Electron-Hole Diffusion Lengths Exceeding 1 Micromet Perovskite Absorber

Science 342, 341-344 DOI: 10.1126/science.1243982

Citation Report

#	Article	IF	CITATIONS
16	Perovskites under the Sun. Nature Materials, 2013, 12, 1087-1089.	13.3	109
17	Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. Journal of Physical Chemistry Letters, 2013, 4, 4213-4216.	2.1	675
18	Perovskite-Based Solar Cells. Science, 2013, 342, 317-318.	6.0	731
19	Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	14
20	Rutherford Backscattering Spectroscopy of Mass Transport by Transformation of PbI2 into CH3NH3PbI3 within np-TiO2. Hybrid Materials, 2014, 1, .	0.7	3
21	Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation. Europhysics Letters, 2014, 108, 67015.	0.7	47
22	THE PAST AND PRESENT. Series on Photoconversion of Solar Energy, 2014, , 1-39.	0.2	0
23	MAPbI _{3-x} Cl _x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Materials Research Society Symposia Proceedings, 2014, 1667, 41.	0.1	4
24	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>Wband gap of the hybrid organic-inorganic perovskite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><ml:r< td=""><td>1.1</td><td>126</td></ml:r<></mml:msub></mml:mrow></mml:math </mml:mi></mml:mrow></mml:math 	1.1	126
25	Effect of spin-orbit interaction, semicore electrons, an. Physical Review B, 2014, 90, . Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures. International Journal of Photoenergy, 2014, 2014, 1-11.	1.4	23
26	Ultrafast charge generation, high and balanced charge carrier mobilities in organo halide perovskite solar cell. , 2014, , .		2
27	Perovskites and their Potential use in Solar Energy Applications. Science Progress, 2014, 97, 279-287.	1.0	12
28	CHAPTER 7. Perovskite Solar Cells. RSC Energy and Environment Series, 0, , 242-257.	0.2	3
29	Chemistry of Sensitizers for Dye-sensitized Solar Cells. RSC Energy and Environment Series, 2014, , 186-241.	0.2	3
30	Random lasing in organo-lead halide perovskite microcrystal networks. Applied Physics Letters, 2014, 105, .	1.5	135
31	Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5, 5757.	5.8	787
32	Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5, 5784.	5.8	2,531
33	Lasing behaviors upon phase transition in solution-processed perovskite thin films. Applied Physics Letters, 2014, 105, .	1.5	59

ATION RE

#	Article	IF	CITATIONS
34	Combinatorial Screening of Photoelectrocatalytic System with High Signal/Noise Ratio. Analytical Chemistry, 2014, 86, 11972-11976.	3.2	8
35	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, 2014, 2, .	2.2	118
36	Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nature Communications, 2014, 5, 5900.	5.8	247
37	Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Materials, 2014, 2, .	2.2	163
38	Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Research, 2014, 2, 111.	3.4	89
39	Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Materials, 2014, 2, .	2.2	293
40	Shallow halogen vacancies in halide optoelectronic materials. Physical Review B, 2014, 90, .	1.1	119
41	Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss. APL Materials, 2014, 2, .	2.2	37
42	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials, 2014, 26, 7158-7165.	3.2	256
43	An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Materials, 2014, 2, .	2.2	99
44	CH ₃ NH ₃ PbI ₃ -Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Applied Materials & Interfaces, 2014, 6, 22862-22870.	4.0	214
45	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	1.5	667
46	Magnetron Sputtered Zinc Oxide Nanorods as Thickness-Insensitive Cathode Interlayer for Perovskite Planar-Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 20585-20589.	4.0	63
47	Reproducible One-Step Fabrication of Compact MAPbl _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films Derived from Mixed-Lead-Halide Precursors. Chemistry of Materials, 2014, 26, 7145-7150.	3.2	81
48	Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Materials, 2014, 2, .	2.2	93
49	Microstructures and photovoltaic properties of perovskite-type CH ₃ NH ₃ Pbl ₃ compounds. Applied Physics Express, 2014, 7, 121601.	1.1	99
50	Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite. Journal of the American Chemical Society, 2014, 136, 17730-17733.	6.6	546
51	Efficient electron/hole transport in inorganic/organic hybrid solar cells by lithium ion and molybdenum trioxide codoping. Journal of Power Sources, 2014, 268, 874-881.	4.0	20

#	Article	IF	CITATIONS
52	Ultrafast infrared spectroscopy reveals intragap states in methylammonium lead iodide perovskite materials. Proceedings of SPIE, 2014, , .	0.8	3
53	Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications. Proceedings of SPIE, 2014, , .	0.8	9
54	Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. Nanoscale Research Letters, 2014, 9, 457.	3.1	22
55	Perovskite Based Hybrid Solar Cells with Transparent Carbon Nanotube electrodes. Materials Research Society Symposia Proceedings, 2014, 1667, 20.	0.1	3
56	Switchable <i>S</i> = 1/2 and <i>J</i> = 1/2 Rashba bands in ferroelectric halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6900-6904.	3.3	252
57	Solution processed flexible planar hybrid perovskite solar cells. Proceedings of SPIE, 2014, , .	0.8	5
58	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1667, 7.	0.1	2
59	Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH ₃ NH ₃ PbI ₃ Layers. Chemistry Letters, 2014, 43, 711-713.	0.7	284
60	Nickel Oxide Electrode Interlayer in CH ₃ NH ₃ PbI ₃ Perovskite/PCBM Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 4107-4113.	11.1	646
61	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6, 6679.	2.8	275
62	Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and Environmental Science, 2014, 7, 1377.	15.6	624
63	Simple Way to Engineer Metal–Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5651-5656.	4.0	93
64	Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. Journal of Physical Chemistry Letters, 2014, 5, 1374-1379.	2.1	96
65	Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5, 3586.	5.8	1,443
66	The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO ₂ -Based Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1096-1102.	2.1	221
67	Arising applications of ferroelectric materials in photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 6027-6041.	5.2	408
68	High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials, 2014, 26, 1584-1589.	11.1	2,785
69	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy and Environmental Science, 2014, 7, 1889-1894.	15.6	151

#	Article	IF	CITATIONS
70	A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 6305-6309.	5.2	167
71	Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 2014, 43, 3259-3302.	18.7	996
72	Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3â^'xClx perovskite solar cells. Nature Communications, 2014, 5, 3461.	5.8	511
73	A Molecular Ferroelectric Thin Film of Imidazolium Perchlorate That Shows Superior Electromechanical Coupling. Angewandte Chemie - International Edition, 2014, 53, 5064-5068.	7.2	103
74	High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2014, 5, 1421-1426.	2.1	1,490
75	Updated Assessment of Possibilities and Limits for Solar Cells. Advanced Materials, 2014, 26, 1622-1628.	11.1	101
76	Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 2014, 136, 5189-5192.	6.6	1,106
77	Control of Charge Dynamics through a Chargeâ€Separation Interface for Allâ€Solid Perovskiteâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 1062-1069.	1.0	73
78	Additive Enhanced Crystallization of Solutionâ€Processed Perovskite for Highly Efficient Planarâ€Heterojunction Solar Cells. Advanced Materials, 2014, 26, 3748-3754.	11.1	1,344
79	Stark Effect in Perovskite/TiO ₂ Solar Cells: Evidence of Local Interfacial Order. Nano Letters, 2014, 14, 2168-2174.	4.5	200
80	Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104,	1.5	2,142
81	New Light on an Old Story: Perovskites Go Solar. Angewandte Chemie - International Edition, 2014, 53, 635-637.	7.2	175
82	Solidâ€State Perovskiteâ€Sensitized pâ€Type Mesoporous Nickel Oxide Solar Cells. ChemSusChem, 2014, 7, 2150-2153.	3.6	69
83	Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, 2014, 2, 8607.	5.2	88
84	Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014, 14, 2584-2590.	4.5	2,068
85	Crystal Structures, Optical Properties, and Effective Mass Tensors of CH ₃ NH ₃ PbX ₃ (X = I and Br) Phases Predicted from HSE06. Journal of Physical Chemistry Letters, 2014, 5, 1278-1282.	2.1	209
86	The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2014, 5, 1312-1317.	2.1	744
87	Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano Letters, 2014, 14, 3247-3254.	4.5	651

ARTICLE IF CITATIONS # Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and 15.6 2,086 88 Environmental Science, 2014, 7, 3061-3068. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014, 8, 89 15.6 2,410 489-494. Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 90 15.6 1,220 7, 2448-2463. Rutile TiO2-based perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 9251. 188 Depletion region effect of highly efficient hole conductor free CH₃NH₃Pbl₃perovskite solar cells. Physical Chemistry Chemical 92 1.3 252 Physics, 2014, 16, 10512-10518. Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130. 23.0 669 Modified Two-Step Deposition Method for High-Efficiency TiO₂/CH₃NH₃Pbl₃ Heterojunction Solar Cells. ACS 94 4.0 167 Applied Materials & amp; Interfaces, 2014, 6, 9711-9718. Cobalt Dopant with Deep Redox Potential for Organometal Halide Hybrid Solar Cells. ChemSusChem, 3.6 2014, 7, 1909-1914. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. 15.6 692 96 Energy and Environmental Science, 2014, 7, 2614-2618. Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards Highâ€Performance 3.6 Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014, 2, 838-844. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed 98 15.61.154 precursor stacking layers. Energy and Environmental Science, 2014, 7, 2619-2623. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption 99 6.6 1,234 Spectrum in Solar Cells. Journal of the American Chemical Society, 2014, 136, 8094-8099. CH₃NH₃Cl-Assisted One-Step Solution Growth of CH₃NH₃PbI₃: Structure, Charge-Carrier Dynamics, and 100 1.5 516 Photovoltaic Properties of Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9412-9418. Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. Journal of Physical 2.1 384 Chemistry Letters, 2014, 5, 1628-1635. Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar 102 1.5 211 Cell. Journal of Physical Chemistry C, 2014, 118, 17160-17165. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values. Physical Chemistry Chemical Physics, 2014, 16, 14116-14126. Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. Journal of Physical Chemistry 104 2.1 307 Letters, 2014, 5, 1748-1753. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano 8.2 459 Energy, 2014, 7, 80-85.

ARTICLE IF CITATIONS # Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature 106 15.6 754 solution-process. Energy and Environmental Science, 2014, 7, 2359-2365. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing 2.2 butadiene derivatives. Chemical Communications, 2014, 50, 6931. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and 108 15.6 694 Environmental Science, 2014, 7, 2518-2534. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. 109 5.8 769 Nature Communications, 2014, 5, 3834. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. 110 11.1 1,735 Advanced Materials, 2014, 26, 4653-4658. All-Solid Perovskite Solar Cells with HOCO-R-NH₃⁺I[–] Anchor-Group Inserted between Porous Titania and Perovskite. Journal of Physical Chemistry C, 2014, 1.5 118, 16651-16659. Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to 112 1.5 463 Exciton Screening in Hybrid Perovskites. Journal of Physical Chemistry C, 2014, 118, 11566-11572. Quantum Dot Solar Cells: Hole Transfer as a Limiting Factor in Boosting the Photoconversion 1.6 126 Efficiency. Langmuir, 2014, 30, 5716-5725. Solution Depositionâ€Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. 114 10.2 325 Advanced Energy Materials, 2014, 4, 1400355. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH₃NH₃PbI_{3–<i>x</i>}Cl_{<i>x</i>}. Journal of Physical 2.1 319 Chemistry Letters, 2014, 5, 1300-1306. Efficient carrier transport in halide perovskites: theoretical perspectives. Journal of Materials 116 5.2 414 Chemistry A, 2014, 2, 9091-9098. Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014, 8, 128-132. 15.6 1,320 Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the 118 6.6 2,091 American Chemical Society, 2014, 136, 622-625. Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in 119 4.5 High-Performance Perovskite Solar Cells. Nano Letters, 2014, 14, 127-133. The Raman Spectrum of the CH₃NH₃Pbl₃ Hybrid Perovskite: 120 555 2.1 Interplay of Theory and Experiment. Journal of Physical Chemistry Letters, 2014, 5, 279-284. Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7, 994. 409 Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar 122 15.6 648 cells. Nature Photonics, 2014, 8, 250-255. Solid-State Mesostructured Perovskite CH₃NH₃Pbl₃Solar Cells: Charge Transport, Recombination, and Diffusion Length. Journal of Physical Chemistry Letters, 2014, 5, 490-494. 124 2.1

#	Article	IF	CITATIONS
125	Mg-doped TiO ₂ nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. RSC Advances, 2014, 4, 9652-9655.	1.7	100
126	Organolead Halide Perovskite: New Horizons in Solar Cell Research. Journal of Physical Chemistry C, 2014, 118, 5615-5625.	1.5	616
127	Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 680-685.	2.1	583
128	High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014, 16, 6033-6040.	1.3	86
129	Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor). Nano Letters, 2014, 14, 1000-1004.	4.5	533
130	Neutral Color Semitransparent Microstructured Perovskite Solar Cells. ACS Nano, 2014, 8, 591-598.	7.3	412
131	Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8, 133-138.	15.6	2,425
132	Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2014, 16, 1424-1429.	1.3	306
133	Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014, 8, 1674-1680.	7.3	1,320
134	General Working Principles of CH ₃ NH ₃ PbX ₃ Perovskite Solar Cells. Nano Letters, 2014, 14, 888-893.	4.5	786
135	Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy and Environmental Science, 2014, 7, 982.	15.6	3,352
136	Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 429-433.	2.1	342
137	Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18751-18757.	4.0	62
138	Qualifying composition dependent <i>p</i> and <i>n</i> self-doping in CH3NH3PbI3. Applied Physics Letters, 2014, 105, .	1.5	518
139	Effect of CH ₃ NH ₃ PbI ₃ thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19873-19881.	5.2	314
140	Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Materials, 2014, 2, .	2.2	95
141	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 4207-4212.	2.1	156
142	Modeling of Lead Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2014, 118, 28344-28349.	1.5	143

#	Article	IF	CITATIONS
143	Nickel-Cathoded Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 25878-25883.	1.5	61
144	Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale, 2014, 6, 14674-14678.	2.8	81
145	Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society, 2014, 136, 16411-16419.	6.6	383
146	Perovskite Oxide SrTiO ₃ as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 28494-28501.	1.5	251
147	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2014, 2, .	2.2	136
148	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	5.8	2,214
149	Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2014, 8, 12701-12709.	7.3	614
150	Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society, 2014, 136, 17116-17122.	6.6	407
151	Defect density and dielectric constant in perovskite solar cells. Applied Physics Letters, 2014, 105, .	1.5	221
152	Formation Mechanism of Freestanding CH ₃ NH ₃ PbI ₃ Functional Crystals: In Situ Transformation vs Dissolution–Crystallization. Chemistry of Materials, 2014, 26, 6705-6710.	3.2	143
153	Nanowires of Methylammonium Lead Iodide (CH ₃ NH ₃ PbI ₃) Prepared by Low Temperature Solution-Mediated Crystallization. Nano Letters, 2014, 14, 6761-6766.	4.5	257
154	Surface Effects and Adsorption of Methoxy Anchors on Hybrid Lead Iodide Perovskites: Insights for Spiro-MeOTAD Attachment. Journal of Physical Chemistry C, 2014, 118, 26947-26954.	1.5	115
155	Efficiency enhancement via tailoring energy level alignment induced by vanadium ion doping in organic/inorganic hybrid solar cells. RSC Advances, 2014, 4, 46008-46015.	1.7	7
156	Vapor deposition of organic-inorganic hybrid perovskite thin-films for photovoltaic applications. , 2014, , .		5
157	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	5.2	147
158	Predictions for p-Type CH ₃ NH ₃ PbI ₃ Perovskites. Journal of Physical Chemistry C, 2014, 118, 25350-25354.	1.5	71
159	Improved charge transport of Nb-doped TiO ₂ nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19616-19622.	5.2	127
160	Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances, 2014, 4, 43286-43314.	1.7	238

#	Article	IF	CITATIONS
161	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3and NiO Nanoparticles. Angewandte Chemie, 2014, 126, 9493-9496.	1.6	31
162	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2408-2413.	2.1	90
163	Enhancing the efficiency of TiO ₂ -perovskite heterojunction solar cell via evaporating Cs ₂ CO ₃ on TiO ₂ . Physica Status Solidi - Rapid Research Letters, 2014, 8, 912-916.	1.2	12
164	Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of Applied Physics, 2014, 116, .	1.1	252
165	Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy and Environmental Science, 2014, 7, 3326-3333.	15.6	272
166	Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications, 2014, 50, 15819-15822.	2.2	158
167	The photophysics of perovskite solar cells. Proceedings of SPIE, 2014, , .	0.8	0
168	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Advances, 2014, 4, 62971-62977.	1.7	182
169	On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4115-4121.	2.1	73
170	Organic photovoltaics: key photophysical, device and design aspects. Journal of Modern Optics, 2014, 61, 1703-1713.	0.6	3
171	Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Physical Review Applied, 2014, 2, .	1.5	1,005
172	Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Materials, 2014, 2, .	2.2	80
173	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	4.5	185
174	Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4175-4186.	2.1	227
175	Improved External Quantum Efficiency from Solution-Processed (CH ₃ NH ₃)PbI ₃ Perovskite/PC ₇₁ BM Planar Heterojunction for High Efficiency Hybrid Solar Cells. Journal of Physical Chemistry C, 2014, 118, 25899-25905.	1.5	40
176	Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate. Journal of Physical Chemistry C, 2014, 118, 26513-26520.	1.5	58
177	Performance optimization for Perovskite based solar cells. , 2014, , .		3
178	Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation. Chemistry of Materials, 2014, 26, 6557-6569.	3.2	286

#	Article		CITATIONS
179	High voltage in hole conductor free organo metal halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20776-20781.	5.2	62
180	Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2,4,6-trinitrophenol. RSC Advances, 2014, 4, 55908-55911.	1.7	69
181	Room-temperature ABX3-typed molecular ferroelectric: [C5H9–NH3][CdCl3]. Inorganic Chemistry Frontiers, 2014, 1, 118.	3.0	110
182	Size-Dependent Charge Transfer Yields in Conjugated Polymer/Quantum Dot Blends. Journal of Physical Chemistry C, 2014, 118, 5710-5715.	1.5	24
183	Perovskite photovoltaics featuring solution-processable TiO2as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale, 2014, 6, 11403-11410.	2.8	24
184	CH ₃ NH ₃ PbI _(3â^²x) (BF ₄) _x : molecular ion substituted hybrid perovskite. Chemical Communications, 2014, 50, 9741.	2.2	98
185	Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. Journal of Physical Chemistry Letters, 2014, 5, 2791-2795.	2.1	250
186	Solvent Annealing of Perovskiteâ€Induced Crystal Growth for Photovoltaicâ€Device Efficiency Enhancement. Advanced Materials, 2014, 26, 6503-6509.	11.1	1,527
187	ORGANOMETAL HALIDE PEROVSKITE PHOTOVOLTAICS: A DIAMOND IN THE ROUGH. Nano, 2014, 09, 1440002.	0.5	24
188	The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. Journal of Physical Chemistry Letters, 2014, 5, 3836-3842.	2.1	238
189	First-Principles Investigation of the TiO ₂ /Organohalide Perovskites Interface: The Role of Interfacial Chlorine. Journal of Physical Chemistry Letters, 2014, 5, 2619-2625.	2.1	247
190	Optics and Light Trapping for Tandem Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2014, 4, 1380-1386.	1.5	114
191	Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO ₂ Anatase Interface. Journal of Physical Chemistry C, 2014, 118, 16863-16871.	1.5	14
192	High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization. RSC Advances, 2014, 4, 33039.	1.7	55
193	Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 2014, 8, 10640-10654.	7.3	353
194	Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH ₃ NH ₃ PbBr _{3â^'x} Cl _x films. Chemical Communications, 2014, 50, 11727-11730.	2.2	225
195	Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators. ACS Nano, 2014, 8, 10947-10952.	7.3	330
196	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	2.2	86

#	Article	IF	CITATIONS
197	Anomalous Alloy Properties in Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2014, 5, 3625-3631.	2.1	231
198	A Layered Hybrid Perovskite Solar ell Absorber with Enhanced Moisture Stability. Angewandte Chemie - International Edition, 2014, 53, 11232-11235.	7.2	1,547
199	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al ₂ O ₃ and NiO Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 9339-9342.	7.2	57
200	Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16, 22476-22481.	1.3	447
201	Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society, 2014, 136, 13249-13256.	6.6	388
202	Sequential Deposition of CH ₃ NH ₃ Pbl ₃ on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics, 2014, 1, 547-553.	3.2	245
203	Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, 2014, 2, 18508-18514.	5.2	276
204	Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014, 6, 8473-8488.	2.8	774
205	Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9, 687-692.	15.6	3,627
206	Liquid phase deposition of TiO ₂ nanolayer affords CH ₃ NH ₃ PbI ₃ /nanocarbon solar cells with high open-circuit voltage. Faraday Discussions, 2014, 176, 271-286.	1.6	54
207	Effective Masses and Electronic and Optical Properties of Nontoxic MASnX ₃ (X = Cl, Br,) Tj ETQq0 0 Physical Chemistry C, 2014, 118, 19655-19660.	0 rgBT /0 1.5	verlock 10 Tf 165
208	Electrospun lead-doped titanium dioxide nanofibers and the in situ preparation of perovskite-sensitized photoanodes for use in high performance perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 16856-16862.	5.2	81
210	Colloidal Indium-Doped Zinc Oxide Nanocrystals with Tunable Work Function: Rational Synthesis and Optoelectronic Applications. Chemistry of Materials, 2014, 26, 5169-5178.	3.2	68
212	High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research, 2014, 7, 1749-1758.	5.8	205
213	Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps. Journal of the American Chemical Society, 2014, 136, 13818-13825.	6.6	587
214	The light and shade of perovskite solar cells. Nature Materials, 2014, 13, 838-842.	13.3	1,877
215	Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Materials, 2014, 2, .	2.2	194
216	Termination Dependence of Tetragonal CH ₃ NH ₃ PbI ₃ Surfaces for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2903-2909.	2.1	320

#	Article	IF	CITATIONS
217	Binaryâ€Metal Perovskites Toward Highâ€Performance Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 6454-6460.	11.1	295
218	Parameters Affecting <i>I</i> – <i>V</i> Hysteresis of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO ₂ Layer. Journal of Physical Chemistry Letters, 2014, 5, 2927-2934.	2.1	974
219	Band filling with free charge carriers in organometal halide perovskites. Nature Photonics, 2014, 8, 737-743.	15.6	943
220	Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy and Environmental Science, 2014, 7, 3659-3665.	15.6	94
221	Extremely Slow Photoconductivity Response of CH ₃ NH ₃ PbI ₃ Perovskites Suggesting Structural Changes under Working Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2662-2669.	2.1	301
222	Carbazoleâ€Based Holeâ€Transport Materials for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells and Perovskite Solar Cells. Advanced Materials, 2014, 26, 6629-6634.	11.1	369
223	Planar heterojunction perovskite/PC ₇₁ BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014, 2, 15897-15903.	5.2	317
224	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	5.2	57
225	Role of Dispersive Interactions in Determining Structural Properties of Organic–Inorganic Halide Perovskites: Insights from First-Principles Calculations. Journal of Physical Chemistry Letters, 2014, 5, 2728-2733.	2.1	199
226	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
227	Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Applied Physics Letters, 2014, 104, .	1.5	135
228	Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale, 2014, 6, 8171-8176.	2.8	172
229	Rate limiting interfacial hole transfer in Sb ₂ S ₃ solid-state solar cells. Energy and Environmental Science, 2014, 7, 1148-1158.	15.6	97
230	Size, Dimensionality, and Strong Electron Correlation in Nanoscience. Accounts of Chemical Research, 2014, 47, 2951-2959.	7.6	49
231	Photocarrier Recombination Dynamics in Perovskite CH ₃ NH ₃ PbI ₃ for Solar Cell Applications. Journal of the American Chemical Society, 2014, 136, 11610-11613.	6.6	701
232	Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. Journal of Materials Chemistry A, 2014, 2, 17291-17296.	5.2	274
233	Lead Methylammonium Triiodide Perovskiteâ€Based Solar Cells: An Interfacial Chargeâ€Transfer Investigation. ChemSusChem, 2014, 7, 3088-3094.	3.6	51
234	Hole-Conductor-Free, Metal-Electrode-Free TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. Journal of Physical Chemistry Letters, 2014, 5, 3241-3246.	2.1	258

		CITATION REPORT		
#	Article		IF	CITATIONS
235	Materials Processing Routes to Trap-Free Halide Perovskites. Nano Letters, 2014, 14, 6	281-6286.	4.5	671
236	Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic–Inorganic Perovskite Solar Cell. Chemistry of Materials, 2014, 26, 4675-4678.	Lead Iodide	3.2	39
237	The origin of efficiency enhancement of inorganic/organic Hybrid solar Cells by robust phosphate nanophosphors. Solar Energy Materials and Solar Cells, 2014, 130, 426-434	samarium 1.	3.0	33
238	Real-space observation of unbalanced charge distribution inside a perovskite-sensitized Nature Communications, 2014, 5, 5001.	t solar cell.	5.8	294
239	Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite sola Nanotechnology, 2014, 9, 927-932.	ır cells. Nature	15.6	1,600
240	Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Per Semiconductor CsSnl ₃ . Chemistry of Materials, 2014, 26, 6068-6072.	ovskite	3.2	256
241	Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry Let 2488-2492.	ters, 2014, 5,	2.1	416
242	Hysteresis and transient behavior in current–voltage measurements of hybrid-perovs solar cells. Energy and Environmental Science, 2014, 7, 3690-3698.	kite absorber	15.6	1,117
243	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. Journal of Physical C Letters, 2014, 5, 3532-3538.	Chemistry	2.1	175
244	Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH ₃ NH ₃ Pbl ₃ Perovskite Films: Evidence for Pas Pbl ₂ . Journal of the American Chemical Society, 2014, 136, 12205-12208	ssivation Effect of	6.6	501
245	Recent Research Developments of Perovskite Solar Cells. Chinese Journal of Chemistry 957-963.	, 2014, 32,	2.6	37
246	Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar C of Photovoltaics, 2014, 4, 1545-1551.	Cells. IEEE Journal	1.5	123
247	Correlated electron–hole plasma in organometal perovskites. Nature Communicatio	ns, 2014, 5, 5049.	5.8	497
248	Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH ₃ NH ₃ Pbl ₃ . Journal of the American Chemica 14570-14575.	l Society, 2014, 136,	6.6	462
249	Enhanced Photoluminescence and Solar Cell Performance <i>via</i> Lewis Base Passiv Organic–Inorganic Lead Halide Perovskites. ACS Nano, 2014, 8, 9815-9821.	ation of	7.3	1,439
250	Radiative Recombination and Photoconversion of Methylammonium Lead Iodide Perov Principles: Properties of an Inorganic Semiconductor within a Hybrid Body. Journal of P Chemistry C, 2014, 118, 24843-24853.		1.5	74
251	Charge transfer and recombination at the metal oxide/CH ₃ NH ₃ PbClI ₂ /spiro-OMeTAD interfaces detailed mechanism behind high efficiency solar cells. Physical Chemistry Chemical Phy 19984-19992.	: uncovering the sics, 2014, 16,	1.3	88
252	Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perc Cells. Nano Letters, 2014, 14, 5561-5568.	vskite Solar	4.5	1,073

#	Article	IF	CITATIONS
253	Computed and Experimental Absorption Spectra of the Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry Letters, 2014, 5, 3061-3065.	2.1	94
254	Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Interfaces, 2014, 6, 16140-16146.	4.0	245
255	Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solidâ€State Perovskiteâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400932.	10.2	117
256	Efficient organic–inorganic hybrid perovskite solar cells processed in air. Physical Chemistry Chemical Physics, 2014, 16, 24691-24696.	1.3	61
257	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18.	8.2	504
258	AgTFSI as pâ€Type Dopant for Efficient and Stable Solidâ€State Dyeâ€Sensitized and Perovskite Solar Cells. ChemSusChem, 2014, 7, 3252-3256.	3.6	114
259	An Aboveâ€Roomâ€Temperature Ferroelectric Organo–Metal Halide Perovskite: (3â€Pyrrolinium)(CdCl ₃). Angewandte Chemie - International Edition, 2014, 53, 11242-11247.	7.2	160
260	The Role of Chlorine in the Formation Process of "CH ₃ NH ₃ Pbl _{3â€x} Cl _x ―Perovskite. Advanced Functional Materials, 2014, 24, 7102-7108.	7.8	294
261	Zn ₂ SnO ₄ -Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22991-22994.	1.5	92
262	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale, 2014, 6, 12287-12297.	2.8	120
263	Spin transport in CH3NH3PbI3. Journal Physics D: Applied Physics, 2014, 47, 405002.	1.3	5
264	Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques. Journal of Physical Chemistry C, 2014, 118, 22913-22922.	1.5	175
265	Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 2014, 6, 13854-13860.	2.8	76
266	The emergence of perovskite solar cells. Nature Photonics, 2014, 8, 506-514.	15.6	5,727
267	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505-10510.	2.8	352
268	An 80.11% FF record achieved for perovskite solar cells by using the NH ₄ Cl additive. Nanoscale, 2014, 6, 9935-9938.	2.8	368
269	A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345, 295-298.	6.0	2,685
270	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy and Environmental Science, 2014, 7, 2963-2967.	15.6	668

