transactions on Haptics, 2018, 11, 22-29.	1.8	27
353	Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Advanced Materials, 2018, 30, e1800598.	11.1	98
354	Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nature Communications, 2018, 9, 1804.	5.8	221
355	3D printing of soft robotic systems. Nature Reviews Materials, 2018, 3, 84-100.	23.3	620
356	A Highly Stretchable, Sensitive, and Transparent Strain Sensor Based on Binary Hybrid Network Consisting of Hierarchical Multiscale Metal Nanowires. Advanced Materials Technologies, 2018, 3, 1800020.	3.0	55
357	Two-dimensional equations for thin-films of ionic conductors. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1071-1088.	1.9	1
358	Textile Display for Electronic and Brainâ€Interfaced Communications. Advanced Materials, 2018, 30, e1800323.	11.1	145
359	Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage. ACS Applied Materials & Interfaces, 2018, 10, 13975-13984.	4.0	75
360	Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. ACS Applied Materials & Interfaces, 2018, 10, 13685-13692.	4.0	82
361	DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170900.	1.0	38
362	A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. Journal of the Mechanics and Physics of Solids, 2018, 116, 239-266.	2.3	48
363	Softâ€Robotik. Angewandte Chemie, 2018, 130, 4336-4353.	1.6	20
364	Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano, 2018, 12, 3385-3396.	7.3	210
365	A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nature Communications, 2018, 9, 1134.	5.8	411
366	A Conductive Selfâ€Healing Double Network Hydrogel with Toughness and Force Sensitivity. Chemistry - A European Journal, 2018, 24, 6632-6638.	1.7	45

#	Article	IF	CITATIONS
367	Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mechanics Letters, 2018, 21, 9-16.	2.0	160
368	Flexible Highly Sensitive Pressure Sensor Based on Ionic Liquid Gel Film. ACS Omega, 2018, 3, 3014-3021.	1.6	66
369	Fatigue of double-network hydrogels. Engineering Fracture Mechanics, 2018, 187, 74-93.	2.0	156
370	Voltage-Induced Wrinkling in a Constrained Annular Dielectric Elastomer Film. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	17
371	Advances in dielectric elastomer actuation technology. Science China Technological Sciences, 2018, 61, 1512-1527.	2.0	46
372	Highly Stretchable and Reliable, Transparent and Conductive Entangled Graphene Mesh Networks. Advanced Materials, 2018, 30, 1704626.	11.1	53
373	Shooting and Arc-Length Continuation Method for Periodic Solution and Bifurcation of Nonlinear Oscillation of Viscoelastic Dielectric Elastomers. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	36
374	Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback. Small, 2018, 14, 1702312.	5.2	31
375	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	11.1	445
376	Tough and durable hydrogels with robust skin layers formed <i>via</i> soaking treatment. Journal of Materials Chemistry B, 2018, 6, 8043-8054.	2.9	26
377	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	5.2	75
378	Grafting-through ROMP for gels with tailorable moduli and crosslink densities. Polymer Chemistry, 2018, 9, 5173-5178.	1.9	5
379	Zwitterionic Skins with a Wide Scope of Customizable Functionalities. ACS Nano, 2018, 12, 12860-12868.	7.3	154
380	Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation. ACS Applied Materials & Interfaces, 2018, 10, 43252-43261.	4.0	38
381	Gate-Free Hydrogel–Graphene Transistors as Underwater Microphones. ACS Applied Materials & Interfaces, 2018, 10, 42573-42582.	4.0	21
382	Phase transition and electrical properties of aggregations of ethoxylated phytosterol surfactants by dielectric spectroscopy. Journal of Physics Condensed Matter, 2018, 30, 505402.	0.7	1
383	Self-healable electroluminescent devices. Light: Science and Applications, 2018, 7, 102.	7.7	71
384	Softâ€Matter Engineering for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1800477.	3.0	201

#	Article	IF	CITATIONS
385	Highly Flexible and Transparent Polyionic‣kin Triboelectric Nanogenerator for Biomechanical Motion Harvesting. Advanced Energy Materials, 2019, 9, 1803183.	10.2	72
386	Effect of crosslinks, entanglements, and chain extensibilities on dynamic electromechanical instability of dielectric elastomers. Europhysics Letters, 2018, 124, 37001.	0.7	3
387	Stretchable current collectors based on carbon embedded in a poly (acrylamide)/poly (N,N-methylenebisacrylamide) hydrogel modified with Nafion 117A®. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	3
388	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	4.0	105
389	Facile and Efficient Welding of Silver Nanowires Based on UVAâ€Induced Nanoscale Photothermal Process for Rollâ€ŧoâ€Roll Manufacturing of Highâ€Performance Transparent Conducting Films. Advanced Materials Interfaces, 2019, 6, 1801635.	1.9	30
390	A soft artificial muscle driven robot with reinforcement learning. Scientific Reports, 2018, 8, 14518.	1.6	35
391	Thermal Conductivity of Polyacrylamide Hydrogels at the Nanoscale. ACS Applied Materials & Interfaces, 2018, 10, 36352-36360.	4.0	46
392	Force Control of Textile-Based Soft Wearable Robots for Mechanotherapy. , 2018, , .		21
393	Transparent Tunable Acoustic Absorber Membrane Using Inkjet-Printed PEDOT:PSS Thin-Film Compliant Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 39942-39951.	4.0	30
394	Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Applied Materials & Interfaces, 2018, 10, 41724-41731.	4.0	90
395	A Finite Element Method for Dielectric Elastomers Affected by Viscoelasticity and Current Leakage. International Journal of Applied Mechanics, 2018, 10, 1850102.	1.3	6
396	Highly Reliable Liquid Metal–Solid Metal Contacts with a Corrugated Singleâ€Walled Carbon Nanotube Diffusion Barrier for Stretchable Electronics. Advanced Functional Materials, 2018, 28, 1806014.	7.8	28
397	Long-Lasting Sustainable Self-Healing Ion Gel with Triple-Network by Trigger-Free Dynamic Hydrogen Bonds and Ion Bonds. ACS Sustainable Chemistry and Engineering, 2018, 6, 17087-17098.	3.2	43
398	Leeches-Inspired Hydrogel–Elastomer Integration Materials. ACS Applied Materials & Interfaces, 2018, 10, 40238-40245.	4.0	22
399	Conductive stretchable composites properly engineered to develop highly compliant electrodes for dielectric elastomer actuators. Smart Materials and Structures, 2018, 27, 105005.	1.8	15
400	Off-lattice simulation algorithms for athermal chain molecules under extreme confinement. Journal of Computational Physics, 2018, 375, 918-934.	1.9	21
401	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	7.3	130
402	A facile method to fabricate tough hydrogel with ultraâ€wide adjustable stiffness, stress, and fast recoverability. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1469-1474.	2.4	6

ARTICLE IF CITATIONS # Tough and Self-Healable Nanocomposite Hydrogels for Repeatable Water Treatment. Polymers, 2018, 10, 403 2.0 22 880. Bio-based glyco-bolaamphiphile forms a temperature-responsive hydrogel with tunable elastic 404 1.2 29 properties. Soft Matter, 2018, 14, 7859-7872. Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush. 405 1.2 46 Actuators, 2018, 7, 51. Compact Dielectric Elastomer Linear Actuators. Advanced Functional Materials, 2018, 28, 1804328. 406 Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels. ACS 407 4.0 107 Applied Materials & amp; Interfaces, 2018, 10, 32640-32648. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter 408 13.3 736 robotics and electronics. Nature Materials, 2018, 17, 618-624. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European 409 1.7 215 Journal, 2018, 24, 16930-16943. A Transparent Membrane for Active Noise Cancelation. Advanced Functional Materials, 2018, 28, 20 Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel. ACS 411 4.0 168 Applied Materials & amp; Interfaces, 2018, 10, 19097-19105. Hydrogel ionotronics. Nature Reviews Materials, 2018, 3, 125-142. 23.3 1,119 Phase-separation induced extraordinary toughening of magnetic hydrogels. Journal of Applied 413 4 1.1 Physics, 2018, 123, 185105. Constructing advanced dielectric elastomer based on copolymer of acrylate and polyurethane with 1.8 30 large actuation strain at low electric field. Polymer, 2018, 149, 39-44. Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, 415 7.3 136 Efficient Supercapacitors. ACS Nano, 2018, 12, 8048-8059. Dynamically Actuated Liquidâ€Infused Poroelastic Film with Precise Control over Droplet Dynamics. Advanced Functional Materials, 2018, 28, 1802632. Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 417 2.0 112 2018, 39, e1800246. Ionic Skin with Biomimetic Dielectric Layer Templated from <i>Calathea Zebrine</i> Leaf. Advanced 216 Functional Materials, 2018, 28, 1802343. A Phenomenological Model for Shakedown of Tough Hydrogels Under Cyclic Loads. Journal of 419 1.1 21 Applied Mechanics, Transactions ASME, 2018, 85, . Dielectric Elastomer Fluid Pump of High Pressure and Large Volume Via Synergistic Snap-Through. 1.1 Journal of Applied Mechanics, Transactions ASME, 2018, 85, .

		15	0
#	ARTICLE Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide	IF	CITATIONS
421	actuators. Nonlinear Dynamics, 2018, 94, 1907-1920.	2.7	13
422	Development of a predictor for fatigue crack nucleation of dielectric viscoelastomers under electromechanical loads. Journal of the Mechanics and Physics of Solids, 2018, 119, 400-416.	2.3	7
423	Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils. Chemistry of Materials, 2018, 30, 5561-5572.	3.2	331
424	Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots. Sensors, 2018, 18, 569.	2.1	19
425	Toward Perceptive Soft Robots: Progress and Challenges. Advanced Science, 2018, 5, 1800541.	5.6	468
426	Highly stretchable and transparent ionic conducting elastomers. Nature Communications, 2018, 9, 2630.	5.8	223
427	Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements. Polymers, 2018, 10, 692.	2.0	28
428	Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Advanced Materials, 2018, 30, e1801541.	11.1	444
429	Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity. ACS Applied Materials & Interfaces, 2018, 10, 26610-26617.	4.0	85
430	A skin-like stretchable colorimetric temperature sensor. Science China Materials, 2018, 61, 969-976.	3.5	20
431	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Advanced Materials, 2018, 30, e1802560.	11.1	140
432	Three-dimensional integrated stretchable electronics. Nature Electronics, 2018, 1, 473-480.	13.1	345
433	Facile preparation and characterization of poly(vinyl alcohol)-NaCl-glycerol supramolecular hydrogel electrolyte. European Polymer Journal, 2018, 106, 206-213.	2.6	67
434	Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Materials Horizons, 2018, 5, 1000-1007.	6.4	129
435	Macroporous Conductive Hydrogels with Fatigue Resistance as Strain Sensor for Human Motion Monitoring. Macromolecular Materials and Engineering, 2018, 303, 1800339.	1.7	27
436	Fracture toughness of soft materials with rate-independent hysteresis. Journal of the Mechanics and Physics of Solids, 2018, 118, 341-364.	2.3	41
437	A Bezelâ€Less Tetrahedral Image Sensor Formed by Solventâ€Assisted Plasticization and Transformation of an Acrylonitrile Butadiene Styrene Framework. Advanced Materials, 2018, 30, e1801256.	11.1	9
438	An Artificial Sensory Neuron with Tactile Perceptual Learning. Advanced Materials, 2018, 30, e1801291.	11.1	309

#	Article	IF	CITATIONS
439	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	3.0	59
440	Smart Window Based on Electric Unfolding of Microwrinkled TiO ₂ Nanometric Films. ACS Photonics, 2018, 5, 3255-3262.	3.2	36
441	Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Science Advances, 2018, 4, eaar8535.	4.7	159
442	Simple manufacturing approach for 3D overhanging structure of hydrogel with in-situ light-guiding mechanism. , 2018, , .		2
443	Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices. Advanced Materials, 2018, 30, e1704403.	11.1	234
444	Facile and highly efficient fabrication of robust Ag nanowire–elastomer composite electrodes with tailored electrical properties. Journal of Materials Chemistry C, 2018, 6, 7207-7218.	2.7	49
445	Macroscopic Layered Organogel–Hydrogel Hybrids with Controllable Wetting and Swelling Performance. Advanced Functional Materials, 2018, 28, 1800793.	7.8	76
446	Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic) Tj ETQq1 1 0.784314 rg 37, 52-58.	gBT /Overl 2.0	ock 10 Tf 50 9
447	Analysis, Design, and Implementation of an Elastomer Generator Based Energy Harvesting Scheme. IEEE Transactions on Industrial Electronics, 2019, 66, 3507-3517.	5.2	14
448	Hybrid Laser Printing of 3D, Multiscale, Multimaterial Hydrogel Structures. Advanced Optical Materials, 2019, 7, 1900656.	3.6	45
449	Strainâ€Visualization with Ultrasensitive Nanoscale Crackâ€Based Sensor Assembled with Hierarchical Thermochromic Membrane. Advanced Functional Materials, 2019, 29, 1903360.	7.8	36
450	3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Advanced Materials Technologies, 2019, 4, 1900452.	3.0	78
451	Mechanoresponsive Polymerized Liquid Metal Networks. Advanced Materials, 2019, 31, e1903864.	11.1	154
452	Instabilities in dielectric elastomers: buckling, wrinkling, and crumpling. Soft Matter, 2019, 15, 7137-7144.	1.2	23
453	Dielectric elastomer actuators based on stretchable and self-healable hydrogel electrodes. Royal Society Open Science, 2019, 6, 182145.	1.1	20
454	How inhomogeneous zipping increases the force output of Peano-HASEL actuators. Extreme Mechanics Letters, 2019, 31, 100542.	2.0	26
455	Stretchable pumps for soft machines. Nature, 2019, 572, 516-519.	13.7	263
456	Soft robots based on dielectric elastomer actuators: a review. Smart Materials and Structures, 2019, 28, 103002.	1.8	176

