Dye-sensitized solar cells with high-performance polya counter electrodes electropolymerized by a pulse poter

Journal of Power Sources 233, 320-325 DOI: 10.1016/j.jpowsour.2013.01.116

Citation Report

#	Article	IF	CITATIONS
1	Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode. RSC Advances, 2013, 3, 17228.	1.7	60
2	Dye-Sensitized Solar Cells Based on Polyaniline-Single Wall Carbon Nanotubes Composite. ECS Journal of Solid State Science and Technology, 2013, 2, M13-M16.	0.9	25
3	Preparation of polyaniline/TiO ₂ nanocomposite film with good adhesion behavior for dyeâ€sensitized solar cell application. Polymer Composites, 2013, 34, 1884-1891.	2.3	16
4	Dye-Sensitized Solar Cell Based on Polyaniline/Multiwalled Carbon Nanotubes Counter Electrode. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	28
5	Pt Coated Vertically Aligned Carbon Nanotubes as Electrodes for Proton Exchange Membrane Fuel Cells. Procedia Engineering, 2014, 93, 34-42.	1.2	13
6	Synergistical assembly of multiwalled carbon nanotubes/polyaniline network for dyeâ€sensitized solar cells. Polymers for Advanced Technologies, 2014, 25, 989-994.	1.6	1
7	High performance of Pt-free dye-sensitized solar cells based on two-step electropolymerized polyaniline counter electrodes. Journal of Materials Chemistry A, 2014, 2, 3452-3460.	5.2	80
8	Poly(3-methylthiophene)/Vertically Aligned Multi-walled Carbon Nanotubes: Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in Ionic Liquids. Electrochimica Acta, 2014, 130, 754-765.	2.6	31
9	Axle-sleeve Structured MWCNTs/Polyaniline Composite Film as Cost-effective Counter-Electrodes for High Efficient Dye-Sensitized Solar Cells. Electrochimica Acta, 2014, 121, 285-293.	2.6	33
10	Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. Journal of Polymer Research, 2014, 21, 1.	1.2	29
11	Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A, 2014, 2, 3119.	5.2	103
12	Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: Improved photovoltaic performances of dye-sensitized solar cells. Journal of Power Sources, 2014, 256, 170-177.	4.0	86
13	PEDOT:PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells. Electrochimica Acta, 2014, 142, 68-75.	2.6	30
14	Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Materials Research Bulletin, 2014, 59, 272-277.	2.7	27
15	In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells. Journal of Power Sources, 2014, 266, 448-455.	4.0	38
16	An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material. Journal of Power Sources, 2014, 267, 1-8.	4.0	130
17	Effect of gamma irradiation on structural and optical properties of Cd2SnO4 thin films deposited by DC sputtering technique. Radiation Physics and Chemistry, 2014, 103, 227-233.	1.4	36
18	TEOS-assisted synthesis of porous MoS2 with ultra-small exfoliated sheets and applications in dye-sensitized solar cells. Applied Surface Science, 2014, 313, 498-503.	3.1	41