#	Article	IF	Citations
271	Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters, 2014, 104, .	1.5	449
272	Exciton Generation/Dissociation/Charge-Transfer Enhancement in Inorganic/Organic Hybrid Solar Cells by Robust Single Nanocrystalline LnP _{<i>x</i>} O _{<i>y</i>} (Ln = Eu, Y) Doping. ACS Applied Materials & Interfaces, 2014, 6, 8771-8781.	4.0	40
273	Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16458-16462.	1.5	657
274	Lessons Learned: From Dyeâ€Sensitized Solar Cells to Allâ€Solidâ€State Hybrid Devices. Advanced Materials, 2014, 26, 4013-4030.	11.1	144
275	Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13, 897-903.	13.3	5,796
276	Organolead halide perovskite: A rising player in high-efficiency solar cells. Chinese Journal of Catalysis, 2014, 35, 983-988.	6.9	28
277	Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH ₃ NH ₃ PbI _{3â^'x} Cl _x . Energy and Environmental Science, 2014, 7, 2269-2275.	15.6	427
278	Direct deposition strategy for highly ordered inorganic organic perovskite thin films and their optoelectronic applications. Optical Materials Express, 2014, 4, 1313.	1.6	44
279	Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Physical Chemistry Chemical Physics, 2014, 16, 16137-16144.	1.3	211
280	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	4.5	1,343
281	Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5, 3803.	5.8	214
282	Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS Applied Materials & Interfaces, 2014, 6, 12609-12617.	4.0	50
283	Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Physical Review B, 2014, 89, .	1.1	612
284	Organo-metal perovskite based solar cells: sensitized versus planar architecture. RSC Advances, 2014, 4, 29012-29021.	1.7	55
285	Highâ€Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Advanced Functional Materials, 2014, 24, 7373-7380.	7.8	791
286	Organohalide lead perovskite based photodetectors with much enhanced performance. Chemical Communications, 2014, 50, 13695-13697.	2.2	206
287	Rutile TiO ₂ nanowire-based perovskite solar cells. Chemical Communications, 2014, 50, 14720-14723.	2.2	127
288	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	3.2	178

#	Article	IF	CITATIONS
289	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	2.8	105
290	Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Current Applied Physics, 2014, 14, 1428-1433.	1.1	123
291	A thin pristine non-triarylamine hole-transporting material layer for efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. RSC Advances, 2014, 4, 32918.	1.7	35
292	Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic–inorganic hybrid solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24499-24508.	1.3	7
293	CH ₃ NH ₃ PbI ₃ /poly-3-hexylthiophen perovskite mesoscopic solar cells: Performance enhancement by Li-assisted hole conduction. Physica Status Solidi - Rapid Research Letters, 2014, 8, 816-821.	1.2	68
294	Surfactant enhanced surface coverage of CH3NH3PbI3â^'xClx perovskite for highly efficient mesoscopic solar cells. Journal of Power Sources, 2014, 272, 351-355.	4.0	51
295	Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous TiO ₂ via Disorder–Order Phase Transition. Chemistry of Materials, 2014, 26, 4466-4471.	3.2	118
296	Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 16531-16537.	5.2	62
297	Unraveling the Nanoscale Morphologies of Mesoporous Perovskite Solar Cells and Their Correlation to Device Performance. Nano Letters, 2014, 14, 2735-2740.	4.5	52
298	Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. Journal of the American Chemical Society, 2014, 136, 3760-3763.	6.6	688
299	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. Journal of Physical Chemistry C, 2014, 118, 17171-17177.	1.5	225
300	Synthesis, structure and optical studies of inorganic–organic hybrid semiconductor, (H3NC6H4CH2NH3) PbI4. Materials Research Bulletin, 2014, 52, 78-81.	2.7	5
301	Crystal structures and dielectric properties of two tert-butylammonium chlorocadmate(II) complexes. Inorganica Chimica Acta, 2014, 413, 97-101.	1.2	30
302	Fabrication of planar heterojunction perovskite solar cells. , 2014, , .		1
303	A highly efficient mesoscopic solar cell based on CH ₃ NH ₃ PbI _{3â^x} Cl _x fabricated via sequential solution deposition. Chemical Communications, 2014, 50, 12458-12461.	2.2	87
304	HIGH-EFFICIENT SOLID-STATE PEROVSKITE SOLAR CELL WITHOUT LITHIUM SALT IN THE HOLE TRANSPORT MATERIAL. Nano, 2014, 09, 1440001.	0.5	34
305	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
306	Highâ€Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH ₂) ₂ Pbl ₃ . Advanced Materials, 2014, 26, 4991-4998.	11.1	847

#	Article	IF	CITATIONS
307	Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano, 2014, 8, 4730-4739.	7.3	269
308	Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. Journal of Physical Chemistry Letters, 2014, 5, 2189-2194.	2.1	465
309	Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano, 2014, 8, 6797-6804.	7.3	427
310	Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy and Environmental Science, 2014, 7, 2642-2646.	15.6	622
311	Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material. Journal of the American Chemical Society, 2014, 136, 8516-8519.	6.6	243
312	An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material. Journal of Power Sources, 2014, 267, 1-8.	4.0	130
313	Electronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility. ACS Nano, 2014, 8, 7147-7155.	7.3	370
314	Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. Journal of Materials Chemistry A, 2014, 2, 13827-13830.	5.2	163
315	How to Draw Energy Level Diagrams in Excitonic Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2283-2288.	2.1	50
316	Unusual defect physics underlies perovskite solar cells' exceptional performance. Physics Today, 2014, 67, 13-15.	0.3	20
317	Inhomogeneous Deactivation with UV Excitation in Submicron Grains of Lead Iodide Perovskite-based Solar Cell as Revealed by Femtosecond Transient Absorption Microscopy. Chemistry Letters, 2014, 43, 1656-1658.	0.7	17
318	Fabrication and Characterization of TiO2/CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, 2014, 43, 916-918.	0.7	37
321	Two-step deposition method for high-efficiency perovskite solar cells. MRS Bulletin, 2015, 40, 654-659.	1.7	50
322	Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics. MRS Bulletin, 2015, 40, 641-645.	1.7	45
323	Interface and Nanostructural Engineering of Low-cost, Efficient and Stable Perovskite Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1771, 171-179.	0.1	1
324	Ab Initio Analysis of Charge Carrier Dynamics in Organic-Inorganic Lead Halide Perovskite Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1776, 19-29.	0.1	4
325	Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 2015, 5, 265-275.	0.8	662
326	Hole-transport material-free perovskite-based solar cells. MRS Bulletin, 2015, 40, 674-680.	1.7	39

#	Article	IF	CITATIONS
327	Steps toward efficient inorganic–organic hybrid perovskite solar cells. MRS Bulletin, 2015, 40, 648-653.	1.7	33
328	Charge arrier Dynamics and Mobilities in Formamidinium Lead Mixedâ€Halide Perovskites. Advanced Materials, 2015, 27, 7938-7944.	11.1	343
329	Temperatureâ€Dependent Chargeâ€Carrier Dynamics in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films. Advanced Functional Materials, 2015, 25, 6218-6227.	7.8	785
330	Local Versus Longâ€Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites. Advanced Science, 2015, 2, 1500136.	5.6	50
331	Effects of Niobium Addition into TiO2 Layers on CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, 2015, 44, 1033-1035.	0.7	21
332	Methylammonium fragmentation in amines as source of localized trap levels and the healing role of Cl in hybrid lead-iodide perovskites. Physical Review B, 2015, 92, .	1.1	54
333	Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Physical Review B, 2015, 92, .	1.1	100
334	Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2015, 2, 1500195.	1.9	646
335	An efficient descriptor model for designing materials for solar cells. Npj Computational Materials, 2015, 1, .	3.5	39
336	Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 13211.	1.6	155
337	Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 15889.	1.6	83
338	Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Scientific Reports, 2015, 5, 14083.	1.6	200
340	High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Scientific Reports, 2015, 5, 16563.	1.6	270
341	Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film. Scientific Reports, 2015, 5, 14485.	1.6	172
342	Boosting of the Performance of Perovskite Solar Cells through Systematic Introduction of Reduced Graphene Oxide in TiO2 Layers. Chemistry Letters, 2015, 44, 1410-1412.	0.7	39
343	Determination of Chloride Content in Planar CH3NH3Pbl3â^' <i>x</i> Cl <i>x</i> Solar Cells by Chemical Analysis. Chemistry Letters, 2015, 44, 1089-1091.	0.7	33
344	Alternative, Lead-free, Hybrid Organic–Inorganic Perovskites for Solar Applications: A DFT Analysis. Chemistry Letters, 2015, 44, 826-828.	0.7	65
345	Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 2015, 44, 720-729.	0.7	216

#	Article	IF	Citations
346	Effects of Different Solvents on the Planar Hetero-junction Perovskite Solar Cells. MATEC Web of Conferences, 2015, 22, 05002.	0.1	7
347	Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Scientific Reports, 2015, 5, 16977.	1.6	56
348	Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport. Applied Physics Letters, 2015, 107, 163901.	1.5	35
349	Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 2015, 8, 3012-3028.	3.6	109
350	Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays. Small, 2015, 11, 5533-5539.	5.2	80
351	Improving the Extraction of Photogenerated Electrons with SnO ₂ Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 7200-7207.	7.8	194
352	Highâ€Quality Mixedâ€Organicâ€Cation Perovskites from a Phaseâ€Pure Nonâ€stoichiometric Intermediate (FAI) _{1â^'} <i>_x</i> â€PbI ₂ for Solar Cells. Advanced Materials, 2015, 27, 4918-4923.	11.1	140
353	Lightâ€Induced Selfâ€Poling Effect on Organometal Trihalide Perovskite Solar Cells for Increased Device Efficiency and Stability. Advanced Energy Materials, 2015, 5, 1500721.	10.2	214
354	A Smooth CH ₃ NH ₃ PbI ₃ Film via a New Approach for Forming the PbI ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ I Concentration for High Efficient Planarâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1501354.	10.2	228
355	Plasmonicâ€Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5038-5046.	7.8	198
356	Resistive Switching Behavior in Organic–Inorganic Hybrid CH ₃ NH ₃ PbI _{3<i>â^²x</i>} Cl <i>_x</i> Perovskite for Resistive Random Access Memory Devices. Advanced Materials, 2015, 27, 6170-6175.	11.1	469
357	Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500279.	10.2	271
358	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	10.2	1,045
360	Probing Molecular and Crystalline Orientation in Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5529-5536.	7.8	57
361	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	7.8	321
363	Morphologyâ€Controlled Synthesis of Organometal Halide Perovskite Inverse Opals. Angewandte Chemie - International Edition, 2015, 54, 13806-13810.	7.2	68
364	Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. ChemSusChem, 2015, 8, 3882-3891.	3.6	70
365	Charge Accumulation and Hysteresis in Perovskiteâ€Based Solar Cells: An Electroâ€Optical Analysis. Advanced Energy Materials, 2015, 5, 1500829.	10.2	217

#	Article	IF	CITATIONS
366	The Significance of Ion Conduction in a Hybrid Organic–Inorganic Leadâ€lodideâ€Based Perovskite Photosensitizer. Angewandte Chemie, 2015, 127, 8016-8021.	1.6	143
367	Photoluminescence and electroluminescence imaging of perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1697-1705.	4.4	76
368	A promising unisource thermal evaporation for <i>in situ</i> fabrication of organolead halide perovskite CH ₃ NH ₃ PbI ₃ thin film. Progress in Photovoltaics: Research and Applications, 2015, 23, 1901-1907.	4.4	28
369	Solar Rechargeable Batteries Based on Lead–Organohalide Electrolyte. Advanced Energy Materials, 2015, 5, 1501418.	10.2	35
370	Highâ€Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1500486.	10.2	221
371	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
372	Understanding the Impact of Bromide on the Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2015, 27, 7221-7228.	11.1	73
373	A Lowâ€Temperature, Solutionâ€Processable, Cuâ€Doped Nickel Oxide Holeâ€Transporting Layer via the Combustion Method for Highâ€Performance Thinâ€Film Perovskite Solar Cells. Advanced Materials, 2015, 27, 7874-7880.	11.1	405
374	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	11.1	109
375	A Strategy to Design a Donor–ï€â€"Acceptor Polymeric Hole Conductor for an Efficient Perovskite Solar Cell. Advanced Energy Materials, 2015, 5, 1500471.	10.2	55
378	Oneâ€Dimensional Self‣tanding TiO ₂ Nanotube Array Layers Designed for Perovskite Solar Cell Applications. ChemPhysChem, 2015, 16, 2836-2841.	1.0	29
379	Controlled growth of PbI ₂ nanoplates for rapid preparation of CH ₃ NH ₃ PbI ₃ in planar perovskite solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2708-2717.	0.8	63
380	Ultrathin 2D Nanolayer of RuO ₂ Effectively Enhances Charge Separation in the Photochemical Processes of TiO ₂ . Small, 2015, 11, 4469-4474.	5.2	12
381	Highâ€Performance Planar Solar Cells Based On CH ₃ NH ₃ PbI _{3â€<i>x</i>Cl<i>_Xx</i>} Perovskites with Determined Chlorine Mole Fraction. Advanced Functional Materials, 2015, 25, 4867-4873.	7.8	95
382	Bismuth Based Hybrid Perovskites A ₃ Bi ₂ I ₉ (A: Methylammonium or) Tj ET	-Qq0 0 0 r	gBT /Overloci 1,017
383	Twoâ€Inchâ€Sized Perovskite CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials, 2015, 27, 5176-5183.	11.1	914
384	Selfâ€Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500118.	1.9	61
295	Can Trihalide Lead Perovskites Support Continuous Wave Lasing?. Advanced Optical Materials, 2015, 3,	26	79

#	Article	IF	CITATIONS
386	Lead Replacement in CH ₃ NH ₃ Pbl ₃ Perovskites. Advanced Electronic Materials, 2015, 1, 1500089.	2.6	67
387	16.1% Efficient Hysteresisâ€Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015, 5, 1500568.	10.2	222
388	Mapping Electric Fieldâ€Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 2015, 5, 1500962.	10.2	225
389	Formamidinium and Cesium Hybridization for Photo―and Moisture‣table Perovskite Solar Cell. Advanced Energy Materials, 2015, 5, 1501310.	10.2	1,350
390	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	10.2	131
391	Microengineered CH ₃ NH ₃ PbI ₃ Nanowire/Graphene Phototransistor for Lowâ€Intensity Light Detection at Room Temperature. Small, 2015, 11, 4824-4828.	5.2	151
392	Current–voltage characteristics of manganite–titanite perovskite junctions. Beilstein Journal of Nanotechnology, 2015, 6, 1467-1484.	1.5	16
393	Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings, 2015, 5, 646-655.	1.2	24
394	Inorganic–Organic Perovskite Solar Cells. , 0, , .		5
395	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	19
396	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. International Journal of Photoenergy, 2015, 2015, 1-13.	1.4	65
398	The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Scientific Reports, 2015, 5, 8704.	1.6	91
399	Modeling ultrafast exciton deactivation in oligothiophenes via nonadiabatic dynamics. Physical Chemistry Chemical Physics, 2015, 17, 7787-7799.	1.3	48
400	Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum. Applied Physics Letters, 2015, 106, .	1.5	158
401	Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 13965-13971.	1.5	28
402	Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 2015, 15, 4571-4577.	4.5	405
403	The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nature Communications, 2015, 6, 7124.	5.8	517
404	Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 2015, 15, 530-539.	8.2	246

ARTICLE IF CITATIONS # Modulation of photovoltage in mesoscopic perovskite solar cell by controlled interfacial electron 405 1.7 25 injection. RSC Advances, 2015, 5, 47334-47340. Effect of Annealing Temperature on Film Morphology of Planar Heterojunction Mixed Halide Perovskite CH3NH3PbI3â[°]<i>x</i>Cl<i>x</i>Solar Cells Based on Compact ZnO. Chemistry Letters, 2015, 44, 1022-1024. Perovskite solar cell based on network nanoporous layer consisted of TiO2 nanowires and its 408 4.0 44 interface optimization. Journal of Power Sources, 2015, 290, 144-152. Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9, 409 916 444-449. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating 410 3.2 268 and Low Thermal Budget Photonic Curing. ACS Photonics, 2015, 2, 680-686. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7, 10595-10599. 2.8 294 Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERG). 412 2.1 39 Journal of Physical Chemistry Letters, 2015, 6, 2503-2508. Photoinduced Reversible Structural Transformations in Free-Standing CH₃NH₃Pbl₃Perovskite Films. Journal of Physical Chemistry 2.1 190 Letters, 2015, 6, 2332-2338. Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM 414 4.0 132 Electron Transport Layer. ACS Applied Materials & amp; Interfaces, 2015, 7, 13659-13665. Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 2.2 perovskite. Chemical Communications, 2015, 51, 11290-11292. Annealing-induced chemical and structural changes in tri-iodide and mixed-halide organometal 416 5.2 21 perovskite layers. Journal of Materials Chemistry A, 2015, 3, 14195-14201. Study on hole-transport-material-free planar TiO₂/CH₃NH₃PbI₃ heterojunction solar cells: the 5.2 simplest configuration of a working perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 14902-14909 Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power 418 4.0 114 Sources, 2015, 293, 533-538. Magnetoresistance of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub>Coated La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> Granular Composites. IEEE Transactions on Magnetics, 2015, 51, 1-4. 1.2 Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganicâ& Organic Lead 420 2.1 64 Halide Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2355-2362. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106, . 421 480 Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3. Journal of 422 4.0 56 Power Sources, 2015, 293, 577-584. Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chemistry of Materials, 2015, 27, 4405-4412.

#	Article	IF	CITATIONS
424	Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nature Nanotechnology, 2015, 10, 707-713.	15.6	1,007
425	Selfâ€Templateâ€Directed Synthesis of Porous Perovskite Nanowires at Room Temperature for Highâ€Performance Visibleâ€Light Photodetectors. Angewandte Chemie - International Edition, 2015, 54, 5693-5696.	7.2	192
426	Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells. Scientific Reports, 2015, 5, 10557.	1.6	48
427	Tuning electron–hole distance of the excitons in organic molecules using functional groups. Chemical Physics Letters, 2015, 618, 142-146.	1.2	17
428	Improving efficiency of planar hybrid CH 3 NH 3 PbI 3â^' x Cl x perovskite solar cells by isopropanol solvent treatment. Organic Electronics, 2015, 24, 205-211.	1.4	41
429	Photonic–Plasmonic Devices Created by Templated Self-Assembly. Journal of Physical Chemistry Letters, 2015, 6, 2112-2113.	2.1	1
430	Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 2015, 3, 14631-14641.	5.2	126
431	Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells. Nano Energy, 2015, 15, 540-548.	8.2	85
432	Ferroelectric Polarization of CH ₃ NH ₃ PbI ₃ : A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. Journal of Physical Chemistry Letters, 2015, 6, 2223-2231.	2.1	179
433	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	18.7	283
434	Enhanced Performance of Perovskite CH ₃ NH ₃ PbI ₃ Solar Cell by Using CH ₃ NH ₃ I as Additive in Sequential Deposition. ACS Applied Materials & Interfaces, 2015, 7, 12937-12942.	4.0	80
435	Wearable Doubleâ€īwisted Fibrous Perovskite Solar Cell. Advanced Materials, 2015, 27, 3831-3835.	11.1	184
436	Mesoporous SnO ₂ single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18265-18268.	1.3	82
437	Role of phase composition for electronic states in CH3NH3PbI3 prepared from CH3NH3I/PbCl2 solution. Applied Physics Letters, 2015, 106, 232104.	1.5	34
438	Future prospects of organic and perovskite based solid-state lasers. , 2015, , .		1
439	Spectroscopic ellipsometry studies of CH3NH3PbX3 thin films and their growth evolution. , 2015, , .		5
440	Zero-dipole molecular organic cations in mixed organic–inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current–voltage curve measurements. Nanotechnology, 2015, 26, 442001.	1.3	38
441	Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn ₂ SnO ₄ Electron Transporting Layer: Interface Matters. ACS Applied Materials & Interfaces, 2015, 7, 28404-28411.	4.0	103

#	Article	IF	CITATIONS
442	Organic–Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite–Low Bandgap Polymer–PCBM for Improved Efficiency of Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28459-28465.	4.0	9
443	Kesterite Cu ₂ ZnSnS ₄ as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28466-28473.	4.0	147
444	DMSO-based PbI ₂ precursor with PbCl ₂ additive for highly efficient perovskite solar cells fabricated at low temperature. RSC Advances, 2015, 5, 104606-104611.	1.7	26
445	Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas. Science, 2015, 350, 1225-1231.	6.0	165
446	Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222-1225.	6.0	2,440
447	Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers. Journal of the American Chemical Society, 2015, 137, 16043-16048.	6.6	101
448	Substitution induced band structure shape tuning in hybrid perovskites (CH ₃ NH ₃ Pb _{1â°'x} Sn _x I ₃) for efficient solar cell applications. RSC Advances, 2015, 5, 107497-107502.	1.7	44
449	Perovskites: Solar cells & engineering applications – materials and device developments. Solar Energy, 2015, 122, 678-699.	2.9	133
450	First-Principles Treatment of Photoluminescence in Semiconductors. Journal of Physical Chemistry C, 2015, 119, 27954-27964.	1.5	52
451	Reversible Anion Exchange Reaction in Solid Halide Perovskites and Its Implication in Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 26883-26888.	1.5	45
452	Open Circuit Potential Build-Up in Perovskite Solar Cells from Dark Conditions to 1 Sun. Journal of Physical Chemistry Letters, 2015, 6, 4640-4645.	2.1	48
453	Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6, 8724.	5.8	617
454	TiO ₂ quantum dots as superb compact block layers for high-performance CH ₃ NH ₃ PbI ₃ perovskite solar cells with an efficiency of 16.97%. Nanoscale, 2015, 7, 20539-20546.	2.8	87
455	Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Advances, 2015, 5, 99356-99360.	1.7	98
456	Molecular alignment and Rashba splitting in organometal halide perovskite CH3NH3PbI3 absorbers. , 2015, , .		1
457	Simulation of perovskite solar cells with inorganic hole transporting materials. , 2015, , .		10
458	Low temperature two-step solution process for perovskite solar cells with planar structure. , 2015, , .		0
459	Evaluation of radiation tolerance of perovskite solar cell for use in space. , 2015, , .		23

#	Article	IF	CITATIONS
460	Illumination dependent carrier dynamics of CH ₃ NH ₃ PbBr ₃ perovskite. Proceedings of SPIE, 2015, , .	0.8	1
461	Novel low cost hole transporting materials for efficient organic-inorganic perovskite solar cells. , 2015, , .		1
462	Uniform perovskite photovoltaic thin films via ultrasonic spray assisted deposition method. , 2015, , .		4
463	Effects of domain size in polycrystalline perovskite organic-inorganic hybrids investigated by spatially resolved optical spectroscopy. , 2015, , .		0
464	Development of perovskite solar cells with nanophotonic front electrodes for improved light incoupling. , 2015, , .		1
465	Efficient planar heterojunction solar cell employing CH ₃ NH ₃ Pbl ₂₊ <i>_x</i> Cl _{1â⁻} <i>_x</i> halide perovskite utilizing modified sequential deposition. Japanese Journal of Applied Physics, 2015, 54, 092301.	/i>mixed	3
466	Phenoxazineâ€Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401720.	10.2	109
467	Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 2359-2366.	4.0	82
468	HPbl ₃ : A New Precursor Compound for Highly Efficient Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 1120-1126.	7.8	293
469	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
470	Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Advances, 2015, 5, 11175-11179.	1.7	111
471	Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano, 2015, 9, 564-572.	7.3	125
472	Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH ₃ NH ₃ PbI ₃ perovskite solar cells: the role of a compensated electric field. Energy and Environmental Science, 2015, 8, 995-1004.	15.6	1,150
473	Vacuum-Assisted Thermal Annealing of CH ₃ NH ₃ PbI ₃ for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 2015, 9, 639-646.	7.3	318
474	Structure and function relationships in alkylammonium lead(<scp>ii</scp>) iodide solar cells. Journal of Materials Chemistry A, 2015, 3, 9201-9207.	5.2	57
475	Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. Advanced Functional Materials, 2015, 25, 1213-1218.	7.8	86
476	Phase transitions and dielectric properties of a hexagonal ABX ₃ perovskite-type organic–inorganic hybrid compound: [C ₃ H ₄ NS][CdBr ₃]. Dalton Transactions, 2015, 44, 10614-10620.	1.6	60
477	Organic–Inorganic Hybrid Lead Iodide Perovskite Featuring Zero Dipole Moment Guanidinium Cations: A Theoretical Analysis. Journal of Physical Chemistry C, 2015, 119, 4694-4701.	1.5	132

#	Article	IF	CITATIONS
478	Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. Journal of Physical Chemistry C, 2015, 119, 5253-5264.	1.5	246
479	Ultrathin Atomic Layer Deposited TiO ₂ for Surface Passivation of Hydrothermally Grown 1D TiO ₂ Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 1541-1551.	3.2	170
480	Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.	5.2	91
481	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
482	Insights into Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 4444-4453.	1.5	160
483	Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals. ACS Nano, 2015, 9, 2948-2959.	7.3	252
484	Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 4955-4961.	4.0	295
485	Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals. Advanced Functional Materials, 2015, 25, 2378-2385.	7.8	318
486	A facile, solvent vapor–fumigation-induced, self-repair recrystallization of CH ₃ NH ₃ PbI ₃ films for high-performance perovskite solar cells. Nanoscale, 2015, 7, 5427-5434.	2.8	61
487	Interfaces in Perovskite Solar Cells. Small, 2015, 11, 2472-2486.	5.2	344
488	Enhanced Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. Journal of the American Chemical Society, 2015, 137, 2674-2679.	6.6	590
489	Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources, 2015, 280, 649-666.	4.0	112
490	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	3.0	70
491	M13 Virus-Enabled Synthesis of Titanium Dioxide Nanowires for Tunable Mesoporous Semiconducting Networks. Chemistry of Materials, 2015, 27, 1531-1540.	3.2	44
492	Formation of Thin Films of Organic–Inorganic Perovskites for Highâ€Efficiency Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 3240-3248.	7.2	245
493	Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Science Bulletin, 2015, 60, 405-418.	4.3	39
495	Unravelling the Effects of Cl Addition in Single Step CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 2309-2314.	3.2	96
496	Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application. Journal of Power Sources, 2015, 280, 313-319.	4.0	23

#	Article	IF	CITATIONS
497	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 898-907.	2.1	266
498	Pathways for solar photovoltaics. Energy and Environmental Science, 2015, 8, 1200-1219.	15.6	385
499	Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 693-699.	2.1	293
500	Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation. ACS Photonics, 2015, 2, 349-354.	3.2	133
501	Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. Journal of Physical Chemistry C, 2015, 119, 3545-3549.	1.5	223
502	Zr Incorporation into TiO ₂ Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. Journal of Physical Chemistry Letters, 2015, 6, 669-675.	2.1	106
503	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	23.0	852
504	Identifying the Optimum Morphology in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401775.	10.2	67
505	Electron-hole diffusion lengths > 175 μm in solution-grown CH ₃ NH ₃ Pbl ₃ single crystals. Science, 2015, 347, 967-970.	6.0	4,642
506	High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347, 522-525.	6.0	2,978
507	Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519-522.	6.0	4,156
508	Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.	5.8	784
509	Trap States in Lead Iodide Perovskites. Journal of the American Chemical Society, 2015, 137, 2089-2096.	6.6	813
510	Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 3456-3465.	1.5	361
511	Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. Journal of Physical Chemistry Letters, 2015, 6, 535-539.	2.1	265
512	Low-Temperature and Solution-Processed Amorphous WO _{<i>X</i>} as Electron-Selective Layer for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 755-759.	2.1	224
513	Mechanical Origin of the Structural Phase Transition in Methylammonium Lead Iodide CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry Letters, 2015, 6, 681-685.	2.1	63
514	NiO/MAPbl _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4283-4289.	4.0	59

#	Article	IF	CITATIONS
515	A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells. Current Applied Physics, 2015, 15, 574-579.	1.1	34
516	Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 137, 6-14.	3.0	117
517	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, 2015, 3, 9216-9222.	5.2	19
518	A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano, 2015, 9, 1782-1787.	7.3	201
519	Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor. ACS Applied Materials & Interfaces, 2015, 7, 3994-3999.	4.0	100
520	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	11.1	684
521	Cooperative kinetics of depolarization in CH ₃ NH ₃ PbI ₃ perovskite solar cells. Energy and Environmental Science, 2015, 8, 910-915.	15.6	116
522	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Based on Graphdiyne (GD)â€Modified P3HT Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1401943.	10.2	282
523	Introducing Perovskite Solar Cells to Undergraduates. Journal of Physical Chemistry Letters, 2015, 6, 251-255.	2.1	33
524	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	5.2	233
526	Fabrication of metal-oxide-free CH ₃ NH ₃ PbI ₃ perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275.	5.2	162
527	Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI ₂ /CH ₃ NH ₃ I multilayers. Journal of Materials Chemistry A, 2015, 3, 9223-9231.	5.2	82
528	Perovskite thin-film solar cell: excitation in photovoltaic science. Science China Chemistry, 2015, 58, 221-238.	4.2	63
529	Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions. ACS Applied Materials & Interfaces, 2015, 7, 2708-2714.	4.0	173
530	Inorganic p-type contact materials for perovskite-based solar cells. Journal of Materials Chemistry A, 2015, 3, 9011-9019.	5.2	143
531	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	10.2	144
532	Spontaneous Defect Annihilation in CH ₃ NH ₃ PbI ₃ Thin Films at Room Temperature Revealed by Time-Resolved Photoluminescence Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 482-486.	2.1	83
533	Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Research, 2015, 8, 263-270.	5.8	32