# 457	ARTICLE A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	IF 13.1	CITATIONS
458	Hydrogel Paint. Advanced Materials, 2019, 31, e1903062.	11.1	146
459	A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robotics, 2019, 6, 611-620.	4.6	35
460	Mesophase Structureâ€Enabled Electrostrictive Property in Nylonâ€12â€Based Poly(etherâ€ <i>block</i> â€amide) Copolymers. Macromolecular Materials and Engineering, 2019, 304, 1900330.	1.7	10
461	Transparent Soft Robots for Effective Camouflage. Advanced Functional Materials, 2019, 29, 1901908.	7.8	70
462	Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments. Journal of Materials Chemistry C, 2019, 7, 9625-9632.	2.7	50
463	Deformable and Stretchable Electrodes for Soft Electronic Devices. Macromolecular Research, 2019, 27, 625-639.	1.0	32
464	Auxetic elastomers: Mechanically programmable meta-elastomers with an unusual Poisson's ratio overcome the gauge limit of a capacitive type strain sensor. Extreme Mechanics Letters, 2019, 31, 100516.	2.0	46
465	Neural interfaces by hydrogels. Extreme Mechanics Letters, 2019, 30, 100510.	2.0	51
466	Stretchable and reflective displays: materials, technologies and strategies. Nano Convergence, 2019, 6, 21.	6.3	52
467	Toward Multifunctional and Wearable Smart Skins with Energyâ€Harvesting, Touchâ€Sensing, and Exteroceptionâ€Visualizing Capabilities by an Allâ€Polymer Design. Advanced Electronic Materials, 2019, 5, 1900553.	2.6	41
468	A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nature Communications, 2019, 10, 3429.	5.8	297
469	A path-following simulation-based study of elastic instabilities in nearly-incompressible confined cylinders under tension. Journal of the Mechanics and Physics of Solids, 2019, 131, 252-275.	2.3	4
470	Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant lonogels for High-Performance Flexible Sensors. ACS Applied Materials & Interfaces, 2019, 11, 26412-26420.	4.0	103
471	Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. ACS Applied Materials & Interfaces, 2019, 11, 41710-41716.	4.0	141
472	Stickâ€On Largeâ€Strain Sensors for Soft Robots. Advanced Materials Interfaces, 2019, 6, 1900985.	1.9	79
473	Highly Dispersed Graphene Network Achieved by using a Nanoparticleâ€Crosslinked Polymer to Create a Sensitive Conductive Sensor. ChemElectroChem, 2019, 6, 5006-5013.	1.7	10
474	Strain‣ensitive Performance of a Tough and Inkâ€Writable Polyacrylic Acid Ionic Gel Crosslinked by Carboxymethyl Cellulose. Macromolecular Rapid Communications, 2019, 40, e1900329.	2.0	6

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
475	Cell Nanomechanics Based on Dielectric Elastomer Actuator Device. Nano-Micro Letters, 2019, 11, 98.	14.4	13
476	Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575, 324-329.	13.7	460
477	Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. Journal of Materials Chemistry A, 2019, 7, 26917-26926.	5.2	93
478	Effect of glycerol on the mechanical and temperature-sensing properties of pectin films. Applied Physics Letters, 2019, 115, .	1.5	11
479	Jellyfish-Inspired Soft Robot Driven by Fluid Electrode Dielectric Organic Robotic Actuators. Frontiers in Robotics and Al, 2019, 6, 126.	2.0	57
480	2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion. Advanced Materials, 2019, 31, e1905405.	11.1	82
481	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	3.3	43
482	Deformation study of an in-plane oscillating dielectric elastomer actuator having complex modes. Journal of Sound and Vibration, 2019, 463, 114940.	2.1	7
483	Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 272-280.	2.4	26
484	Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites. ACS Applied Materials & Interfaces, 2019, 11, 42561-42570.	4.0	23
485	Ionic liquid–based click-ionogels. Science Advances, 2019, 5, eaax0648.	4.7	230
486	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	2.7	90
487	Aerosol Jet Printing for the Manufacture of Soft Robotic Devices. , 2019, , .		6
488	Reversely Orthogonal Actuation of a Janus-Faced Film Based on Asymmetric Polymer Brush Modification. ACS Applied Materials & Interfaces, 2019, 11, 36073-36080.	4.0	11
489	Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon. Sensors, 2019, 19, 3490.	2.1	8
490	Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect. ACS Applied Materials & Interfaces, 2019, 11, 37139-37146.	4.0	24
491	Fast healing of ionic bonds in tough hydrogels under an acoustic excitation. Extreme Mechanics Letters, 2019, 33, 100572.	2.0	13
492	Polymer-Coated Mesoporous Carbon as Enzyme Platform for Oxidation of Bisphenol A in Organic Solvents. ACS Omega, 2019, 4, 16409-16417.	1.6	4

#	Article	IF	CITATIONS
493	Ultrastretchable Conductive Elastomers with a Low Percolation Threshold for Printed Soft Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 38092-38102.	4.0	32
494	Transparent stretchable capacitive touch sensor grid using ionic liquid electrodes. Extreme Mechanics Letters, 2019, 33, 100574.	2.0	11
495	An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Materials Horizons, 2019, 6, 595-603.	6.4	297
496	Magnetic double-network hydrogels for tissue hyperthermia and drug release. Journal of Materials Chemistry B, 2019, 7, 1311-1321.	2.9	67
497	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
498	Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution. Carbohydrate Polymers, 2019, 211, 1-10.	5.1	77
499	Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. Accounts of Chemical Research, 2019, 52, 316-325.	7.6	211
500	Metallogels: Availability, Applicability, and Advanceability. Advanced Materials, 2019, 31, e1806204.	11.1	112
501	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
502	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
503	Realizing the potential of dielectric elastomer artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2476-2481.	3.3	276
504	Tearing a hydrogel of complex rheology. Journal of the Mechanics and Physics of Solids, 2019, 125, 749-761.	2.3	39
505	Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy, 2019, 59, 237-257.	8.2	151
506	Effects of thermal stress on the failure of soft matter with sharp–hard inclusion. Acta Mechanica, 2019, 230, 1843-1853.	1.1	4
507	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	18.7	1,267
508	Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chemical Society Reviews, 2019, 48, 1741-1786.	18.7	117
509	Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems. Materials Horizons, 2019, 6, 538-545.	6.4	84
510	3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 767-780.	6.4	165

#	Article	IF	CITATIONS
511	Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 21895-21903.	4.0	80
512	Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sensors and Actuators B: Chemical, 2019, 295, 159-167.	4.0	199
513	Stretchable Transparent Conductors: from Micro/Macromechanics to Applications. Advanced Materials, 2019, 31, e1900756.	11.1	52
514	Conductive Tough Hydrogels with a Staggered Ion-Coordinating Structure for High Self-Recovery Rate. ACS Applied Materials & Interfaces, 2019, 11, 24598-24608.	4.0	55
515	lon-to-ion amplification through an open-junction ionic diode. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13807-13815.	3.3	46
516	Experimental Investigations on the Out-of-Plane Sub-harmonic Vibration of a Circular Dielectric Elastomer Actuator. Acta Mechanica Solida Sinica, 2019, 32, 591-598.	1.0	9
517	Tough and recoverable tripleâ€network hydrogels based on multiple pairs of toughing mechanisms with excellent ionic conductivity as stable strain sensors. Polymer Engineering and Science, 2019, 59, 1657-1666.	1.5	20
518	Polyacrylamide hydrogels. I. Network imperfection. Journal of the Mechanics and Physics of Solids, 2019, 131, 43-55.	2.3	128
519	A review of electro-stimulated gels and their applications: Present state and future perspectives. Materials Science and Engineering C, 2019, 103, 109852.	3.8	30
520	A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human–Machine Interfaces. ACS Nano, 2019, 13, 7107-7116.	7.3	137
521	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	4.0	76
522	Materials that make robots smart. International Journal of Robotics Research, 2019, 38, 1338-1351.	5.8	16
523	Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Applied Materials & Interfaces, 2019, 11, 23632-23638.	4.0	154
524	3D Pixel Mechanical Metamaterials. Advanced Materials, 2019, 31, e1900548.	11.1	145
525	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	18.7	367
526	Nanocomposite Hydrogels with Optic–Sonic Transparency and Hydroacoustic-Sensitive Conductivity for Potential Antiscouting Sonar. ACS Applied Materials & Interfaces, 2019, 11, 20386-20393.	4.0	17
527	Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy, 2019, 62, 259-267.	8.2	132
528	Tunable Dual Temperature–Pressure Sensing and Parameter Self-Separating Based on Ionic Hydrogel via Multisynergistic Network Design. ACS Applied Materials & Interfaces, 2019, 11, 21049-21057.	4.0	95

#	Article	IF	CITATIONS
529	A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1900128.	3.0	85
530	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	10.2	74
531	A Liquidâ€Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials. Advanced Materials, 2019, 31, e1900663.	11.1	204
532	Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules, 2019, 20, 2096-2104.	2.6	171
533	Real time rheological study of first network effects on the in situ polymerized semi-interpenetrating hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 111-117.	2.3	2
534	On the nonlinear dynamics of a circular dielectric elastomer oscillator. Smart Materials and Structures, 2019, 28, 075020.	1.8	15
535	Highly Stretchable Organogel Ionic Conductors with Extreme-Temperature Tolerance. Chemistry of Materials, 2019, 31, 3257-3264.	3.2	75
536	Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications. Proceedings of the IEEE, 2019, 107, 2185-2197.	16.4	55
537	Hydrogel 3D printing with the capacitor edge effect. Science Advances, 2019, 5, eaau8769.	4.7	43
538	Electroactive polymer (EAP) actuators—background review. Mechanics of Soft Materials, 2019, 1, 1.	0.4	91
539	3D Printing of Multifunctional Hydrogels. Advanced Functional Materials, 2019, 29, 1900971.	7.8	225
540	Stretchable and transparent ionic diode and logic gates. Extreme Mechanics Letters, 2019, 28, 81-86.	2.0	41
541	Pure PEDOT:PSS hydrogels. Nature Communications, 2019, 10, 1043.	5.8	528
542	Stretchable materials of high toughness and low hysteresis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5967-5972.	3.3	253
543	Facile Fabrication of a Self-Healing Temperature-Sensitive Sensor Based on Ionogels and Its Application in Detection Human Breath. Nanomaterials, 2019, 9, 343.	1.9	16
544	Highly stretchable, ionic conductive and selfâ€recoverable zwitterionic polyelectrolyteâ€based hydrogels by introducing multiple supramolecular sacrificial bonds in double network. Journal of Applied Polymer Science, 2019, 136, 47783.	1.3	43
545	Mechanicalâ€ŧoâ€Electrical Energy Conversion with Variable Electric Double Layers. Energy Technology, 2019, 7, 1801007.	1.8	8
546	Printing Hydrogels and Elastomers in Arbitrary Sequence with Strong Adhesion. Advanced Functional Materials, 2019, 29, 1901721.	7.8	101

#	Article	IF	CITATIONS
547	A nonequilibrium thermodynamics approach to the transient properties of hydrogels. Journal of the Mechanics and Physics of Solids, 2019, 127, 94-110.	2.3	38
548	Janus Soft Actuators with On–Off Switchable Behaviors for Controllable Manipulation Driven by Oil. ACS Applied Materials & Interfaces, 2019, 11, 13742-13751.	4.0	16
549	Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel–Elastomer Ionic Sensors for Hand-Motion Monitoring. Soft Robotics, 2019, 6, 368-376.	4.6	98
550	Stretchable sensors for environmental monitoring. Applied Physics Reviews, 2019, 6, .	5.5	83
551	Zwitterionic Copolymerâ€Supported Ionogel Electrolytes: Impacts of Varying the Zwitterionic Group and Ionic Liquid Identities. ChemElectroChem, 2019, 6, 2482-2488.	1.7	22
552	Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460.	6.6	135
553	Characterization of stress softening and self-healing in a double network hydrogel. Results in Physics, 2019, 12, 1826-1833.	2.0	11
554	Self-healing soft electronics. Nature Electronics, 2019, 2, 144-150.	13.1	464
555	Diffusive Adhesives for Waterâ€Rich Materials: Strong and Tunable Adhesion Beyond the Interface. Chemistry - A European Journal, 2019, 25, 8085-8091.	1.7	2
556	An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mechanics Letters, 2019, 29, 100449.	2.0	61
557	Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses. ACS Applied Materials & Interfaces, 2019, 11, 15071-15078.	4.0	22
558	Superior Stretchable Conductors by Electroless Plating of Copper on Knitted Fabrics. ACS Applied Electronic Materials, 2019, 1, 397-406.	2.0	37
559	Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Applied Materials & Interfaces, 2019, 11, 10328-10336.	4.0	126
560	Ultrastretchable, Super Tough, and Rapidly Recoverable Nanocomposite Doubleâ€Network Hydrogels by Dual Physically Hydrogen Bond and Vinylâ€Functionalized Silica Nanoparticles Macroâ€Crosslinking. Macromolecular Materials and Engineering, 2019, 304, 1800737.	1.7	17
561	Advances in Alternating Current Electroluminescent Devices. Advanced Optical Materials, 2019, 7, 1801154.	3.6	92
562	PEDOT:PSS/Polyacrylamide Nanoweb: Highly Reliable Soft Conductors with Swelling Resistance. ACS Applied Materials & amp; Interfaces, 2019, 11, 10099-10107.	4.0	13
563	Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polymer, 2019, 167, 154-158.	1.8	38
564	Tanninâ€Tethered Gelatin Hydrogels with Considerable Selfâ€Healing and Adhesive Performances. Macromolecular Materials and Engineering, 2019, 304, 1800664.	1.7	59

ARTICLE IF CITATIONS # Flawâ€Insensitive Hydrogels under Static and Cyclic Loads. Macromolecular Rapid Communications, 565 2.0 48 2019, 40, e1800883. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for 2.8 19 micro-vibration detection in non-contact mode. Nanoscale, 2019, 11, 5737-5745. Flexible fiber-based optoelectronics for neural interfaces. Chemical Society Reviews, 2019, 48, 567 18.7 100 1826-1852. All-Transparent Stretchable Electrochromic Supercapacitor Wearable Patch Device. ACS Nano, 2019, 568 13, 3141-3150. Superior electrostrictive strain achieved under low electric fields in relaxor ferroelectric polymers. 569 5.2 43 Journal of Materials Chemistry A, 2019, 7, 5201-5208. Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2019, 11, 4.0 9405-9414. 571 Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82. 13.1 424 Oscillation of Dielectric Elastomers Resonator with Strain-Stiffening Effect., 2019,,. 573 Bio-inspired Soft Robot Driven by Transparent Artificial Muscle., 2019, , . 1 High-voltage applications of the triboelectric nanogeneratorâ€"Opportunities brought by the unique 574 1.3 energy technology. MRS Energy & Sustainability, 2019, 6, 1. Design and experimental validation of an annular dielectric elastomer actuator for active vibration 575 4.4 33 isolation. Mechanical Systems and Signal Processing, 2019, 134, 106367. Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 30 2019, 11, 1873. Electroluminescent soft elastomer actuators with adjustable luminance and strain. Soft Matter, 2019, 577 1.2 4 15, 7996-8000. Flexible, transparent ion-conducting membranes from two-dimensional nanoclays of intrinsic conductivity. Journal of Materials Chemistry A, 2019, 7, 25657-25664. 5.2 14 Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing 579 3.8 21 and emissive architectures. NPG Asia Materials, 2019, 11, . A Flexible Loudspeaker Using the Movement of Liquid Metal Induced by Electrochemically Controlled 580 5.2 23 Interfacial Tension. Small, 2019, 15, e1905263. X-ray Photoelectron Spectroscopy with Electrical Modulation Can Be Used to Probe Electrical 581 1.6 7 Properties of Liquids and Their Interfaces at Different Stages. Langmuir, 2019, 35, 16989-16999. Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Polymers, 2019, 11, 2067.