#	Article	IF	CITATIONS
19	Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceramics International, 2015, 41, 5574-5580.	2.3	170
20	Characterization and corrosion protection properties of composite material (PANI+TiO2) coatings on A304 stainless steel. Journal of Coatings Technology Research, 2015, 12, 107-120.	1.2	43
21	Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. European Polymer Journal, 2015, 66, 207-227.	2.6	245
22	Dye-sensitized solar cells with high-performance electrodeposited gold/polyaniline composite counter electrodes. Materials Science in Semiconductor Processing, 2015, 31, 588-592.	1.9	32
23	Nickel sulfide counter electrodes enhanced by hydrosulphuric acid hydrothermal treatments for use in Pt-free dye-sensitized solar cells. Electrochimica Acta, 2015, 155, 103-109.	2.6	33
24	Bifacial dye-sensitized solar cells using highly transparent PEDOT:PSS films as counter electrodes. Electrochimica Acta, 2015, 156, 20-28.	2.6	39
25	Cobalt sulfide counter electrodes enhanced by a hydro-thermal treatment for use in platinum-free dye-sensitized solar cells. Materials Research Bulletin, 2015, 68, 9-15.	2.7	17
26	Efficiently cubic platinum-cobalt bimetallic nano-catalysts for use in low-cost dye-sensitized solar cells. Electrochimica Acta, 2015, 174, 770-777.	2.6	10
27	Facile modified cyclic electrophoretic deposition of hydrothermally prepared TiO2 nanocrystals and their application in dye sensitized solar cells. Journal of Alloys and Compounds, 2015, 646, 264-270.	2.8	7
28	Efficient hydrothermal-processed platinum–nickel bimetallic nano-catalysts for use in dye-sensitized solar cells. Journal of Power Sources, 2015, 294, 8-15.	4.0	30
29	Spray-On Polyaniline/Poly(acrylic acid) Electrodes with Enhanced Electrochemical Stability. ACS Applied Materials & Interfaces, 2015, 7, 24150-24158.	4.0	29
30	Synthesis and Thermal Properties of Polyaniline-TiO2 nanocomposites PVA Based Film. Materials Today: Proceedings, 2015, 2, 2215-2225.	0.9	10
31	Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells. Journal of Materials Science, 2015, 50, 1469-1477.	1.7	25
32	High-performance Co9Se8/CoSe counter electrode for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2015, 74, 168-174.	1.1	10
33	Three-dimensional hollow platinum–nickel bimetallic nanoframes for use in dye-sensitized solar cells. Journal of Power Sources, 2015, 278, 149-155.	4.0	41
34	Bifacial dye-sensitized solar cells from covalent-bonded polyaniline–multiwalled carbon nanotube complex counter electrodes. Journal of Power Sources, 2015, 275, 489-497.	4.0	42
35	Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes. Journal of Power Sources, 2015, 275, 80-89.	4.0	64
36	Effects of thiourea concentration on electrocatalytic performances of nickel sulfide counter electrodes for use in dye-sensitized solar cells. Materials Research Bulletin, 2015, 61, 326-332.	2.7	12

CITATION REPORT

#	Article	IF	CITATIONS
37	Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell. AIP Advances, 2016, 6, .	0.6	18
38	Effect of ion doping on catalytic activity of MWCNT-polyaniline counter electrodes in dye-sensitized solar cells. Materials and Design, 2016, 104, 298-302.	3.3	25
39	CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for high-performance DSSCs. Science China Materials, 2016, 59, 104-111.	3.5	32
40	Synthesis of cellulose/reduced graphene oxide/polyaniline nanocomposite and its properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 675-682.	1.8	21
41	Preparation of nonwoven mats of electrospun poly(lactic acid)/polyaniline blend nanofibers: A new approach. Journal of Applied Polymer Science, 2016, 133, .	1.3	12
42	Serrated, flexible and ultrathin polyaniline nanoribbons: An efficient counter electrode for the dye-sensitized solar cell. Journal of Power Sources, 2016, 322, 155-162.	4.0	46
43	Dye-sensitized solar cells employing polymers. Progress in Polymer Science, 2016, 59, 1-40.	11.8	136
44	Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2016, 302, 155-163.	4.0	62
45	Electro-polymerization of polypyrrole/multi-wall carbon nanotube counter electrodes for use in platinum-free dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 720-728.	2.6	42
46	Low-cost counter electrodes based on nitrogen-doped porous carbon nanorods for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2017, 63, 190-195.	1.9	16
47	Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2017, 794, 112-119.	1.9	35
48	Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells. Journal of Power Sources, 2017, 342, 292-300.	4.0	36
49	Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer. Journal of Electronic Materials, 2017, 46, 6965-6976.	1.0	5
50	Graphene oxide induced fabrication of pillared and double-faced polyaniline arrays with enhanced triiodide reduction capability. Electrochimica Acta, 2017, 252, 84-90.	2.6	12
51	The effect of transition metal ions (M 2+ = Mn 2+ , Ni 2+ , Co 2+ , Cu 2+) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells. Chinese Journal of Chemical Engineering, 2017, 25, 671-675.	1.7	5
52	Cadmium sulphide/cadmium selenide quantum dot solar cells with inexpensive electrodeposited silver/polyaniline composite counter-electrode. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	4
53	Structural and optical investigations on Mn3O4 hausmannite thin films gamma irradiated along with an enhancement of photoluminescence sensing proprety. Sensors and Actuators A: Physical, 2018, 271, 168-173.	2.0	14
54	Dye sensitized solar cells using the electric field assisted spray deposited kesterite (Cu2ZnSnS4) films as the counter electrodes for improved performance. Electrochimica Acta, 2018, 263, 26-33.	2.6	27