#	Article	IF	CITATIONS
534	Pressure-assisted CH ₃ NH ₃ PbI ₃ morphology reconstruction to improve the high performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 5289-5293.	5.2	76
535	CH <inline-formula><tex-math>\$_{f 3}\$ </tex-math></inline-formula> NH <inline-formula><tex-math>\$_{f 3}\$</tex-math></inline-formula> PbI <inline-formula> <tex-math>\$_{f 3}\$<:/tex-math>:<:/inline-formula>: Solar Cells Studied by Photoluminescence and</tex-math></inline-formula>	1.5	170
536	Transformation of the Excited State and Photovoltaic Efficiency of CH ₃ NH ₃ PbI ₃ Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 2015, 137, 1530-1538.	6.6	1,160
537	Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. Journal of Physical Chemistry Letters, 2015, 6, 493-499.	2.1	112
538	Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH ₃ NH ₃ PbI _{3-x} Cl _{<i>x</i>} Derived from Two-Step Spin Coating Method. ACS Applied Materials & Interfaces, 2015, 7, 2242-2248.	4.0	92
539	Growth control of compact CH ₃ NH ₃ PbI ₃ thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9249-9256.	5.2	128
540	Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Advanced Materials Interfaces, 2015, 2, 1400528.	1.9	122
541	Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015, 3, 9257-9263.	5.2	47
542	Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy, 2015, 13, 249-257.	8.2	310
543	Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2015, 17, 9394-9409.	1.3	130
544	Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 2015, 44, 10582-10593.	1.6	154
545	Formation of organic–inorganic mixed halide perovskite films by thermal evaporation of PbCl ₂ and CH ₃ NH ₃ I compounds. RSC Advances, 2015, 5, 26175-26180.	1.7	47
546	Efficient mesoscopic perovskite solar cells based on the CH ₃ NH ₃ PbI ₂ Br light absorber. Journal of Materials Chemistry A, 2015, 3, 9116-9122.	5.2	67
547	Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4471-4475.	4.0	131
548	Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites. Journal of Applied Physics, 2015, 117, 074901.	1.1	12
549	Ciant Photoluminescence Blinking of Perovskite Nanocrystals Reveals Single-Trap Control of Luminescence. Nano Letters, 2015, 15, 1603-1608.	4.5	185
550	Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 875-880.	2.1	422
551	Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH ₄ Cl. Chemistry of Materials, 2015, 27, 1448-1451.	3.2	123

#	Article	IF	CITATIONS
552	Nanowire Perovskite Solar Cell. Nano Letters, 2015, 15, 2120-2126.	4.5	321
553	Two-dimensional dichalcogenides for light-harvesting applications. Nano Today, 2015, 10, 128-137.	6.2	208
554	Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochimica Acta, 2015, 175, 151-161.	2.6	89
555	Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2015, 9, 2311-2320.	7.3	173
556	Spontaneous polarization behaviors in hybrid halide perovskite film. Scripta Materialia, 2015, 102, 51-54.	2.6	19
557	Improving the TiO ₂ electron transport layer in perovskite solar cells using acetylacetonate-based additives. Journal of Materials Chemistry A, 2015, 3, 9108-9115.	5.2	104
558	Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3â°'xClx layer. Organic Electronics, 2015, 21, 19-26.	1.4	56
559	Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.	10.2	289
560	Interfacial Control Toward Efficient and Lowâ€Voltage Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2311-2316.	11.1	631
561	Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Letters, 2015, 15, 2640-2644.	4.5	621
562	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
563	Mesoporous SnO ₂ nanoparticle films as electron-transporting material in perovskite solar cells. RSC Advances, 2015, 5, 28424-28429.	1.7	154
564	Navigating Organo‣ead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure–Property Relationships. Small, 2015, 11, 3088-3096.	5.2	49
565	Triple Cathode Buffer Layers Composed of PCBM, C ₆₀ , and LiF for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 6230-6237.	4.0	136
566	Many-body interactions in photo-excited lead iodide perovskite. Journal of Materials Chemistry A, 2015, 3, 9285-9290.	5.2	144
567	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	5.2	19
568	Magnetic field effects in hybrid perovskite devices. Nature Physics, 2015, 11, 427-434.	6.5	227
569	The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Applied Physics Letters, 2015, 106, .	1.5	126

#	ARTICLE Once again, organometallic tri-halide perovskites. Materials Today, 2015, 18, 172-173.	IF 8.3	CITATIONS
570	Once again, organometanic unhande perovskites. Materiais Today, 2013, 10, 172-173.	6.3	10
571	17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy and Environmental Science, 2015, 8, 2365-2370.	15.6	300
572	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34
573	Bulk intermixing-type perovskite CH ₃ NH ₃ PbI ₃ /TiO ₂ nanorod hybrid solar cells. Nanoscale, 2015, 7, 14532-14537.	2.8	15
574	Elucidation of Perovskite Film Micro-Orientations Using Two-Photon Total Internal Reflectance Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 3283-3288.	2.1	24
575	Hystersis mechanism in perovskite photovoltaic devices and its potential application for multi-bit memory devices. Organic Electronics, 2015, 26, 208-212.	1.4	26
576	Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 22770-22777.	1.3	32
577	Air-processed, efficient CH ₃ NH ₃ PbI _{3â^'x} Cl _x perovskite solar cells with organic polymer PTB7 as a hole-transport layer. RSC Advances, 2015, 5, 66981-66987.	1.7	32
578	High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy, 2015, 16, 428-437.	8.2	124
579	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
580	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	6.6	347
581	Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297, 53-58.	4.0	59
582	Color tunable halide perovskite CH3NH3PbBr3â^'Cl emission via annealing. Organic Electronics, 2015, 26, 260-264.	1.4	15
583	Solvent-assisted growth of organic–inorganic hybrid perovskites with enhanced photovoltaic performances. Solar Energy Materials and Solar Cells, 2015, 143, 360-368.	3.0	14
584	Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nature Communications, 2015, 6, 7903.	5.8	132
585	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
586	Additive regulated crystallization and film formation of CH ₃ NH ₃ Pbl _{3â^'x} Br _x for highly efficient planar-heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 18514-18520.	5.2	49
587	Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 2015, 26, 342001.	1.3	75

#	Article	IF	CITATIONS
588	Photovoltaic performance and the energy landscape of CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2015, 17, 22604-22615.	1.3	35
589	Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond?. Journal of Physical Chemistry Letters, 2015, 6, 3218-3227.	2.1	220
590	Ultrafast photoinduced dynamics of the organolead trihalide perovskite CH ₃ NH ₃ PbI ₃ on mesoporous TiO ₂ scaffolds in the 320–920 nm range. Physical Chemistry Chemical Physics, 2015, 17, 19238-19246.	1.3	54
591	Formamidinium tin-based perovskite with low E _g for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 14996-15000.	5.2	449
592	Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15024-15029.	5.2	107
593	Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. RSC Advances, 2015, 5, 58543-58548.	1.7	20
594	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
595	High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6, 7586.	5.8	1,478
596	A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale, 2015, 7, 13363-13368.	2.8	64
597	Evolution of Organic–Inorganic Lead Halide Perovskite from Solid-State Iodoplumbate Complexes. Journal of Physical Chemistry C, 2015, 119, 17065-17073.	1.5	70
598	Perovskite Solar Cell Using a Two-Dimensional Titania Nanosheet Thin Film as the Compact Layer. ACS Applied Materials & Interfaces, 2015, 7, 15117-15122.	4.0	20
599	Transparent conducting oxide free backside illuminated perovskite solar cells. Applied Physics Letters, 2015, 107, .	1.5	11
600	Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015, 15, 5191-5199.	4.5	432
601	Domain Walls Conductivity in Hybrid Organometallic Perovskites and Their Essential Role in CH3NH3PbI3 Solar Cell High Performance. Scientific Reports, 2015, 5, 11467.	1.6	41
602	A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances, 2015, 5, 60562-60569.	1.7	130
603	Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 2015, 6, 7497.	5.8	2,154
604	Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Solar Energy Materials and Solar Cells, 2015, 141, 309-314.	3.0	72
605	CH ₃ NH ₃ Pbl ₃ and CH ₃ NH ₃ Pbl _{3â€"<i>x</i>} Cl _{<i>x</i>} in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture, Journal of Physical Chemistry C, 2015, 119, 15868-15873	1.5	63

#	Article	IF	CITATIONS
606	Heterogeneous Charge Carrier Dynamics in Organic–Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films. Nano Letters, 2015, 15, 4799-4807.	4.5	128
607	Abnormal crystal growth in CH ₃ NH ₃ PbI _{3â^`x} Cl _x using a multi-cycle solution coating process. Energy and Environmental Science, 2015, 8, 2464-2470.	15.6	240
608	Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. Journal of Materials Chemistry A, 2015, 3, 19310-19313.	5.2	70
609	Controlling CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16330-16337.	4.0	86
610	Hole transporting material-free and annealing-free thermal evaporated planar perovskite solar cells with an ultra-thin CH3NH3PbI3â^'Cl layer. Organic Electronics, 2015, 26, 104-108.	1.4	15
611	Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2015, 6, 3041-3047.	2.1	59
612	Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015, 6, 7383.	5.8	641
613	Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. Journal of Physical Chemistry Letters, 2015, 6, 3082-3090.	2.1	257
614	Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17776-17781.	4.0	75
615	CH ₃ NH ₃ PbI _{3â^'x} Cl _x films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 22015-22022.	1.3	61
616	Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 242-249.	3.0	24
617	Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. Journal of Materials Chemistry A, 2015, 3, 17780-17787.	5.2	29
618	Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. Journal of Materials Chemistry C, 2015, 3, 8839-8843.	2.7	161
619	Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Scientific Reports, 2015, 5, 11424.	1.6	112
620	Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices. Japanese Journal of Applied Physics, 2015, 54, 08KD04.	0.8	45
621	Quantum-dot-in-perovskite solids. Nature, 2015, 523, 324-328.	13.7	468
622	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	5.2	232
623	Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2969-2975.	2.1	211

#	Article	lF	CITATIONS
624	Efficient and reproducible CH ₃ NH ₃ PbI _{3â^'x} (SCN) _x perovskite based planar solar cells. Chemical Communications, 2015, 51, 11997-11999.	2.2	156
625	Ferroelectric Graphene–Perovskite Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 2496-2502.	2.1	67
626	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
627	Methylammonium Rotational Dynamics in Lead Halide Perovskite by Classical Molecular Dynamics: The Role of Temperature. Journal of Physical Chemistry C, 2015, 119, 17421-17428.	1.5	255
628	Light-Induced Increase of Electron Diffusion Length in a p–n Junction Type CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 2469-2476.	2.1	91
629	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	4.5	117
630	The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.	5.8	404
631	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	5.8	281
632	<i>Ab Initio</i> Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chemistry of Materials, 2015, 27, 4885-4892.	3.2	414
633	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. Nano Letters, 2015, 15, 4644-4649.	4.5	108
634	Large-Size CH ₃ NH ₃ PbBr ₃ Single Crystal: Growth and In Situ Characterization of the Photophysics Properties. Journal of Physical Chemistry Letters, 2015, 6, 2622-2628.	2.1	48
635	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
636	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	4.0	201
637	Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Scientific Reports, 2015, 5, 11654.	1.6	112
638	Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy, 2015, 16, 47-53.	8.2	36
639	Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 377-382.	3.0	101
640	Facile Synthesis and High Performance of a New Carbazole-Based Hole-Transporting Material for Hybrid Perovskite Solar Cells. ACS Photonics, 2015, 2, 849-855.	3.2	99
641	Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 2015, 6, 7471.	5.8	269

#	Article	IF	CITATIONS
642	A two-layer structured Pbl ₂ thin film for efficient planar perovskite solar cells. Nanoscale, 2015, 7, 12092-12095.	2.8	40
643	Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. RSC Advances, 2015, 5, 58041-58045.	1.7	11
644	Colored, see-through perovskite solar cells employing an optical cavity. Journal of Materials Chemistry C, 2015, 3, 5377-5382.	2.7	89
645	Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11750-11755.	5.2	122
646	A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves. Journal of Materials Chemistry A, 2015, 3, 12443-12451.	5.2	69
647	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces, 2015, 7, 9645-9651.	4.0	114
648	Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Applied Physics Letters, 2015, 106, .	1.5	181
649	Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials, 2015, 27, 3424-3430.	11.1	435
650	A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.	5.2	213
651	Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 2015, 7, 9771-9778.	2.8	102
652	Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell. Journal of Physical Chemistry C, 2015, 119, 10321-10328.	1.5	151
653	Efficient and stable planar heterojunction perovskite solar cells with an MoO ₃ /PEDOT:PSS hole transporting layer. Nanoscale, 2015, 7, 9427-9432.	2.8	211
654	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	1.3	141
655	Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nature Communications, 2015, 6, 7026.	5.8	564
656	Highâ€Performance Fully Printable Perovskite Solar Cells via Blade oating Technique under the Ambient Condition. Advanced Energy Materials, 2015, 5, 1500328.	10.2	294
657	Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3â^'Cl films. Journal of Colloid and Interface Science, 2015, 453, 9-14.	5.0	11
658	Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348, 683-686.	6.0	1,833
659	Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semiconductor Science and Technology, 2015, 30, 054004.	1.0	50

#	Article	IF	CITATIONS
660	Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications. Journal of the American Chemical Society, 2015, 137, 5810-5818.	6.6	368
661	Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dotâ€Toâ€Dot Surface Passivation. Advanced Materials, 2015, 27, 3325-3330.	11.1	118
662	Ferroelectric Polarization in CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 1729-1735.	2.1	180
663	Direct observation of an inhomogeneous chlorine distribution in CH ₃ NH ₃ PbI _{3â^x} Cl _x layers: surface depletion and interface enrichment. Energy and Environmental Science, 2015, 8, 1609-1615.	15.6	97
664	Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules. IEEE Journal of Photovoltaics, 2015, 5, 1087-1092.	1.5	109
665	Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Research, 2015, 8, 2474-2480.	5.8	91
666	Nonvolatile chlorinated additives adversely influence CH ₃ NH ₃ PbI ₃ based planar solar cells. Journal of Materials Chemistry A, 2015, 3, 9137-9140.	5.2	34
667	Ferroelectric solar cells based on inorganic–organic hybrid perovskites. Journal of Materials Chemistry A, 2015, 3, 7699-7705.	5.2	103
668	On the Role of Interfaces in Planarâ€Structured HC(NH ₂) ₂ PbI ₃ Perovskite Solar Cells. ChemSusChem, 2015, 8, 2414-2419.	3.6	67
669	Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 2015, 3, 1389-1396.	3.6	240
670	Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Holeâ€Blocking and Efficient Lightâ€Harvesting for Highâ€Performance Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 3264-3272.	7.8	101
671	Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic–Inorganic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1666-1673.	2.1	96
672	Electronic structure evolution of fullerene on CH3NH3PbI3. Applied Physics Letters, 2015, 106, .	1.5	44
673	Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2015, 27, 4612-4619.	3.2	212
674	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	18.7	725
675	Multifaceted Excited State of CH ₃ NH ₃ Pbl ₃ . Charge Separation, Recombination, and Trapping. Journal of Physical Chemistry Letters, 2015, 6, 2086-2095.	2.1	107
676	Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 2015, 15, 275-280.	8.2	268
677	Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: Role of the reduced bimolecular recombination. Journal of Applied Physics, 2015, 117, .	1.1	69

#	Article	IF	CITATIONS
678	Pseudohalideâ€Induced Moisture Tolerance in Perovskite CH ₃ NH ₃ Pb(SCN) ₂ I Thin Films. Angewandte Chemie - International Edition, 2015, 54, 7617-7620.	7.2	265
679	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015, 27, 3632-3638.	11.1	456
680	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	2.8	21
681	Exciton versus Free Carrier Photogeneration in Organometal Trihalide Perovskites Probed by Broadband Ultrafast Polarization Memory Dynamics. Physical Review Letters, 2015, 114, 116601.	2.9	113
682	Resolving Weak Light of Subâ€picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction. Advanced Materials, 2015, 27, 2804-2810.	11.1	481
683	Unraveling the Effect of PbI ₂ Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics, 2015, 2, 589-594.	3.2	97
684	Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO ₂ : Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during <i>J</i> – <i>V</i> Hysteresis. Journal of the American Chemical Society, 2015, 137, 5087-5099.	6.6	246
685	A fluorescent quenching performance enhancing principle for carbon nanodot-sensitized aqueous solar cells. Nano Energy, 2015, 13, 124-130.	8.2	34
686	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	5.8	358
687	Inverted perovskite solar cells with inserted cross-linked electron-blocking interlayers for performance enhancement. Journal of Materials Chemistry A, 2015, 3, 9291-9297.	5.2	45
688	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, 2015, 3, 9128-9132.	5.2	52
690	Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. Journal of Materials Chemistry A, 2015, 3, 9141-9145.	5.2	133
691	Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9308-9316.	5.2	85
692	Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters, 2015, 15, 2402-2408.	4.5	412
693	Surface analytical investigation on organometal triiodide perovskite. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	43
694	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
695	Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Threeâ€Dimensional TiO ₂ Electron Transporting Materials. Advanced Materials, 2015, 27, 2859-2865.	11.1	83
696	High intrinsic carrier mobility and photon absorption in the perovskite CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2015, 17, 11516-11520.	1.3	182

#	Article	IF	CITATIONS
697	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO ₂ . Journal of Materials Chemistry A, 2015, 3, 7219-7223.	5.2	112
698	Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 2015, 6, 7081.	5.8	948
699	Atomic-Scale Derivatives of Solid-State Materials. Chemistry of Materials, 2015, 27, 3549-3559.	3.2	15
700	Native defects in Tl6SI4: Density functional calculations. Journal of Applied Physics, 2015, 117, .	1.1	7
701	Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A, 2015, 3, 11631-11640.	5.2	188
702	Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15372-15385.	5.2	120
703	Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. Journal of Physical Chemistry Letters, 2015, 6, 1911-1916.	2.1	358
704	Ultrasensitive solution-processed perovskite hybrid photodetectors. Journal of Materials Chemistry C, 2015, 3, 6600-6606.	2.7	104
705	Recent Progress of Innovative Perovskite Hybrid Solar Cells. Israel Journal of Chemistry, 2015, 55, 966-977.	1.0	34
706	Determination of Exciton Diffusion Length by Transient Photoluminescence Quenching and Its Application to Quantum Dot Films. Journal of Physical Chemistry C, 2015, 119, 9005-9015.	1.5	84
707	Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. Journal of Physical Chemistry Letters, 2015, 6, 1883-1890.	2.1	233
708	Nanophotonic front electrodes for perovskite solar cells. Applied Physics Letters, 2015, 106, .	1.5	52
709	CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Letters, 2015, 15, 3723-3728.	4.5	506
710	Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Communications, 2015, 5, 297-301.	0.8	135
711	Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015, 10, 391-402.	15.6	2,604
712	The Mechanism of Slow Hot-Hole Cooling in Lead-Iodide Perovskite: First-Principles Calculation on Carrier Lifetime from Electron–Phonon Interaction. Nano Letters, 2015, 15, 3103-3108.	4.5	140
713	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 1396-1402.	2.1	141
714	Enhancement of solar cell efficiency using perovskite dyes deposited via a two-step process. RSC Advances, 2015, 5, 33515-33523.	1.7	6

#	Article	IF	CITATIONS
715	Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2015, 119, 10161-10177.	1.5	205
716	The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications, 2015, 5, 7-26.	0.8	132
717	Density Functional Calculations of Native Defects in CH ₃ NH ₃ PbI ₃ : Effects of Spin–Orbit Coupling and Self-Interaction Error. Journal of Physical Chemistry Letters, 2015, 6, 1461-1466.	2.1	301
718	Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells. Journal of Power Sources, 2015, 286, 118-123.	4.0	72
719	Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society, 2015, 137, 4460-4468.	6.6	586
720	Interfacial Electron Transfer Barrier at Compact TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction. Small, 2015, 11, 3606-3613.	5.2	196
721	Understanding the low-loss mechanism of general organic–inorganic perovskites from first-principles calculation. Chemical Physics Letters, 2015, 627, 13-19.	1.2	13
722	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	2.2	28
723	Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1628-1637.	2.1	78
724	Efficient Solutionâ€Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. Advanced Energy Materials, 2015, 5, 1402024.	10.2	99
725	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
726	Toward Highâ€Efficiency Solutionâ€Processed Planar Heterojunction Sb ₂ S ₃ Solar Cells. Advanced Science, 2015, 2, 1500059.	5.6	102
727	A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters, 2015, 106, .	1.5	80
728	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	6.4	24
729	Hierarchical i–p and i–n porous heterojunction in planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10526-10535.	5.2	14
730	Effects of Molecular Configuration on Charge Diffusion Kinetics within Hole-Transporting Materials for Perovskites Solar Cells. Journal of Physical Chemistry C, 2015, 119, 8584-8590.	1.5	40
731	Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 2015, 14, 636-642.	13.3	2,392
732	Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2015, 7, 9066-9071.	4.0	84

#	Article	IF	CITATIONS
733	50 nm sized spherical TiO ₂ nanocrystals for highly efficient mesoscopic perovskite solar cells. Nanoscale, 2015, 7, 8898-8906.	2.8	68
734	Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China Materials, 2015, 58, 186-191.	3.5	58
735	Magnetoresistance of (CH <inf>3</inf> NH <inf>3</inf>)PbI <inf>3</inf> coated La <inf>0.67</inf> Sr <inf>0.33</inf> MnO <inf>3</inf> granular composites. , 2015, , .		0
736	Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH ₃ NH ₃ PbI ₃ on TiO ₂ Substrates. Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.	2.1	91
737	Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nature Communications, 2015, 6, 8420.	5.8	491
738	Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Advances, 2015, 5, 82346-82350.	1.7	43
739	Enhanced Organo-Metal Halide Perovskite Photoluminescence from Nanosized Defect-Free Crystallites and Emitting Sites. Journal of Physical Chemistry Letters, 2015, 6, 4171-4177.	2.1	163
740	New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21807-21818.	4.0	80
741	Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells. Optics Express, 2015, 23, A444.	1.7	4
742	Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates. Journal of the American Chemical Society, 2015, 137, 12458-12461.	6.6	196
743	Degradation by Exposure of Coevaporated CH ₃ NH ₃ PbI ₃ Thin Films. Journal of Physical Chemistry C, 2015, 119, 23996-24002.	1.5	112
744	Ultrafast Interfacial Electron and Hole Transfer from CsPbBr ₃ Perovskite Quantum Dots. Journal of the American Chemical Society, 2015, 137, 12792-12795.	6.6	459
745	Morphology-controlled CH ₃ NH ₃ PbI ₃ films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity. Journal of Materials Chemistry A, 2015, 3, 22839-22845.	5.2	55
746	Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nature Communications, 2015, 6, 8397.	5.8	205
747	Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells. Chinese Chemical Letters, 2015, 26, 1518-1521.	4.8	16
748	Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chemical Communications, 2015, 51, 17413-17416.	2.2	76
749	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
750	Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 22949-22959.	5.2	51

#	Article	IF	CITATIONS
751	Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 2015, 107, .	1.5	55
752	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
753	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 17343-17349.	2.8	64
754	Cubic structure of the mixed halide perovskite CH ₃ NH ₃ PbI _{3â^'x} Cl _x via thermal annealing. RSC Advances, 2015, 5, 85480-85485.	1.7	21
755	Managing Carrier Lifetime and Doping Property of Lead Halide Perovskite by Postannealing Processes for Highly Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 22812-22819.	1.5	123
756	TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 717-721.	7.1	16
757	A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 707-711.	7.1	17
758	A novel phenoxazine-based hole transport material for efficient perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 698-706.	7.1	22
759	Vibrational Properties of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. Journal of Physical Chemistry C, 2015, 119, 25703-25718.	1.5	276
760	Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania. ACS Applied Materials & Interfaces, 2015, 7, 25770-25776.	4.0	58
761	A Liquid Junction Photoelectrochemical Solar Cell Based on p-Type MeNH ₃ PbI ₃ Perovskite with 1.05 V Open-Circuit Photovoltage. Journal of the American Chemical Society, 2015, 137, 14758-14764.	6.6	52
762	NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24121-24127.	5.2	91
763	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.	8.2	92
764	Theoretical limit of power conversion efficiency for organic and hybrid halide perovskite photovoltaics. Japanese Journal of Applied Physics, 2015, 54, 08KF04.	0.8	22
765	Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability. Nano Letters, 2015, 15, 7963-7969.	4.5	293
766	Chloride Incorporation Process in CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Perovskites via Nanoscale Bandgap Maps. Nano Letters, 2015, 15, 8114-8121.	4.5	165
767	Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24163-24168.	5.2	186
768	Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24272-24280.	5.2	78

ARTICLE IF CITATIONS # Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective 769 5.2 161 layers. Journal of Materials Chemistry A, 2015, 3, 23888-23894. Perovskite Crystals for Tunable White Light Emission. Chemistry of Materials, 2015, 27, 8066-8075. 3.2 Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by 771 1.5 153 Cathodoluminescence Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26904-26911. A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24215-24220. Band alignment and charge transfer in rutile-TiO₂/CH₃NH₃Pbl_{3â^'x}Cl_x interfaces. 773 1.312 Physical Chemistry Chemical Physics, 2015, 17, 30417-30423. High-performance perovskite solar cells fabricated by vapor deposition with optimized Pbl₂ precursor films. RSC Advances, 2015, 5, 95847-95853. 774 1.7 Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy, 2015, 18, 775 8.2 232 118-125. Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar 4.0 Cell. ACS Applied Materials & amp; Interfaces, 2015, 7, 24008-24015. Improvement of CH₃PbI₃Formation for Efficient and Better 777 Reproducible Mesoscopic Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 4.0 44 24726-24732. Modulating Charge Recombination and Structural Dynamics in Isolated Organometal Halide 778 Perovskite Crystals by External Electric Fields. Journal of Physical Chemistry Letters, 2015, 6, 2.1 4560-4565. Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor 779 1.5 55 Solutions and Films. Journal of Physical Chemistry C, 2015, 119, 25747-25753. Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. 1.5 96 Journal of Physical Chemistry C, 2015, 119, 26672-26682. Rotational dynamics of organic cations in the CH₃NH₃Pbl₃perovskite. Physical Chemistry Chemical Physics, 2015, 781 1.3 212 17, 31278-31286. Two different mechanisms of CH3NH3PbI3film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 5.2 23964-23972 Chlorine in PbCl₂-Derived Hybrid-Perovskite Solar Absorbers. Chemistry of Materials, 783 3.2 91 2015, 27, 7240-7243. Chlorine Doping Reduces Electronâ€"Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab 784 103 Initio Analysis. Journal of Physical Chemistry Letters, 2015, 6, 4463-4469. Absorption F-Sum Rule for the Exciton Binding Energy in Methylammonium Lead Halide Perovskites. 785 2.1149 Journal of Physical Chemistry Letters, 2015, 6, 4566-4572. Texture of MAPbI₃ Layers Assisted by Chloride on Flat TiO₂ Substrates. 1.5 Journal of Physical Chemistry C, 2015, 119, 19808-19816.