#	Article	IF	CITATIONS
583	Phenolic Building Blocks for the Assembly of Functional Materials. Angewandte Chemie - International Edition, 2019, 58, 1904-1927.	7.2	302
584	Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Applied Catalysis B: Environmental, 2019, 241, 256-269.	10.8	440
585	Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angewandte Chemie, 2019, 131, 1920-1945.	1.6	34
586	Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials, 2019, 7, .	2.2	97
587	Composite bilayer films with organic compound-triggered bending properties. Chinese Journal of Chemical Engineering, 2019, 27, 2587-2595.	1.7	4
588	Recent Advances in Transparent Electronics with Stretchable Forms. Advanced Materials, 2019, 31, e1804690.	11.1	114
589	Mapping the nonlinear crack tip deformation field in soft elastomer with a particle tracking method. Journal of the Mechanics and Physics of Solids, 2019, 125, 326-346.	2.3	45
590	Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 2364-2373.	4.0	180
591	Highly Conductive Ag Paste for Recoverable Wiring and Reliable Bonding Used in Stretchable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 3231-3240.	4.0	27
592	Multifunctional "Hydrogel Skins―on Diverse Polymers with Arbitrary Shapes. Advanced Materials, 2019, 31, e1807101.	11.1	258
593	Untethered Stretchable Displays for Tactile Interaction. Soft Robotics, 2019, 6, 142-149.	4.6	11
594	Flexible Electronics: Stretchable Electrodes and Their Future. Advanced Functional Materials, 2019, 29, 1805924.	7.8	510
595	Agile and Resilient Insect-Scale Robot. Soft Robotics, 2019, 6, 133-141.	4.6	93
596	Electroactive Soft Photonic Devices for the Synesthetic Perception of Color and Sound. Advanced Materials, 2019, 31, e1804080.	11.1	64
597	Conductive double-crosslinked network hydrogel with superior stretchability and self-healing ability. Materials Research Express, 2019, 6, 105712.	0.8	10
598	Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Advanced Functional Materials, 2019, 29, 1806220.	7.8	602
599	Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.	8.2	205
600	Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Accounts of Chemical Research, 2019, 52, 288-296.	7.6	157

#	Article	IF	CITATIONS
601	Mechanics of electrophoresis-induced reversible hydrogel adhesion. Journal of the Mechanics and Physics of Solids, 2019, 125, 1-21.	2.3	26
602	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
603	A Generic Soft Encapsulation Strategy for Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1806630.	7.8	83
604	A Proteinâ€Based, Waterâ€Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics. Advanced Science, 2019, 6, 1801241.	5.6	34
605	Balloon dielectric elastomer actuator speaker. Applied Acoustics, 2019, 148, 238-245.	1.7	49
606	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	8.2	123
607	Fluid-driven intrinsically soft robots. , 2019, , 61-84.		8
608	Mechanics of fluid-elastomer systems in soft robotics. , 2019, , 425-448.		5
609	Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800509.	2.6	48
610	Advances in Polymeric Materials for Electromechanical Devices. Macromolecular Rapid Communications, 2019, 40, e1800521.	2.0	47
611	Elastic Electroadhesion with Rapid Release by Integrated Resonant Vibration. Advanced Materials Technologies, 2019, 4, 1800378.	3.0	48
612	Effect of anisotropy on the dynamic electromechanical instability of a dielectric elastomer actuator. Smart Materials and Structures, 2019, 28, 015006.	1.8	31
613	X-Mechanics—An endless frontier. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	17
614	High-Precision Tracking Control of a Soft Dielectric Elastomer Actuator With Inverse Viscoelastic Hysteresis Compensation. IEEE/ASME Transactions on Mechatronics, 2019, 24, 36-44.	3.7	65
615	Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 1957-1975.	1.1	37
616	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
617	A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides. Advanced Functional Materials, 2019, 29, 1806909.	7.8	52
618	Photolithographically Patterned Hydrogels with Programmed Deformations. Chemistry - an Asian Journal, 2019, 14, 94-104.	1.7	25

#	Article	IF	CITATIONS
619	Bioinspired Design of Vascular Artificial Muscle. Advanced Materials Technologies, 2019, 4, 1800244.	3.0	86
620	Engineering hydrogel viscoelasticity. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 162-167.	1.5	70
621	Mechanisms of electromechanical wrinkling for highly stretched substrate-free dielectric elastic membrane. Journal of the Mechanics and Physics of Solids, 2019, 122, 520-537.	2.3	21
622	Remarkable improvement of the electro-mechanical properties of polydimethylsiloxane elastomers through the combined usage of glycerol and pyridinium-based ionic liquids. Polymer-Plastics Technology and Materials, 2020, 59, 271-281.	0.6	5
623	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
624	Textile-fiber-embedded multiluminescent devices: A new approach to soft display systems. Materials Today, 2020, 32, 46-58.	8.3	39
625	Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 2020, 382, 122832.	6.6	328
626	Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	8.3	146
627	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	7.8	122
628	Super Bulk and Interfacial Toughness of Amylopectin Reinforced PAAm/PVA Doubleâ€Network Hydrogels via Multiple Hydrogen Bonds. Macromolecular Materials and Engineering, 2020, 305, 1900450.	1.7	14
629	Thin-film bidirectional transducers for haptic wearables. Sensors and Actuators A: Physical, 2020, 303, 111655.	2.0	5
630	Soft Haptic Actuator Based on Knitted PVC Gel Fabric. IEEE Transactions on Industrial Electronics, 2020, 67, 677-685.	5.2	29
631	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	7.8	247
632	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	11.1	232
633	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	11.1	200
634	Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. National Science Review, 2020, 7, 342-354.	4.6	68
635	Electric field concentration in hydrogel–elastomer devices. Extreme Mechanics Letters, 2020, 34, 100597.	2.0	7
636	Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy, 2020, 67, 104206.	8.2	76

#	Article	IF	CITATIONS
637	Transparent Flexible Polymer Actuator with Enhanced Output Force Enabled by Conductive Nanowires Interlayer. Advanced Materials Technologies, 2020, 5, 1900762.	3.0	15
638	Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor. Materials Science and Engineering C, 2020, 107, 110310.	3.8	51
639	Soft sensor for full dentition dynamic bite force. Extreme Mechanics Letters, 2020, 34, 100592.	2.0	13
640	A Fractal-designed stretchable and transparent microsupercapacitor as a Skin-attachable energy storage device. Chemical Engineering Journal, 2020, 387, 124076.	6.6	58
641	A soft sandwich structure enables voltage-induced actuation of liquid metal embedded elastomers. AIP Advances, 2020, 10, 015016.	0.6	8
642	Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior. Polymer, 2020, 188, 122147.	1.8	25
643	Radiation-assistant preparation of highly conductive, transparent and self-healing hydrogels with triple-network structure. Polymer, 2020, 188, 122156.	1.8	22
644	Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 2020, 32, 874-881.	3.2	138
645	Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Materials Horizons, 2020, 7, 919-927.	6.4	289
646	Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Materials Horizons, 2020, 7, 912-918.	6.4	248
647	A review on recent advances in polymer and peptide hydrogels. Soft Matter, 2020, 16, 1404-1454.	1.2	267
648	Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nature Communications, 2020, 11, 209.	5.8	426
649	Numerical fracture analysis for chemo-mechanical coupling problems in multilayered porous media. International Journal of Mechanical Sciences, 2020, 172, 105412.	3.6	5
650	A pseudo-elasticity theory to model the strain-softening behavior of tough hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 137, 103832.	2.3	38
651	Highly Porous, Biocompatible Tough Hydrogels, Processable via Gel Fiber Spinning and 3D Gel Printing. Advanced Materials Interfaces, 2020, 7, 1901770.	1.9	15
652	Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors. Advanced Materials, 2020, 32, e1906679.	11.1	119
653	High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67, 104297.	8.2	64
654	Toughening anti-overswelling semicrystalline polymer hydrogels with ultra-small hydrophobic nanoparticles. Polymer, 2020, 186, 122080.	1.8	5

	CITATION		
#	Article	IF	CITATIONS
655	High‣train Peanoâ€HASEL Actuators. Advanced Functional Materials, 2020, 30, 1908821.	7.8	50
656	Specialty Tough Hydrogels and Their Biomedical Applications. Advanced Healthcare Materials, 2020, 9, e1901396.	3.9	120
657	Hollow Polyaniline Microsphere Functionalized Paper with Multimodal Sensitivity to Strain, Humidity, and Pressure. ACS Applied Electronic Materials, 2020, 2, 247-253.	2.0	6
658	Zwitterionic Osmolyteâ€Based Hydrogels with Antifreezing Property, High Conductivity, and Stable Flexibility at Subzero Temperature. Advanced Functional Materials, 2020, 30, 1907986.	7.8	201
659	Self-standing Substrates. Engineering Materials, 2020, , .	0.3	2
660	A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal, 2020, 392, 123733.	6.6	212
661	Highly sensitive ionic pressure sensor based on concave meniscus for electronic skin. Journal of Micromechanics and Microengineering, 2020, 30, 015009.	1.5	20
662	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	11.1	126
663	Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 332-341.	2.0	9
664	Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. ACS Applied Materials & Interfaces, 2020, 12, 1577-1587.	4.0	105
665	Ionically Conductive Pastes as Conformable Collector for Transparent, Nonplanar Triboelectric Devices. Advanced Electronic Materials, 2020, 6, 1900668.	2.6	7
666	Highly stretchable, recyclable, notch-insensitive, and conductive polyacrylonitrile-derived organogel. Journal of Materials Chemistry A, 2020, 8, 20346-20353.	5.2	36
667	A bio-inspired soft-rigid hybrid actuator made of electroactive dielectric elastomers. Applied Materials Today, 2020, 21, 100814.	2.3	12
668	Skin-Inspired Hydrogel-Elastomer Hybrid Forms a Seamless Interface by Autonomous Hetero-Self-Healing. ACS Applied Polymer Materials, 2020, 2, 5352-5357.	2.0	25
669	lonotronic Luminescent Fibers, Fabrics, and Other Configurations. Advanced Materials, 2020, 32, e2005545.	11.1	63
670	Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nature Communications, 2020, 11, 5166.	5.8	148
671	Highly sensitive, stretchable and durable strain sensors based on conductive <scp>doubleâ€network</scp> polymer hydrogels. Journal of Polymer Science, 2020, 58, 3069-3081.	2.0	33
672	A Conductive, Self-Healing Hybrid Hydrogel with Excellent Water-Retention and Thermal Stability by Introducing Ethylene Glycol as a Crystallization Inhibitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125443.	2.3	28

#	ARTICLE	IF	CITATIONS
673	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
674	Bioinspired Anisotropic Chitosan Hybrid Hydrogel. ACS Applied Bio Materials, 2020, 3, 6959-6966.	2.3	19
675	Hydrogelâ^'Solid Hybrid Materials for Biomedical Applications Enabled by Surfaceâ€Embedded Radicals. Advanced Functional Materials, 2020, 30, 2004599.	7.8	26
676	Facile formation of agarose hydrogel and electromechanical responses as electro-responsive hydrogel materials in actuator applications. Carbohydrate Polymers, 2020, 247, 116709.	5.1	41
677	Fabrication and extrusion of the PAAm-SAlg hydrogels with magnetic particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125280.	2.3	9
678	Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator. ACS Applied Materials & Interfaces, 2020, 12, 35464-35474.	4.0	80
679	Ionic spiderwebs. Science Robotics, 2020, 5, .	9.9	38
680	Reconfigurable and tunable photo-controlled hydrogel using hydrogen bonding to drive molecule self-assembly and cross-linking. Journal of Materials Science, 2020, 55, 14740-14750.	1.7	8
681	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	5.3	129
682	Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure. Sensors and Actuators A: Physical, 2020, 313, 112173.	2.0	10
683	Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Scientific Reports, 2020, 10, 11727.	1.6	34
684	A Universal Strategy for Tough Adhesion of Wet Soft Material. Advanced Functional Materials, 2020, 30, 2003207.	7.8	113
685	Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezingâ€Tolerant Ionic Conductive Organohydrogel for Multiâ€Functional Sensors. Advanced Functional Materials, 2020, 30, 2003430.	7.8	477
686	Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Science Advances, 2020, 6, .	4.7	124
687	Supramolecular hydrogels: Mechanical strengthening with dynamics. Polymer, 2020, 210, 122993.	1.8	41
688	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter, 2020, 3, 1923-1947.	5.0	48
689	Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. Journal of Materials Chemistry A, 2020, 8, 25390-25401.	5.2	114
690	Toward Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystal–Agarose Hydrogel. ACS Applied Materials & Interfaces, 2020, 12, 52182-52191.	4.0	28

#	Article	IF	CITATIONS
691	Stretchable distributed fiber-optic sensors. Science, 2020, 370, 848-852.	6.0	246
692	Hydrogel soft robotics. Materials Today Physics, 2020, 15, 100258.	2.9	216
693	High- <i>k</i> , Ultrastretchable Self-Enclosed Ionic Liquid-Elastomer Composites for Soft Robotics and Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2020, 12, 37561-37570.	4.0	51
694	Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37597-37606.	4.0	92
695	Autonomous Surface Reconciliation of a Liquidâ€Metal Conductor Micropatterned on a Deformable Hydrogel. Advanced Materials, 2020, 32, e2002178.	11.1	110
696	Topological adhesion II. Stretchable adhesion. Extreme Mechanics Letters, 2020, 40, 100891.	2.0	25
697	Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews, 2020, 120, 9482-9553.	23.0	49
698	Bioinspired Color-Changeable Organogel Tactile Sensor with Excellent Overall Performance. ACS Applied Materials & Interfaces, 2020, 12, 49866-49875.	4.0	31
699	Bioinspired Hydrogel–Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 51036-51043.	4.0	20
700	Bioinspired metagel with broadband tunable impedance matching. Science Advances, 2020, 6, .	4.7	31
701	Modeling the response characteristics of photo-sensitive hydrogel electrolytes in Hofmeister salt solution for the development of smart energy storage devices. Sustainable Energy and Fuels, 2020, 4, 6112-6124.	2.5	1
702	Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances, 2020, 6, .	4.7	99
703	An Implantable Ionic Wireless Power Transfer System Facilitating Electrosynthesis. ACS Nano, 2020, 14, 11743-11752.	7.3	10
704	Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Materials Horizons, 2020, 7, 2994-3004.	6.4	103
705	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1-10.	1.5	10
706	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	3.3	244
707	Dual Cross-Linked Ion-Based Temperature-Responsive Conductive Hydrogels with Multiple Sensors and Steady Electrocardiogram Monitoring. Chemistry of Materials, 2020, 32, 7670-7678.	3.2	54
708	Stretchable, Phaseâ€Transformable Ionogels with Reversible Ionic Conductor–Insulator Transition. Advanced Functional Materials, 2020, 30, 2005079.	7.8	37