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Effective iron-molybdenum-disulfide counter electrodes for use in platinum-free dye-sensitized solar cells. Science China Materials, 2018, 61, 1278-1284.	3.5	9
57	Effects of multiwall carbon nanotubes on the polymerization model of aniline. Journal of Polymer Research, 2018, 25, 1.	1.2	9
58	Aligned electrospun nanofiber poly(lactic acid) mats coated with conductive polyaniline: Anisotropy of electrical conductivity. Journal of Electrostatics, 2018, 96, 69-75.	1.0	7
59	A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes. Solar Energy, 2018, 174, 1097-1125.	2.9	116
60	One-step synthesized CuS and MWCNTs composite as a highly efficient counter electrode for quantum dot sensitized solar cells. Materials and Design, 2018, 160, 870-875.	3.3	27
63	Effect of zinc precursor on Cu2ZnSnS4 nanoparticles synthesized by the solvothermal method and its application in dye-sensitized solar cells as the counter electrode. Materials Today Energy, 2018, 9, 377-382.	2.5	12
64	The dye-sensitized solar cells based on the interconnected ternary cobalt diindium sulfide nanosheet array counter electrode. Materials Research Bulletin, 2018, 107, 204-212.	2.7	25
65	Efficient photocatalysis through conductive polymer coated FTO counter electrode in platinum free dye sensitized solar cells. Electrochimica Acta, 2019, 320, 134544.	2.6	39
66	Formation Features of Hybrid Nanocomposites Based on Polydiphenylamine-2-Carboxylic Acid and Single-Walled Carbon Nanotubes. Polymers, 2019, 11, 1181.	2.0	11
67	The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143.	2.0	146
68	Role of polyaniline thickness in polymer-zinc oxide based solid state solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 244, 23-28.	1.7	13
69	Fabrication of Electrically Conductive Cellulose Acetate/Polyaniline/WO3 Nanocomposite Nanofibers with Potential Applications in Electrochemical Devices. Polymer Science - Series A, 2019, 61, 345-356.	0.4	7
70	Economical and Highly Efficient Non-Metal Counter Electrode Materials for Stable Dye-Sensitized Solar Cells. , 2019, , 397-435.		5
71	Development of Paint-Type Dye-Sensitized Solar Cell Using Carbon Nanotube Paint. Journal of Nanotechnology, 2019, 2019, 1-6.	1.5	3
72	Carbon Nanomaterials in Renewable Energy Production and Storage Applications. Environmental Chemistry for A Sustainable World, 2019, , 51-104.	0.3	14
73	Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency. Journal of Materials Science: Materials in Electronics, 2019, 30, 26-36.	1.1	7
74	Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs. Journal of Materials Science: Materials in Electronics, 2019, 30, 1706-1713.	1.1	1
75	Evaluating and empirical modeling of the electrocatalytic activity and morphology of electrospun polyacrylonitrile/polyaniline/tungsten trioxide nanofibers. Journal of the Textile Institute, 2020, 111, 950-959.	1.0	1

#	Article	IF	CITATIONS
76	Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co ²⁺ / ³⁺ -Based Redox Couple. ACS Applied Materials & Interfaces, 2020, 12, 44597-44607.	4.0	25
77	Facile simultaneous synthesis of tetraaniline nanostructures/silver nanoparticles as heterogeneous catalyst for the efficient catalytic reduction of 4-nitrophenol to 4-aminophenol. RSC Advances, 2020, 10, 22043-22053.	1.7	13
78	Development of the PANI/MWCNT Nanocomposite-Based Fluorescent Sensor for Selective Detection of Aqueous Ammonia. ACS Omega, 2020, 5, 8414-8422.	1.6	30
79	Preparation of Cu3SnS4 film with single ceramic target magnetron sputtering for Pt-free counter electrode of dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2021, 32, 17292-17300.	1.1	4
80	Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Scientific Reports, 2021, 11, 14830.	1.6	27
81	Alternating Current Electrophoretic Deposition of Multiwall Carbon Nanotubes-Polyaniline for Supercapacitor Electrode. Journal of Clean Energy Technologies, 2018, 6, 47-50.	0.1	2
82	Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability. Materials, 2022, 15, 6883.	1.3	1
83	Real-time probing electrodeposition growth of polyaniline thin film via in-situ spectroscopic ellipsometry. Thin Solid Films, 2022, 762, 139565.	0.8	2