#	Article	IF	CITATIONS
787	First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. Journal of the American Chemical Society, 2015, 137, 10048-10051.	6.6	582
788	Fabrication and Properties of High-Efficiency Perovskite/PCBM Organic Solar Cells. Nanoscale Research Letters, 2015, 10, 1020.	3.1	61
789	Efficient planar perovskite solar cells using room-temperature vacuum-processed C ₆₀ electron selective layers. Journal of Materials Chemistry A, 2015, 3, 17971-17976.	5.2	100
790	Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases. Journal of Physical Chemistry C, 2015, 119, 19590-19595.	1.5	65
791	Collective Behavior of Molecular Dipoles in CH3NH3PbI3. Journal of Physical Chemistry C, 2015, 119, 19674-19680.	1.5	46
792	Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Communications, 2015, 6, 7961.	5.8	406
793	Theoretical and experimental study of earth-abundant solar cell materials. , 2015, , .		0
794	Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Applied Physics Letters, 2015, 106, .	1.5	152
795	The influence of different mask aperture on the open-circuit voltage measurement of perovskite solar cells. Journal of Renewable and Sustainable Energy, 2015, 7, 043104.	0.8	13
796	Dynamic Optical Properties of CH ₃ NH ₃ PbI ₃ Single Crystals As Revealed by One- and Two-Photon Excited Photoluminescence Measurements. Journal of the American Chemical Society, 2015, 137, 10456-10459.	6.6	335
797	Stable semi-transparent CH ₃ NH ₃ PbI ₃ planar sandwich solar cells. Energy and Environmental Science, 2015, 8, 2922-2927.	15.6	109
798	Large-scale aligned crystalline CH ₃ NH ₃ PbI ₃ perovskite array films. Journal of Materials Chemistry A, 2015, 3, 18847-18851.	5.2	19
799	Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19722-19728.	1.5	45
800	<i>GW</i> Band Structures and Carrier Effective Masses of CH ₃ NH ₃ Pbl ₃ and Hypothetical Perovskites of the Type APbl ₃ : A = NH ₄ , PH ₄ , AsH ₄ , and SbH ₄ . Journal of Physical Chemistry C, 2015, 119, 25209-25219.	1.5	144
801	The Significance of Ion Conduction in a Hybrid Organic–Inorganic Leadâ€Iodideâ€Based Perovskite Photosensitizer. Angewandte Chemie - International Edition, 2015, 54, 7905-7910.	7.2	447
802	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2015, 6, 4360-4364.	2.1	482
803	Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications. , 2015, , .		0
804	Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Applied Surface Science, 2015, 357, 2234-2240.	3.1	55

#	Article	IF	CITATIONS
805	PbICl: A new precursor solution for efficient planar perovskite solar cell by vapor-assisted solution process. Applied Surface Science, 2015, 357, 2372-2377.	3.1	37
806	Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells. Electrochimica Acta, 2015, 182, 733-741.	2.6	57
807	In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 736-743.	7.1	23
808	High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy and Environmental Science, 2015, 8, 3550-3556.	15.6	384
809	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	10.2	1,788
810	High-Performance Organolead Halide Perovskite-Based Self-Powered Triboelectric Photodetector. ACS Nano, 2015, 9, 11310-11316.	7.3	166
811	Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17, 29501-29506.	1.3	36
812	Reduced Graphene Oxide/Mesoporous TiO ₂ Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 23521-23526.	4.0	180
813	Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS Applied Materials & Interfaces, 2015, 7, 23110-23116.	4.0	118
814	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015, 1, e1500613.	4.7	265
815	Probing Photocurrent Generation, Charge Transport, and Recombination Mechanisms in Mesostructured Hybrid Perovskite through Photoconductivity Measurements. Journal of Physical Chemistry Letters, 2015, 6, 4259-4264.	2.1	28
816	Rashba Spin–Orbit Coupling Enhanced Carrier Lifetime in CH ₃ NH ₃ Pbl ₃ . Nano Letters, 2015, 15, 7794-7800.	4.5	438
817	Dopants Control Electron–Hole Recombination at Perovskite–TiO ₂ Interfaces: <i>Ab Initio</i> Time-Domain Study. ACS Nano, 2015, 9, 11143-11155.	7.3	108
818	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	2.8	80
819	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	0.8	18
820	Structural Evolution in Methylammonium Lead Iodide CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry A, 2015, 119, 11033-11038.	1.1	66
821	The simulation of physical mechanism for HTM-free perovskite organic lead iodide planar heterojunction solar cells. Journal of Optics (United Kingdom), 2015, 17, 105904.	1.0	23
822	Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chinese Journal of Catalysis, 2015, 36, 1183-1190.	6.9	47

#	Article	IF	CITATIONS
823	Stability of Organic Cations in Solution-Processed CH ₃ NH ₃ PbI ₃ Perovskites: Formation of Modified Surface Layers. Journal of Physical Chemistry C, 2015, 119, 21329-21335.	1.5	79
824	Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8, 2928-2934.	15.6	1,097
825	Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20305-20312.	5.2	21
826	Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 2015, 120, 370-380.	2.9	235
827	Pseudohalide (SCN [–])-Doped MAPbI ₃ Perovskites: A Few Surprises. Journal of Physical Chemistry Letters, 2015, 6, 3483-3489.	2.1	108
828	Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH ₃ NH ₃ Sn _{1–<i>x</i>} Pb _{<i>x</i>} I ₃ . Journal of Physical Chemistry Letters, 2015, 6, 3503-3509.	2.1	202
829	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 2015, 9, 10287-10295.	7.3	335
830	Efficient charge-transport in hybrid lead iodide perovskite solar cells. Dalton Transactions, 2015, 44, 16914-16922.	1.6	20
831	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19353-19359.	5.2	239
832	Technical and economic assessment of perovskite solar cells for large scale manufacturing. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	41
833	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686.	15.6	1,201
834	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	4.5	179
835	Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056.	5.8	1,278
836	Smooth CH ₃ NH ₃ PbI ₃ from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.	1.7	17
837	A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1389-1394.	1.5	79
838	Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Materials, 2015, 7, e208-e208.	3.8	117
839	Effect of solvents on the growth of TiO ₂ nanorods and their perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19476-19482.	5.2	63
840	Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology. IEEE Journal of Photovoltaics, 2015, 5, 1402-1407.	1.5	4

#	Article	IF	CITATIONS
841	Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy, 2015, 17, 131-139.	8.2	48
842	Cupric bromide hybrid perovskite heterojunction solar cells. Synthetic Metals, 2015, 209, 247-250.	2.1	95
843	Ternary nickel cobaltite nanostructures for energy conversion. Functional Materials Letters, 2015, 08, 1530002.	0.7	8
844	Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 20810-20816.	1.5	88
845	Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite. ACS Applied Materials & Interfaces, 2015, 7, 20280-20284.	4.0	19
846	Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Physical Chemistry Chemical Physics, 2015, 17, 24342-24348.	1.3	41
847	High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, 2015, 3, 19294-19298.	5.2	35
848	Screening effect on photovoltaic performance in ferroelectric CH ₃ NH ₃ PbI ₃ perovskite thin films. Journal of Materials Chemistry A, 2015, 3, 20352-20358.	5.2	22
849	A simple approach for the fabrication of perovskite solar cells in air. Journal of Power Sources, 2015, 297, 504-510.	4.0	59
850	Solvent-Mediated Crystallization of CH ₃ NH ₃ SnI ₃ Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 11445-11452.	6.6	598
851	A resistance change effect in perovskite CH ₃ NH ₃ PbI ₃ films induced by ammonia. Chemical Communications, 2015, 51, 15426-15429.	2.2	86
852	Highly efficient planar perovskite solar cells with a TiO ₂ /ZnO electron transport bilayer. Journal of Materials Chemistry A, 2015, 3, 19288-19293.	5.2	145
853	Mechanosynthesis of the hybrid perovskite CH ₃ NH ₃ PbI ₃ : characterization and the corresponding solar cell efficiency. Journal of Materials Chemistry A, 2015, 3, 20772-20777.	5.2	163
854	Universal Features of Electron Dynamics in Solar Cells with TiO ₂ Contact: From Dye Solar Cells to Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3923-3930.	2.1	49
855	Effects of Porosity and Amount of Surface Hydroxyl Groups of a Porous TiO ₂ Layer on the Performance of a CH ₃ NH ₃ PbI ₃ Perovskite Photovoltaic Cell. Journal of Physical Chemistry C, 2015, 119, 22304-22309.	1.5	18
856	Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	5.2	74
857	An organic–inorganic hybrid perovskite logic gate for better computing. Journal of Materials Chemistry C, 2015, 3, 10793-10798.	2.7	77
858	Modeling Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3808-3814.	2.1	581

#	Article	IF	CITATIONS
859	Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 2015, 6, 8238.	5.8	519
860	Filterless narrowband visible photodetectors. Nature Photonics, 2015, 9, 687-694.	15.6	445
861	Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells. Applied Physics Letters, 2015, 107, 103902.	1.5	7
862	Verification of effect of electric field on electron transport in TiO ₂ electrode. Proceedings of SPIE, 2015, , .	0.8	2
863	Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping. Proceedings of SPIE, 2015, , .	0.8	9
864	Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3675-3681.	2.1	67
865	Brookite TiO ₂ as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20952-20957.	5.2	43
866	High performance planar <i>p-i-n</i> perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers. Applied Physics Letters, 2015, 107, .	1.5	42
867	Investigation on thermal evaporated CH3NH3PbI3 thin films. AIP Advances, 2015, 5, .	0.6	42
868	Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?. Journal of Physical Chemistry Letters, 2015, 6, 3466-3470.	2.1	92
869	Mixed Iodide–Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3743-3748.	2.1	100
870	Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Physical Chemistry Chemical Physics, 2015, 17, 24978-24987.	1.3	325
871	Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX ₂ (X = I, Cl) precursors. Journal of Materials Chemistry A, 2015, 3, 19842-19849.	5.2	44
872	Controlled reaction for improved CH3NH3PbI3transition in perovskite solar cells. Dalton Transactions, 2015, 44, 17841-17849.	1.6	15
873	Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19688-19695.	5.2	1,419
874	Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Applied Physics Letters, 2015, 107, .	1.5	67
875	Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Organic Electronics, 2015, 27, 12-17.	1.4	37
876	A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26653-26658.	1.3	107

#	ARTICLE	IF	CITATIONS
877	Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. Journal of Materials Chemistry A, 2015, 3, 20092-20096.	5.2	61
878	Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21760-21771.	5.2	96
879	Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 22191-22198.	5.2	85
880	Phonon–Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4991-4996.	2.1	186
881	Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT:PSS hole transport layer. Solar Energy, 2015, 122, 892-899.	2.9	43
882	High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiO _x hole contact layer. Journal of Materials Chemistry A, 2015, 3, 24495-24503.	5.2	130
883	Are Mobilities in Hybrid Organic–Inorganic Halide Perovskites Actually "High�. Journal of Physical Chemistry Letters, 2015, 6, 4754-4757.	2.1	197
884	Titanylphthalocyanine as hole transporting material for perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 756-761.	7.1	28
885	Entropy-Suppressed Ferroelectricity in Hybrid Lead-Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4909-4915.	2.1	51
886	Electro-spray deposition of a mesoporous TiO ₂ charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale, 2015, 7, 20725-20733.	2.8	36
887	Mixed-halide Cs2SnI3Br3 perovskite as low resistance hole-transporting material in dye-sensitized solar cells. Electrochimica Acta, 2015, 184, 466-474.	2.6	49
888	Charge Carriers in Hybrid Organic–Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons. Journal of Physical Chemistry Letters, 2015, 6, 4758-4761.	2.1	456
890	Control of <i>I</i> – <i>V</i> Hysteresis in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 4633-4639.	2.1	430
891	Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 2015, 12, 96-104.	8.2	328
892	Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 153-158.	2.1	101
893	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233
894	First-Principles Calculation of the Bulk Photovoltaic Effect in CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbI _{3–<i>x</i>} CI _{<i>x</i>} . Journal of Physical Chemistry Letters, 2015, 6, 31-37.	2.1	177
895	Inkjet printing of CH ₃ NH ₃ PbI ₃ on a mesoscopic TiO ₂ film for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9092-9097.	5.2	210

#	Article	IF	CITATIONS
896	High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 2015, 7, 1642-1649.	2.8	300
897	Selfâ€Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angewandte Chemie - International Edition, 2015, 54, 1791-1794.	7.2	484
898	Effects of interfacial characteristics on photovoltaic performance in CH 3 NH 3 PbBr 3 -based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy, 2015, 12, 59-68.	8.2	54
899	TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728-735.	8.2	293
900	Nanoscale Charge Localization Induced by Random Orientations of Organic Molecules in Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Nano Letters, 2015, 15, 248-253.	4.5	243
901	Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy and Environmental Science, 2015, 8, 602-609.	15.6	417
902	Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH ₃ NH ₃ Pbl ₃ . Journal of Physical Chemistry C, 2015, 119, 1136-1145.	1.5	73
903	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522
904	Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 129-138.	2.1	173
905	High Performance Planar Heterojunction Perovskite Solar Cells with Fullerene Derivatives as the Electron Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 1153-1159.	4.0	99
906	Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy and Environmental Science, 2015, 8, 760-775.	15.6	363
907	Layerâ€by‣ayer Growth of CH ₃ NH ₃ PbI _{3â^²<i>x</i>} CI _{<i>x</i>} for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2015, 27, 1053-1059.	11.1	211
908	An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 2784-2793.	5.2	131
909	Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14, 193-198.	13.3	1,372
910	Effect of different lead precursors on perovskite solar cell performance and stability. Journal of Materials Chemistry A, 2015, 3, 9194-9200.	5.2	131
911	Switchable photovoltaics. Nature Materials, 2015, 14, 140-141.	13.3	39
912	Porous and Shapeâ€Anisotropic Single Crystals of the Semiconductor Perovskite CH ₃ NH ₃ PbI ₃ from a Singleâ€Source Precursor. Angewandte Chemie - International Edition, 2015, 54, 1341-1346.	7.2	54
913	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, 1401855.	10.2	337

ARTICLE IF CITATIONS Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25. 5.2 1,210 914 Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends. 1.6 19 Scientific Reports, 2014, 4, 7154. Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on 916 a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 11.1 751 695-701. Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem. Chemical 1.2 101 Physics Letters, 2015, 619, 193-195. Maximizing the emissive properties of CH₃NH₃PbBr₃perovskite 918 5.2 310 nanoparticles. Journal of Materials Chemistry A, 2015, 3, 9187-9193. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy and Environmental Science, 2015, 8, 629-640. 919 15.6 Electrodeposition of PbO and its in situ conversion to 920 CH₃NH₃PbI₃ for mesoscopic perovskite solar cells. Chemical 2.2 65 Communications, 2015, 51, 1457-1460. Electro-optics of perovskite solar cells. Nature Photonics, 2015, 9, 106-112. 15.6 1,485 Multicolored Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 922 1,077 11.1 1248-1254. Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC 1.7 Advances, 2015, 5, 775-783 p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific 924 371 1.6 Reports, 2014, 4, 4756. Organic–inorganic hybrids: From magnetic perovskite metal(II) halides to multifunctional metal(II) 9.5 phosphonates. Coordination Chemistry Reviews, 2015, 289-290, 123-136. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 926 5.8 65 2015, 8, 1116-1127. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells. 927 1.6 100 Scientific Reports, 2014, 4, 6752. 928 Perovskite Thin Films via Atomic Layer Deposition. Advanced Materials, 2015, 27, 53-58. 204 11.1 Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic 109 performances. Journal of Materials Chemistry A, 2015, 3, 8981-8991. Stable and Lowâ€Cost Mesoscopic CH₃NH₃Pbl₂Br Perovskite Solar 930 Cells by using a Thin Poly(3â€hexylthiophene) Layer as a Hole Transporter. Chemistry - A European 1.7 106 Journal, 2015, 21, 434-439. Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy and 931 351 Environmental Science, 2015, 8, 208-215.

#	Article	IF	CITATIONS
932	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Transactions, 2015, 44, 3967-3973.	1.6	138
933	Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale, 2015, 7, 896-900.	2.8	127
934	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
935	Theoretical analysis on effect of band offsets in perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 133, 8-14.	3.0	410
936	Opto-electronic properties of TiO ₂ nanohelices with embedded HC(NH ₂) ₂ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9179-9186.	5.2	67
937	Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. Journal of Materials Chemistry A, 2015, 3, 963-967.	5.2	91
938	Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4, 6953.	1.6	208
939	The sulfur-bubble template-mediated synthesis of uniform porous g-C ₃ N ₄ with superior photocatalytic performance. Chemical Communications, 2015, 51, 425-427.	2.2	148
940	Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. Journal of Materials Chemistry A, 2015, 3, 9081-9085.	5.2	110
941	Ruthenium cation substitutional doping for efficient charge carrier transfer in organic/inorganic hybrid solar cells. Journal of Power Sources, 2015, 274, 701-708.	4.0	10
942	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	5.2	1,114
943	The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, 2015, 3, 9058-9062.	5.2	147
944	Reducing the excess energy offset in organic/inorganic hybrid solar cells: Toward faster electron transfer. Applied Catalysis B: Environmental, 2015, 162, 524-531.	10.8	40
945	Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap Perovskites. Advanced Energy Materials, 2015, 5, 1400960.	10.2	117
946	A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1400980.	10.2	80
947	Energy level control: toward an efficient hot electron transport. Scientific Reports, 2014, 4, 5983.	1.6	32
948	Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015, 18, 65-72.	8.3	1,477
949	Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO ₂ nanoparticulate films. Journal of Materials Chemistry A, 2015, 3, 9160-9164.	5.2	167

#	Article	IF	Citations
950	Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy and Environmental Science, 2015, 8, 916-921.	15.6	602
951	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
952	Photoexcitations and Emission Processes in Organometal Trihalide Perovskites. , 0, , .		5
953	Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties. , 2016, , .		0
954	6. Perovskite-type solar cells. , 2016, , 109-152.		0
955	NiO Nano-Flower Sensitized by Perovskite as Photocathode for p-DSSC with Superior Hole Transfer Kinetics. International Journal of Electrochemical Science, 2016, 11, 7553-7561.	0.5	3
956	Charge Carrier Dynamics in Organometal Halide Perovskite Probed by Time-Resolved Electrical Measurements. , 2016, , .		0
957	Optical, Excitonic, and Electronic Properties of CH3NH3PbI3 Thin Films and Their Application in Photovoltaics. , 0, , .		4
958	Fabrication and Characterization of Organic–Inorganic Hybrid Perovskite Devices with External Doping. , 0, , .		8
959	Recent Developments in Solar Energy Applications Based on Perovskites: A Current Commentary. Science Progress, 2016, 99, 335-345.	1.0	2
960	Ambient Air and Hole Transport Layer Free Synthesis: Towards Low Cost CH ₃ NH ₃ PbI ₃ Solar Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	3
961	Electron energy transfer effect in Au NS/CH_3NH_3PbI_3-xCl_x heterostructures via localized surface plasmon resonance coupling. Optics Letters, 2016, 41, 4297.	1.7	15
962	Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells. Coatings, 2016, 6, 53.	1.2	11
963	Diffusion Length Mapping for Dye-Sensitized Solar Cells. Energies, 2016, 9, 686.	1.6	4
964	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	1.6	106
965	One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells. Energies, 2016, 9, 1030.	1.6	23
966	Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite. Materials, 2016, 9, 123.	1.3	85
967	Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation. Materials, 2016, 9, 277.	1.3	22

#	Article	IF	Citations
968	Effects of Cl Addition to Sb-Doped Perovskite-Type CH3NH3PbI3 Photovoltaic Devices. Metals, 2016, 6, 147.	1.0	43
969	Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells. Molecules, 2016, 21, 475.	1.7	56
970	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. Molecules, 2016, 21, 542.	1.7	18
971	Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation. Molecules, 2016, 21, 885.	1.7	17
972	Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films. Molecules, 2016, 21, 1081.	1.7	33
973	A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI3)1â^'x(MAPbBr3)x. Nanomaterials, 2016, 6, 183.	1.9	22
974	Effect of Codoping Cl Anion and 5-AVA Cation on Performance of Large-Area Perovskite Solar Cells with Double-Mesoporous Layers. International Journal of Photoenergy, 2016, 2016, 1-11.	1.4	55
975	Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer. Journal of Physical Chemistry C, 2016, 120, 16437-16445.	1.5	89
976	Thermal Behaviors of Methylammonium Lead Trihalide Perovskites with or without Chlorine Doping. Journal of Physical Chemistry C, 2016, 120, 15009-15016.	1.5	2
977	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	5.2	210
978	Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Physical Chemistry Chemical Physics, 2016, 18, 21629-21639.	1.3	75
979	Determination of Interfacial Chargeâ€Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem, 2016, 9, 1647-1659.	3.6	52
980	Planar Perovskite Solar Cells using CH ₃ NH ₃ PbI ₃ Films: A Simple Process Suitable for Large cale Production. Energy Technology, 2016, 4, 473-478.	1.8	32
981	Interfacial electron accumulation for efficient homo-junction perovskite solar cells. Nano Energy, 2016, 28, 269-276.	8.2	63
982	Fast and Sensitive Solutionâ€Processed Visibleâ€Blind Perovskite UV Photodetectors. Advanced Materials, 2016, 28, 7264-7268.	11.1	234
983	Efficient Visible Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 7515-7520.	11.1	554
984	Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non‧piro Hole Transporting Materials for Highâ€Efficiency Mixedâ€Ion Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502536.	10.2	72
985	Slow Organicâ€toâ€Inorganic Subâ€Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence. Advanced Energy Materials, 2016, 6, 1600422.	10.2	32

#	Article	IF	CITATIONS
986	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
987	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
988	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 9145-9149.	1.6	19
989	Stabilization of Organic–Inorganic Perovskite Layers by Partial Substitution of Iodide by Bromide in Methylammonium Lead Iodide. ChemPhysChem, 2016, 17, 1505-1511.	1.0	49
990	Effect of mobility and band structure of hole transport layer in planar heterojunction perovskite solar cells using 2D TCAD simulation. Journal of Computational Electronics, 2016, 15, 1110-1118.	1.3	33
991	Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Advanced Functional Materials, 2016, 26, 2950-2958.	7.8	305
992	Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes. Advanced Materials, 2016, 28, 917-922.	11.1	288
993	Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite <i>ABX</i> ₃ from first-principles study. Chinese Physics B, 2016, 25, 027104.	0.7	21
994	Low cost, high throughput and centimeterâ€scale fabrication of efficient hybrid perovskite solar cells by closed space vapor transport. Physica Status Solidi - Rapid Research Letters, 2016, 10, 153-157.	1.2	27
995	Mechanochemical synthesis of methylammonium lead iodide perovskite. Journal of Materials Science, 2016, 51, 9123-9130.	1.7	35
996	A close examination of the structure and dynamics of HC(NH ₂) ₂ PbI ₃ by MD simulations and group theory. Physical Chemistry Chemical Physics, 2016, 18, 27109-27118.	1.3	48
997	A high-performance self-powered broadband photodetector based on a CH ₃ NH ₃ PbI ₃ perovskite/ZnO nanorod array heterostructure. Journal of Materials Chemistry C, 2016, 4, 7302-7308.	2.7	159
998	Pyrolysis preparation of WO ₃ thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. Journal of Semiconductors, 2016, 37, 033002.	2.0	12
999	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	0.8	11
1000	Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.	3.6	61
1001	New Horizons for Perovskite Solar Cells Employing DNA TMA as the Holeâ€Transporting Material. ChemSusChem, 2016, 9, 1736-1742.	3.6	32
1002	Organic Cationâ€Dependent Degradation Mechanism of Organotin Halide Perovskites. Advanced Functional Materials, 2016, 26, 3417-3423.	7.8	229
1003	Methylammonium Bismuth Iodide as a Leadâ€Free, Stable Hybrid Organic–Inorganic Solar Absorber. Chemistry - A European Journal, 2016, 22, 2605-2610.	1.7	312

#	ARTICLE The Effects of Electronic Impurities and Electron–Hole Recombination Dynamics on Largeâ€Grain	IF	CITATIONS
1004	Organic–Inorganic Perovskite Photovoltaic Efficiencies. Advanced Functional Materials, 2016, 26, 4283-4292.	7.8	65
1005	Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material. Advanced Functional Materials, 2016, 26, 4464-4471.	7.8	136
1006	Controlled Growth and Reliable Thicknessâ€Dependent Properties of Organic–Inorganic Perovskite Platelet Crystal. Advanced Functional Materials, 2016, 26, 5263-5270.	7.8	64
1007	Amorphous Inorganic Electronâ€Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Roomâ€Temperature Fabrication. Advanced Materials, 2016, 28, 1891-1897.	11.1	115
1008	Unbroken Perovskite: Interplay of Morphology, Electroâ€optical Properties, and Ionic Movement. Advanced Materials, 2016, 28, 5031-5037.	11.1	242
1009	Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the <i>J</i> – <i>V</i> Characteristics of Inverted Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501453.	10.2	167
1010	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	10.2	196
1011	Terahertz Conductivity within Colloidal CsPbBr ₃ Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. Nano Letters, 2016, 16, 4838-4848.	4.5	489
1012	Improved photovoltaic performance of mesoporous perovskite solar cells with hydrogenated TiO ₂ : prolonged photoelectron lifetime and high separation efficiency of photoinduced charge. RSC Advances, 2016, 6, 65125-65135.	1.7	15
1013	The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes. Journal of Materials Research, 2016, 31, 2197-2203.	1.2	6
1014	Zinc oxide as a hole blocking layer for perovskite solar cells deposited in atmospheric conditions. RSC Advances, 2016, 6, 67715-67723.	1.7	23
1015	Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 4879-4883.	3.2	45
1016	Reversible Structural Swell–Shrink and Recoverable Optical Properties in Hybrid Inorganic–Organic Perovskite. ACS Nano, 2016, 10, 7031-7038.	7.3	68
1017	High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA _{1â~'x} FA _x Pbl _{3â~'y} Cl _y . Journal of Materials Chemistry A, 2016, 4, 12543-12553.	5.2	64
1018	Electricâ€Fieldâ€Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures. Advanced Energy Materials, 2016, 6, 1501803.	10.2	287
1019	Improved Performance and Reliability of pâ€iâ€n Perovskite Solar Cells via Doped Metal Oxides. Advanced Energy Materials, 2016, 6, 1600285.	10.2	67
1020	Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600330.	10.2	360
1021	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	7.2	118

#	Article	IF	CITATIONS
1022	Nanostructuring Mixedâ€Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics. Advanced Materials, 2016, 28, 3653-3661.	11.1	251
1023	Solutionâ€Grown Monocrystalline Hybrid Perovskite Films for Holeâ€Transporterâ€Free Solar Cells. Advanced Materials, 2016, 28, 3383-3390.	11.1	298
1024	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	11.1	111
1025	Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic NiO/CH ₃ NH ₃ Pbl ₃ Heterojunction for Efficient Photovoltaic Cells. Advanced Materials Interfaces, 2016, 3, 1600135.	1.9	18
1026	Integrated Photo‣upercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Advanced Materials Technologies, 2016, 1, 1600074.	3.0	110
1027	A Solutionâ€Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2016, 2, 1600165.	2.6	25
1028	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	10.2	278
1029	Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials, 2016, 6, 1600551.	10.2	271
1030	Holeâ€Transporting Materials for Perovskite‣ensitized Solar Cells. Energy Technology, 2016, 4, 891-938.	1.8	50
1031	Highly luminescent and stable layered perovskite as the emitter for light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2727-2732.	0.8	30
1032	Controlled Substitution of Chlorine for Iodine in Single-Crystal Nanofibers of Mixed Perovskite MAPbI ₃₋ <i>_x</i> Cl <i>_x</i> . Small, 2016, 12, 3780-3787.	5.2	20
1033	Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering. Journal of Physical Chemistry C, 2016, 120, 15089-15095.	1.5	8
1034	Local Time-Dependent Charging in a Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 19402-19409.	4.0	109
1035	Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells. ACS Nano, 2016, 10, 7907-7914.	7.3	123
1036	High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312-316.	13.7	2,767
1037	Effective control of crystal grain size in CH ₃ NH ₃ PbI ₃ perovskite solar cells with a pseudohalide Pb(SCN) ₂ additive. CrystEngComm, 2016, 18, 6090-6095.	1.3	87
1038	Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 19738-19745.	1.3	90
1039	An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous Al2O3 as the hybrid interfacial hole-transporting layer. Physical Chemistry Chemical Physics, 2016, 18, 27083-27089.	1.3	38

#	Article	IF	CITATIONS
1040	First-principles study of photovoltaics and carrier mobility for non-toxic halide perovskite CH ₃ NH ₃ SnCl ₃ : theoretical prediction. Physical Chemistry Chemical Physics, 2016, 18, 22188-22195.	1.3	53
1041	Optical analysis of CH ₃ NH ₃ Sn _x Pb _{1â^x} I ₃ absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. Journal of Materials Chemistry A, 2016, 4, 11214-11221.	5.2	101
1042	Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer. RSC Advances, 2016, 6, 64962-64966.	1.7	6
1043	Perovskite Solar Cells Employing Dopantâ€Free Organic Hole Transport Materials with Tunable Energy Levels. Advanced Materials, 2016, 28, 440-446.	11.1	249
1044	Highâ€Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Nearâ€Infrared Harvesting. Advanced Materials, 2016, 28, 3159-3165.	11.1	84
1045	Lateralâ€Structure Singleâ€Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling. Advanced Materials, 2016, 28, 2816-2821.	11.1	144
1046	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	11.1	1,188
1047	Electrohydrodynamically Assisted Deposition of Efficient Perovskite Photovoltaics. Advanced Materials Interfaces, 2016, 3, 1500762.	1.9	21
1048	Fully Vaporâ€Deposited Heterostructured Lightâ€Emitting Diode Based on Organoâ€Metal Halide Perovskite. Advanced Electronic Materials, 2016, 2, 1500325.	2.6	35
1049	Transparent Conductive Oxideâ€Free Grapheneâ€Based Perovskite Solar Cells with over 17% Efficiency. Advanced Energy Materials, 2016, 6, 1501873.	10.2	206
1050	Solvent Engineering Boosts the Efficiency of Paintable Carbonâ€Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials, 2016, 6, 1502087.	10.2	306
1051	Beneficial Effects of Pbl ₂ Incorporated in Organoâ€Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502104.	10.2	387
1052	Surface Analytical Investigation on Organometal Triiodide Perovskite. Materials Research Society Symposia Proceedings, 2016, 1735, 151.	0.1	0
1053	Semitransparent Solar Cells with Ultrasmooth and Low-Scattering Perovskite Thin Films. Journal of Physical Chemistry C, 2016, 120, 28933-28938.	1.5	32
1054	Role of Intrinsic Ion Accumulation in the Photocurrent and Photocapacitive Responses of MAPbBr ₃ Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 35447-35453.	4.0	15
1055	Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Materials Today Energy, 2016, 1-2, 1-10.	2.5	30
1056	Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond. Npj Computational Materials, 2016, 2, .	3.5	246
1057	Appealing Perspectives of Hybrid Lead–lodide Perovskites as Thermoelectric Materials. Journal of Physical Chemistry C. 2016, 120, 28472-28479.	1.5	66

#	Article	IF	CITATIONS
1058	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH ₃ NH ₃ Pbl ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 28448-28455.	1.5	47
1059	Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters, 2016, 16, 7925-7929.	4.5	50
1060	Benzimidazolium Lead Halide Perovskites: Effects of Anion Substitution and Dimensionality on the Bandgap. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1369-1376.	0.6	29
1061	Effects of chlorine addition to perovskite-type CH ₃ NH ₃ PbI ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 234-238.	0.5	33
1062	Research Update: Luminescence in lead halide perovskites. APL Materials, 2016, 4, .	2.2	12
1063	Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers. AIP Conference Proceedings, 2016, , .	0.3	6
1064	Photoelectric characteristics of CH ₃ NH ₃ PbI ₃ /p-Si heterojunction. Journal of Semiconductors, 2016, 37, 053002.	2.0	5
1065	Mechanism of hole injection enhancement in light-emitting diodes by inserting multiple hole-reservoir layers in electron blocking layer. Journal of Applied Physics, 2016, 119, .	1.1	7
1066	Rotation mechanism of methylammonium molecules in organometal halide perovskite in cubic phase: An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2016, 145, 224503.	1.2	14
1067	Efficient thermal conductance in organometallic perovskite CH3NH3PbI3 films. Applied Physics Letters, 2016, 108, 081902.	1.5	22
1068	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	2.2	47
1069	Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution. Review of Scientific Instruments, 2016, 87, 053702.	0.6	42
1070	CH3NH3Cd0.875Pb0.125I3 perovskite as potential photovoltaic materials. AIP Advances, 2016, 6, 115208.	0.6	5
1071	Device modeling and performance analysis of perovskite solar cells based on similarity with inorganic thin film solar cells structure. , 2016, , .		6
1072	Fabrication and characterization of perovskite-based CH3NH3Pb1-xGexI3, CH3NH3Pb1-xTlxI3 and CH3NH3Pb1-xInxI3 photovoltaic devices. AIP Conference Proceedings, 2016, , .	0.3	24
1073	Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method. Applied Physics Letters, 2016, 108, 261105.	1.5	40
1074	Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119, .	1.1	47
1075	Room-temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: An <i>ab initio</i> molecular dynamics perspective. Physical Review B, 2016, 94, .	1.1	62