#	Article	IF	CITATIONS
709	Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Advanced Functional Materials, 2020, 30, 2005703.	7.8	85
710	Customizable and stretchable fibre-shaped electroluminescent devices <i>via</i> mulitcore-shell direct ink writing. Journal of Materials Chemistry C, 2020, 8, 15092-15098.	2.7	15
711	Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 2020, 8, 8972-8991.	2.9	118
712	A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. Soft Matter, 2020, 16, 8394-8399.	1.2	21
713	Selfâ€Contained Focusâ€Tunable Lenses Based on Transparent and Conductive Gels. Macromolecular Materials and Engineering, 2020, 305, 2000393.	1.7	6
714	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	2.8	9
715	Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays. Cell Reports Physical Science, 2020, 1, 100213.	2.8	22
716	Quantifying Rate- and Temperature-Dependent Molecular Damage in Elastomer Fracture. Physical Review X, 2020, 10, .	2.8	35
717	Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 52070-52081.	4.0	57
718	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	4.0	79
719	Bioinspired Selfâ€Healing Human–Machine Interactive Touch Pad with Pressure‧ensitive Adhesiveness on Targeted Substrates. Advanced Materials, 2020, 32, e2004290.	11.1	210
720	Protein Gel Phase Transition: Toward Superiorly Transparent and Hysteresisâ€Free Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910080.	7.8	30
721	Dual-primer adhesion of polymer networks of dissimilar chemistries. Extreme Mechanics Letters, 2020, 38, 100756.	2.0	14
722	Hydrophilic/Hydrophobic Heterogeneity Anti-Biofouling Hydrogels with Well-Regulated Rehydration. ACS Applied Materials & Interfaces, 2020, 12, 25316-25323.	4.0	65
723	Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proceedings of the United States of America, 2020, 117, 11247-11256.	3.3	51
724	Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dynamics, 2020, 100, 2225-2239.	2.7	26
725	Electromechanical properties of soft dissipative dielectric elastomer actuators influenced by electrode thickness and conductivity. Journal of Applied Physics, 2020, 127, .	1.1	6
726	One-step preparation of a highly transparent, stretchable and conductive ionic nanocomposite hydrogel. Chemical Physics Letters, 2020, 754, 137667.	1.2	8

#	Article	IF	CITATIONS
727	Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion. Extreme Mechanics Letters, 2020, 39, 100797.	2.0	10
728	Synthesis of highly conductive hydrogel with high strength and super toughness. Polymer, 2020, 202, 122643.	1.8	40
729	Tunable ionic pressure sensor based on 3D printed ordered hierarchical mesh structure. Sensors and Actuators A: Physical, 2020, 308, 112012.	2.0	11
730	Adaptive Deformation of Ionic Domains in Hydrogel Enforcing Dielectric Coupling for Sensitive Response to Mechanical Stretching. Advanced Intelligent Systems, 2020, 2, 2000016.	3.3	0
731	Large actuation in an electromechanical actuator using gel, elastomer, and oil. International Journal of Non-Linear Mechanics, 2020, 124, 103499.	1.4	5
732	Inkjetâ€Printed Iontronics for Transparent, Elastic, and Strainâ€Insensitive Touch Sensing Matrix. Advanced Intelligent Systems, 2020, 2, 2000088.	3.3	15
733	Performance characterization of ionic-hydrogel based strain sensors. Science China Technological Sciences, 2020, 63, 923-930.	2.0	12
734	Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS Applied Materials & Interfaces, 2020, 12, 27545-27554.	4.0	54
735	Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy. Advanced Materials, 2020, 32, e2001693.	11.1	77
736	Flame-Retardant and Sustainable Silk Ionotronic Skin for Fire Alarm Systems. , 2020, 2, 712-720.		61
737	Design, fabrication and characterization of soft sensors through EGaIn for soft pneumatic actuators. Measurement: Journal of the International Measurement Confederation, 2020, 164, 107996.	2.5	10
738	Conductive Hydrogels—A Novel Material: Recent Advances and Future Perspectives. Journal of Agricultural and Food Chemistry, 2020, 68, 7269-7280.	2.4	60
739	Bioinspired Ionic Sensory Systems: The Successor of Electronics. Advanced Materials, 2020, 32, e2000218.	11.1	99
740	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversible ompressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	5.6	64
741	Ionically Conductive Hydrogel with Fast Selfâ€Recovery and Low Residual Strain as Strain and Pressure Sensors. Macromolecular Rapid Communications, 2020, 41, e2000185.	2.0	62
742	Influence of Hydrogen Bond Donor Identity and Intentional Water Addition on the Properties of Gelatin-Supported Deep Eutectic Solvent Gels. Journal of Physical Chemistry B, 2020, 124, 5986-5992.	1.2	19
743	3D printed deformable sensors. Science Advances, 2020, 6, eaba5575.	4.7	118
744	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51

#	Article	IF	CITATIONS
745	Super Tough and Self-Healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and Its Applications as Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 31975-31983.	4.0	47
746	Effects of pre-stretch on the oscillation and stability of dielectric elastomers. International Journal of Mechanical Sciences, 2020, 185, 105879.	3.6	16
747	Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Advanced Materials Technologies, 2020, 5, 2000430.	3.0	45
748	Coupled theory for transient responses of conductive hydrogels with multi-stimuli. Journal of the Mechanics and Physics of Solids, 2020, 143, 104055.	2.3	37
749	A flexible semitransparent dual-electrode hydrogel based triboelectric nanogenerator with tough interfacial bonding and high energy output. Journal of Materials Chemistry C, 2020, 8, 5752-5760.	2.7	28
750	High-performance double-network ionogels enabled by electrostatic interaction. RSC Advances, 2020, 10, 7424-7431.	1.7	9
751	Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors, 2020, 20, 1641.	2.1	13
752	Highly stretchable and self-healing double network hydrogel based on polysaccharide and polyzwitterion for wearable electric skin. Polymer, 2020, 194, 122381.	1.8	29
753	Flexible and Transparent High-Dielectric-Constant Polymer Films Based on Molecular Ferroelectric-Modified Poly(Vinyl Alcohol). , 2020, 2, 453-460.		21
754	Ionogel Microphones Detect Underwater Sound with Directivity and Exceptional Stability. ACS Applied Electronic Materials, 2020, 2, 1295-1303.	2.0	6
755	Stretchable Cephalopodâ€Inspired Multimodal Camouflage Systems. Advanced Materials, 2020, 32, e1905717.	11.1	62
757	Materials as Machines. Advanced Materials, 2020, 32, e1906564.	11.1	213
758	Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chemical Engineering Journal, 2020, 393, 124685.	6.6	98
759	Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 2020, 76, 105064.	8.2	118
760	Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 13935-13941.	5.2	140
761	A controllable oil-triggered actuator with aligned microchannel design for implementing precise deformation. Nanoscale, 2020, 12, 15426-15434.	2.8	3
762	The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromolecular Materials and Engineering, 2020, 305, 2000285.	1.7	29
763	Compliant characteristics of carbon nanotube electrodes for electromechanical applications. Thin Solid Films, 2020, 706, 138015.	0.8	1

#	Article	IF	CITATIONS
764	3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2020, 12, 34235-34244.	4.0	105
765	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	2.0	11
766	Temperature Sensor with a Water-Dissolvable Ionic Gel for Ionic Skin. ACS Applied Materials & Interfaces, 2020, 12, 36449-36457.	4.0	59
767	Highly Tough, Stretchable, Selfâ€Adhesive and Strainâ€Sensitive DNAâ€Inspired Hydrogels for Monitoring Human Motion. Chemistry - A European Journal, 2020, 26, 11604-11613.	1.7	13
768	Strain and pressure sensing tubes based on conductive fluids and their applications on a flexible finger. Journal of Micromechanics and Microengineering, 2020, 30, 105010.	1.5	0
769	Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions. Chemistry of Materials, 2020, 32, 6310-6317.	3.2	93
770	Transparent and Flexible Electronics Assembled with Metallic Nanowire-Layered Nondrying Glycerogel. ACS Applied Materials & amp; Interfaces, 2020, 12, 13040-13050.	4.0	16
771	Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions. Soft Matter, 2020, 16, 2795-2802.	1.2	7
772	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	5.2	46
773	Nonlinear dynamic analysis of aniso-visco-hyperelastic dielectric elastomer actuators. Smart Materials and Structures, 2020, 29, 055014.	1.8	23
774	Strain sensors based on conducting poly(acrylamide) hydrogels. MRS Advances, 2020, 5, 917-925.	0.5	1
775	Failure criterion for highly stretchable elastomers under triaxial loading. Extreme Mechanics Letters, 2020, 35, 100645.	2.0	2
776	Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ€Free Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252.	7.8	114
777	Ultrasound-Driven Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Hydrogel Generator. ACS Nano, 2020, 14, 3199-3207.	7.3	91
778	Hydrophobic Ionic Liquid Gel-Based Triboelectric Nanogenerator: Next Generation of Ultrastable, Flexible, and Transparent Power Sources for Sustainable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 15012-15022.	4.0	45
779	lonoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367, 773-776.	6.0	188
780	Recent progress in silver nanowire networks for flexible organic electronics. Journal of Materials Chemistry C, 2020, 8, 4636-4674.	2.7	122
781	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0

#	Article	IF	CITATIONS
782	Biomedical applications of electrical stimulation. Cellular and Molecular Life Sciences, 2020, 77, 2681-2699.	2.4	75
783	Electrostatic field induced coupling actuation mechanism for dielectric elastomer actuators. Extreme Mechanics Letters, 2020, 35, 100638.	2.0	6
784	Material aspects of triboelectric energy generation and sensors. NPG Asia Materials, 2020, 12, .	3.8	200
785	A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures <i>via</i> laser marking. Journal of Materials Chemistry C, 2020, 8, 3088-3096.	2.7	54
786	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
787	Topological prime. Science China Technological Sciences, 2020, 63, 1314-1322.	2.0	9
788	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
789	Water-matrix interaction at the drop-drop interface during drop-on-demand printing of hydrogels. International Journal of Heat and Mass Transfer, 2020, 150, 119327.	2.5	2
790	Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Advanced Materials, 2020, 32, e1906994.	11.1	207
791	A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback. Advanced Materials Technologies, 2020, 5, 1900864.	3.0	8
792	3D electronic and photonic structures as active biological interfaces. InformaÄnÃ-Materiály, 2020, 2, 527-552.	8.5	17
793	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
794	Incremental harmonic balance method for periodic forced oscillation of a dielectric elastomer balloon. Applied Mathematics and Mechanics (English Edition), 2020, 41, 459-470.	1.9	13
795	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	3.3	24
796	Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317.	0.4	4
797	Recent advances in designing conductive hydrogels for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 843-865.	8.5	150
798	Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance. Composites Science and Technology, 2020, 195, 108173.	3.8	55
799	Ultrasensitive and Stretchable Temperature Sensors Based on Thermally Stable and Self-Healing Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 19069-19079.	4.0	145

#	Article	IF	CITATIONS
800	High-performance silicon nanocomposite based ionic actuators. Journal of Materials Chemistry A, 2020, 8, 9228-9238.	5.2	16
801	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.	4.4	21
802	Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materials Horizons, 2020, 7, 1828-1833.	6.4	134
803	Recent Process of Flexible Transistorâ€ S tructured Memory. Small, 2021, 17, e1905332.	5.2	69
804	Nonlinear dynamics of a conical dielectric elastomer oscillator with switchable mono to bi-stability. International Journal of Solids and Structures, 2021, 221, 18-30.	1.3	25
805	Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. , 2021, , .		13
806	Functional hydrogel coatings. National Science Review, 2021, 8, nwaa254.	4.6	191
807	Electrical bioadhesive interface for bioelectronics. Nature Materials, 2021, 20, 229-236.	13.3	361
808	Effect of electric field on storage modulus of dielectric composites. Journal of Applied Polymer Science, 2021, 138, 50031.	1.3	3
809	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	11.1	131
810	Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy, 2021, 79, 105463.	8.2	104
811	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.	11.1	48
812	4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials. Advanced Materials Technologies, 2021, 6, .	3.0	30
813	Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. Science China Materials, 2021, 64, 942-952.	3.5	105
814	Magnetic double-network composite capable of large recoverable deformation. Soft Matter, 2021, 17, 554-562.	1.2	2
815	Stability and decay of surface electrostatic charges in liquids. Nano Energy, 2021, 81, 105618.	8.2	13
816	Improving Dielectric Constant of Polymers through Liquid Electrolyte Inclusion. Advanced Functional Materials, 2021, 31, 2007863.	7.8	25
817	Bioâ€Inspired Ionic Skin for Theranostics. Advanced Functional Materials, 2021, 31, 2008020.	7.8	99

#	Article	IF	CITATIONS
818	HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities. Advanced Materials, 2021, 33, e2003375.	11.1	97
819	Multi-ionic effects on the equilibrium and dynamic properties of electric double layers based on the Bikerman correction. Journal of Electroanalytical Chemistry, 2021, 880, 114923.	1.9	3
820	Utilization of commodity thermoplastic polyethylene (PE) by enhanced sensing performance with liquid phase electrolyte for a flexible and transparent triboelectric tactile sensor. Sustainable Materials and Technologies, 2021, 27, e00239.	1.7	8
821	A review of the application of active noise control technologies on windows: Challenges and limitations. Applied Acoustics, 2021, 174, 107753.	1.7	16
822	Biomimetic Hydrophilic Islands for Integrating Elastomers and Hydrogels of Regulable Curved Profiles. ACS Applied Electronic Materials, 2021, 3, 668-675.	2.0	9
823	Flexible electrostatic transducer array with displacement control for haptic sensing and actuation. Sensors and Actuators A: Physical, 2021, 317, 112452.	2.0	0
824	Stretchable electrodes for highly flexible electronics. , 2021, , 479-500.		2
825	Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, e2003088.	11.1	139
826	Solid–Liquid Composites for Soft Multifunctional Materials. Advanced Functional Materials, 2021, 31,	7.8	68
	•		
827	Emerging Applications. , 2021, , 179-229.		1
827 828	Emerging Applications. , 2021, , 179-229. Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839.	1.2	1
		1.2	
828	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and		7
828 829	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption. Actuators, 2021, 10, 16. <i>In situ</i> gelation of aqueous sulfuric acid solution for fuel cells. RSC Advances, 2021, 11,	1.2	7 4
828 829 830	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption. Actuators, 2021, 10, 16. <i>>In situ </i> > gelation of aqueous sulfuric acid solution for fuel cells. RSC Advances, 2021, 11, 22461-22466. Touch-sensing fabric encapsulated with hydrogel for human–computer interaction. Soft Matter, 2021,	1.2 1.7	7 4 7
828 829 830 831	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption. Actuators, 2021, 10, 16. <i>i>In situ</i> gelation of aqueous sulfuric acid solution for fuel cells. RSC Advances, 2021, 11, 22461-22466. Touch-sensing fabric encapsulated with hydrogel for human–computer interaction. Soft Matter, 2021, 17, 9014-9018. Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021,	1.2 1.7 1.2	7 4 7 11
828 829 830 831 832	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption. Actuators, 2021, 10, 16. (i>In situ (i>gelation of aqueous sulfuric acid solution for fuel cells. RSC Advances, 2021, 11, 22461-22466. Touch-sensing fabric encapsulated with hydrogel for human–computer interaction. Soft Matter, 2021, 17, 9014-9018. Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021, 37, 313-372. Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS Applied Materials & amp;	1.2 1.7 1.2 4.3	7 4 7 11 81