#	Article	IF	CITATIONS
1076	Origin of the high performance of perovskite solar cells with large grains. Applied Physics Letters, 2016, 108, 053302.	1.5	45
1077	Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation. Journal of Applied Physics, 2016, 120, 143101.	1.1	15
1078	Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells. Review of Scientific Instruments, 2016, 87, 123107.	0.6	84
1079	Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. , 2016, , .		54
1080	Solution-processed perovskite for direct X-ray detection. , 2016, , .		5
1081	Soft X-ray irradiation effect on surface structure of CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> perovskite in multi-film stack device. , 2016, , .		0
1082	Fabrication and characteristics of CH ₃ NH ₃ PbI ₃ perovskite solar cells with molybdenum-selenide hole-transport layer. Applied Physics Express, 2016, 9, 122301.	1.1	13
1083	Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. Journal of Applied Physics, 2016, 120, .	1.1	105
1084	Escalating the performance of perovskite solar cell via electrospun TiO <inf>2</inf> nanofibers. , 2016, , .		1
1085	Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 2016, 7, 13941.	5.8	427
1086	Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333.	1.6	113
1087	Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Applied Physics Letters, 2016, 109, .	1.5	33
1088	Stress Tests on Dye-sensitized Solar Cells with the Cs2SnI6 Defect Perovskite as Hole-transporting Material. Energy Procedia, 2016, 102, 49-55.	1.8	14
1089	Electronic transport in organometallic perovskite CH ₃ NH ₃ PbI ₃ : The role of organic cation orientations. Applied Physics Letters, 2016, 108, 053901.	1.5	28
1090	Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Applied Physics Letters, 2016, 108, .	1.5	97
1091	High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting. MRS Advances, 2016, 1, 3175-3184.	0.5	9
1092	All-optical THz wave switching based on CH3NH3PbI3 perovskites. Scientific Reports, 2016, 6, 37912.	1.6	27
1093	Room-temperature electroluminescence from two-dimensional lead halide perovskites. Applied Physics Letters, 2016, 109, .	1.5	65

#	Article	IF	CITATIONS
1094	Effects of defect states on the performance of perovskite solar cells. Journal of Semiconductors, 2016, 37, 072003.	2.0	17
1095	Large diffusion lengths of excitons in perovskite and <i>TiO</i> 2 heterojunction. Applied Physics Letters, 2016, 108, .	1.5	20
1096	Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain. Applied Physics Letters, 2016, 108, .	1.5	48
1097	Improving the photovoltaic performance of perovskite solar cells with acetate. Scientific Reports, 2016, 6, 38670.	1.6	55
1098	Charge carrier recombination dynamics in perovskite and polymer solar cells. Applied Physics Letters, 2016, 108, .	1.5	42
1099	Light-trapping in perovskite solar cells. AIP Advances, 2016, 6, .	0.6	45
1100	Organic-Inorganic Hybrid Perovskite Solar Cells Using Hole Transport Layer Based on α-Naphthyl Diamine Derivative. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 581-586.	0.1	3
1101	Mobility–Lifetime Products in MAPbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 5219-5226.	2.1	55
1102	High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO ₂ Film by One-Step Spin-Coating. ACS Applied Materials & Interfaces, 2016, 8, 35440-35446.	4.0	31
1103	Solution-processed Bii <inf>3</inf> solar cells. , 2016, , .		0
1103 1104	Solution-processed Bii <inf>3</inf> solar cells. , 2016, , . High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process. , 2016, , .		0 0
	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and		
1104	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process. , 2016, , . Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free	1.6	0
1104 1105	 High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process. , 2016, , . Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free oxides. , 2016, , . The nature of free-carrier transport in organometal halide perovskites. Scientific Reports, 2016, 6, 	1.6	0
1104 1105 1106	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process., 2016,,. Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free oxides., 2016,,. The nature of free-carrier transport in organometal halide perovskites. Scientific Reports, 2016, 6, 19599. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal		0 0 38
1104 1105 1106 1107	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process., 2016,,. Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free oxides., 2016,,. The nature of free-carrier transport in organometal halide perovskites. Scientific Reports, 2016, 6, 19599. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3Pbl3. Scientific Reports, 2016, 6, 21687. Mixture interlayer for high performance organic-inorganic perovskite photodetectors. Applied	1.6	0 0 38 123
1104 1105 1106 1107 1108	High-efficiency planar-structure perovskite solar cells via homemade chamber with low pressure and low temperature process., 2016,,. Stabilizing perovskite halide solar absorbers through direct atomic layer deposition of pinhole-free oxides., 2016,,. The nature of free-carrier transport in organometal halide perovskites. Scientific Reports, 2016, 6, 19599. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Scientific Reports, 2016, 6, 21687. Mixture interlayer for high performance organic-inorganic perovskite photodetectors. Applied Physics Letters, 2016, 109,. Atomic partial charges on CH3NH3PbI3 from first-principles electronic structure calculations.	1.6 1.5	0 0 38 123 38

#	Article	IF	CITATIONS
1112	Photoelectrochemical characterization of p-type CH <inf>3</inf> NH <inf>3</inf> PM <inf>3</inf> perovskite. , 2016, , .		0
1113	Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. Journal of Applied Physics, 2016, 120, .	1.1	27
1114	Density functional theory + U modeling of polarons in organohalide lead perovskites. AIP Advances, 2016, 6, .	0.6	25
1115	Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire. Journal of Physics: Conference Series, 2016, 739, 012098.	0.3	0
1116	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie, 2016, 128, 12033-12037.	1.6	20
1117	Numerical modeling of perovskite solar cells with a planar structure. IOP Conference Series: Materials Science and Engineering, 2016, 151, 012033.	0.3	14
1118	Solution-based mist CVD technique for CH ₃ NH ₃ Pb(Br _{1â^'}) Tj ETQq0 0 0 r Applied Physics, 2016, 55, 100308.	gBT /Over 0.8	lock 10 Tf 50 21
1119	Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells. AIP Advances, 2016, 6, .	0.6	26
1120	lodine and Chlorine Element Evolution in CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	3.2	48
1121	A self-powered photodetector based on a CH ₃ NH ₃ PbI ₃ single crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.	1.3	95
1122	Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells. Journal of Solid State Chemistry, 2016, 238, 223-228.	1.4	50
1123	Voltage-Induced Transients in Methylammonium Lead Triiodide Probed by Dynamic Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 7893-7902.	1.5	24
1124	Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. Journal of Materials Chemistry A, 2016, 4, 6837-6841.	5.2	104
1125	Understanding the Role of the Mesoporous Layer in the Thermal Crystallization of a Meso-Superstructured Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 8559-8567.	1.5	10
1126	Synergistic effects of three-dimensional orchid-like TiO ₂ nanowire networks and plasmonic nanoparticles for highly efficient mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 7322-7329.	5.2	30
1127	Laser Processing in the Manufacture of Dyeâ€Sensitized and Perovskite Solar Cell Technologies. ChemElectroChem, 2016, 3, 9-30.	1.7	67
1128	Efficient Perovskite Hybrid Photovoltaics via Alcoholâ€Vapor Annealing Treatment. Advanced Functional Materials, 2016, 26, 101-110.	7.8	117
1129	Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI 2 phase, and CH 3 NH 3 PbI 3 morphologies. Journal of Power Sources, 2016, 324, 142-149.	4.0	17

#	Article	IF	Citations
1130	Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. ACS Applied Materials & Amp; Interfaces, 2016, 8, 14513-14520.	4.0	64
1131	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	15.6	102
1132	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	7.3	276
1133	High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Applied Materials & Interfaces, 2016, 8, 14503-14512.	4.0	120
1134	Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy and Environmental Science, 2016, 9, 2262-2266.	15.6	265
1135	Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH ₃ NH ₃) ₃ Bi ₂ I ₉ for Photovoltaic Applications. ACS Applied Materials & Interfaces, 2016, 8, 14542-14547.	4.0	270
1137	Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing. Nanoscale Research Letters, 2016, 11, 248.	3.1	13
1138	Optical-Vibrational Properties of the Cs ₂ SnX ₆ (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 11777-11785.	1.5	222
1139	Well-Defined Nanostructured, Single-Crystalline TiO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 2016, 10, 6029-6036.	7.3	196
1140	Ultrafast charge carrier dynamics in CH ₃ NH ₃ PbI ₃ : evidence for hot hole injection into spiro-OMeTAD. Journal of Materials Chemistry C, 2016, 4, 5922-5931.	2.7	34
1141	Nanostructured Materials for High Efficiency Perovskite Solar Cells. Nanoscience and Technology, 2016, , 1-39.	1.5	3
1142	Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy, 2016, 26, 139-147.	8.2	97
1143	Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH ₃ NH ₃ PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2016, 18, 15352-15362.	1.3	77
1144	Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chemical Science, 2016, 7, 5517-5522.	3.7	78
1145	Hydrophobic Hole-Transporting Materials Incorporating Multiple Thiophene Cores with Long Alkyl Chains for Efficient Perovskite Solar Cells. Electrochimica Acta, 2016, 209, 529-540.	2.6	29
1146	Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. Journal of Alloys and Compounds, 2016, 684, 84-90.	2.8	59
1147	Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr ₃ Perovskite Crystals for Thin-Film Photovoltaic Applications. ACS Energy Letters, 2016, 1, 150-154.	8.8	103
1148	Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. Journal of Optics (United Kingdom), 2016, 18, 064012.	1.0	82

#	Article	IF	CITATIONS
1149	Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics. Journal of Physical Chemistry C, 2016, 120, 12392-12402.	1.5	89
1150	Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science, 2016, 7, 6068-6075.	3.7	85
1151	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	1.7	10
1152	Hole Conductor Free Perovskite-based Solar Cells. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	7
1153	Organo-Metal Lead Halide Perovskite Properties. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-4.	0.2	0
1154	Hole Transport Material (HTM) Free Perovskite Solar Cell. SpringerBriefs in Applied Sciences and Technology, 2016, , 9-24.	0.2	0
1155	An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale, 2016, 8, 11403-11412.	2.8	307
1156	The effect of porous lead iodide precursor film on perovskite film formation and its photovoltaic property after an effective pretreatment. Superlattices and Microstructures, 2016, 94, 196-203.	1.4	5
1157	Optical characterizations of the surface states in hybrid lead–halide perovskites. Physical Chemistry Chemical Physics, 2016, 18, 12626-12632.	1.3	46
1158	A modified two-step sequential deposition method for preparing perovskite CH ₃ NH ₃ PbI ₃ solar cells. RSC Advances, 2016, 6, 42377-42381.	1.7	22
1159	Tuning superior solar cell performance of carrier mobility and absorption in perovskite CH 3 NH 3 GeCl 3 : A density functional calculations. Journal of Power Sources, 2016, 313, 96-103.	4.0	51
1160	Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. Journal of the American Chemical Society, 2016, 138, 3761-3768.	6.6	496
1161	Unravelling the Effects of Grain Boundary and Chemical Doping on Electron–Hole Recombination in CH ₃ NH ₃ PbI ₃ Perovskite by Time-Domain Atomistic Simulation. Journal of the American Chemical Society, 2016, 138, 3884-3890.	6.6	333
1162	High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions. Chemical Communications, 2016, 52, 4784-4787.	2.2	39
1163	Low-Temperature TiO _{<i>x</i>} Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11076-11083.	4.0	100
1164	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances, 2016, 6, 38079-38091.	1.7	154
1165	Mechanism of biphasic charge recombination and accumulation in TiO ₂ mesoporous structured perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12128-12134.	1.3	28
1166	Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. Nano Research, 2016, 9, 1600-1608.	5.8	47

#	Article	IF	CITATIONS
1167	Two-dimensional modeling of TiO2 nanowire based organic–inorganic hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 152, 111-117.	3.0	45
1168	Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?. Journal of Physical Chemistry Letters, 2016, 7, 1638-1645.	2.1	278
1169	Spectral dependence of direct and trap-mediated recombination processes in lead halide perovskites using time resolved microwave conductivity. Physical Chemistry Chemical Physics, 2016, 18, 12043-12049.	1.3	21
1170	Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. Journal of Power Sources, 2016, 319, 1-8.	4.0	98
1171	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chemistry of Materials, 2016, 28, 3131-3138.	3.2	174
1172	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
1173	Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. Journal of Materials Chemistry A, 2016, 4, 7943-7949.	5.2	86
1174	A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient opto-electronic conversion. Journal of Materials Chemistry A, 2016, 4, 9019-9028.	5.2	12
1175	Colored dual-functional photovoltaic cells. Journal of Optics (United Kingdom), 2016, 18, 064003.	1.0	17
1176	p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8, 10528-10540.	2.8	125
1177	An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells. International Journal of Green Energy, 2016, 13, 859-906.	2.1	4
1178	Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today, 2016, 3, 96-102.	2.3	83
1179	Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Solar Energy Materials and Solar Cells, 2016, 156, 157-169.	3.0	168
1180	Computer calculations across time and length scales in photovoltaic solar cells. Energy and Environmental Science, 2016, 9, 2197-2218.	15.6	27
1181	Vertically aligned nanostructured TiO ₂ photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale, 2016, 8, 11472-11479.	2.8	48
1182	Growth temperature-dependent performance of planar CH ₃ NH ₃ Pbl ₃ solar cells fabricated by a two-step subliming vapor method below 120 °C. RSC Advances, 2016, 6, 47459-47467.	1.7	7
1183	Novel Combination of Efficient Perovskite Solar Cells with Low Temperature Processed Compact TiO ₂ Layer via Anodic Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 12836-12842.	4.0	20
1184	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016, 1, 107-112.	8.8	105

ARTICLE IF CITATIONS Light induced metastable modification of optical properties in CH3NH3PbI3â⁻xBrx perovskite films: 1185 73 1.4 Two-step mechanism. Organic Electronics, 2016, 34, 79-83. Perovskite photonic sources. Nature Photonics, 2016, 10, 295-302. 15.6 1,369 Photocarrier lifetime and recombination losses in photovoltaic systems. Nature Photonics, 2016, 10, 1187 15.6 9 282-283. State and prospects of solar cells based on perovskites. Applied Solar Energy (English Translation of) Tj ETQq1 1 0.784314 rgBT /Over Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and 1189 8.8 752 Diffusion Length. ACS Energy Letters, 2016, 1, 32-37. Annealing-free perovskite films by instant crystallization for efficient solar cells. Journal of Materials Chemistry A, 2016, 4, 8548-8553. 5.2 Stable and durable CH₃NH₃Pbl₃perovskite solar cells at ambient 1191 1.3 61 conditions. Nanotechnology, 2016, 27, 235404. Optical characterization of voltage-accelerated degradation in CH_3NH_3PbI_3 perovskite solar cells. 1.7 26 Optics Express, 2016, 24, A917. Coordination engineering toward high performance organic–inorganic hybrid perovskites. 1193 9.5 34 Coordination Chemistry Reviews, 2016, 320-321, 53-65. All solid-state solar cells based on CH 3 NH 3 PbI 3 -sensitized TiO 2 nanotube arrays. Physica E: 1194 1.3 Low-Dimensional Systems and Nanostructures, 2016, 83, 322-328. Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract 1195 4.069 Layer. ACS Applied Materials & amp; Interfaces, 2016, 8, 12377-12383. Facile synthesis of a hole transporting material with a silafluorene core for efficient mesoscopic CH₃NH₃Pbl₃ perovskite solar cells. Journal of Materials 5.2 36 Chemistry A, 2016, 4, 8750-8754. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for 1197 7.7 194 solar cell applications. Light: Science and Applications, 2016, 5, e16056-e16056. Structural and chemical evolution of methylammonium lead halide perovskites during thermal 1198 15.6 188 processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082. A rapid annealing technique for efficient perovskite solar cells fabricated in air condition under high 1199 20 1.4 humidity. Organic Electronics, 2016, 34, 84-90. Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH₃NH₃Perovskite Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 10711-10719. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse 1201 4.0 111 Photoemission Studies. ACS Applied Materials & amp; Interfaces, 2016, 8, 11526-11531. Mapping the Photoresponse of CH₃NH₃PbI₃Hybrid Perovskite Thin 4.5 Films at the Nanoscale. Nano Letters, 2016, 16, 3434-3441.

#	Article	IF	CITATIONS
1203	Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2016, 9, 2326-2333.	15.6	317
1204	High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO _x hole transport layer. Nanoscale, 2016, 8, 10806-10813.	2.8	206
1205	Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Advances, 2016, 6, 43299-43303.	1.7	52
1206	Blending of n-type Semiconducting Polymer and PC ₆₁ BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 12822-12829.	4.0	30
1207	New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells. Nano Energy, 2016, 26, 7-15.	8.2	89
1208	Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells. Nano Energy, 2016, 26, 108-113.	8.2	103
1209	Interfacial Charge-Carrier Trapping in CH ₃ NH ₃ PbI ₃ -Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 1972-1977.	2.1	58
1210	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing. RSC Advances, 2016, 6, 48449-48454.	1.7	10
1211	Wavelength-dependent optical transition mechanisms for light-harvesting of perovskite MAPbI3 solar cells using first-principles calculations. Journal of Materials Chemistry C, 2016, 4, 5248-5254.	2.7	11
1212	Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells. IEEE Journal of Quantum Electronics, 2016, 52, 1-6.	1.0	33
1213	Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 14933-14940.	1.3	32
1214	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	8.8	317
1215	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. ACS Applied Materials & Interfaces, 2016, 8, 25489-25495.	4.0	38
1216	Hydrophobic hole-transporting layer induced porous PbI2 film for stable and efficient perovskite solar cells in 50% humidity. Solar Energy Materials and Solar Cells, 2016, 157, 989-995.	3.0	17
1217	Bromide regulated film formation of CH3NH3PbI3 in low-pressure vapor-assisted deposition for efficient planar-heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 1026-1037.	3.0	27
1218	La ₂ O ₃ interface modification of mesoporous TiO ₂ nanostructures enabling highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15478-15485.	5.2	53
1219	Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Physical Chemistry Chemical Physics, 2016, 18, 27143-27147.	1.3	62
1220	Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27148-27157.	1.3	75

#	Article	IF	CITATIONS
1221	A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15788-15822.	5.2	150
1222	Regulatory band gap of vacancy at the B sites in CH3NH3Pb1â^'xl3 perovskite. Modern Physics Letters B, 2016, 30, 1650294.	1.0	7
1223	Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. Journal of Physical Chemistry Letters, 2016, 7, 3703-3710.	2.1	202
1224	Optimal design of efficient hole transporting layer free planar perovskite solar cell. Science China Materials, 2016, 59, 703-709.	3.5	39
1225	Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 731-739.	8.8	130
1226	Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy and Environmental Science, 2016, 9, 3472-3481.	15.6	409
1227	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
1228	First-principles investigation of a novel organic-inorganic strontium halide perovskites and CH ₃ NH ₃ Pb _{1-x} Sr _x I ₃ solid solution. Integrated Ferroelectrics, 2016, 175, 193-201.	0.3	1
1229	High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells. Science Bulletin, 2016, 61, 1680-1688.	4.3	17
1230	Printable Solar Cells from Advanced Solution-Processible Materials. CheM, 2016, 1, 197-219.	5.8	68
1231	Increased Efficiency for Perovskite Photovoltaics via Doping the PbI2Layer. Journal of Physical Chemistry C, 2016, 120, 24577-24582.	1.5	33
1232	Charge Stripe Formation in Molecular Ferroelectric Organohalide Perovskites for Efficient Charge Separation. Journal of Physical Chemistry C, 2016, 120, 23969-23975.	1.5	14
1233	Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18, 30484-30490.	1.3	322
1234	Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Materials Horizons, 2016, 3, 613-620.	6.4	299
1235	Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2016, 4, 16975-16981.	5.2	67
1236	A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 650-658.	2.8	41
1237	Effect of the modulating of organic content on optical properties of single-crystal perovskite. Optical Materials, 2016, 62, 273-278.	1.7	16
1238	Synergistic Effect of Pbl ₂ Passivation and Chlorine Inclusion Yielding High Openâ€Circuit Voltage Exceeding 1.15 V in Both Mesoscopic and Inverted Planar CH3NH ₃ Pbl ₃ (Cl)â€Based Perovskite Solar Cells. Advanced Functional Materials, 2016. 26. 8119-8127.	7.8	93

#	Article	IF	CITATIONS
1239	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	1.9	24
1240	Magnetic Manipulation of Spontaneous Emission from Inorganic CsPbBr ₃ Perovskites Nanocrystals. Advanced Optical Materials, 2016, 4, 2004-2008.	3.6	14
1241	PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. Nano Energy, 2016, 30, 27-35.	8.2	91
1242	Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Organic Electronics, 2016, 39, 1-9.	1.4	24
1243	Relaxation Processes of Potassium Tantalate Doped by Lithium. Journal of Physical Chemistry A, 2016, 120, 8970-8975.	1.1	4
1244	Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 2016, 138, 13874-13881.	6.6	308
1245	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	15.6	1,535
1246	Perovskite Solar Cells on Corrugated Substrates with Enhanced Efficiency. Small, 2016, 12, 6346-6352.	5.2	15
1247	Surface Passivation of Perovskite Film by Small Molecule Infiltration for Improved Efficiency of Perovskite Solar Cells. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	8
1248	Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon–Phonon Interactions. ChemSusChem, 2016, 9, 2994-3004.	3.6	51
1249	A two-step spin-spray deposition processing route for production of halide perovskite solar cell. Thin Solid Films, 2016, 616, 754-759.	0.8	8
1250	Influence of halide composition on the structural, electronic, and optical properties of mixed <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	CITATIONS
1257	Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies. , 2016, , .		1
1258	The Effect of the Microstructure on Trapâ€Assisted Recombination and Light Soaking Phenomenon in Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8094-8102.	7.8	108
1259	<i>m</i> â€Methoxy Substituents in a Tetraphenylethyleneâ€Based Holeâ€Transport Material for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2016, 22, 16636-16641.	1.7	33
1260	Solution growth and morphology of CH ₃ NH ₃ PbBr ₃ single crystals in different solvents. Crystal Research and Technology, 2016, 51, 650-655.	0.6	13
1261	Optical Probe Ion and Carrier Dynamics at the CH ₃ NH ₃ PbI ₃ Interface with Electron and Hole Transport Materials. Advanced Materials Interfaces, 2016, 3, 1600467.	1.9	23
1262	Progress of interface engineering in perovskite solar cells. Science China Materials, 2016, 59, 728-742.	3.5	43
1263	Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27438-27443.	4.0	70
1264	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	2.2	252
1265	Nearâ€Infrared Photoresponse of Oneâ€Sided Abrupt MAPbl ₃ /TiO ₂ Heterojunction through a Tunneling Process. Advanced Functional Materials, 2016, 26, 8545-8554.	7.8	23
1266	The Additive Coordination Effect on Hybrids Perovskite Crystallization and Highâ€Performance Solar Cell. Advanced Materials, 2016, 28, 9862-9868.	11.1	270
1267	Comparing the Effect of Mesoporous and Planar Metal Oxides on the Stability of Methylammonium Lead lodide Thin Films. Chemistry of Materials, 2016, 28, 7344-7352.	3.2	45
1268	Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells. Solar Energy, 2016, 139, 190-198.	2.9	25
1269	PbI ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	6.6	107
1270	Ionic liquid-assisted perovskite crystal film growth for high performance planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 97848-97852.	1.7	41
1271	Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2016, 4, 17464-17472.	5.2	43
1272	Tin oxide nanosheets as efficient electron transporting materials for perovskite solar cells. Solar Energy, 2016, 137, 579-584.	2.9	19
1273	Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 2016, 126, 75-80.	0.8	163
1274	Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO ₂ Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials, 2016, 28, 7134-7144.	3.2	50

#	Article	IF	CITATIONS
1275	Interfacial Electronic Structure of Methylammonium Lead Iodide Grown on a Mesoporous TiO ₂ Layer on F-Doped Tin Oxide Substrate. Journal of Physical Chemistry C, 2016, 120, 22460-22465.	1.5	11
1276	Simple biphenyl or carbazole derivatives with four di(anisyl)amino substituents as efficient hole-transporting materials for perovskite solar cells. RSC Advances, 2016, 6, 92213-92217.	1.7	9
1277	Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science, 2016, 353, 1409-1413.	6.0	655
1278	Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating. Nanoscale Research Letters, 2016, 11, 408.	3.1	57
1279	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	5.2	143
1280	Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells. Physical Review B, 2016, 94, .	1.1	52
1281	Performance Improvement of Perovskite Solar Cells Based on PCBM-Modified ZnO-Nanorod Arrays. IEEE Journal of Photovoltaics, 2016, 6, 1530-1536.	1.5	20
1282	Optical monitoring of CH ₃ NH ₃ PbI ₃ thin films upon atmospheric exposure. Journal Physics D: Applied Physics, 2016, 49, 405102.	1.3	18
1283	Flexible perovskite solar cells based on the metal–insulator–semiconductor structure. Chemical Communications, 2016, 52, 10791-10794.	2.2	30
1284	Quantifying Hole Transfer Yield from Perovskite to Polymer Layer: Statistical Correlation of Solar Cell Outputs with Kinetic and Energetic Properties. ACS Photonics, 2016, 3, 1678-1688.	3.2	54
1285	Charge Injection at the Heterointerface in Perovskite CH ₃ NH ₃ PbI ₃ Solar Cells Studied by Simultaneous Microscopic Photoluminescence and Photocurrent Imaging Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3186-3191.	2.1	38
1287	Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanoparticles composite. Nano Energy, 2016, 27, 535-544.	8.2	73
1288	Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3284-3289.	2.1	30
1289	Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale, 2016, 8, 15954-15960.	2.8	170
1290	Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Holeâ€Transporter. Advanced Materials Interfaces, 2016, 3, 1600571.	1.9	105
1291	Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 3270-3277.	2.1	118
1292	Moderate Humidity Delays Electron–Hole Recombination in Hybrid Organic–Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. Journal of Physical Chemistry Letters, 2016, 7, 3215-3222.	2.1	139
1293	Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 21505-21511.	4.0	25

#	Article	IF	CITATIONS
1294	Ultrafast Spectroscopy of Photoexcitations in Organometal Trihalide Perovskites. Advanced Functional Materials, 2016, 26, 1617-1627.	7.8	35
1295	The interface and its role in carrier transfer/recombination dynamics for the planar perovskite solar cells prepared under fully open air conditions. Current Applied Physics, 2016, 16, 1353-1363.	1.1	16
1296	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	8.2	14
1297	Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society, 2016, 138, 10096-10099.	6.6	101
1298	Doped tin induced structural evaluation and performance of CH3NH3PbxSn1-xI3 thin films prepared by a simple route of unisource thermal evaporation. Journal of Materials Science: Materials in Electronics, 2016, 27, 13192-13198.	1.1	5
1299	Effect of Chlorine Substitution on Lattice Distortion and Ferroelectricity of CH3NH3PbI3. Journal of Physical Chemistry C, 2016, 120, 17972-17977.	1.5	22
1300	20â€mmâ€Large Singleâ€Crystalline Formamidiniumâ€Perovskite Wafer for Mass Production of Integrated Photodetectors. Advanced Optical Materials, 2016, 4, 1829-1837.	3.6	316
1301	Interface studies of the planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 783-790.	3.0	42
1302	Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Advanced Materials Interfaces, 2016, 3, 1600403.	1.9	67
1303	Microscopic Charge Transport and Recombination Processes behind the Photoelectric Hysteresis in Perovskite Solar Cells. Small, 2016, 12, 5288-5294.	5.2	29
1304	Optimization of Pbl ₂ /MAPbl ₃ Perovskite Composites by Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2016, 120, 19890-19895.	1.5	50
1305	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	2.7	75
1306	Improvement of electron/hole injection balance based on nanowire/nanocube hybrid perovskite. Materials Letters, 2016, 184, 78-81.	1.3	6
1307	Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells. Advanced Science, 2016, 3, 1500312.	5.6	88
1308	Effect of crystal structures on the stability of CH 3 NH 3 PbI 3 under humidity environment. Solar Energy, 2016, 136, 470-474.	2.9	7
1309	Hysteresis in organic-inorganic hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 476-509.	3.0	146
1310	Rashba Effect and Carrier Mobility in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3078-3083.	2.1	62
1311	Fast self-diffusion of ions in CH ₃ NH ₃ Pbl ₃ : the interstiticaly mechanism versus vacancy-assisted mechanism. Journal of Materials Chemistry A, 2016, 4, 13105-13112.	5.2	74

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1312	High Performance Perovskite Solar Cells. Advanced Science, 2016, 3, 1500201.	5.6	105
1313	A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353.	5.6	67
1314	Solidâ€State Ligandâ€Exchange Fabrication of CH ₃ NH ₃ PbI ₃ Capped PbS Quantum Dot Solar Cells. Advanced Science, 2016, 3, 1500432.	5.6	42
1315	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science, 2016, 3, 1600027.	5.6	86
1316	Efficient Perovskite Solar Cells Employing Inorganic Interlayers. ChemNanoMat, 2016, 2, 182-188.	1.5	49
1317	Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 975-981.	0.8	54
1318	Inverted Planar Structure of Perovskite Solar Cells. , 2016, , 307-324.		2
1319	Flexible Perovskite Solar Cell. , 2016, , 325-341.		2
1320	First-Principles Modeling of Organohalide Thin Films and Interfaces. , 2016, , 19-52.		4
1321	Defect Physics of CH3NH3PbX3 (XÂ=Âl, Br, Cl) Perovskites. , 2016, , 79-105.		19
1322	Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 2016, 27, 352-358.	8.2	199
1323	Hexadecafluorophthalocyaninatocopper as an electron conductor for high-efficiency fullerene-free planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 510-516.	3.0	7
1324	Hexagonal β-NaYF ₄ :Yb ³⁺ , Er ³⁺ Nanoprism-Incorporated Upconverting Layer in Perovskite Solar Cells for Near-Infrared Sunlight Harvesting. ACS Applied Materials & Interfaces, 2016, 8, 19847-19852.	4.0	109
1325	Structural and electronic features of small hybrid organic–inorganic halide perovskite clusters: a theoretical analysis. Physical Chemistry Chemical Physics, 2016, 18, 27124-27132.	1.3	21
1326	Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH ₃ NH ₃ Pbl ₃ perovskite films. Physical Chemistry Chemical Physics, 2016, 18, 22557-22564.	1.3	36
1327	Solution processed inorganic V2O x as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Research, 2016, 9, 2960-2971.	5.8	81
1328	Facile synthesis, characterization and structural evolution of nanorods single-crystalline (C4H9NH3)2Pbl2X2 mixed halide organometal perovskite for solar cell application. Optik, 2016, 127, 9775-9787.	1.4	39
1329	Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano, 2016, 10, 7830-7839.	7.3	466

#	Article	IF	CITATIONS
1330	Impact of a Mesoporous Titania–Perovskite Interface on the Performance of Hybrid Organic–Inorganic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3264-3269.	2.1	85
1331	Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films. Physical Chemistry Chemical Physics, 2016, 18, 28428-28433.	1.3	16
1332	50% Snâ€Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%. Advanced Energy Materials, 2016, 6, 1601353.	10.2	154
1333	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	8.8	24
1334	Low temperature fabrication of formamidinium based perovskite solar cells with enhanced performance by chlorine incorporation. Organic Electronics, 2016, 38, 144-149.	1.4	8
1335	Novel organic-perovskite hybrid structure forward photo field effect transistor. Organic Electronics, 2016, 38, 158-163.	1.4	33
1336	Toward Fluorinated Spacers for MAPI-Derived Hybrid Perovskites: Synthesis, Characterization, and Phase Transitions of (FC ₂ H ₄ NH ₃) ₂ PbCl ₄ . Chemistry of Materials, 2016, 28, 6560-6566.	3.2	74
1337	Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI ₃ in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3603-3608.	2.1	328
1338	Revisiting photocarrier lifetimes in photovoltaics. Nature Photonics, 2016, 10, 562-562.	15.6	17
1339	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
1340	Improving the Performance of a CH ₃ NH ₃ PbBr ₃ Perovskite Microrod Laser through Hybridization with Few‣ayered Graphene. Advanced Optical Materials, 2016, 4, 2057-2062.	3.6	20
1341	Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells. Journal of Power Sources, 2016, 329, 398-405.	4.0	46
1342	Spatially Heterogeneous Chlorine Incorporation in Organic–Inorganic Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 6536-6543.	3.2	39
1343	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	1.5	64
1344	Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement. Nano Energy, 2016, 28, 417-425.	8.2	114
1345	Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation. Solar Energy Materials and Solar Cells, 2016, 157, 1038-1047.	3.0	169
1346	Dynamic Stereochemical Activity of the Sn ²⁺ Lone Pair in Perovskite CsSnBr ₃ . Journal of the American Chemical Society, 2016, 138, 11820-11832.	6.6	217
1347	Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15088-15094.	5.2	70

#	Article	IF	Citations
1348	Effects of water molecules on the chemical stability of MAGel ₃ perovskite explored from a theoretical viewpoint. Physical Chemistry Chemical Physics, 2016, 18, 24526-24536.	1.3	22
1349	Stable Lowâ€Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Advanced Materials, 2016, 28, 8990-8997.	11.1	302
1350	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151-157.	8.2	200
1351	Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions. Solar Energy Materials and Solar Cells, 2016, 157, 937-942.	3.0	40
1352	A mesoporous–planar hybrid architecture of methylammonium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 14423-14429.	5.2	17
1353	Surface coverage enhancement of a mixed halide perovskite film by using an UV-ozone treatment. Journal of the Korean Physical Society, 2016, 69, 406-411.	0.3	19
1354	Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite. Journal of Physical Chemistry A, 2016, 120, 6880-6887.	1.1	13
1355	Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals. Journal of Physical Chemistry C, 2016, 120, 21710-21715.	1.5	58
1356	Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells. Chemical Communications, 2016, 52, 11355-11358.	2.2	58
1357	Antiferroelectric-to-Ferroelectric Switching in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mi> CH < /mml:mi> < /mml:mrow> < mml:mrow> < mm and Its Potential Role in Effective Charge Sepa. Physical Review Applied. 2016. 6	ıl:mn>3 <td>nml:mn></td>	nml:mn>
1358	Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy and Environmental Science, 2016, 9, 3071-3078.	15.6	870
1359	Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO ₂ as an electron collection bilayer. RSC Advances, 2016, 6, 78585-78594.	1.7	27
1360	From PbI ₂ to MAPbI ₃ through Layered Intermediates. Journal of Physical Chemistry C, 2016, 120, 19768-19777.	1.5	26
1361	Limits of Carrier Diffusion in <i>n</i> -Type and <i>p</i> -Type CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 3510-3518.	2.1	86
1362	Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGel ₃ . Journal of Materials Chemistry A, 2016, 4, 13852-13858.	5.2	148
1363	Lowâ€Pressure Vaporâ€Assisted Solution Process for Thiocyanateâ€Based Pseudohalide Perovskite Solar Cells. ChemSusChem, 2016, 9, 2620-2627.	3.6	30
1364	Dynamics of Photocarrier Separation in MAPbI ₃ Perovskite Multigrain Films under a Quasistatic Electric Field. Journal of Physical Chemistry C, 2016, 120, 19595-19602.	1.5	22
1365	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">C <mml:msub> <mml:mi mathvariant="normal">H <mml:mn>3</mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">N <mml:msub> <mml:mi< td=""><td>1.1</td><td>50</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	1.1	50

#	Article	IF	CITATIONS
1366	Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime. ACS Applied Materials & Interfaces, 2016, 8, 23181-23189.	4.0	35
1367	Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14276-14283.	5.2	204
1368	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie - International Edition, 2016, 55, 11854-11858.	7.2	128
1369	Hybrid perovskite as substituent of indium and gallium in light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 958-961.	0.8	5
1370	Highly-Efficient and Long-Term Stable Perovskite Solar Cells Enabled by a Cross-Linkable <i>n</i> -Doped Hybrid Cathode Interfacial Layer. Chemistry of Materials, 2016, 28, 6305-6312.	3.2	38
1371	Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions. Journal of Physical Chemistry C, 2016, 120, 18986-18990.	1.5	43
1372	High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 22238-22245.	4.0	19
1373	Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 23086-23094.	4.0	28
1374	Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 648-653.	8.8	67
1375	Revealing the unfavorable role of superfluous CH ₃ NH ₃ PbI ₃ grain boundary traps in perovskite solar cells on carrier collection. RSC Advances, 2016, 6, 83264-83272.	1.7	13
1376	General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. Journal of the American Chemical Society, 2016, 138, 16196-16199.	6.6	205
1377	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
1378	Solution-Processable Ionic Liquid as an Independent or Modifying Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34464-34473.	4.0	111
1379	CH ₃ NH ₃ PbI ₃ , A Potential Solar Cell Candidate: Structural and Spectroscopic Investigations. Journal of Physical Chemistry A, 2016, 120, 9732-9739.	1.1	29
1380	Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.	1.7	15
1381	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < /mml:mi> < mml:msub> < mml:mi mathvariant="normal">H < /mml:mi> < mml:mn> 3 < /mml:mn> < /mml:msub> < mml:mi mathvariant="normal">N < /mml:mi> < mml:msub> < mml:mi	1.1	49
1382	mathyarlant="normal">H <mmlimi>3</mmlimi> s/mmlimsub> <mmlimi>PbB</mmlimi> Carrier Decay Properties of Mixed Cation Formamidiniumâ€"Methylammonium Lead Iodide Perovskite [HC(NH2)2]1â€"x[CH3NH3]xPbI3 Nanorods. Journal of Physical Chemistry Letters, 2016, 7, 5036-5043.	<mml:mi 2.1</mml:mi 	61
1383	Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. Journal of Physical Chemistry Letters, 2016, 7, 5105-5113.	2.1	346

#	Article	IF	CITATIONS
1384	Carbon-Based CsPbBr ₃ Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability. ACS Applied Materials & Interfaces, 2016, 8, 33649-33655.	4.0	256
1385	Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nature Communications, 2016, 7, 13406.	5.8	106
1386	Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano, 2016, 10, 10921-10928.	7.3	168
1387	Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Letters, 2016, 16, 7829-7835.	4.5	123
1388	Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology. Scientific Reports, 2016, 6, 35973.	1.6	103
1389	100 °C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes. ChemSusChem, 2016, 9, 2604-2608.	3.6	103
1390	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
1391	Room Temperature Phase Transition in Methylammonium Lead Iodide Perovskite Thin Films Induced by Hydrohalic Acid Additives. ChemSusChem, 2016, 9, 2656-2665.	3.6	47
1392	Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy and Environmental Science, 2016, 9, 3128-3134.	15.6	720
1393	Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie - International Edition, 2016, 55, 13067-13071.	7.2	47
1395	Functional Singleâ€Walled Carbon Nanotubes and Nanoengineered Networks for Organic―and Perovskiteâ€Solarâ€Cell Applications. Advanced Materials, 2016, 28, 9668-9685.	11.1	22
1396	Effect of Hole Transport Layer in Planar Inverted Perovskite Solar Cells. Chemistry Letters, 2016, 45, 89-91.	0.7	12
1397	3D Arrays of 1024â€Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Advanced Materials, 2016, 28, 9713-9721.	11.1	228
1398	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	15.6	410
1399	Superhalogens as building blocks of two-dimensional organic–inorganic hybrid perovskites for optoelectronics applications. Nanoscale, 2016, 8, 17836-17842.	2.8	34
1400	Highly efficient CH ₃ NH ₃ PbI _{3â^'x} Cl _x mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 2016, 4, 17636-17642.	5.2	223
1401	Beneficial Role of Reduced Graphene Oxide for Electron Extraction in Highly Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 3040-3044.	3.6	73
1402	Grain structure control and greatly enhanced carrier transport by CH3NH3PbCl3 interlayer in two-step solution processed planar perovskite solar cells. Organic Electronics, 2016, 38, 362-369.	1.4	11

#	Article	IF	CITATIONS
1403	The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells. Chemical Physics Letters, 2016, 662, 257-262.	1.2	17
1404	Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering. ACS Applied Materials & amp; Interfaces, 2016, 8, 26712-26721.	4.0	69
1405	Direct Confirmation of Distribution for Cl ^{â^'} in CH ₃ NH ₃ Pbl _{3â^'} <i>_x</i> Cl <i>_x</i> Layer of Perovskite Solar Cells. Chemistry Letters, 2016, 45, 884-886.	0.7	13
1406	Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angewandte Chemie, 2016, 128, 13938-13942.	1.6	29
1407	Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie, 2016, 128, 13261-13265.	1.6	14
1408	Two-photon absorption and emission in CsPb(Br/I) ₃ cesium lead halide perovskite quantum dots. CrystEngComm, 2016, 18, 7945-7949.	1.3	40
1409	Tuning the Fermi-level of TiO ₂ mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale, 2016, 8, 16881-16885.	2.8	103
1410	A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by Coâ€deposition of a Holeâ€Conductor and a Perovskite Layer. Advanced Materials, 2016, 28, 9648-9654.	11.1	150
1411	MAPbI2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties. Applied Surface Science, 2016, 390, 744-750.	3.1	16
1412	Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chemical Physics Letters, 2016, 662, 35-41.	1.2	43
1413	Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27026-27050.	1.3	134
1414	Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligandâ€Assisted Exfoliation. Advanced Materials, 2016, 28, 9478-9485.	11.1	276
1415	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
1416	Charge Transport in Organometal Halide Perovskites. , 2016, , 201-222.		9
1417	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	1.6	76
1418	Perovskite CH ₃ NH ₃ PbI ₃ (Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 10 ⁸ cm ^{–3} . Journal of the American Chemical Society, 2016, 138, 9409-9412.	6.6	226
1419	Perovskite Luminescent Materials. Topics in Current Chemistry, 2016, 374, 52.	3.0	20
1420	Photoluminescence Lifetimes Exceeding 8 1 /4s and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation. ACS Energy Letters. 2016. 1, 438-444.	8.8	452

ARTICLE IF CITATIONS Effects of ambient air processing on morphology and photoconductivity of CH3NH3PbI3. Journal of 1421 3 1.1 Materials Science: Materials in Electronics, 2016, 27, 12028-12035. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit 1422 1.1 coupling, and self-energy effects. Physical Review B, 2016, 93, . Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the 1423 65 1.1 organic-inorganic interaction. Physical Review B, 2016, 94, . Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface 1424 149 Recombination in Photocatalysts. Angewandte Chemie - International Edition, 2016, 55, 13734-13738. Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH₃NH₃PbBr₃ Microdisks. ACS Applied Materials & amp; Interfaces, 1425 4.0 54 2016, 8, 19587-19592. Unreacted PbI₂ as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343. 696 6.6 Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor 1427 (CH₃NH₃)₃Bi₂1₉. Journal of Materials 5.2 151 Chemistry A, 2016, 4, 12504-12515. Highly Efficient pâ€iâ€n Perovskite Solar Cells Utilizing Novel Lowâ€Temperature Solutionâ€Processed Hole 1428 5.2 Transport Materials with Linear π onjugated Structure. Small, 2016, 12, 4902-4908. Pseudomorphic Transformation of Organometal Halide Perovskite Using the Gaseous Hydrogen Halide 1429 3.2 39 Reaction. Chemistry of Materials, 2016, 28, 5530-5537. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite 1430 1.3 solar cells. Journal Physics D: Applied Physics, 2016, 49, 275106. Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable 1431 2.6 33 electron-transport layer based on P25 nanoparticles. Electrochimica Acta, 2016, 213, 83-88.

#	Article	IF	CITATIONS
1439	Solutionâ€Processed Tinâ€Based Perovskite for Nearâ€Infrared Lasing. Advanced Materials, 2016, 28, 8191-8196.	11.1	222
1440	The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming <i>Spiro</i> â€OMeTAD in Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601062.	10.2	87
1441	An Ultrahighâ€Performance Photodetector based on a Perovskite–Transitionâ€Metalâ€Dichalcogenide Hybrid Structure . Advanced Materials, 2016, 28, 7799-7806.	11.1	242
1442	Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold. Advanced Energy Materials, 2016, 6, 1601055.	10.2	95
1443	Mesoscale Growth and Assembly of Bright Luminescent Organolead Halide Perovskite Quantum Wires. Chemistry of Materials, 2016, 28, 5043-5054.	3.2	63
1444	Highly Efficient, Reproducible, Uniform (CH ₃ NH ₃)PbI ₃ Layer by Processing Additive Dripping for Solutionâ€Processed Planar Heterojunction Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2399-2405.	1.7	5
1445	Using elemental Pb surface as a precursor to fabricate large area CH3NH3PbI3 perovskite solar cells. Applied Surface Science, 2016, 389, 540-546.	3.1	28
1446	Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. ACS Applied Materials & Interfaces, 2016, 8, 20067-20073.	4.0	88
1447	Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mn>3Physical Review Applied, 2016, 5, .</mml:mn></mml:msub></mml:mrow></mml:math>	1,5 :mn> <td>nl:msub><mi< td=""></mi<></td>	nl:msub> <mi< td=""></mi<>
1448	Optical spintronics in organic-inorganic perovskite photovoltaics. Physical Review B, 2016, 93, .	1.1	36
1449	Electronic band structure trends of perovskite halides: Beyond Pb and Sn to Ge and Si. Physical Review B, 2016, 93, .	1.1	130
1450	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. Journal of Physical Chemistry C, 2016, 120, 24682-24687.	1.5	41
1451	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	2.1	115
1452	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	2.1	38
1453	Band gap tuning of nickelates for photovoltaic applications. Journal Physics D: Applied Physics, 2016, 49, 44LT02.	1.3	22
1454	Chargeâ€Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2016, 28, 10718-10724.	11.1	214
1455	Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346.	8.2	72
1456	Optoelectronic modelling of perovskite solar cells under humid conditions and their correlation with power losses to quantify material degradation. Organic Electronics, 2016, 39, 258-266.	1.4	11

#	Article	IF	CITATIONS
1457	Humidity controlled sol-gel Zr/TiO2 with optimized band alignment for efficient planar perovskite solar cells. Solar Energy, 2016, 139, 290-296.	2.9	27
1458	Ternary Oxides in the TiO ₂ –ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15%. ACS Applied Materials & Interfaces, 2016, 8, 29580-29587.	4.0	44
1459	Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30184-30192.	4.0	53
1460	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
1461	Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?. ACS Energy Letters, 2016, 1, 949-955.	8.8	404
1462	Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nature Communications, 2016, 7, 12555.	5.8	165
1463	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, 1, .	19.8	816
1464	Metal halide perovskites for energy applications. Nature Energy, 2016, 1, .	19.8	726
1465	Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy, 2016, 1, .	19.8	902
1466	High-performance integrated perovskite and organic solar cells with efficient near-infrared harvesting. , 2016, , .		1
1467	Formation of Perovskite Heterostructures by Ion Exchange. ACS Applied Materials & Interfaces, 2016, 8, 33273-33279.	4.0	56
1468	Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films. Journal of the American Chemical Society, 2016, 138, 15717-15726.	6.6	107
1469	Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film. Nature Communications, 2016, 7, 13503.	5.8	94
1470	Highly Efficient Integrated Perovskite Solar Cells Containing a Small Molecule-PC ₇₀ BM Bulk Heterojunction Layer with an Extended Photovoltaic Response Up to 900 nm. Chemistry of Materials, 2016, 28, 8631-8639.	3.2	41
1471	Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical Reviews, 2016, 116, 14675-14725.	23.0	418
1472	Photocurrent Mapping in Single-Crystal Methylammonium Lead Iodide Perovskite Nanostructures. Nano Letters, 2016, 16, 7710-7717.	4.5	56
1473	Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. Nano Letters, 2016, 16, 7739-7747.	4.5	193
1474	Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases. Journal of the American Chemical Society, 2016, 138, 15710-15716.	6.6	102

#	Article	IF	CITATIONS
1475	Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles. Scientific Reports, 2016, 6, 19968.	1.6	119
1476	Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region. Scientific Reports, 2016, 6, 37425.	1.6	29
1477	Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide. Scientific Reports, 2016, 6, 20626.	1.6	25
1478	Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772.	0.8	79
1479	CH ₃ NH ₃ Pb(BF ₄) ₃ and (C ₄ H ₉ NH ₃) ₂ Pb(BF ₄) ₄ of 3D and 2D Perovskites without and with lodide and Bromide Ions Substitution. Journal of Physical Chemistry Letters, 2016, 7, 4757-4762.	2.1	26
1480	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	11.1	102
1481	Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368.	0.4	9
1482	Efficient Perovskite Solar Cells Based on Multilayer Transparent Electrodes through Morphology Control. Journal of Physical Chemistry C, 2016, 120, 26703-26709.	1.5	12
1483	Electron–phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7, .	5.8	919
1484	Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design. Nano Letters, 2016, 16, 7786-7790.	4.5	71
1485	Giant photostriction in organic–inorganic lead halide perovskites. Nature Communications, 2016, 7, 11193.	5.8	164
1486	Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1233-1240.	8.8	848
1487	TiO ₂ –ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14998-15003.	6.6	220
1488	Exciton localization in solution-processed organolead trihalide perovskites. Nature Communications, 2016, 7, 10896.	5.8	195
1489	PCBM doped with fluorene-based polyelectrolytes as electron transporting layers for improving the performance of planar heterojunction perovskite solar cells. Chemical Communications, 2016, 52, 13572-13575.	2.2	21
1490	Cs ⁺ incorporation into CH ₃ NH ₃ PbI ₃ perovskite: substitution limit and stability enhancement. Journal of Materials Chemistry A, 2016, 4, 17819-17827.	5.2	99
1491	Evidence of band bending induced by hole trapping at MAPbI ₃ perovskite/metal interface. Journal of Materials Chemistry A, 2016, 4, 17529-17536.	5.2	26
1492	Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2016, 4, 10625-10629.	2.7	124

#	Article	IF	CITATIONS
1493	Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2016, 2, e1600534.	4.7	304
1494	Pinhole-Free Perovskite Films by Methylamine Iodide Solution-Assisted Repair for High-Efficiency Photovoltaics under Ambient Conditions. ACS Applied Materials & Interfaces, 2016, 8, 30920-30925.	4.0	13
1496	Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & amp; Interfaces, 2016, 8, 32068-32076.	4.0	178
1497	Colloidal Organometal Halide Perovskite (MAPbBrxI3â^'x, 0≤â‰9) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific Reports, 2016, 6, 35931.	1.6	22
1498	Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 2016, 4, 18614-18620.	5.2	19
1499	Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. Nanoscale, 2016, 8, 19536-19540.	2.8	85
1500	Low cost and solution-processable zinc phthalocyanine as alternative hole transport material for perovskite solar cells. RSC Advances, 2016, 6, 107723-107731.	1.7	21
1501	Enhanced photovoltaic performance of planar perovskite solar cells fabricated in ambient air by solvent annealing treatment method. Japanese Journal of Applied Physics, 2016, 55, 122301.	0.8	16
1502	Light-Induced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Letters, 2016, 1, 1199-1205.	8.8	532
1503	High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Scientific Reports, 2016, 6, 29910.	1.6	132
1504	Photodynamic response of a solution-processed organolead halide photodetector. RSC Advances, 2016, 6, 111942-111949.	1.7	4
1505	Solar Cells and Their Generations. , 2016, , 1-53.		0
1506	Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH ₃ NH ₃ SnI ₃ Films. Journal of the American Chemical Society, 2016, 138, 14750-14755.	6.6	252
1507	Facet-dependent photovoltaic efficiency variations in single grains of hybrid halideÂperovskite. Nature Energy, 2016, 1, .	19.8	308
1508	Highly Efficient Perovskite Solar Cells with Substantial Reduction of Lead Content. Scientific Reports, 2016, 6, 35705.	1.6	86
1509	The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. Advanced Materials, 2016, 28, 10757-10763.	11.1	65
1510	Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4602-4610.	2.1	288
1511	Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32574-32580.	4.0	52

#	Article	IF	CITATIONS
1512	Light and Thermally Induced Evolutional Charge Transport in CH3NH3PbI3 Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1000-1006.	8.8	23
1513	Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1, .	23.3	1,173
1514	Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells. Scientific Reports, 2016, 6, 33649.	1.6	24
1515	Specific cation interactions as the cause of slow dynamics and hysteresis in dye and perovskite solar cells: a small-perturbation study. Physical Chemistry Chemical Physics, 2016, 18, 31033-31042.	1.3	89
1516	Elimination of the J–V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative. Journal of Materials Chemistry A, 2016, 4, 17649-17654.	5.2	24
1517	Hexagonal boron nitride as a cationic diffusion barrier to form a graded band gap perovskite heterostructure. Physica Status Solidi (B): Basic Research, 2016, 253, 2478-2480.	0.7	4
1518	Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Applied Materials & Interfaces, 2016, 8, 31426-31432.	4.0	60
1519	Photo-induced halide redistribution in organic–inorganic perovskite films. Nature Communications, 2016, 7, 11683.	5.8	778
1520	Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy, 2016, 1, .	19.8	646
1521	Highly efficient light management for perovskite solar cells. Scientific Reports, 2016, 6, 18922.	1.6	105
1521 1522	Highly efficient light management for perovskite solar cells. Scientific Reports, 2016, 6, 18922. Enhancing performance and uniformity of CH3NH3Pbl3â^'xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257.	1.6 1.6	105 26
	Enhancing performance and uniformity of CH3NH3PbI3â^'xClx perovskite solar cells by air-heated-oven		
1522	Enhancing performance and uniformity of CH3NH3Pbl3â [^] xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257. Comprehensive design of omnidirectional high-performance perovskite solar cells. Scientific Reports,	1.6	26
1522 1523	Enhancing performance and uniformity of CH3NH3Pbl3â [°] xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257. Comprehensive design of omnidirectional high-performance perovskite solar cells. Scientific Reports, 2016, 6, 29705. Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy.	1.6 1.6	26
1522 1523 1524	Enhancing performance and uniformity of CH3NH3Pbl3â [^] xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257. Comprehensive design of omnidirectional high-performance perovskite solar cells. Scientific Reports, 2016, 6, 29705. Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675. Ultrafast Photogenerated Hole Extraction/Transport Behavior in a CH ₃ NH ₃ Pbl ₃ /Carbon Nanocomposite and Its Application in a	1.6 1.6 1.6	26 11 32
1522 1523 1524 1525	Enhancing performance and uniformity of CH3NH3Pbl3â [^] xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257. Comprehensive design of omnidirectional high-performance perovskite solar cells. Scientific Reports, 2016, 6, 29705. Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675. Ultrafast Photogenerated Hole Extraction/Transport Behavior in a CH ₃ NH ₃ Pbl ₃ /Carbon Nanocomposite and Its Application in a Metalâ€Electrodeâ€Free Solar Cell. ChemPhysChem, 2016, 17, 4102-4109.	1.6 1.6 1.6 1.0	26 11 32 21
1522 1523 1524 1525 1526	Enhancing performance and uniformity of CH3NH3PbI3â ^{-,} xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257. Comprehensive design of omnidirectional high-performance perovskite solar cells. Scientific Reports, 2016, 6, 29705. Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675. Ultrafast Photogenerated Hole Extraction/Transport Behavior in a CH ₃ NH ₃ Pbl ₃ /Carbon Nanocomposite and Its Application in a Metalâ€Electrodeâ€Free Solar Cell. ChemPhysChem, 2016, 17, 4102-4109. Applications of ferroelectrics in photovoltaic devices. Science China Materials, 2016, 59, 851-866.	1.6 1.6 1.0 3.5	26 11 32 21 35

#	Article	IF	CITATIONS
1530	Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers. Journal of Physical Chemistry Letters, 2016, 7, 4622-4628.	2.1	68
1531	Evaluating the Optoelectronic Quality of Hybrid Perovskites by Conductive Atomic Force Microscopy with Noise Spectroscopy. ACS Applied Materials & amp; Interfaces, 2016, 8, 30985-30991.	4.0	54
1532	Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials. ACS Photonics, 2016, 3, 2197-2210.	3.2	217
1533	Defects in perovskite-halides and their effects in solar cells. Nature Energy, 2016, 1, .	19.8	886
1534	A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells. Journal Physics D: Applied Physics, 2016, 49, 473001.	1.3	45
1535	Experimental investigation of electroluminescent light emitting diodes based on halide perovskites. , 2016, , .		0
1536	Enhanced Crystallinity and Performance of CH3NH3PbI3 Thin Film Prepared by Controlling Hot CH3NH3I Solution Onto Evaporated PbI2 Nanocrystal. IEEE Journal of Photovoltaics, 2016, 6, 1537-1541.	1.5	6
1537	Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar cells. Science China Chemistry, 2016, 59, 1658-1662.	4.2	9
1538	Manipulating multicrystalline grain size in CH3NH3PbI3 thin films for application in photovoltaics. Solar Energy, 2016, 139, 518-523.	2.9	18
1539	Passivated Single-Crystalline CH ₃ NH ₃ Pbl ₃ Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Letters, 2016, 16, 7446-7454.	4.5	324
1540	Carrier Transport Improvement of CH ₃ NH ₃ PbI ₃ Film by Methylamine Gas Treatment. ACS Applied Materials & Interfaces, 2016, 8, 31413-31418.	4.0	41
1541	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	2.8	43
1543	ITO-free perovskite solar cells using photolithography processed metal grids as transparent anodes. , 2016, , .		1
1544	Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification with Fullerene Derivatives. Small, 2016, 12, 1098-1104.	5.2	107
1545	Synthesis, Crystal Structure, and Optical Properties of (CH ₃ NH ₃) ₂ Co <i>X</i> ₄ (<i>X</i> = Cl, Br, I,) Tj ETQq000r	gBT /Over 0.6	lock 10 Tf 50 12
1546	268-274. Photovoltaic and Amplified Spontaneous Emission Studies of Highâ€Quality Formamidinium Lead Bromide Perovskite Films. Advanced Functional Materials, 2016, 26, 2846-2854.	7.8	66
1547	Crosslinked Remoteâ€Doped Holeâ€Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2807-2815.	11.1	108
1548	"Liquid Knife―to Fabricate Patterning Singleâ€Crystalline Perovskite Microplates toward Highâ€Performance Laser Arrays. Advanced Materials, 2016, 28, 3732-3741.	11.1	149

ARTICLE IF CITATIONS Hysteresisâ€Suppressed Highâ€Efficiency Flexible Perovskite Solar Cells Using Solidâ€State Ionicâ€Liquids for 11.1 387 1549 Effective Electron Transport. Advanced Materials, 2016, 28, 5206-5213. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar 11.1 Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221. Hole Transport Layer Free Inorganic CsPbIBr₂ Perovskite Solar Cell by Dual Source 1551 10.2 373 Thermal Evaporation. Advanced Energy Materials, 2016, 6, 1502202. Holeâ€Transporting Materials in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 243 2016, 6, 1600474. Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite. 1553 7.2 157 Angewandte Chemie - International Edition, 2016, 55, 6540-6544. Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 1554 0.8 2016, 11, 338-369. Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 1555 11.1 257 2016, 28, 923-929. Structureâ€Tuned Lead Halide Perovskite Nanocrystals. Advanced Materials, 2016, 28, 566-573. 1556 11.1 Heterostructured WS₂/CH₃NH₃Pbl₃ 1557 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Advanced Materials, 396 11.1 2016, 28, 3683-3689. Fast Freeâ€Carrier Diffusion in CH₃NH₃PbBr₃ Single Crystals Revealed by Timeâ€Resolved One†and Twoâ€Photon Excitation Photoluminescence Spectroscopy. Advanced 2.6 Electronic Materials, 2016, 2, 1500290. Growth Engineering of CH₃NH₃PbI₃ Structures for 1559 10.2 36 Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2016, 6, 1501358. Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite. 1560 1.6 24 Angewandte Chemie, 2016, 128, 6650-6654. Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material 1561 3.2 139 CH₃NH₃Pbl₃. Chemistry of Materials, 2016, 28, 4349-4357. Energy Landscape of Molecular Motion in Cubic Methylammonium Lead Iodide from First-Principles. 1.5 Journal of Physical Chemistry C, 2016, 120, 12403-12410. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency 1563 4.0 56 Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 15333-15340. N and p-type properties in organo-metal halide perovskites studied by Seebeck effects. Organic 1564 1.4 Electronics, 2016, 35, 216-220. Enhanced Photovoltaic Performance of Perovskite Solar Cells Using Polymer P(VDF-TrFE) as a 1565 1.581 Processed Additive. Journal of Physical Chemistry C, 2016, 120, 12980-12988. Free Carriers versus Excitons in CH₃NH₃Pbl₃Perovskite Thin Films at Low Temperatures: Charge Transfer from the Orthorhombic Phase to the Tetragonal Phase. 2.1 Journal of Physical Chemistry Letters, 2016, 7, 2316-2321.