#	Article	IF	CITATIONS
836	Collision Resilient Insect-Scale Soft-Actuated Aerial Robots With High Agility. IEEE Transactions on Robotics, 2021, 37, 1752-1764.	7.3	49
837	Tough double-network elastomers with slip-rings. Polymer Chemistry, 2021, 12, 3142-3152.	1.9	6
838	Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels. Journal of Materials Chemistry A, 2021, 9, 14806-14817.	5.2	17
839	3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 2021, 7, .	4.7	233
840	Morphological Manipulation of DNA Gel Microbeads with Biomolecular Stimuli. Nanomaterials, 2021, 11, 293.	1.9	6
841	An extremely tough and ionic conductive natural-polymer-based double network hydrogel. Journal of Materials Chemistry B, 2021, 9, 7751-7759.	2.9	25
842	Innovations and Future of Robotics. Lecture Notes in Mechanical Engineering, 2021, , 975-980.	0.3	2
843	Resistivity-induced coupling between voltage distribution and vibrations in dielectric elastomers. Smart Materials and Structures, 2021, 30, 025031.	1.8	3
844	Self-sensing coaxial muscle fibers with bi-lengthwise actuation. Materials Horizons, 2021, 8, 2541-2552.	6.4	27
845	Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels. Inorganic Chemistry Frontiers, 2021, 8, 1482-1488.	3.0	7
846	A Review: All Solid-state Electroactive Polymer-based Tunable Lens. The Journal of Korea Robotics Society, 2021, 16, 41-48.	0.2	0
847	Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers, 2021, 13, 688.	2.0	31
848	Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Applied Polymer Materials, 2021, 3, 1610-1617.	2.0	38
849	Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nature Materials, 2021, 20, 851-858.	13.3	203
850	Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites. ACS Applied Materials & Interfaces, 2021, 13, 7539-7545.	4.0	25
851	Rapid and scalable fabrication of ultraâ€stretchable, antiâ€freezing conductive gels by cononsolvency effect. EcoMat, 2021, 3, e12085.	6.8	26
852	Electricâ€Fieldâ€Induced Gradient Ionogels for Highly Sensitive, Broadâ€Rangeâ€Response, and Freeze/Heatâ€Resistant Ionic Fingers. Advanced Materials, 2021, 33, e2008486.	11.1	134
853	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	11.1	106

ARTICLE IF CITATIONS Soft pumps for soft robots. Science Robotics, 2021, 6, . 9.9 8 854 Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952 A Mechanically Robust and Versatile Liquidâ€Free Ionic Conductive Elastomer. Advanced Materials, 2021, 856 11.1 188 33, e2006111. High humidity sensing by â€~hygromorphic' dielectric elastomer actuator. Sensors and Actuators B: Chemical, 2021, 329, 129268. Reversible Patterning Cross-Linked, Humidity-Responsive Polymer Films with Programmatically and 858 4.0 8 Accurately Controlled Deformation. ACS Applied Materials & amp; Interfaces, 2021, 13, 7608-7616. Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced 7.8 100 Functional Materials, 2021, 31, 2009602. Programmable Stimulation and Actuation in Flexible and Stretchable Electronics. Advanced 860 3.3 11 Intelligent Systems, 2021, 3, 2000228. Novel Stimuliâ€Responsive Turbostratic Oxides/Hydroxides for Materialâ€Driven Robots. Advanced 3.3 Intelligent Systems, 2021, 3, 2000215. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. ACS Applied 862 4.0 50 Materials & amp; Interfaces, 2021, 13, 13714-13723. Effect of polymer chains entanglements, crosslinks and finite extensibility on the nonlinear dynamic 2.7 oscillations of dielectric viscoelastomer actuators. Nonlinear Dynamics, 2021, 104, 1227-1251. Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome. Sensors, 2021, 21, 1970. 864 2.1 9 Autonomous Shapeshifting Hydrogels via Temporal Programming of Photoswitchable Dynamic 3.2 865 29 Network. Chemistry of Materials, 2021, 33, 2046-2053 An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. 866 13.1 269 Nature Electronics, 2021, 4, 185-192. Fabrication of Wearable Hydrogel Sensors With Simple Ionic-Digital Conversion and Inherent Water Retention. IEEE Sensors Journal, 2021, 21, 6802-6810. 2.4 Flexible Tactile Sensor Based on Patterned Ag-Nanofiber Electrodes through Electrospinning. 868 2.1 18 Sensors, 2021, 21, 2413. Direct Single-Step Printing of Conductive Grids on Curved Surfaces Using Template-Guided Foaming. ACS Applied Materials & amp; Interfaces, 2021, 13, 19168-19175. Influence of hydrated protons on temperature and humidity responsiveness of silk fibroin hydrogel 870 2.517 ionotronics. Giant, 2021, 5, 100044. Computational analyses for tunable solid lenses coupling polyacrylamide hydrogel electrodes. 871 Bulletin of Materials Science, 2021, 44, 1.

#	Article	IF	CITATIONS
872	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
873	Ion Conductive Phytic Acidâ€G Quadruplex Hydrogel as Electrolyte for Flexible Electrochromic Device. ChemNanoMat, 2021, 7, 613-619.	1.5	6
874	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076.	2.6	89
875	Characteristic Evaluation of Dielectric Elastomer Actuator Based on The Stretchable Electrode Density. , 2021, , .		1
876	Fatigue Damage–Resistant Physical Hydrogel Adhesion. Frontiers in Robotics and Al, 2021, 8, 666343.	2.0	5
877	Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 20653-20661.	4.0	62
878	Ultrasensitive, Stretchable, and Fast-Response Temperature Sensors Based on Hydrogel Films for Wearable Applications. ACS Applied Materials & Interfaces, 2021, 13, 21854-21864.	4.0	113
879	Direct-ink-write printing of hydrogels using dilute inks. IScience, 2021, 24, 102319.	1.9	16
881	Multilayer Double-Sided Microstructured Flexible Iontronic Pressure Sensor with a Record-wide Linear Working Range. ACS Sensors, 2021, 6, 1785-1795.	4.0	56
882	Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks. Molecules, 2021, 26, 2688.	1.7	13
883	Soft Electronic Materials with Combinatorial Properties Generated <i>via</i> Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS Nano, 2021, 15, 9531-9549.	7.3	46
884	Water-responsive tough 1D hydrogel with programmable deformations for actuators and chemical sensors. Smart Materials and Structures, 2021, 30, 075014.	1.8	11
885	A Deformable Linear Dielectric Elastomer Actuator. Key Engineering Materials, 0, 884, 430-436.	0.4	8
886	Super Stretchable and Durable Electroluminescent Devices Based on Doubleâ€Network Ionogels. Advanced Materials, 2021, 33, e2008849.	11.1	65
887	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
888	Resistance measurements of polydimethylsiloxane (PDMS) stretch-sensors embedded with a conductive gel. , 2021, , .		2
889	Stretchable and Soft Organic–lonic Devices for Bodyâ€Integrated Electronic Systems. Advanced Materials Technologies, 2022, 7, 2001273.	3.0	16
890	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chemical Engineering Journal, 2021, 411, 128506.	6.6	88

#	Article	IF	CITATIONS
892	Spiderâ€Inspired Electrohydraulic Actuators for Fast, Softâ€Actuated Joints. Advanced Science, 2021, 8, e2100916.	5.6	46
893	Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s. ACS Applied Materials & Interfaces, 2021, 13, 31102-31110.	4.0	39
894	Fluidic Infiltrative Assembly of 3D Hydrogel with Heterogeneous Composition and Function. Advanced Functional Materials, 2021, 31, 2103288.	7.8	9
895	Electroactive dielectric polymer gels as new-generation soft actuators: a review. Journal of Materials Science, 2021, 56, 14943.	1.7	22
896	Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. International Journal of Biological Macromolecules, 2021, 181, 418-425.	3.6	29
897	Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Communications Materials, 2021, 2, .	2.9	63
898	Review on advances in thermoelectric conversion using ion-conducting polymers. Materials Research Express, 2021, 8, 062001.	0.8	9
899	Soft Robotic Hands and Tactile Sensors for Underwater Robotics. Applied Mechanics, 2021, 2, 356-383.	0.7	25
900	Highly Sensitive Ultrastable Electrochemical Sensor Enabled by Proton-Coupled Electron Transfer. Nano Letters, 2021, 21, 5369-5376.	4.5	19
901	Electrically Tunable Lenses: A Review. Frontiers in Robotics and Al, 2021, 8, 678046.	2.0	37
902	Relaxation and Recovery in Hydrogel Friction on Smooth Surfaces. Experimental Mechanics, 0, , 1.	1.1	1
903	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	5.2	10
904	Dynamically Crosslinked Dry Ion onducting Elastomers for Soft Iontronics. Advanced Materials, 2021, 33, e2101396.	11.1	128
905	Highly Deformable and Stable Gas Sensor Based on Anti-Drying Ionic Organohydrogel for O2 Gas Detection. , 2021, , .		0
906	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	4.1	48
907	Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 2021, 12, 3435.	5.8	130
908	Soft Actuator Materials for Electrically Driven Haptic Interfaces. Advanced Intelligent Systems, 2022, 4, 2100061.	3.3	29
909	Antiâ€Sandwich Structured Photoâ€Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy. Small, 2021, 17, e2101858.	5.2	22

#	Article	IF	CITATIONS
910	Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021, 3, 2000282.	3.3	111
911	Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nature Communications, 2021, 12, 4082.	5.8	229
912	Materials with Electroprogrammable Stiffness. Advanced Materials, 2021, 33, e2007952.	11.1	42
913	Starch as a reinforcement agent for poly(ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization. Carbohydrate Polymers, 2021, 263, 117996.	5.1	28
914	Transparent, Robust, Nondrying, and Antifreezing Cellulose Organohydrogels for Energy Harvesting and Sensing Applications. ACS Applied Polymer Materials, 2021, 3, 3747-3754.	2.0	12
916	Peel of elastomers of various thicknesses and widths. Extreme Mechanics Letters, 2021, 46, 101325.	2.0	6
917	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
918	A Topological Stitching Strategy for Biocompatible Wet Adhesion Using Musselâ€Inspired Polyurethane. Advanced Materials Interfaces, 2021, 8, 2100657.	1.9	8
919	Selfâ€Shaping Soft Electronics Based on Patterned Hydrogel with Stencilâ€Printed Liquid Metal. Advanced Functional Materials, 2021, 31, 2105481.	7.8	83
920	Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 2021, 12, 4880.	5.8	116
921	Pangolinâ€Inspired Stretchable, Microwaveâ€Invisible Metascale. Advanced Materials, 2021, 33, e2102131.	11.1	40
922	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
923	A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nature Biomedical Engineering, 2023, 7, 589-598.	11.6	169
924	Flexible Conducting Composite Film with Reversible Inâ€Plane Folding–Unfolding Property. Advanced Science, 2021, 8, e2102314.	5.6	4
925	Cohesive Behaviors of Hydrogel Under Large-Scale Bridging. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	2
926	Ultraâ€Stretchable Selfâ€Healing Composite Hydrogels as Touch Panel. Advanced Materials Interfaces, 2021, 8, 2100742.	1.9	10
927	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38
928	Skin-electrode iontronic interface for mechanosensing. Nature Communications, 2021, 12, 4731.	5.8	72

#	Article	IF	CITATIONS
929	Flaw-sensitivity of a tough hydrogel under monotonic and cyclic loads. Journal of the Mechanics and Physics of Solids, 2021, 153, 104483.	2.3	20
930	Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. International Journal of Biological Macromolecules, 2021, 184, 79-91.	3.6	19
931	Strain Sensing by Electrical Capacitive Variation: From Stretchable Materials to Electronic Interfaces. Advanced Electronic Materials, 2021, 7, 2100190.	2.6	17
932	Nonlinear Oscillations of Particle-Reinforced Electro-Magneto-Viscoelastomer Actuators. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	34
933	Strong, Ultrastretchable Hydrogelâ€Based Multilayered Soft Actuator Composites Enhancing Biologically Inspired Pumping Systems. Advanced Engineering Materials, 2021, 23, 2100121.	1.6	9
934	Kinetic photovoltage along semiconductor-water interfaces. Nature Communications, 2021, 12, 4998.	5.8	14
935	All-Solid-State Self-Healing Ionic Conductors Enabled by Ion–Dipole Interactions within Fluorinated Poly(Ionic Liquid) Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 41140-41148.	4.0	42
936	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
937	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	2.0	12
938	Multiple concentric rainbows induced by microscale concave interfaces for reflective displays. Applied Materials Today, 2021, 24, 101146.	2.3	4
939	Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chemical Engineering Journal, 2021, 419, 129478.	6.6	172
940	Ion-Conducting, Supramolecular Crosslinked Elastomer with a Wide Linear Range of Strain Resistances. ACS Applied Polymer Materials, 2021, 3, 5012-5021.	2.0	9
941	Bio-inspired design of soft mechanisms using a toroidal hydrostat. Cell Reports Physical Science, 2021, 2, 100572.	2.8	7
942	Recent Progress in Bionic Skin Based on Conductive Polymer Gels. Macromolecular Rapid Communications, 2021, 42, e2100480.	2.0	29
943	Tough Hydrogels with Dynamic H-Bonds: Structural Heterogeneities and Mechanical Performances. Macromolecules, 0, , .	2.2	23
944	A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction. Advanced Materials, 2021, 33, e2103755.	11.1	55
945	Dynamic stability evolution of viscoelastic dielectric elastomers with continuously varying electromechanical parameters. Europhysics Letters, 2021, 135, 46002.	0.7	2
946	Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 43831-43854.	4.0	81

#	Article	IF	CITATIONS
947	Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. Npj Flexible Electronics, 2021, 5, .	5.1	38
948	Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy, 2021, 88, 106289.	8.2	28
949	Mixed-mode fracture in a soft elastomer. Extreme Mechanics Letters, 2021, 48, 101380.	2.0	9
950	Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angewandte Chemie, 2021, 133, 25872.	1.6	0
951	Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 2021, 46, 102088.	1.7	66
952	A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sensors and Actuators A: Physical, 2021, 330, 112855.	2.0	8
953	Chemical Vapor Deposition of Ionic Liquids for the Fabrication of Ionogel Films and Patterns. Angewandte Chemie - International Edition, 2021, 60, 25668-25673.	7.2	12
954	Enhance the debonding resistance of hydrogel by large-scale bridging. Journal of the Mechanics and Physics of Solids, 2021, 155, 104570.	2.3	18
955	Modeling of Planar Hydraulically Amplified Self-Healing Electrostatic Actuators. IEEE Robotics and Automation Letters, 2021, 6, 7533-7540.	3.3	1
956	Approaches to deformable physical sensors: Electronic versus iontronic. Materials Science and Engineering Reports, 2021, 146, 100640.	14.8	29
957	Electromechanics of planar HASEL actuators. Extreme Mechanics Letters, 2021, 48, 101408.	2.0	7
958	Geometric optimization of dielectric elastomer electrodes for dynamic applications. Applied Acoustics, 2021, 181, 108120.	1.7	1
959	Adhesive, self-healing, conductive Janus gel with oil-water responsiveness. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112028.	2.5	4
960	Essential work of fracture of soft elastomers. Journal of the Mechanics and Physics of Solids, 2021, 156, 104616.	2.3	7
961	Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane) Tj ETQq0 0 Engineering Journal, 2021, 425, 131505.) rgBT /Ov 6.6	erlock 10 Tf 52
962	Highly conductive and stretching-insensitive films for wearable accurate pressure perception. Chemical Engineering Journal, 2022, 429, 132488.	6.6	16
963	Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance. Chemical Engineering Journal, 2022, 427, 131057.	6.6	20
964	Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces. Journal of Materials Chemistry A, 2021, 9, 12574-12583.	5.2	22

#	Article	IF	CITATIONS
965	Intrinsically stretchable sheath-core ionic sensory fibers with well-regulated conformal and reprogrammable buckling. Materials Horizons, 2021, 8, 2088-2096.	6.4	20
966	Soft actuators by electrochemical oxidation of liquid metal surfaces. Soft Matter, 2021, 17, 1921-1928.	1.2	14
967	A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. Journal of Materials Chemistry C, 0, , .	2.7	38
968	Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions. Journal of Materials Chemistry A, 2021, 9, 4890-4897.	5.2	70
969	Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter, 2021, 17, 9057-9065.	1.2	13
970	Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Applied Electronic Materials, 2021, 3, 485-503.	2.0	37
971	Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior. Nanoscale, 2021, 13, 8126-8136.	2.8	23
972	Analysis of Bending Ability of Soft Pneu-nets Actuators for Soft Robotics. Recent Patents on Engineering, 2021, 14, 636-642.	0.3	1
973	Recent progress of biomimetic motions—from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC Advances, 2021, 11, 27406-27419.	1.7	9
974	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
975	Endeavor of Iontronics: From Fundamentals to Applications of Ion ontrolled Electronics. Advanced Materials, 2017, 29, 1607054.	11.1	386
976	Preâ€Stretched Double Network Polymer Films Based on Agarose and Polyacrylamide with Sensitive Humidityâ€Responsive Deformation, Shape Memory, and Selfâ€Healing Properties. Macromolecular Chemistry and Physics, 2020, 221, 1900518.	1.1	17
977	Artificial Muscles for Underwater Soft Robotic System. , 2021, , 71-97.		3
978	Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics, 2020, 170, 112645.	5.3	42
979	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	6.6	46
980	Mechanics of dielectric elastomer structures: A review. Extreme Mechanics Letters, 2020, 38, 100752.	2.0	105
981	A Tough Self-Healing Elastomer with a Slip-Ring Structure. Industrial & Engineering Chemistry Research, 2021, 60, 251-262.	1.8	2
982	A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Materials Horizons, 2020, 7, 2673-2682.	6.4	30

#	Article	IF	CITATIONS
983	Nonlinear out-of-plane resonation of a circular dielectric elastomer. Smart Materials and Structures, 2020, 29, 045003.	1.8	10
984	The Stiffness-Threshold Conflict in Polymer Networks and a Resolution. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	32
985	Kinetics of Polyelectrolyte Gels. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	20
986	All-Solid Ionic Eye. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	13
987	Dynamic characteristics of out-of-plane vibration of dielectric elastomer resonator. , 2018, , .		1
988	Elastomeric diaphragm pump driven by fluid electrode dielectric elastomer actuators (FEDEAs). , 2018, ,		8
989	Dielectric elastomers: past, present, and potential future. , 2018, , .		11
990	Silicone elastomer map: design the ideal elastomer. , 2019, , .		5
991	Loss of tension in electromechanical actuation of fiber-constrained viscoelastic dielectric elastomers. Europhysics Letters, 2017, 117, 67004.	0.7	6
992	Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels. Optics Express, 2019, 27, 29547.	1.7	8
993	Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences (Switzerland), 2020, 10, 640.	1.3	129
994	3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research, 2020, 2020, 1426078.	2.8	34
995	Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance. Research, 2020, 2020, 2505619.	2.8	44
996	Strong, Ultrastretchable Hydrogelâ€Based Multilayered Soft Actuator Composites Enhancing Biologically Inspired Pumping Systems. Advanced Engineering Materials, 2021, 23, 2170038.	1.6	0
997	Underwater Bending Actuator Based on Integrated Anisotropic Textile Materials and a Conductive Hydrogel Electrode. Actuators, 2021, 10, 270.	1.2	6
998	A highly compressible hydrogel electrolyte for flexible Zn-MnO2 battery. Journal of Colloid and Interface Science, 2022, 608, 1619-1626.	5.0	24
999	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	8.2	54
1000	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	5.2	188

#	Article	IF	Citations
1001	Rational Design of Polycationic Hydrogel with Excellent Combination Functions for Flexible Wearable Electronic Devices. Macromolecular Materials and Engineering, 2022, 307, 2100593.	1.7	4
1002	Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Reports Physical Science, 2021, 2, 100600.	2.8	6
1003	Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. ACS Applied Materials & Interfaces, 2021, 13, 49358-49368.	4.0	53
1004	An Electromagnetic Fiber Acoustic Transducer with Dual Modes of Loudspeaker and Microphone. Small, 2021, 17, 2102052.	5.2	2
1005	Ion onducting Hydrogels and Their Applications in Bioelectronics. Advanced Sustainable Systems, 2022, 6, 2100173.	2.7	41
1006	Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at â´'Â30°C. Nano Energy, 2021, 90, 106614.	8.2	74
1007	Dielectric Elastomers. , 2014, , 1-9.		0
1008	Soft Robotic Micro-Tentacle: A Case Study. SpringerBriefs in Applied Sciences and Technology, 2017, , 39-58.	0.2	0
1009	Enabling Technologies. SpringerBriefs in Applied Sciences and Technology, 2017, , 11-38.	0.2	0
1011	Current Progress. SpringerBriefs in Applied Sciences and Technology, 2017, , 59-78.	0.2	0
1012	Stretchable conductive fabric simplifies manufacturing of low-resistance dielectric-elastomer-system electrodes. , 2018, , .		0
1014	Materials That Make Robots Smart. Springer Proceedings in Advanced Robotics, 2020, , 41-48.	0.9	0
1015	Self-supported Materials for Flexible/Stretchable Sensors. Engineering Materials, 2020, , 269-296.	0.3	0
1016	High Performance Double Conductive Network Hydrogel Based on Soaking Strategy for Supercapacitors. Macromolecular Materials and Engineering, 0, , 2100652.	1.7	4
1017	Esophagusâ€Inspired Actuator for Solid Transportation via the Synergy of Lubrication and Contractile Deformation. Advanced Science, 2021, 8, e2102800.	5.6	10
1018	Bioinspired Quasi-Solid Ionic Conductors: Materials, Processing, and Applications. Accounts of Materials Research, 2021, 2, 1203-1214.	5.9	34
1019	Theory of soft solid electrolytes: Overall properties of composite electrolytes, effect of deformation and microstructural design for enhanced ionic conductivity. Journal of the Mechanics and Physics of Solids, 2022, 158, 104621.	2.3	9
1020	Electrical Double Layer-based Iontronic Sensor for Detection of Electrolytes Concentration. Chinese Journal of Analytical Chemistry, 2021, 50, 13-13.	0.9	1

#	Article	IF	CITATIONS
1021	A Hydrogel Ionic Circuit Based Highâ€Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. Advanced Materials, 2022, 34, e2107315.	11.1	18
1022	Sensing mechanisms and applications of flexible pressure sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178102.	0.2	13
1023	Bioinspired Sensors and Actuators Based on Stimuli-Responsive Hydrogels for Underwater Soft Robotics. , 2021, , 99-115.		2
1024	Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor. Soft Matter, 2021, 17, 10918-10925.	1.2	23
1025	A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy, 2022, 91, 106695.	8.2	40
1026	Static and dynamic instability modeling of electro-magneto-active polymers with various entanglements and crosslinks. International Journal of Non-Linear Mechanics, 2022, 139, 103865.	1.4	28
1027	Hysteresisâ€Free Nanoparticleâ€Reinforced Hydrogels. Advanced Materials, 2022, 34, e2108243.	11.1	92
1028	3D printing of dual cross-linked hydrogel for fingerprint-like iontronic pressure sensor. Smart Materials and Structures, 2022, 31, 015019.	1.8	12
1029	Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels, 2021, 7, 207.	2.1	32
1030	Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal. ACS Applied Electronic Materials, 2021, 3, 5423-5432.	2.0	11
1031	Shaping the future of robotics through materials innovation. Nature Materials, 2021, 20, 1582-1587.	13.3	65
1032	Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. Materials, 2021, 14, 6759.	1.3	4
1033	Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Applied Polymer Materials, 2021, 3, 6684-6693.	2.0	6
1034	Hydrogel Ionotronics with Ultra‣ow Impedance and High Signal Fidelity across Broad Frequency and Temperature Ranges. Advanced Functional Materials, 2022, 32, 2109506.	7.8	34
1035	Stretchable and Self-Healable Poly(styrene- <i>co</i> -acrylonitrile) Elastomer with Metal–Ligand Coordination Complexes. Langmuir, 2021, 37, 13998-14005.	1.6	9
1036	How chain dynamics affects crack initiation in double-network gels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1037	High-Efficiency Large-Area Printed Multilayer Liquid Metal Wires for Stretchable Biomedical Sensors with Recyclability. ACS Applied Materials & amp; Interfaces, 2021, 13, 56961-56971.	4.0	26
1038	Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS Applied Materials & Interfaces, 2021, 13, 55656-55665.	4.0	10

#	Article	IF	CITATIONS
1039	Soft artificial electroreceptors for noncontact spatial perception. Science Advances, 2021, 7, eabg9203.	4.7	16
1040	Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing. ACS Nano, 2021, 15, 19783-19792.	7.3	44
1041	Optoionic Sensing. Small, 2022, 18, e2103882.	5.2	3
1042	Strong and tough cellulose–graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform. Chemical Engineering Journal, 2022, 431, 133964.	6.6	24
1043	Tunable physical properties of Al-doped ZnO thin films by O ₂ and Ar plasma treatments. Materials Research Express, 2021, 8, 126402.	0.8	8
1044	Flexible capacitive pressure sensors for wearable electronics. Journal of Materials Chemistry C, 2022, 10, 1594-1605.	2.7	82
1045	Solvent-responsive strong hydrogel with programmable deformation and reversible shape memory for load-carrying soft robot. Materials Today Communications, 2022, 30, 103067.	0.9	5
1046	Multifunctional Smart Window Based on Dielectric Elastomer Actuator. , 2020, 64, .		3
1047	Strategies for interface issues and challenges of neural electrodes. Nanoscale, 2022, 14, 3346-3366.	2.8	18
1048	Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chemical Communications, 2021, 58, 185-207.	2.2	81
1049	Self-healable poly (N, N-dimethylacrylamide)/poly (3,4-ethylenedioxythiophene) polystyrene sulfonate composite hydrogel electrolytes for aqueous supercapacitors. Journal of Energy Storage, 2022, 45, 103760.	3.9	9
1050	Lignin derived hydrogel with highly adhesive for flexible strain sensors. Polymer Testing, 2022, 107, 107486.	2.3	15
1051	A hyperbranched polymer elastomer-based pressure sensitive adhesive. Journal of Materials Chemistry A, 2022, 10, 1257-1269.	5.2	25
1052	Recent advances in the 3D printing of ionic electroactive polymers and core ionomeric materials. Polymer Chemistry, 2022, 13, 456-473.	1.9	14
1053	Temperature sensing using junctions between mobile ions and mobile electrons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
1054	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	6.4	75
1055	Smart bioelectronics and biomedical devices. Bio-Design and Manufacturing, 2022, 5, 1-5.	3.9	4
1056	Highly sensitive flexible modulus sensor for softness perception and clinical application. Journal of Micromechanics and Microengineering, 2022, 32, 035004.	1.5	2

#	Article	IF	CITATIONS
1058	Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flexible Electronics, 2022, 6, .	5.1	194
1059	Ionic Flexible Sensors: Mechanisms, Materials, Structures, and Applications. Advanced Functional Materials, 2022, 32, .	7.8	79
1060	Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106813.	3.8	18
1061	Enhanced stretchability and robustness towards flexible ionotronics via double-network structure and ion-dipole interactions. Chemical Engineering Journal, 2022, 434, 134752.	6.6	29
1062	Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Materials Today Physics, 2022, 22, 100602.	2.9	19
1063	Shaping soft materials via digital light processing-based 3D printing: A review. Forces in Mechanics, 2022, 6, 100074.	1.3	29
1064	Zwitterionic Hydrogel Electrolyte with Tunable Mechanical and Electrochemical Properties for a Wearable Motion and Thermal Sensor. ACS Applied Materials & Interfaces, 2022, 14, 9608-9617.	4.0	27
1065	Electromechanical responses of agarose ionogels as highly soft and compliant actuators. European Polymer Journal, 2022, 167, 111059.	2.6	6
1066	Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. Materials Horizons, 2022, 9, 1679-1689.	6.4	34
1067	Ion transport through layered hydrogels for low-frequency energy harvesting toward self-powered chemical systems. Journal of Materials Chemistry A, 2022, 10, 11881-11892.	5.2	1
1068	Influence of loading voltage, domain ratio, and additional load on the actuation of dielectric elastomer. Nanotechnology Reviews, 2022, 11, 1068-1075.	2.6	4
1069	Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Materials, 2022, 14, .	3.8	59
1070	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
1071	Near-Zero Hysteresis Ionic Conductive Elastomers with Long-Term Stability for Sensing Applications. ACS Applied Materials & Interfaces, 2022, 14, 11727-11738.	4.0	14
1072	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	13.3	2
1073	A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Science Advances, 2022, 8, eabl5066.	4.7	96
1074	Highly Conducting and Stretchable Doubleâ€Network Hydrogel for Soft Bioelectronics. Advanced Materials, 2022, 34, e2200261.	11.1	145
1075	Triboresistive Touch Sensing: Gridâ€Free Touchâ€Point Recognition Based on Monolayered Ionic Power Generators. Advanced Materials, 2022, 34, e2108586.	11.1	24