#	Article	IF	CITATIONS
1567	Acceleration effect of chlorine in the gas-phase growth process of CH ₃ NH ₃ Pbl ₃ (Cl) films for efficient perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 6336-6344.	2.7	18
1568	Crystallisation dynamics in wide-bandgap perovskite films. Journal of Materials Chemistry A, 2016, 4, 10524-10531.	5.2	29
1569	Organic–inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 18112-18118.	1.3	93
1570	A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells. Journal of Materials Chemistry A, 2016, 4, 11648-11655.	5.2	49
1571	Chemically, spatially, and temporally resolved 2D mapping study for the role of grain interiors and grain boundaries of organic-inorganic lead halide perovskites. Solar Energy Materials and Solar Cells, 2016, 155, 134-140.	3.0	21
1572	Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers. ACS Applied Materials & Interfaces, 2016, 8, 18284-18291.	4.0	78
1573	Tracking lodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation. ACS Energy Letters, 2016, 1, 290-296.	8.8	321
1574	Transformation of Sintered CsPbBr ₃ Nanocrystals to Cubic CsPbI ₃ and Gradient CsPbBr _{<i>x</i>} I _{3–<i>x</i>} through Halide Exchange. Journal of the American Chemical Society, 2016, 138, 8603-8611.	6.6	327
1575	Modulating carrier dynamics through perovskite film engineering. Physical Chemistry Chemical Physics, 2016, 18, 27119-27123.	1.3	33
1576	Correlations between Immobilizing Ions and Suppressing Hysteresis in Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 266-272.	8.8	118
1577	Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy and Environmental Science, 2016, 9, 2295-2301.	15.6	173
1578	Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. ACS Nano, 2016, 10, 6816-6825.	7.3	127
1579	Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RSC Advances, 2016, 6, 56807-56811.	1.7	25
1580	A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 2016, 37, 61-73.	1.4	186
1581	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	23.0	1,343
1582	Curing of degraded MAPbI ₃ perovskite films. RSC Advances, 2016, 6, 60620-60625.	1.7	15
1583	The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Sciences, 2016, 59, 989-1006.	2.0	33
1584	Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. Journal of Physical Chemistry Letters, 2016, 7, 2653-2658.	2.1	122

#	Article	IF	CITATIONS
1585	Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates. ACS Nano, 2016, 10, 6897-6904.	7.3	378
1586	Room-Temperature Solution-Processed NiO _{<i>x</i>} :PbI ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	7.3	122
1587	Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. Journal of Materials Chemistry A, 2016, 4, 10700-10709.	5.2	125
1588	Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds. Journal of Power Sources, 2016, 325, 534-540.	4.0	26
1589	Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surface Science Reports, 2016, 71, 473-546.	3.8	96
1590	Systematic study on the impact of water on the performance and stability of perovskite solar cells. RSC Advances, 2016, 6, 52448-52458.	1.7	29
1591	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ PbI ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	7.3	130
1592	Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative. Energy and Environmental Science, 2016, 9, 2444-2452.	15.6	147
1593	Porous Pbl ₂ films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. Journal of Materials Chemistry A, 2016, 4, 10223-10230.	5.2	56
1594	Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting. Journal of Solid State Electrochemistry, 2016, 20, 2633-2642.	1.2	10
1595	Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy, 2016, 26, 620-630.	8.2	167
1596	Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT: PSS thin film. Solar Energy, 2016, 134, 445-451.	2.9	35
1597	Recent advances in hybrid solar cells based on metal oxide nanostructures. Synthetic Metals, 2016, 222, 42-65.	2.1	14
1598	Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Solar Energy Materials and Solar Cells, 2016, 157, 318-325.	3.0	69
1599	Role of Cations on the Electronic Transport and Optical Properties of Lead-Iodide Perovskites. Journal of Physical Chemistry C, 2016, 120, 16259-16270.	1.5	56
1600	Ultralong Perovskite Microrods: One- versus Two-Step Synthesis and Enhancement of Hole-Transfer During Light Soaking. Journal of Physical Chemistry C, 2016, 120, 12273-12283.	1.5	18
1601	Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron–Hole Reduced Effective Mass, and Band Gap in the Perovskite CH ₃ NH ₃ Pbl ₃ . ACS Photonics, 2016, 3, 1060-1068.	3.2	116
1602	High performance planar-heterojunction perovskite solar cells using amino-based fulleropyrrolidine as the electron transporting material. Journal of Materials Chemistry A, 2016, 4, 10130-10134.	5.2	44

#	Article	IF	CITATIONS
1603	TiO ₂ passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. RSC Advances, 2016, 6, 57996-58002.	1.7	41
1604	A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites. Journal of Materials Chemistry C, 2016, 4, 4630-4633.	2.7	15
1605	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	8.2	35
1606	How photon pump fluence changes the charge carrier relaxation mechanism in an organic–inorganic hybrid lead triiodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 27090-27101.	1.3	32
1607	Cuprous Oxide as a Potential Low ost Holeâ€Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 302-313.	3.6	122
1608	TiO ₂ /ZnO/TiO ₂ sandwich multi-layer films as a hole-blocking layer for efficient perovskite solar cells. International Journal of Energy Research, 2016, 40, 806-813.	2.2	31
1609	Nanoconfined Crystallization of MAPbI ₃ to Probe Crystal Evolution and Stability. Crystal Growth and Design, 2016, 16, 4744-4751.	1.4	24
1610	Atomic Layer Deposition of TiO ₂ for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. ACS Applied Materials & Interfaces, 2016, 8, 17999-18007.	4.0	70
1611	Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Solar Energy Materials and Solar Cells, 2016, 155, 331-340.	3.0	43
1612	Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale, 2016, 8, 14432-14437.	2.8	45
1613	Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy, 2016, 27, 87-94.	8.2	118
1614	Surface Doping of Sn in Orthorhombic CH3NH3PbI3 for Potential Perovskite Solar Cells: First Principles Study. Surface and Coatings Technology, 2016, 306, 285-289.	2.2	14
1615	Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines. Synthetic Metals, 2016, 220, 187-193.	2.1	21
1616	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	7.8	176
1617	Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Longâ€Term Stability. Advanced Materials, 2016, 28, 686-693.	11.1	166
1618	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
1619	Thermal and Environmental Stability of Semiâ€Transparent Perovskite Solar Cells for Tandems Enabled by a Solutionâ€Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Advanced Materials, 2016, 28, 3937-3943.	11.1	419
1620	Molecularly Designed, Nitrogenâ€Functionalized Graphene Quantum Dots for Optoelectronic Devices. Advanced Materials, 2016, 28, 4632-4638.	11.1	229

#	Article	IF	CITATIONS
1621	Halide Perovskites: Poor Man's Highâ€Performance Semiconductors. Advanced Materials, 2016, 28, 5778-5793.	11.1	339
1622	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	11.1	22
1623	High Efficiency and Stable Perovskite Solar Cell Using ZnO/rGO QDs as an Electron Transfer Layer. Advanced Materials Interfaces, 2016, 3, 1500790.	1.9	143
1624	Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%. Advanced Energy Materials, 2016, 6, 1502027.	10.2	52
1625	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	10.2	161
1626	Glass composite as robust UV absorber for biological protection. Optical Materials Express, 2016, 6, 531.	1.6	14
1627	Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2016, 120, 2542-2547.	1.5	54
1628	Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. Nano Letters, 2016, 16, 871-876.	4.5	164
1629	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	5.2	48
1630	Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals. Journal of Physical Chemistry C, 2016, 120, 3077-3084.	1.5	128
1631	Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale, 2016, 8, 6403-6409.	2.8	164
1632	Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Physical Chemistry Chemical Physics, 2016, 18, 5219-5231.	1.3	61
1633	Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO 2 compact layers. Superlattices and Microstructures, 2016, 93, 128-137.	1.4	48
1634	Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 867-872.	15.6	62
1635	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	3.2	26
1636	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107
1637	Excited state and charge-carrier dynamics in perovskite solar cell materials. Nanotechnology, 2016, 27, 082001.	1.3	35
1638	All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27, 095202.	1.3	55

#	Article	IF	CITATIONS
1639	Systematic analysis of the unique band gap modulation of mixed halide perovskites. Physical Chemistry Chemical Physics, 2016, 18, 4423-4428.	1.3	26
1640	Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer. Solar Energy Materials and Solar Cells, 2016, 149, 1-8.	3.0	38
1641	Carrier-Activated Polarization in Organometal Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 2536-2541.	1.5	27
1642	Fiber-shaped perovskite solar cells with 5.3% efficiency. Journal of Materials Chemistry A, 2016, 4, 3901-3906.	5.2	65
1643	Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 /PC 61 BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30, 281-288.	1.4	69
1644	Fabrication and Characterization of Mesoscopic Perovskite Photodiodes. IEEE Nanotechnology Magazine, 2016, 15, 255-260.	1.1	29
1645	Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 802-812.	3.2	128
1646	N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability. Journal of Materials Chemistry A, 2016, 4, 2419-2426.	5.2	100
1647	Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 2016, 7, 10379.	5.8	744
1648	Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 311-319.	7.6	878
1649	Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. Nano Letters, 2016, 16, 1009-1016.	4.5	479
1650	Influence of void-free perovskite capping layer on the charge recombination process in high performance CH ₃ NH ₃ PbI ₃ perovskite solar cells. Nanoscale, 2016, 8, 4181-4193.	2.8	28
1651	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	2.8	99
1652	Air-assisted flow and two-step spin-coating for highly efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF08.	0.8	29
1653	A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for photodetection application. Chemical Communications, 2016, 52, 3304-3307.	2.2	35
1654	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale, 2016, 8, 1627-1634.	2.8	69
1655	PbCl ₂ -assisted film formation for high-efficiency heterojunction perovskite solar cells. RSC Advances, 2016, 6, 648-655.	1.7	17
1656	Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation. Solar Energy Materials and Solar Cells, 2016, 145, 193-199.	3.0	96

#	Article	IF	CITATIONS
1657	Highly efficient perovskite solar cells with precursor composition-dependent morphology. Solar Energy Materials and Solar Cells, 2016, 145, 231-237.	3.0	29
1658	Formation Dynamics of CH ₃ NH ₃ Pbl ₃ Perovskite Following Two-Step Layer Deposition. Journal of Physical Chemistry Letters, 2016, 7, 96-102.	2.1	100
1659	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. Nano Letters, 2016, 16, 367-373.	4.5	185
1660	Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Solar Energy, 2016, 123, 51-56.	2.9	73
1661	Effect of thiophene chain lengths on the optical and hole transport properties for perovskite solar cells. Synthetic Metals, 2016, 211, 107-114.	2.1	20
1662	Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Accounts of Chemical Research, 2016, 49, 146-154.	7.6	819
1663	Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 166-173.	1.5	208
1664	A numerical model for charge transport and energy conversion of perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 4476-4486.	1.3	56
1665	In situ processed gold nanoparticle-embedded TiO ₂ nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 2016, 8, 2664-2677.	2.8	143
1666	SiO ₂ /TiO ₂ based hollow nanostructures as scaffold layers and Al-doping in the electron transfer layer for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1306-1311.	5.2	42
1667	Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale, 2016, 8, 7017-7023.	2.8	125
1668	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
1669	Low-temperature solution processable n–i–p perovskite solar cell. Japanese Journal of Applied Physics, 2016, 55, 04EA01.	0.8	3
1670	Surface Decorating of CH ₃ NH ₃ PbBr ₃ Nanoparticles with the Chemically Adsorbed Perylenetetracarboxylic Diimide. Langmuir, 2016, 32, 3294-3299.	1.6	25
1671	Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH ₃ NH ₃ SnI ₃ Perovskite. Journal of Physical Chemistry Letters, 2016, 7, 1321-1326.	2.1	135
1672	Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Advances, 2016, 6, 30978-30985.	1.7	28
1673	Solution-processed photodetectors based on organic–inorganic hybrid perovskite and nanocrystalline graphite. Nanotechnology, 2016, 27, 175201.	1.3	38
1674	Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells. Proceedings of SPIE, 2016, , .	0.8	8

#	Article	IF	CITATIONS
1675	Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. ACS Applied Materials & Interfaces, 2016, 8, 8460-8466.	4.0	128
1676	Deciphering Halogen Competition in Organometallic Halide Perovskite Growth. Journal of the American Chemical Society, 2016, 138, 5028-5035.	6.6	92
1677	Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science, 2016, 9, 1989-1997.	15.6	4,560
1678	The improvement of open circuit voltage by the sputtered TiO2 layer for efficient perovskite solar cell. Vacuum, 2016, 128, 91-98.	1.6	21
1679	Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 23, 40-49.	8.2	59
1680	Two methoxyaniline-substituted dibenzofuran derivatives as hole-transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5415-5422.	5.2	56
1681	Evaluating replicability of laboratory experiments in economics. Science, 2016, 351, 1433-1436.	6.0	789
1682	Photon recycling in lead iodide perovskite solar cells. Science, 2016, 351, 1430-1433.	6.0	600
1683	Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	19
1684	Influence of Nanostructures in Perovskite Solar Cells. , 2016, , .		3
1685	Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Organic Electronics, 2016, 33, 194-200.	1.4	48
1686	High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air. Solar Energy Materials and Solar Cells, 2016, 151, 36-43.	3.0	31
1687	Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Advanced Science, 2016, 3, 1500392.	5.6	193
1688	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	1.4	29
1689	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. Solar Energy Materials and Solar Cells, 2016, 151, 102-112.	3.0	14
1690	Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode. Applied Surface Science, 2016, 369, 308-313.	3.1	25
1691	Hybrid Organic–Inorganic Perovskites on the Move. Accounts of Chemical Research, 2016, 49, 573-581.	7.6	227
1692	Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry C, 2016, 120, 5724-5731.	1.5	154

ARTICLE IF CITATIONS Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Accounts of Chemical 1693 107 7.6 Research, 2016, 49, 536-544. Organohalide Lead Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 1694 2.1 159 2016, 7, 851-866. Zero-Dimensional Hybrid Organic–Inorganic Halide Perovskite Modeling: Insights from First 1695 2.1 40 Principles. Journal of Physical Chemistry Letters, 2016, 7, 888-899. Origin of <i><i>J</i>à€"<i>V</i></i> Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry 1696 631 Letters, 2016, 7, 905-917. Chalcogenide perovskites – an emerging class of ionic semiconductors. Nano Energy, 2016, 22, 129-135. 1697 8.2 174 Ultrathin Cu₂O as an efficient inorganic hole transporting material for perovskite solar 1698 2.8 cells. Nanoscale, 2016, 8, 6173-6179. Reproducible formation of uniform CH3NH3PbI3â[^]xClx mixed halide perovskite film by separation of the 1699 4.0 23 powder formation and spin-coating process. Journal of Power Sources, 2016, 310, 130-136. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead-Halide 1700 4.5 533 Perovskite Quantum Dots. Nano Letters, 2016, 16, 2349-2362. Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency 1701 14.8 117 solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38. A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted 1702 1.7 perovskite solar cells. RSC Advances, 2016, 6, 19923-19927. Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly 1703 2.8 83 efficient solar cells. Nanoscale, 2016, 8, 5552-5558. An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for 8.2 improving the performance and stability. Nano Energy, 2016, 22, 223-231. Experimental Evidence of Localized Shallow States in Orthorhombic Phase of CH₃NH₃Pbl₃Perovskite Thin Films Revealed by Photocurrent Beat 1705 1.5 33 Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 5347-5352. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360. 1706 8.2 166 Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on 1707 8.2 76 charge transport and recombination dynamics. Nano Energy, 2016, 22, 439-452. Surface Properties of CH₃NH₃PbI₃ for Perovskite Solar Cells. 1708 145 Accounts of Chemical Research, 2016, 49, 554-561. Perovskite solar cells fabricated using dicarboxylic fullerene derivatives. New Journal of Chemistry, 1709 1.4 23 2016, 40, 2829-2834. Credible evidence for the passivation effect of remnant PbI₂ in 1710 CH₃NH₃Pbl₃ films in improving the performance of perovskite 2.8 solar cells. Nanoscale, 2016, 8, 6600-6608.

#	Article	IF	CITATIONS
1711	Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4523-4531.	4.0	56
1712	Third-Order Optical Nonlinearities in Organometallic Methylammonium Lead Iodide Perovskite Thin Films. ACS Photonics, 2016, 3, 361-370.	3.2	140
1713	Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites. Nanoscale, 2016, 8, 11426-11431.	2.8	90
1714	Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. Journal of Materials Chemistry A, 2016, 4, 3806-3812.	5.2	76
1715	What Is Moving in Hybrid Halide Perovskite Solar Cells?. Accounts of Chemical Research, 2016, 49, 528-535.	7.6	385
1716	Nonlinear Optical Response of Organic–Inorganic Halide Perovskites. ACS Photonics, 2016, 3, 371-377.	3.2	154
1717	Congestion Control for Vehicular Networks With Safety-Awareness. IEEE/ACM Transactions on Networking, 2016, 24, 3290-3299.	2.6	43
1718	Organic Photovoltaics for Energy Efficiency in Buildings. , 2016, , 321-355.		2
1719	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
1720	Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 545-553.	7.6	135
1721	Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2016, 7, 715-721.	2.1	160
1722	Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 2016, 16, 1869-1877.	4.5	425
1723	Organic–inorganic hybrid CH ₃ NH ₃ PbI ₃ perovskite materials as channels in thin-film field-effect transistors. RSC Advances, 2016, 6, 16243-16249.	1.7	63
1724	A modified sequential deposition method for fabrication of perovskite solar cells. Solar Energy, 2016, 126, 243-251.	2.9	38
1725	Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. Accounts of Chemical Research, 2016, 49, 294-302.	7.6	159
1726	Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. Journal of Materials Chemistry A, 2016, 4, 3704-3710.	5.2	87
1727	Ultrasensitive 1D field-effect phototransistors: CH ₃ NH ₃ Pbl ₃ nanowire sensitized individual carbon nanotubes. Nanoscale, 2016, 8, 4888-4893.	2.8	54
1728	New insights into exciton binding and relaxation from high time resolution ultrafast spectroscopy of CH3NH3PbI3and CH3NH3PbBr3films. Journal of Materials Chemistry A, 2016, 4, 3546-3553.	5.2	28

#	Article	IF	CITATIONS
1729	Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode. Journal of Materials Science: Materials in Electronics, 2016, 27, 4275-4280.	1.1	17
1730	New Scalable Cold-Roll Pressing for Post-treatment of Perovskite Microstructure in Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 2520-2528.	1.5	29
1731	Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation. Journal of Physical Chemistry Letters, 2016, 7, 1148-1153.	2.1	83
1732	Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chemistry, 2016, 18, 2946-2955.	4.6	62
1733	Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under ambient conditions. Physical Chemistry Chemical Physics, 2016, 18, 10182-10190.	1.3	49
1734	Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells. Journal of Power Sources, 2016, 311, 130-136.	4.0	25
1735	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	8.2	180
1736	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite: Synthesis and Optoelectronic Application. ACS Nano, 2016, 10, 3536-3542.	7.3	359
1737	Hybrid Organic–Inorganic Coordination Complexes as Tunable Optical Response Materials. Inorganic Chemistry, 2016, 55, 3393-3400.	1.9	31
1738	Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. Annual Review of Physical Chemistry, 2016, 67, 65-89.	4.8	594
1739	Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Solar Energy Materials and Solar Cells, 2016, 158, 195-201.	3.0	182
1740	Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4962-4970.	5.2	19
1741	Back-contacted hybrid organic–inorganic perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 3125-3130.	2.7	54
1742	Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3â^'xBrx (0 ≤ ≤) films. Applied Surface Science, 2016, 371, 112-117.	3.1	98
1743	Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure. Applied Surface Science, 2016, 371, 289-295.	3.1	17
1744	Carrier injection and recombination processes in perovskite CH ₃ NH ₃ PbI ₃ solar cells studied by electroluminescence spectroscopy. Proceedings of SPIE, 2016, , .	0.8	1
1745	Photovoltaic and optical properties of perovskite thin films fabricated using Marangoni flow assisted electrospraying. , 2016, , .		0
1746	Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synthetic Metals, 2016, 215, 56-63.	2.1	31

#	Article	IF	CITATIONS
1747	Humidity-Induced Grain Boundaries in MAPbI ₃ Perovskite Films. Journal of Physical Chemistry C, 2016, 120, 6363-6368.	1.5	103
1748	Rational Strategies for Efficient Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 562-572.	7.6	311
1749	Effects of interfacial chemical states on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4392-4397.	5.2	25
1750	Perovskites at the nanoscale: from fundamentals to applications. Nanoscale, 2016, 8, 6206-6208.	2.8	21
1751	Dimensionality effects on the luminescence properties of hBN. Nanoscale, 2016, 8, 6986-6993.	2.8	50
1752	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
1753	Efficient Planar Perovskite Solar Cells with Reduced Hysteresis and Enhanced Open Circuit Voltage by Using PW ₁₂ –TiO ₂ as Electron Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 8520-8526.	4.0	40
1754	Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance. Nanoscale, 2016, 8, 6792-6800.	2.8	40
1755	Facile fabrication of three-dimensional TiO 2 structures for highly efficient perovskite solar cells. Nano Energy, 2016, 22, 499-506.	8.2	40
1756	Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO _{<i>x</i>} Hole Contacts. ACS Nano, 2016, 10, 3630-3636.	7.3	426
1757	Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 8511-8519.	4.0	18
1758	Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Advances, 2016, 6, 27475-27484.	1.7	41
1759	Highly reproducible, efficient hysteresis-less CH ₃ NH ₃ PbI _{3â^'x} Cl _x planar hybrid solar cells without requiring heat-treatment. Nanoscale, 2016, 8, 2554-2560.	2.8	75
1760	Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI ₃ to MAPbI ₂ Br Using Composition Spread Libraries. Journal of Physical Chemistry C, 2016, 120, 893-902.	1.5	65
1761	The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 2303-2308.	1.3	7
1762	Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. Journal of Power Sources, 2016, 306, 171-177.	4.0	61
1763	Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 2016, 20, 108-116.	8.2	240
1764	Effect of halide-mixing on the electronic transport properties of organometallic perovskites. Solar Energy Materials and Solar Cells, 2016, 148, 2-10.	3.0	25

#	Article	IF	Citations
1765	Efficiency enhancement of the MAPbI _{3â^'x} Cl _x -based perovskite solar cell by a two-step annealing procedure. Semiconductor Science and Technology, 2016, 31, 025009.	1.0	16
1766	Efficient hysteresis-less bilayer type CH ₃ NH ₃ PbI ₃ perovskite hybrid solar cells. Nanotechnology, 2016, 27, 024004.	1.3	13
1767	The electronic structure of organic–inorganic hybrid perovskite solar cell: A first-principles analysis. Computational Materials Science, 2016, 117, 573-578.	1.4	22
1768	Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 255-275.	3.0	726
1769	Ultrafast photomodulation spectroscopy of π-conjugated polymers, nanotubes and organometal trihalide perovskites: A comparison. Synthetic Metals, 2016, 216, 31-39.	2.1	4
1770	Halogen Effects on Ordering and Bonding of CH ₃ NH ₃ ⁺ in CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study. Journal of Physical Chemistry C, 2016, 120, 2509-2519.	1.5	188
1771	Temperature Evolution of Methylammonium Trihalide Vibrations at the Atomic Scale. Journal of Physical Chemistry Letters, 2016, 7, 529-535.	2.1	82
1772	Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy and Environmental Science, 2016, 9, 1282-1289.	15.6	157
1773	Designing nanobowl arrays of mesoporous TiO ₂ as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393-6402.	2.8	89
1774	Novel spherical TiO 2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells. Nano Energy, 2016, 20, 272-282.	8.2	50
1775	A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 2016, 7, 10228.	5.8	532
1776	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	15.6	535
1777	Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. Journal of Materials Chemistry A, 2016, 4, 1991-1998.	5.2	90
1778	Cubic: Column composite structure (NH2CH=NH2)x(CH3NH3)1-xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability. Electrochimica Acta, 2016, 190, 775-779.	2.6	41
1779	Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Letters, 2016, 16, 1000-1008.	4.5	391
1780	Laser cooling of organic–inorganic lead halide perovskites. Nature Photonics, 2016, 10, 115-121.	15.6	282
1781	Elaboration, structural, vibrational and optical investigation of a two-dimensional self-assembled organic–inorganic hybrid compound. Journal of Luminescence, 2016, 173, 213-217.	1.5	25
1782	Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 155-165.	7.6	559

ARTICLE IF CITATIONS Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and 1783 3.2 1,606 Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 2016, 28, 284-292. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon 1784 2.8 composite counter electrodes. Nanoscale, 2016, 8, 6379-6385. Single-crystalline lead halide perovskite arrays for solar cells. Journal of Materials Chemistry A, 2016, 1785 5.249 4, 1214-1217. Maximizing the optical performance of planar CH3NH3Pbl3 hybrid perovskite heterojunction stacks. 1786 3.0 Solar Energy Materials and Solar Cells, 2016, 147, 327-333. A facile way to prepare nanoporous Pbl₂ films and their application in fast conversion to 1787 1.7 36 CH₃NH₃Pbl₃. RSC Advances, 2016, 6, 1611-1617. Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead 1788 2.1 Triiodide Perovskite Polycrystalline Thin Film. Journal of Physical Chemistry Letters, 2016, 7, 204-210. Excited State Properties of Hybrid Perovskites. Accounts of Chemical Research, 2016, 49, 166-173. 1789 7.6 144 High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide 1790 4.5 269 Perovskites. Nano Letters, 2016, 16, 800-806. Hybrid Perovskite Quantum Nanostructures Synthesized by Electrospray Antisolventâ€"Solvent 1791 4.0 49 Extraction and Intercalation. ACS Applied Materials & amp; Interfaces, 2016, 8, 854-861. Pinhole-free perovskite films for efficient solar modules. Energy and Environmental Science, 2016, 9, 1792 15.6 484-489. Synergistic improvements in stability and performance of lead iodide perovskite solar cells 1793 183 5.2 incorporating salt additives. Journal of Materials Chemistry A, 2016, 4, 1591-1597. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. Journal 1794 2.1 332 of Physical Chemistry Letters, 2016, 7, 295-301 Effect of the filtration of Pbl2solution for zinc oxide nanowire based perovskite solar cells. Japanese 1795 0.8 4 Journal of Applied Physics, 2016, 55, 01AE09. Introducing Cu₂O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite 1796 1.5 247 Solar Cell Structures. Journal of Physical Chemistry C, 2016, 120, 1428-1437. High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiO<sub><i>x</i> 1797 4.0 40 Electron Extraction Layer. ACS Applied Materials & amp; Interfaces, 2016, 8, 1876-1883. Determination of the exciton binding energy and effective masses for methylammonium and 1798 formamidinium lead tri-halide perovskite semiconductors. Energy and Environmental Science, 2016, 9, 603 962-970. Perovskite solar cells based on bottom-fused TiO₂nanocones. Journal of Materials 1799 5.236 Chemistry A, 2016, 4, 1520-1530. Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3. Solar Energy Materials and Solar Cells, 2016, 148, 60-66.