#	Article	IF	CITATIONS
1076	Intrinsically anti-freezing and anti-dehydration hydrogel for multifunctional wearable sensors. Science China Materials, 2022, 65, 1980-1986.	3.5	11
1077	Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants. Chinese Journal of Chemical Engineering, 2023, 54, 240-247.	1.7	4
1078	Research Progress on Hydrogel–Elastomer Adhesion. Materials, 2022, 15, 2548.	1.3	6
1079	Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydrate Polymers, 2022, 289, 119406.	5.1	3
1080	Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Science China Materials, 2022, 65, 2207-2216.	3.5	18
1081	A Highly Stretchable and Permeable Liquid Metal Micromesh Conductor by Physical Deposition for Epidermal Electronics. ACS Applied Materials & amp; Interfaces, 2022, 14, 13713-13721.	4.0	31
1082	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. Advanced Electronic Materials, 2022, 8, .	2.6	3
1083	Physical Cross-Linkage Constructed Supramolecular Conductive Hydrogel as Sustainable and Remolded Epidermal Electronics. ACS Applied Polymer Materials, 2022, 4, 2585-2594.	2.0	6
1084	Intrinsically Flexible and Breathable Supercapacitive Pressure Sensor Based on MXene and Ionic Gel Decorating Textiles for Comfortable and Ultrasensitive Wearable Healthcare Monitoring. ACS Applied Electronic Materials, 2022, 4, 1958-1967.	2.0	25
1085	Joule heating of ionic conductors using zero-phase frequency alternating current to suppress electrochemical reactions. Engineering, 2022, , .	3.2	4
1086	Manipulation of mechanically nanopatterned line defect assemblies in plane-parallel nematic liquid crystals Reviews, 2022, 10, 98-122.	1.1	4
1087	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	6.8	54
1088	Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Science Advances, 2022, 8, eabl5511.	4.7	101
1089	Selective Patterning of Conductive Elastomers Embedded With Silver Powders and Carbon Nanotubes for Stretchable Electronics. IEEE Robotics and Automation Letters, 2022, 7, 4983-4990.	3.3	2
1090	Self-Adhesive Dry Ionic Conductors Based on Supramolecular Deep Eutectic Polymers. Chemistry of Materials, 2022, 34, 3736-3743.	3.2	31
1091	Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures. Polymers, 2022, 14, 1466.	2.0	6
1092	Cross-Links–Entanglements Integrated Networks Contributing to Highly Resilient, Soft, and Self-Adhesive Elastomers with Low Hysteresis for Green Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 16631-16640.	4.0	14
1093	Shape and stiffness memory ionogels with programmable pressure-resistance response. Nature Communications, 2022, 13, 1743.	5.8	54

<u> </u>		-	
(15	ГАТ	Rep	ODT
		NLF	

#	Article	IF	CITATIONS
1094	Fatigue of amorphous hydrogels with dynamic covalent bonds. Extreme Mechanics Letters, 2022, 53, 101679.	2.0	7
1095	Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors. Sensors and Actuators B: Chemical, 2022, 362, 131796.	4.0	11
1096	Ionic liquids enhancement of hydrogels and impact on biosensing applications. Journal of Molecular Liquids, 2022, 357, 119075.	2.3	17
1097	Highly stretchable multifunctional polymer ionic conductor with high conductivity based on organic-inorganic dual networks. Chemical Engineering Journal, 2022, 440, 135824.	6.6	41
1098	Multifunctional flexible sensors based on ionogel composed entirely of ionic liquid with long alkyl chains for enhancing mechanical properties. Chemical Engineering Journal, 2022, 439, 135644.	6.6	33
1099	Friction regulation of laser textured PVA hydrogels against a titanium alloy. Optics and Laser Technology, 2022, 152, 108085.	2.2	2
1100	Recognition of Material Surfaces with Smart Gloves Based on Machine Learning. , 2021, , .		1
1101	Selfâ€Organized Spatiotemporal Mineralization of Hydrogel: A Simulant of Osteon. Small, 2022, 18, e2106649.	5.2	8
1102	A Printable and Conductive Yield-Stress Fluid as an Ultrastretchable Transparent Conductor. Research, 2021, 2021, 9874939.	2.8	9
1103	Precipitation of Iron Oxide in Hydrogel with Superparamagnetic and Stimuli-Responsive Properties. , 2021, 5, .		0
1104	Hofmeister Effect and Electrostatic Interaction Enhanced Ionic Conductive Organohydrogels for Electronic Applications. Advanced Functional Materials, 2022, 32, .	7.8	41
1106	An efficient photothermal-chemotherapy platform based on polyacrylamide/phytic acid/polydopamine hydrogel. Journal of Materials Chemistry B, 2022, , .	2.9	7
1107	Stretchable and transparent ionogel-based heaters. Materials Horizons, 2022, 9, 1911-1920.	6.4	18
1108	A Waterproof Ionâ€Conducting Fluorinated Elastomer with 6000% Stretchability, Superior Ionic Conductivity, and Harsh Environment Tolerance. Advanced Functional Materials, 2022, 32, .	7.8	62
1109	Lithium Bonds Enable Small Biomass Moleculeâ€Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. Small, 2022, 18, e2200421.	5.2	18
1110	Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy, 2022, 98, 107284.	8.2	60
1114	Parallel transmission in a synthetic nerve. Nature Chemistry, 2022, 14, 650-657.	6.6	20
1115	From liquid metal to stretchable electronics: Overcoming the surface tension. Science China Materials, 2022, 65, 2072-2088.	3.5	22

#	Article	IF	Citations
1116	Piezoionic mechanoreceptors: Force-induced current generation in hydrogels. Science, 2022, 376, 502-507.	6.0	128
1117	Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Small, 2022, 18, e2201643.	5.2	40
1119	Tough and Ultrastretchable Liquidâ€Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Advanced Functional Materials, 2022, 32, .	7.8	48
1120	Ionically conductive gelatin-based hybrid composite hydrogels with high mechanical strength, self-healing, and freezing-tolerant properties. European Polymer Journal, 2022, 172, 111230.	2.6	10
1121	Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. Journal of Polymer Science, 2022, 60, 2679-2700.	2.0	4
1122	Succulentâ€Inspired Ultraflexible and Multifunctional Carbon Aerogel for Highâ€Performing Strain Sensing and Thermal Management. Advanced Materials Technologies, 2022, 7, .	3.0	2
1123	硬ç£è¼² [−] æ>²æ¢å§å•å¼²¢åŠ>å┤模åž<. Chinese Science Bulletin, 2022, , .	0.4	0
1124	Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydrate Polymers, 2022, 292, 119645.	5.1	23
1125	Compositionally Homogeneous Soft Wrinkles on Elastomeric Substrates: Novel Fabrication Method, Water Collection from Fog, and Triboelectric Charge Generation. Macromolecular Materials and Engineering, 0, , 2200247.	1.7	3
1126	Plasticized PVCâ€Gel Single Layerâ€Based Stretchable Triboelectric Nanogenerator for Harvesting Mechanical Energy and Tactile Sensing. Advanced Science, 2022, 9, .	5.6	23
1127	Integrated, self-powered, and omni-transparent flexible electroluminescent display system. Nano Energy, 2022, 99, 107392.	8.2	20
1128	Highly stretchable, strain-stiffening, self-healing ionic conductors for wearable sensors. Chemical Engineering Journal, 2022, 449, 137633.	6.6	15
1129	Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity. Fundamental Research, 2024, 4, 140-146.	1.6	19
1130	Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels, 2022, 8, 364.	2.1	22
1131	Cableâ€Driven Continuum Robot Perception Using Skinâ€Like Hydrogel Sensors. Advanced Functional Materials, 2022, 32, .	7.8	34
1133	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
1134	In Situ Variation of Interpenetrating Polymer Network Topology using a Photolabile Connector. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1317-1322.	2.0	2
1135	Bioinspired Ultra Tear-Resistant Elastomer with a Slidable Double-Network Structure. ACS Applied Materials & Interfaces, 2022, 14, 31424-31434.	4.0	2

ARTICLE IF CITATIONS Portable and flexible water-evaporation-generator based on hydrogel. Science China Materials, 2022, 1136 3.5 3 65, 2889-2893. Soft Ionics: Governing Physics and State of Technologies. Frontiers in Physics, 0, 10, . 1.0 High-Temperature-Tolerant Artificial Muscles Using Poly(p-phenylene benzobisoxazole) Composite 1138 7.9 17 Yarns. Advanced Fiber Materials, 2022, 4, 1256-1266. Biologically Emulated Flexible Sensors With High Sensitivity and Low Hysteresis: Toward Electronic 54 Skin to a Sense of Touch. Small, 2022, 18, . Highly Stretchable and Adhesive Poly (N, Nâ€dimethylacrylamide)/Laponite Nanocomposite Hydrogels for 1140 0.7 4 Wearable Sensor Devices. ChemistrySelect, 2022, 7, . Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors. Materials Today Communications, 2022, 32, 103906. Piezoionic strain sensors enabled by force-voltage coupling from ionogels. Chemical Physics Letters, 1142 1.2 3 2022, 803, 139872. Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43, 2.0 16 Snap-through path in a bistable dielectric elastomer actuator. Applied Mathematics and Mechanics 1144 1.9 6 (English Edition), 2022, 43, 1159-1170. 1145 Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, . 5.2 29 Tough, anti-freezing and conductive ionic hydrogels. NPG Asia Materials, 2022, 14, . 22 1146 3.8 Strong Tough Poly Acrylicâ€<i>co</i>â€acrylamide Hydrogels via a Synergistic Effect of Fiber and 1.7 Metalã€Ligand Bónds as Flexible Strain Sensors. Macromolecular Materials and Engineering, 2022, 307, . Hydrogelâ€Based Realâ€Time Wireless Liquid Level Monitoring System for Sizeâ€Independent Infusion Bags. 1148 2.6 1 Advanced Electronic Materials, 2022, 8, . Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain 1150 3.3 sensing with high sensitivity and stability. Materials and Design, 2022, 222, 111041. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to 1151 7.0 17 interfaces. Advances in Colloid and Interface Science, 2022, 308, 102749. A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing 5.1 wound dressing. Carbohydrate Polymers, 2022, 297, 119974. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane 1153 mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. 6.6 66 Chemical Engineering Journal, 2023, 451, 138549. Temperature tolerant all-solid-state touch panel with high stretchablity, transparency and 1154 6.6 self-healing ability. Chemical Engineering Journal, 2023, 451, 138672.

		LITATION REPORT		
#	Article	IF	Сіта	TIONS
1155	Electrically Tunable, Fully Solid Reflective Optical Elements. Advanced Optical Materials, 2022, 10, .	3.6	6	
1156	Spontaneous energy generation at the air–hydrogel interface with ultrahigh ion activity. Journal c Materials Chemistry A, 2022, 10, 20905-20913.	of 5.2	3	
1157	Flexible and adhesive liquid-free ionic conductive elastomers toward human–machine interaction. Soft Matter, 2022, 18, 7103-7111.	. 1.2	8	
1158	A flexible, robust cellulose/phytic acid/polyaniline hydrogel for all-in-one supercapacitors and strain sensors. Journal of Materials Chemistry A, 2022, 10, 17279-17287.	5.2	34	
1159	Multiscale modeling of hydrogels. , 2022, , 187-222.		1	
1160	Nature-inspired preparation of self-adhesive, frost-resistant, and ion-conductive hydrogels for flexible strain sensors. RSC Advances, 2022, 12, 23637-23643.	1.7	4	
1161	Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators. Journal Materials Chemistry C, 2022, 10, 11439-11471.	of 2.7	16	
1162	Fatigue of hydrogels. , 2022, , 119-138.		1	
1163	Materials development in stretchable iontronics. Soft Matter, 2022, 18, 6487-6510.	1.2	8	
1164	Hydrogelâ€Based Flexible Electronics. Advanced Materials, 2023, 35, .	11.1	. 116	
1165	Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges. Polymers, 2022, 14 3739.	4, 2.0	17	
1166	Anisotropic Muscle-like Conductive Composite Hydrogel Reinforced by Lignin and Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2022, 10, 12993-13003.	3.2	18	
1167	3D printing of stretchable, ionic conductive, adhesive hydrogel with enhanced water retention for motion detection. Materials Today: Proceedings, 2022, 70, 265-269.	0.9	1	
1168	Elastomeric Liquid-Free Conductor for Iontronic Devices. Langmuir, 2022, 38, 11994-12004.	1.6	4	
1169	Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: Exploring potential application in soft actuators and sensors. Journal of Industrial and Engineering Chemistry, 2022, 116, 171-179.	2.9	7	
1171	Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation. Polymers, 2022, 14, 3930.	2.0	8	
1172	Ultrastrong, highly conductive and capacitive hydrogel electrode for electron-ion transduction. Matter, 2022, 5, 4407-4424.	5.0	23	
1173	Impact of Planar and Vertical Organic Fieldâ€Effect Transistors on Flexible Electronics. Advanced Materials, 2023, 35, .	11.1	. 28	

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1174	Stretchable ionics: How to measure the electrical resistance/impedance. Matter, 2022,	5, 2570-2573.	5.0	5
1175	Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. C Reviews, 2022, 122, 14594-14678.	ihemical	23.0	74
1176	Development of conductive hydrogels: from design mechanisms to frontier applications and Manufacturing, 2022, 5, 729-756.	s. Bio-Design	3.9	13
1177	Mechanically Tissueâ€Like and Highly Conductive Au Nanoparticles Embedded Elastom Electrodes of Brain–Machine Interfaces for Chronic In Vivo Brain Neural Recording. Ac Functional Materials, 2022, 32, .		7.8	13
1178	Triple crosslinking conductive hydrogels with digitally printable and outstanding mecha stability for high-resolution conformable bioelectronics. Soft Matter, 2022, 18, 8486-85	nical 503.	1.2	6
1179	Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multi applications. Journal of Materials Chemistry A, 2022, 10, 23649-23665.	functional	5.2	19
1180	An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel elec visual flexible electrochromic strain sensors. Journal of Materials Chemistry A, 2022, 10	trolyte for , 25118-25128.	5.2	14
1181	Methyl Methacrylate-Based Copolymers: Recent Developments in the Areas of Transpar Stretchable Active Matrices. ACS Omega, 2022, 7, 36929-36944.	rent and	1.6	14
1182	Tough, Self-Healing, and Conductive Elastomer ─Ionic PEGgel. ACS Applied Materials 2022, 14, 50152-50162.	& Interfaces,	4.0	5
1183	Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Science Advances, 2022, 8, .		4.7	26
1184	Dual-Functional Self-Attachable and Stretchable Interface for Universal Three-Dimension Electronics. ACS Applied Materials & amp; Interfaces, 2022, 14, 49303-49312.	nal Modular	4.0	3
1185	Engineering the Comfortâ€ofâ€Wear for Next Generation Wearables. Advanced Electro 9, .	pnic Materials, 2023,	2.6	14
1186	Versatile Light-Mediated Synthesis of Dry Ion-Conducting Dynamic Bottlebrush Networ Elasticity, Interfacial Adhesiveness, and Flame Retardancy. Macromolecules, 2022, 55, 9		2.2	10
1187	Highly Stretchable and Sensitive Ti ₃ C ₂ T _{<i>x</i>/i>} Alginate/Acrylamide Hydrogel for Flexible Electronic Sensors. ACS Applied Polymer Mate 8216-8226.		2.0	3
1188	Stretchable Transparent Polyelectrolyte Elastomers for Allâ€5olid Tunable Lenses of Exc Based on Electro–Mechano–Optical Coupling. Advanced Materials Technologies, 2		3.0	5
1189	Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable ACS Applied Materials & amp; Interfaces, 2022, 14, 48061-48071.	Properties.	4.0	0
1190	Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Material Construction, and Advanced Functionalities. ACS Nano, 2022, 16, 17613-1764		7.3	15
1191	Investigation on free relaxation process influencing energy harvesting performance of c elastomer generators in intermittent motion. Sensors and Actuators A: Physical, 2022,		2.0	4

#	Article	IF	CITATIONS
1192	Intrinsically stretchable ionoelastomer junction logic gate synchronously deformable with liquid metal. Applied Physics Reviews, 2022, 9, .	5.5	6
1193	Sugarcane liquid-generated silver nanoparticles connected ionic polymer nanocomposite for enhanced electrical and wearable sensing signals. Materials Today Chemistry, 2022, 26, 101195.	1.7	1
1194	Enhancing the fracture resistance of hydrogels by regulating the energy release rate via bilayer designs: Theory and experiments. Journal of the Mechanics and Physics of Solids, 2023, 170, 105125.	2.3	4
1195	Recent Advances in Materials, Designs and Applications of Skin Electronics. IEEE Open Journal of Nanotechnology, 2023, 4, 55-70.	0.9	3
1196	Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis. Journal of Materials Chemistry A, 2022, 10, 25564-25574.	5.2	21
1197	Flexible Actuator Based on Conductive PAM Hydrogel Electrodes with Enhanced Water Retention Capacity and Conductivity. Micromachines, 2022, 13, 1951.	1.4	4
1198	A time-delayed proportional-derivative controller for a dielectric elastomer circular membrane. Chinese Journal of Physics, 2023, 84, 216-231.	2.0	1
1199	Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science, 2022, 378, 637-641.	6.0	99
1200	Matrix-Assisted <i>In Situ</i> Polymerization of a 3D Conductive Hydrogel Structure. ACS Applied Materials & Interfaces, 2022, 14, 52516-52523.	4.0	3
1201	A Universal Tandem Device of DCâ€Driven Electrochromism and ACâ€Driven Electroluminescence for Multiâ€Functional Smart Windows. Advanced Materials Technologies, 2023, 8, .	3.0	2
1202	3Dâ€Printed Stacked Ionic Assemblies for Iontronic Touch Sensors. Advanced Functional Materials, 2023, 33, .	7.8	11
1203	Tuning the Ferroelectric Phase Transition of P(VDF-TrFE) through a Simple Approach of Modification by Introducing Double Bonds. ACS Omega, 2022, 7, 42949-42959.	1.6	4
1204	Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence. Biomaterials, 2023, 292, 121912.	5.7	5
1205	Highly Stretchable, Selfâ€Healing, and Low Temperature Resistant Double Network Hydrogel Ionic Conductor as Flexible Sensor and Quasiâ€Solid Electrolyte. Macromolecular Rapid Communications, 2023, 44, .	2.0	7
1206	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	18.7	18
1207	Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. International Journal of Biological Macromolecules, 2023, 227, 472-492.	3.6	24
1208	Perspective Chapter: Tissue-Electronics Interfaces. , 0, , .		5
1209	A Bionic Testbed for Cardiac Ablation Tools. International Journal of Molecular Sciences, 2022, 23, 14444.	1.8	1

#	Article	IF	CITATIONS
1210	Orientational Co Nanorod-Enabled Ferromagnetic Hydrogel Actuators with Diverse Hosts. ACS Applied Electronic Materials, 2022, 4, 5963-5972.	2.0	4
1211	Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. ACS Applied Materials & Interfaces, 2022, 14, 56395-56406.	4.0	4
1212	Design of soft and hard active-passive composite beams. Mechanics of Advanced Materials and Structures, 2023, 30, 945-960.	1.5	1
1213	High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices. Polymers, 2022, 14, 5316.	2.0	4
1214	Strong, Chemically Stable, and Enzymatically Onâ€Demand Detachable Hydrogel Adhesion Using Protein Crosslink. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
1215	Hydrogel and Machine Learning for Soft Robots' Sensing and Signal Processing: A Review. Journal of Bionic Engineering, 2023, 20, 845-857.	2.7	9
1216	Strong Anchoring of Hydrogels through Superwettingâ€Assisted Highâ€Density Interfacial Grafting. Angewandte Chemie, 2023, 135, .	1.6	2
1217	Frequency dependent sensitivity of hydrogel iontronic sensor. Smart Materials and Structures, 2023, 32, 015010.	1.8	1
1218	Theoretical study of the electroactive bistable actuator and regulation methods. International Journal of Smart and Nano Materials, 2023, 14, 36-56.	2.0	9
1219	Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter, 2023, 6, 429-444.	5.0	12
1220	Multimaterial Three-Dimensional Printing of Ultraviolet-Curable Ionic Conductive Elastomers with Diverse Polymers for Multifunctional Flexible Electronics. ACS Applied Materials & Interfaces, 2023, 15, 3455-3466.	4.0	10
1221	Highâ€Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing. Advanced Science, 2023, 10, .	5.6	43
1222	Highly Stretchable, Transparent and Adhesive Ionogel Based on Chitosan-Poly(acrylic acid) Double Networks for Flexible Strain Sensors. Gels, 2022, 8, 797.	2.1	6
1223	Construction of Carboxymethyl Chitosan Hydrogel with Multiple Cross-linking Networks for Electronic Devices at Low Temperature. ACS Biomaterials Science and Engineering, 2023, 9, 508-519.	2.6	8
1224	Strong Anchoring of Hydrogels through Superwettingâ€Assisted Highâ€Đensity Interfacial Grafting. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1225	A cellulose-derived supramolecule for fast ion transport. Science Advances, 2022, 8, .	4.7	25
1226	Effect of continuously variable material parameters on dynamic stability of viscoelastic dielectric elastomers. Europhysics Letters, 2023, 141, 16003.	0.7	1
1227	Reconfigurable Touch Panel Based on a Conductive Thixotropic Supramolecular Hydrogel. ACS Applied Materials & Interfaces, 2023, 15, 4458-4468.	4.0	6

#	Article	IF	CITATIONS
1228	Applications of Flexible Electronics. , 2022, , 381-412.		2
1229	A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327.	2.7	7
1230	Magneticâ€responsive Covalent Adaptable Networks. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
1231	Gradual Morphological Change in PEDOT:PSS Thin Films Immersed in an Aqueous Solution. Langmuir, 2023, 39, 1600-1610.	1.6	7
1232	Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS Applied Materials & Interfaces, 2023, 15, 4713-4723.	4.0	6
1233	Concurrent stiffening and softening in hydrogels under dehydration. Science Advances, 2023, 9, .	4.7	31
1234	Self- and Cross-Fusing of Furan-Based Polyurea Gels Dynamically Cross-Linked with Maleimides. Polymers, 2023, 15, 341.	2.0	1
1235	Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nature Communications, 2023, 14, .	5.8	22
1236	Transparent, anti-freezing and highly stretchable solid-state ionic conductors. Polymer Chemistry, 0, ,	1.9	0
1237	An electro-chemo-mechanical theory for hydrogel ionotronics: Application to modeling a capacitive strain sensor and a dynamic large strain actuator. Journal of the Mechanics and Physics of Solids, 2023, 173, 105196.	2.3	5
1238	Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383.	0.6	0
1239	Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. Gels, 2023, 9, 12.	2.1	6
1240	Bio-Inspired Transparent Soft Jellyfish Robot. Soft Robotics, 2023, 10, 590-600.	4.6	18
1241	Supramolecular Host–Guest Hydrogel Based on γ-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence. ACS Applied Materials & Interfaces, 2023, 15, 2479-2485.	4.0	19
1242	Structure-property-function relationships of sustainable hydrogels. , 2023, , 79-111.		0
1243	Multivalent Design of Low-Entropy-Penalty Ion–Dipole Interactions for Dynamic Yet Thermostable Supramolecular Networks. Journal of the American Chemical Society, 2023, 145, 3526-3534.	6.6	23
1244	Dialcohol Cellulose Nanocrystals Enhanced Polymerizable Deep Eutectic Solventâ€Based Selfâ€Healing Ion Conductors with Ultra‧tretchability and Sensitivity. , 2023, 2, .		3
1245	Evaluating charge-type of polyelectrolyte as dielectric layer in memristor and synapse emulation. Nanoscale Horizons, 2023, 8, 509-515.	4.1	3

#	Article	IF	Citations
1246	Nanohydrogels for achieving green economy. , 2023, , 113-136.		0
1247	Analysis of Dynamic Characteristics of a Balloon-Type Dielectric Elastomer Actuator Pre-Stretched by Water Pressure. , 2023, , .		0
1248	An implantable ionic therapeutic platform for photodynamic therapy with wireless capacitive power transfer. Materials Horizons, 2023, 10, 2215-2225.	6.4	1
1249	Muscle Contraction-Inspired Tough Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 8462-8470.	4.0	8
1250	Selfâ€Healing Stress Sensors: Coupling Stressâ€&ensing Performance with Dynamic Chemistry. , 2023, 2, .		2
1251	Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. Advanced Materials, 2023, 35, .	11.1	8
1252	Toughening of hydrogel adhering interface based on soft/hard heterogeneous structures. Extreme Mechanics Letters, 2023, 61, 102016.	2.0	1
1253	Stretchable Ultraviolet Curable Ionic Conductive Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials Technologies, 2023, 8, .	3.0	3
1254	Dynamic modeling with quantifying dissipated power density and experimental validation of dielectric elastomer actuators. Smart Materials and Structures, 2023, 32, 055013.	1.8	1
1255	Ultrastretchable alternating current electroluminescent panels for arbitrary luminous patterns. Applied Materials Today, 2023, 31, 101764.	2.3	1
1256	Anti-swelling conductive polyampholyte hydrogels via ionic complexations for underwater motion sensors and dynamic information storage. Chemical Engineering Journal, 2023, 463, 142439.	6.6	5
1257	Tunable pure shear deformation of voltage/charge loaded dielectric elastomers. International Journal of Mechanical Sciences, 2023, 250, 108323.	3.6	3
1258	Cell Differentiation-Inspired, Salt-Induced Multifunctional Gels for an Intelligent Soft Robot with an Artificial Reflex Arc. ACS Applied Materials & Interfaces, 2023, 15, 5910-5920.	4.0	3
1259	Direct Writing of Liquid Metal onto an Electrospun Graphene Oxide Composite Polymer Nanofiber Membrane for Robust and Stretchable Electrodes. Advanced Materials Technologies, 2023, 8, .	3.0	6
1260	Multiâ€Hydration Induced Zwitterionic Hydrogel with Open Environment Stability for Chemical Sensing. , 2023, 2, .		0
1261	Advancements in Electronic Materials and Devices for Stretchable Displays. Advanced Materials Technologies, 2023, 8, .	3.0	13
1262	Mechanism Study on Mechanical Properties of Physical–Chemical Hybrid Hydrogels by Coarse-Grained Molecular Dynamics Simulations. ACS Applied Polymer Materials, 2023, 5, 1707-1714.	2.0	6
1263	Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nature Communications, 2023, 14, .	5.8	45

#	Article	IF	CITATIONS
1264	Perspectives on the fundamental principles and manufacturing of stretchable ionotronics. Applied Physics Letters, 2023, 122, .	1.5	4
1265	Bioâ€inspired ionic skins for smart medicine. , 2023, 2, .		3
1266	Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Science Advances, 2023, 9, .	4.7	11
1267	Pressure Sensors Combining Porous Electrodes and Electrospun Nanofiber-Based Ionic Membranes. ACS Applied Nano Materials, 2023, 6, 3560-3571.	2.4	9
1268	Poisson–Nernst–Planck framework for modelling ionic strain and temperature sensors. Journal of Materials Chemistry B, 2023, 11, 5544-5551.	2.9	2
1269	Tough Transient Ionic Junctions Printed with Ionic Microgels. Advanced Functional Materials, 2023, 33, .	7.8	5
1270	A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 12787-12796.	4.0	17
1271	Embedment of sensing elements for robust, highly sensitive, and cross-talk–free iontronic skins for robotics applications. Science Advances, 2023, 9, .	4.7	40
1272	Phaseâ \in Separated Dielectric Gels Based on Christiansen Effect. Small, 2023, 19, .	5.2	1
1273	Musselâ€Inspired, Underwater Selfâ€Healing Ionoelastomers Based on αâ€Lipoic Acid for Iontronics. Small, 2023, 19, .	5.2	8
1274	Touchable Gustation via a Hoffmeister Gel Iontronic Sensor. ACS Nano, 2023, 17, 5129-5139.	7.3	13
1275	Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nature Communications, 2023, 14, .	5.8	29
1276	Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science, 2023, 136, 101112.	16.0	8
1277	Flexible Wearable Capacitive Sensors Based on Ionic Gel with Full-Pressure Ranges. ACS Applied Materials & Interfaces, 2023, 15, 15884-15892.	4.0	14
1278	Progress of Hydrophobic Ionogels: A Review. Macromolecular Rapid Communications, 2023, 44, .	2.0	1
1279	Fabrication of highâ€strength magnetically responsive hydrogels by synergistic saltingâ€out and freezing–thawing and application of their shape deformation and swimming. Polymer Engineering and Science, 2023, 63, 1567-1578.	1.5	3
1280	Stretchable iontronics with robust interface bonding between dielectric and ion-conducting elastomers. Nano Research, 2023, 16, 11862-11870.	5.8	4
1281	New water-soluble photo-initiators for two-photon polymerization based on benzylidene cyclopentanones. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442, 114743.	2.0	0

#	Article	IF	CITATIONS
1282	A Universal Interfacial Strategy Enabling Ultraâ€Robust Gel Hybrids for Extreme Epidermal Bioâ€Monitoring. Advanced Functional Materials, 2023, 33, .	7.8	11
1283	A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Waterâ€Stable and Selfâ€Healing Ionic Conductor. Advanced Materials, 2023, 35, .	11.1	15
1284	A supramolecular gel-elastomer system for soft iontronic adhesives. Nature Communications, 2023, 14, .	5.8	12
1285	Electronic tissue technologies for seamless biointerfaces. Journal of Polymer Science, 2023, 61, 1707-1712.	2.0	1
1286	Skin-Friendly and Wearable Iontronic Touch Panel for Virtual-Real Handwriting Interaction. ACS Nano, 2023, 17, 8293-8302.	7.3	30
1287	Optically Transparent and Mechanically Robust Ionic Hydrogel Electrodes for Bright Electroluminescent Devices Achieving High Stretchability Over 1400%. Advanced Functional Materials, 2023, 33, .	7.8	13
1310	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	23.0	30
1313	Iontronic components: From liquid- to solid-states. Nano Research, 0, , .	5.8	0
1315	Rationally designed cellulose hydrogel for an ultrasensitive pressure sensor. Materials Horizons, 2023, 10, 4510-4520.	6.4	6
1319	Anisotropic Actuation in Salty Agarose Gel Actuators. Lecture Notes in Computer Science, 2023, , 165-172.	1.0	0
1328	Utilizing cellulose-based conducting hydrogels in iontronics. , 2023, 1, 1369-1385.		2
1332	Soft bioelectronics for the management of cardiovascular diseases. , 2024, 2, 8-24.		4
1364	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	6.4	0
1368	Electrically driven hydrogel actuators: working principle, material design and applications. Journal of Materials Chemistry C, 0, , .	2.7	0
1383	Hyper strength, high sensitivity integrated wearable signal sensor based on non-covalent interaction of an ionic liquid and bacterial cellulose for human behavior monitoring. Materials Horizons, 0, , .	6.4	0