#	Article	IF	CITATIONS
1801	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 2016, 123, 74-87.	2.9	117
1802	Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale, 2016, 8, 1513-1522.	2.8	156
1803	Spectroscopic study on the impact of methylammonium iodide loading time on the electronic properties in perovskite thin films. Journal of Materials Chemistry A, 2016, 4, 561-567.	5.2	50
1804	Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4, 887-893.	5.2	137
1805	A halide exchange engineering for CH3NH3PbI3â^'Br perovskite solar cells with high performance and stability. Nano Energy, 2016, 19, 17-26.	8.2	123
1806	WO ₃ with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 894-900.	5.2	68
1807	A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 640-648.	5.2	119
1808	Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells. Journal of the American Chemical Society, 2016, 138, 463-470.	6.6	221
1809	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale, 2016, 8, 6352-6360.	2.8	88
1810	The influence of the I/Cl ratio on the performance of CH ₃ NH ₃ Pbl _{3â^'x} Cl _x -based solar cells: why is CH ₃ NH ₃ l : PbCl ₂ = 3 : 1 the "magic―ratio?. Nanoso 6361-6368.	cale, 2016,	, <mark>8</mark> 1
1811	Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO ₂ nanorods. Nanoscale, 2016, 8, 6271-6277.	2.8	28
1812	Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 321-326.	5.2	96
1813	Interface engineering toward enhanced efficiency of planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 217-222.	5.2	70
1814	Influence of organic cations on high-performance CH 3 NH 3 PbI 3 based photovoltaics. Solar Energy Materials and Solar Cells, 2016, 145, 375-381.	3.0	39
1815	Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.	8.2	125
1816	High-efficiency bulk heterojunction memory devices fabricated using organometallic halide perovskite:poly(N-vinylcarbazole) blend active layers. Dalton Transactions, 2016, 45, 484-488.	1.6	36
1817	Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?. Physical Chemistry Chemical Physics, 2016, 18, 331-338.	1.3	69
1818	Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale, 2016, 8, 6278-6283.	2.8	233

ARTICLE IF CITATIONS Effect of relative humidity on crystal growth, device performance and hysteresis in planar 1819 2.8 113 heterojunction perovskite solar cells. Nanoscale, 2016, 8, 6300-6307. Synthesis of tunable-band-gap "Open-Box―halide perovskites by use of anion exchange and internal 5.0 dissolution procedures. Journal of Colloid and Interface Science, 2016, 461, 162-167. Nano-structured electron transporting materials for perovskite solar cells. Nanoscale, 2016, 8, 1821 2.8 105 6209-6221. Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient 4.0 planar-heterojunction perovskite solar cells. Journal of Power Sources, 2016, 301, 242-250. Mesoscopic perovskite solar cells with an admixture of nanocrystalline TiO₂and 1823 Al₂0₃: role of interconnectivity of TiO₂in charge collection. 2.8 26 Nanoscale, 2016, 8, 6341-6351. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88. 1824 15.6 Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide 1825 3.0 25 solar cells. Solar Energy Materials and Solar Cells, 2016, 148, 30-33. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy 1826 15.6 449 and Environmental Science, 2016, 9, 12-30. Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells. 1827 2.8 28 Nanoscale, 2016, 8, 6328-6334. Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. 2.8 Nanoscale, 2016, 8, 6258-6264. Experimental and theoretical optical properties of methylammonium lead halide perovskites. 1829 385 2.8 Nanoscale, 2016, 8, 6317-6327. Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental 15.6 1,457 Science, 2016, 9, 323-356. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic 1831 phase transition: implications for perovskite solar cells. Energy and Environmental Science, 2016, 9, 15.6 423 155-163. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Solar Energy Materials and Solar Cells, 2016, 144, 309-315. Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale, 2016, 8, 1833 2.8 116 6284-6289. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole 1834 2.8 69 conductor for elevated plasmonic light harvesting and hole collection. Nanoscale, 2016, 8, 6290-6299. Solution-processed CuO as an efficient hole-extraction layer for inverted planar heterojunction 1835 4.8 74 perovskite solar cells. Chinese Chemical Letters, 2017, 28, 13-18. Optical and Electronic Properties of Two-Dimensional Layered Materials. Nanophotonics, 2017, 6, 145 479-493.

#	Article	IF	CITATIONS
1837	Chemical bath deposited rutile TiO 2 compact layer toward efficient planar heterojunction perovskite solar cells. Applied Surface Science, 2017, 391, 337-344.	3.1	76
1838	Low-temperature processed SnO 2 compact layer for efficient mesostructure perovskite solar cells. Applied Surface Science, 2017, 391, 677-683.	3.1	52
1839	Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer. Science China Chemistry, 2017, 60, 136-143.	4.2	25
1840	Facile Morphology ontrolled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents. ChemNanoMat, 2017, 3, 223-227.	1.5	18
1841	Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells. Materials Letters, 2017, 191, 77-79.	1.3	39
1842	Influence of Surface Termination on the Energy Level Alignment at the CH ₃ NH ₃ PbI ₃ Perovskite/C60 Interface. Chemistry of Materials, 2017, 29, 958-968.	3.2	149
1843	Accelerated formation and improved performance of CH ₃ NH ₃ PbI ₃ -based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, 2017, 5, 4190-4198.	5.2	65
1844	Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 58-65.	3.0	46
1845	A semiconducting molecular ferroelectric with a bandgap much lower than that of BiFeO3. NPG Asia Materials, 2017, 9, e342-e342.	3.8	54
1846	Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3193-3202.	5.2	113
1847	Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer. Nanoscale Research Letters, 2017, 12, 43.	3.1	62
1848	Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite. Advanced Materials, 2017, 29, 1604510.	11.1	182
1849	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	11.1	200
1850	Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3â^'xIx (0Ââ‰ÂxÂâ‰Â1). Journal of Alloys and Compounds, 2017, 702, 404-409.	2.8	55
1851	Multilayer light emitting devices with organometal halide perovskite: Polymer composite emission layer: The relationship of device performance with the compositions of emission layer and device configurations. Organic Electronics, 2017, 43, 167-174.	1.4	29
1852	Efficiency enhancement in perovskite solar cell utilizing solution-processable phthalocyanine hole transport layer with thermal annealing. Organic Electronics, 2017, 43, 156-161.	1.4	39
1853	AgBil ₄ as a Lead-Free Solar Absorber with Potential Application in Photovoltaics. Chemistry of Materials, 2017, 29, 1538-1549.	3.2	102
1854	Thermal Conductivity of CH ₃ NH ₃ Pbl ₃ and CsPbl ₃ : Measuring the Effect of the Methylammonium Ion on Phonon Scattering. Journal of Physical Chemistry C, 2017, 121, 3228-3233.	1.5	69

#	Article	IF	CITATIONS
1855	Enhanced Optoelectronic Performance on the (110) Lattice Plane of an MAPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2017, 8, 684-689.	2.1	82
1856	Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. Journal of the American Chemical Society, 2017, 139, 2630-2638.	6.6	714
1857	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	19.8	376
1858	Solvent engineering for forming stonehenge-like PbI ₂ nano-structures towards efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4376-4383.	5.2	59
1859	Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 1714-1723.	2.7	120
1860	Twoâ€Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application. Advanced Functional Materials, 2017, 27, 1605654.	7.8	120
1861	2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 162, 93-102.	3.0	81
1862	Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH ₃ NH ₃) ₂ AgBiBr ₆ . Chemistry of Materials, 2017, 29, 1089-1094.	3.2	290
1863	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96
1864	Photon Emission and Reabsorption Processes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mrow><mm Single Crystals Revealed by Time-Resolved Two-Photon-Ex. Physical Review Applied, 2017, 7, .</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	าl:mก>3 </td <td>116 mml:mn> </td>	116 mml:mn>
1865	Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517.	1.5	2
1865 1867	Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of	1.5 3.0	2 23
	Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517.		
1867	 Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517. Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorganic Chemistry Frontiers, 2017, 4, 473-480. In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. 	3.0	23
1867 1868	 Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517. Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorganic Chemistry Frontiers, 2017, 4, 473-480. In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348. Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface 	3.0 8.8	23 62
1867 1868 1869	 Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517. Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorganic Chemistry Frontiers, 2017, 4, 473-480. In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348. Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications. APL Materials, 2017, 5, . The novel dopant for hole-transporting material opens a new processing route to efficiently reduce hysteresis and improve stability of planar perovskite solar cells. Journal of Power Sources, 2017, 342, 	3.0 8.8 2.2	23 62 23
1867 1868 1869 1870	 Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of Photovoltaics, 2017, 7, 513-517. Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorganic Chemistry Frontiers, 2017, 4, 473-480. In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348. Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications. APL Materials, 2017, 5, . The novel dopant for hole-transporting material opens a new processing route to efficiently reduce hysteresis and improve stability of planar perovskite solar cells. Journal of Power Sources, 2017, 342, 886-895. Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing 	 3.0 8.8 2.2 4.0 	23 62 23 76

#	Article	IF	CITATIONS
1875	Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. Nano Letters, 2017, 17, 1028-1033.	4.5	529
1876	Applications of cesium in the perovskite solar cells. Journal of Semiconductors, 2017, 38, 011003.	2.0	26
1877	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
1878	Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 210-217.	3.0	57
1879	Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 2017, 72, 907-915.	8.2	20
1880	Ferroelectric Alignment of Organic Cations Inhibits Nonradiative Electron–Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 812-818.	2.1	52
1881	Performance Enhancement of Planar Heterojunction Perovskite Solar Cells through Tuning the Doping Properties of Hole-Transporting Materials. ACS Omega, 2017, 2, 326-336.	1.6	72
1882	Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance. Nanoscale, 2017, 9, 2569-2578.	2.8	27
1883	Improving photovoltaic performance of perovskite solar cells: The interfacial modification role of aluminum chloride and ammonia on ZnO nanorods. Functional Materials Letters, 2017, 10, 1750017.	0.7	7
1884	Fast and Controllable Electricâ€Fieldâ€Assisted Reactive Deposited Stable and Annealingâ€Free Perovskite toward Applicable Highâ€Performance Solar Cells. Advanced Functional Materials, 2017, 27, 1606156.	7.8	28
1885	Leadâ€Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. Advanced Materials, 2017, 29, 1605005.	11.1	568
1886	Rigid Amino Acid as Linker to Enhance the Crystallinity of CH 3 NH 3 PbI 3 Particles. Particle and Particle Systems Characterization, 2017, 34, 1600298.	1.2	19
1887	Interfacial electronic structures revealed at the rubrene/CH ₃ NH ₃ PbI ₃ interface. Physical Chemistry Chemical Physics, 2017, 19, 6546-6553.	1.3	50
1888	A TiO ₂ nanotube network electron transport layer for high efficiency perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 4956-4961.	1.3	33
1889	High performance photodetector based on 2D CH ₃ NH ₃ PbI ₃ perovskite nanosheets. Journal Physics D: Applied Physics, 2017, 50, 094002.	1.3	60
1890	CH3NH3PbI3 converted from reactive magnetron sputtered PbO for large area perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 250-254.	3.0	15
1891	Fabrication and characterization of perovskite-based CH3NH3Pb1-xAsxI3+xCly photovoltaic devices. AIP Conference Proceedings, 2017, , .	0.3	1
1892	A simple fabrication of CH ₃ NH ₃ PbI ₃ perovskite for solar cells using low-purity PbI ₂ . Journal of Semiconductors, 2017, 38, 014004.	2.0	12

#	Article	IF	CITATIONS
1893	Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy, 2017, 33, 485-496.	8.2	74
1894	Performance enhancement of perovskite solar cells using a La-doped BaSnO ₃ electron transport layer. Journal of Materials Chemistry A, 2017, 5, 3675-3682.	5.2	90
1895	Enhanced long-term stability of perovskite solar cells by 3-hydroxypyridine dipping. Chemical Communications, 2017, 53, 1829-1831.	2.2	59
1896	Recent Advances in Energetics of Metal Halide Perovskite Interfaces. Advanced Materials Interfaces, 2017, 4, 1600694.	1.9	51
1897	Twoâ€Dimensional Metal Halide Perovskites: Theory, Synthesis, and Optoelectronics. Small Methods, 2017, 1, 1600018.	4.6	115
1898	Effect on the morphology and optical properties of CH 3 NH 3 PbI 3 with additive of NH 4 Cl. Optical Materials, 2017, 64, 461-467.	1.7	6
1899	An optical dynamic study of MAPbBr ₃ single crystals passivated with MAPbCl ₃ /l ₃ -MAPbBr ₃ heterojunctions. Physical Chemistry Chemical Physics, 2017, 19, 4516-4521.	1.3	42
1900	Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. Journal of Materials Chemistry C, 2017, 5, 1255-1260.	2.7	101
1901	Vortex Fluidics Improved Morphology of CH ₃ NH ₃ PbI _{3â€x} Cl _x Films for Perovskite Solar Cells. ChemistrySelect, 2017, 2, 369-374.	0.7	5
1902	Perovskite CH 3 NH 3 PbI 3 crystals and films. Synthesis and characterization. Journal of Crystal Growth, 2017, 462, 45-49.	0.7	21
1903	A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell. Nanoscale Research Letters, 2017, 12, 14.	3.1	12
1904	Very Small Inverted Hysteresis in Vacuumâ€Deposited Mixed Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1606-1611.	1.8	13
1905	lonic origin of a negative capacitance in lead halide perovskites. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600418.	1.2	24
1906	CH ₃ NH ₃ PbI ₃ perovskite:poly(N-vinylcarbazole) blends for broadband optical limiting. RSC Advances, 2017, 7, 1809-1813.	1.7	13
1907	Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Solar Energy, 2017, 144, 158-165.	2.9	63
1908	Impact of Excess CH ₃ NH ₃ I on Free Carrier Dynamics in High-Performance Nonstoichiometric Perovskites. Journal of Physical Chemistry C, 2017, 121, 3143-3148.	1.5	49
1909	Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/Pbl ₂ Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy. Nano Letters, 2017, 17, 1154-1160.	4.5	50
1910	D–Ĩ€â€"A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2017, 90, 441-450.	2.0	25

#	Article	IF	CITATIONS
1911	Photon Reabsorption in Mixed CsPbCl ₃ :CsPbl ₃ Perovskite Nanocrystal Films for Light-Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 3790-3796.	1.5	57
1912	Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation. Journal of Physical Chemistry Letters, 2017, 8, 838-843.	2.1	18
1913	Atomistic Origins of Surface Defects in CH ₃ NH ₃ PbBr ₃ Perovskite and Their Electronic Structures. ACS Nano, 2017, 11, 2060-2065.	7.3	123
1914	Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.	1.2	12
1915	Efficient wide band gap double cation – double halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3203-3207.	5.2	28
1916	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	1.9	40
1917	Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. Journal of Materials Chemistry A, 2017, 5, 5701-5708.	5.2	207
1918	Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO ₂ electron transporting layers. Nanoscale, 2017, 9, 3095-3104.	2.8	92
1919	Chemical Vapor Deposition of Perovskites for Photovoltaic Application. Advanced Materials Interfaces, 2017, 4, 1600970.	1.9	46
1920	Largeâ€Grain Formamidinium Pbl _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange. Advanced Energy Materials, 2017, 7, 1601882.	10.2	76
1921	Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602159.	10.2	130
1922	In Situ Growth of 120 cm ² CH ₃ NH ₃ PbBr ₃ Perovskite Crystal Film on FTO Glass for Narrowbandâ€Photodetectors. Advanced Materials, 2017, 29, 1602639.	11.1	252
1923	Carbonâ€Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?. Advanced Materials, 2017, 29, 1603994.	11.1	261
1924	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	10.2	132
1925	Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10, 1329-1335.	5.8	26
1926	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
1927	Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices and Microstructures, 2017, 104, 167-177.	1.4	61
1928	Controlled Synthesis of Composition Tunable Formamidinium Cesium Double Cation Lead Halide Perovskite Nanowires and Nanosheets with Improved Stability. Chemistry of Materials, 2017, 29, 2157-2166.	3.2	82

ARTICLE IF CITATIONS Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in 1929 5.8 189 perovskite single crystals. Nature Communications, 2017, 8, 14417. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of 5.2 378 Materials Chemistry A, 2017, 5, 11462-11482. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. 1931 11.1 104 Advanced Materials, 2017, 29, 1601715. Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with 11.1 106 Singleã€Walled Carbon Nanotubes. Advanced Materials, 2017, 29, 1602432. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode 1933 5.8 97 illumination. Nano Research, 2017, 10, 2130-2145. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based 1934 8.2 binary perovskite solar cells. Nano Energy, 2017, 34, 392-398. Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291. 1935 16.0 85 Elucidating the effect of the lead iodide complexation degree behind the morphology and 1936 2.8 26 performance of perovskite solar cells. Nanoscale, 2017, 9, 3889-3897. A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved 1937 5.2 50 stability. Journal of Materials Chemistry A, 2017, 5, 7326-7332. Simulation calculations of efficiencies and silicon consumption for CH3NH3PbI3â[°]xâ[°]y Br x Cl y 1.3 /crystalline silicon tandem solar cells. Journal Physics D: Applied Physics, 2017, 50, 155102. Deep level trapped defect analysis in CH₃NH₃PbI₃perovskite solar 1939 15.6 206 cells by deep level transient spectroscopy. Energy and Environmental Science, 2017, 10, 1128-1133. Origins and mechanisms of hysteresis in organometal halide perovskites. Journal of Physics 1940 Condensed Matter, 2017, 29, 193001. Simulation design of $P\hat{a} \in \mathbb{N}$ -type all-perovskite solar cells with high efficiency. Chinese Physics B, 2017, 1941 0.7 38 26,028803. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Advances, 2017, 7, 12998-13002. 1942 1.7 Rapid and Complete Conversion of CH₃NH₃Pbl₃for 1943 Perovskite/C₆₀ Planarâ€Heterojunction Solar Cells by Twoâ€Step Deposition. Chinese Journal 2.6 7 of Chemistry, 2017, 35, 687-692. Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals 1944 with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano, 2017, 11, 2689-2696. Charge Transfer from Methylammonium Lead Iodide Perovskite to Organic Transport Materials: 1945 10.2 101 Efficiencies, Transfer Rates, and Interfacial Recombination. Advanced Energy Materials, 2017, 7, 1602349. A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite 1946 crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano 8.2 Energy, 2017, 34, 58-68.

#	Article	IF	Citations
1947	Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20%. ACS Applied Materials & Interfaces, 2017, 9, 8113-8120.	4.0	72
1948	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	19.8	1,204
1949	Between the Sheets: Postsynthetic Transformations in Hybrid Perovskites. Chemistry of Materials, 2017, 29, 1868-1884.	3.2	75
1950	CH ₃ NH ₃ PbI ₃ films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics, 2017, 19, 7204-7214.	1.3	16
1951	Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics, 2017, 4, 476-481.	3.2	124
1952	Ultrasonic irradiation-promoted one-pot synthesis of CH ₃ NH ₃ PbBr ₃ quantum dots without using flammable CH ₃ NH ₂ precursor. Materials Research Express, 2017, 4, 025038.	0.8	7
1953	Four-wave mixing response of solution-processed CH ₃ NH ₃ PbI ₃ thin films. Proceedings of SPIE, 2017, , .	0.8	0
1954	Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices. Advanced Energy Materials, 2017, 7, 1602283.	10.2	47
1955	Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH ₂) ₂ PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1605988.	7.8	194
1956	Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte Für Chemie, 2017, 148, 795-826.	0.9	431
1957	Tunable Br-doping CH 3 NH 3 PbI 3â^'x Br x thin films for efficient planar perovskite solar cells. Superlattices and Microstructures, 2017, 104, 445-450.	1.4	17
1958	Tuning the Competitive Recombination of Free Carriers and Bound Excitons in Perovskite CH ₃ NH ₃ PbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2017, 121, 6916-6923.	1.5	18
1959	Optimization of Stable Quasi-Cubic FA _{<i>x</i>} MA _{1–<i>x</i>} PbI ₃ Perovskite Structure for Solar Cells with Efficiency beyond 20%. ACS Energy Letters, 2017, 2, 802-806.	8.8	158
1960	Over 20% Efficient CIGS–Perovskite Tandem Solar Cells. ACS Energy Letters, 2017, 2, 807-812.	8.8	135
1961	Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Scientific Reports, 2017, 7, 43794.	1.6	103
1962	Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy and Environmental Science, 2017, 10, 950-955.	15.6	178
1963	<i>In-Situ</i> Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode. ACS Nano, 2017, 11, 3311-3319.	7.3	161
1964	A facile synthesis of CH3NH3PbBr3 perovskite quantum dots and their application in flexible nonvolatile memory. Applied Physics Letters, 2017, 110, .	1.5	89

#	Article	IF	Citations
1965	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
1966	Two-Dimensional Hybrid Organohalide Perovskites from Ultrathin PbS Nanocrystals as Template. Journal of Physical Chemistry C, 2017, 121, 6401-6408.	1.5	16
1967	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
1968	Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9, 4324-4365.	2.8	155
1969	Density of photoinduced free carriers in perovskite thin films via purely optical detection. Journal of Materials Chemistry C, 2017, 5, 3283-3287.	2.7	2
1970	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	1.4	20
1971	Carbon Quantum Dots/TiO _{<i>x</i>} Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letters, 2017, 17, 2328-2335.	4.5	211
1972	Electrochemical impedance analysis of perovskite–electrolyte interfaces. Chemical Communications, 2017, 53, 2467-2470.	2.2	46
1973	Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Solar Energy Materials and Solar Cells, 2017, 163, 242-249.	3.0	36
1974	Study of ethoxyethane deposition time and Co (III) complex doping on the performance of mesoscopic perovskite based solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 224-230.	3.0	14
1975	Transparent Conductive Oxide Layer and Hole Selective Layer Free Back-Contacted Hybrid Perovskite Solar Cell. Journal of Physical Chemistry C, 2017, 121, 4214-4219.	1.5	12
1976	Enhanced Photovoltaic Performance of Mesoscopic Perovskite Solar Cells by Controlling the Interaction between CH ₃ NH ₃ PbI ₃ Films and CsPbX ₃ Perovskite Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4239-4245.	1.5	42
1977	Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Letters, 2017, 17, 2028-2033.	4.5	463
1978	Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2, .	23.3	867
1979	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
1980	Effects of precursor solution composition on the performance and I-V hysteresis of perovskite solar cells based on CH3NH3PbI3-xClx. Nanoscale Research Letters, 2017, 12, 84.	3.1	27
1981	Composition dependent structural, optical and photosensitive properties of a series of charge-transfer tin halides. Dyes and Pigments, 2017, 141, 66-73.	2.0	3
1982	Strong Interaction at the Perovskite/TiO ₂ Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 3797-3806.	1.5	69

#	Article	IF	CITATIONS
1983	Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 915-921.	2.1	122
1984	Enhanced perovskite electronic properties via a modified lead(<scp>ii</scp>) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 5195-5203.	5.2	128
1985	Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion. RSC Advances, 2017, 7, 9456-9460.	1.7	80
1986	Brief review of emerging photovoltaic absorbers. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 8-15.	3.2	64
1987	Structural motifs of water on metal oxide surfaces. Chemical Society Reviews, 2017, 46, 1785-1806.	18.7	170
1988	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
1989	Cesium lead iodide solar cells controlled by annealing temperature. Physical Chemistry Chemical Physics, 2017, 19, 6257-6263.	1.3	82
1990	Charge Injection Mechanism at Heterointerfaces in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Revealed by Simultaneous Time-Resolved Photoluminescence and Photocurrent Measurements. Journal of Physical Chemistry Letters, 2017, 8, 954-960.	2.1	91
1991	Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 11828-11836.	4.0	145
1992	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Advances, 2017, 7, 10985-10991.	1.7	18
1993	Twoâ€Dimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	11.1	284
1994	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	10.2	277
1995	Highly efficient and stable inverted planar solar cells from (FAI)x(MABr)1â^'xPbI2 perovskites. Nano Energy, 2017, 35, 62-70.	8.2	32
1996	The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 782-794.	8.8	217
1997	The Surface of Hybrid Perovskite Crystals: A Boon or Bane. ACS Energy Letters, 2017, 2, 846-856.	8.8	91
1998	Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017, 10, 18-30.	1.9	301
1999	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. ACS Energy Letters, 2017, 2, 837-845.	8.8	187
2000	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	2.8	42

#	Article	IF	Citations
2001	Inhibition of a structural phase transition in one-dimensional organometal halide perovskite nanorods grown inside porous silicon nanotube templates. Physical Review B, 2017, 95, .	1.1	14
2002	Solution-Processed Cu(In, Ca)(S, Se)2 Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Nanoscale Research Letters, 2017, 12, 159.	3.1	38
2003	Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Advanced Energy Materials, 2017, 7, 1602400.	10.2	130
2004	Decreasing Radiative Recombination Coefficients via an Indirect Band Gap in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 1265-1271.	2.1	57
2005	Simulation of perovskite solar cell with P ₃ HT hole-transporting materials. Journal of Nanophotonics, 2017, 11, 032510.	0.4	34
2006	Hybrid Perovskite Lightâ€Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Advanced Materials, 2017, 29, 1606405.	11.1	235
2007	Introduction of Graphene Oxide as Buffer Layer in Perovskite Solar Cells and the Promotion of Soluble n-Butyl-substituted Copper Phthalocyanine as Efficient Hole Transporting Material. Electrochimica Acta, 2017, 233, 36-43.	2.6	52
2008	Isomerism effect on the photovoltaic properties of benzotrithiophene-based hole-transporting materials. Journal of Materials Chemistry A, 2017, 5, 8317-8324.	5.2	86
2009	Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead iodide. Journal of Physics and Chemistry of Solids, 2017, 105, 16-22.	1.9	6
2010	Double Perovskite Cs ₂ BBiX ₆ (B = Ag, Cu; X = Br, Cl)/TiO ₂ Heterojunction: An Efficient Pb-Free Perovskite Interface for Charge Extraction. Journal of Physical Chemistry C, 2017, 121, 4471-4480.	1.5	87
2011	Simplification of device structures for low-cost, high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4756-4773.	5.2	57
2012	Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011005.	2.0	22
2013	Calculation studies on point defects in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011006.	2.0	20
2014	Screened Charge Carrier Transport in Methylammonium Lead Iodide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2017, 8, 948-953.	2.1	49
2015	Time-Resolved Infrared Spectroscopy Directly Probes Free and Trapped Carriers in Organo-Halide Perovskites. ACS Energy Letters, 2017, 2, 651-658.	8.8	43
2016	Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chemical Communications, 2017, 53, 3046-3049.	2.2	118
2017	Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. Journal of Materials Chemistry A, 2017, 5, 6840-6848.	5.2	149
2018	Metal Acetylacetonate Series in Interface Engineering for Full Lowâ€Temperatureâ€Processed, Highâ€Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm ² Scale. Advanced Materials, 2017, 29, 1603923.	11.1	190

#	Article	IF	CITATIONS
2019	Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance. ACS Applied Materials & Interfaces, 2017, 9, 8623-8633.	4.0	45
2020	Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. Nanoscale, 2017, 9, 3222-3230.	2.8	44
2021	Low-toxic metal halide perovskites: opportunities and future challenges. Journal of Materials Chemistry A, 2017, 5, 11436-11449.	5.2	123
2022	Crystallographically Aligned Perovskite Structures for Highâ€Performance Polarizationâ€Sensitive Photodetectors. Advanced Materials, 2017, 29, 1605993.	11.1	198
2023	Formation of hybrid ABX ₃ perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Transactions, 2017, 46, 3500-3509.	1.6	133
2024	The effect of grain orientation on the morphological stability of the organic–inorganic perovskite films under elevated temperature. Journal of Semiconductors, 2017, 38, 014002.	2.0	4
2025	Multichannel Interdiffusion Driven FASnI ₃ Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Leadâ€Free Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606964.	11.1	137
2026	Tuning Magneto-photocurrent between Positive and Negative Polarities in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9537-9542.	1.5	8
2027	Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 1851-1855.	2.1	152
2028	Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1234-1242.	15.6	458
2029	The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. Journal of Materials Science: Materials in Electronics, 2017, 28, 11053-11058.	1.1	12
2030	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
2031	Ultrathin TiO ₂ nanosheets synthesized using a high pressure solvothermal method and the enhanced photoresponse performance of CH ₃ NH ₃ PbI ₃ –TiO ₂ composite films. RSC Advances, 2017, 7, 20845-20850.	1.7	9
2032	Crystallographic orientation propagation in metal halide perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 7796-7800.	5.2	57
2033	Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. Small, 2017, 13, 1604305.	5.2	103
2034	Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices and Microstructures, 2017, 107, 136-143.	1.4	93
2035	PbI2 heterogeneous-cap-induced crystallization for an efficient CH3NH3PbI3 layer in perovskite solar cells. Chemical Communications, 2017, 53, 5032-5035.	2.2	20
2036	A micron-scale laminar MAPbBr ₃ single crystal for an efficient and stable perovskite solar cell. Chemical Communications, 2017, 53, 5163-5166.	2.2	135

# 2037	ARTICLE Thermoresponsive Emission Switching via Lower Critical Solution Temperature Behavior of Organic–Inorganic Perovskite Nanoparticles. Advanced Materials, 2017, 29, 1700047.	IF 11.1	CITATIONS
2038	Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX ₃ /ZnS Quantum Dot Heterostructure. Small, 2017, 13, 1604085.	5.2	195
2039	A Printable Organic Electron Transport Layer for Lowâ€Temperatureâ€Processed, Hysteresisâ€Free, and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700226.	10.2	46
2040	Bandgap Narrowing of Lead-Free Perovskite-Type Hybrids for Visible-Light-Absorbing Ferroelectric Semiconductors. Journal of Physical Chemistry Letters, 2017, 8, 2012-2018.	2.1	71
2041	Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. Journal of Materials Chemistry A, 2017, 5, 9852-9858.	5.2	87
2042	Ionic behavior of organic–inorganic metal halide perovskite based metal-oxide-semiconductor capacitors. Physical Chemistry Chemical Physics, 2017, 19, 13002-13009.	1.3	9
2043	Highâ€Mobility pâ€Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700025.	5.6	36
2044	Fourâ€Terminal Perovskite/Silicon Multijunction Solar Modules. Advanced Energy Materials, 2017, 7, 1602807.	10.2	75
2045	Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Journal of the American Chemical Society, 2017, 139, 6644-6653.	6.6	112
2046	Cu–In Halide Perovskite Solar Absorbers. Journal of the American Chemical Society, 2017, 139, 6718-6725.	6.6	316
2047	New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Science China Materials, 2017, 60, 392-398.	3.5	53
2048	Effects of Small Polar Molecules (MA ⁺ and H ₂ O) on Degradation Processes of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 14960-14966.	4.0	29
2049	Annealing Induced Re-crystallization in CH3NH3PbI3â^'xClx for High Performance Perovskite Solar Cells. Scientific Reports, 2017, 7, 46724.	1.6	53
2050	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	10.2	62
2051	Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet Pbl ₂ precursor films. RSC Advances, 2017, 7, 22492-22500.	1.7	20
2052	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	1.5	24
2053	CH ₃ NH ₃ Pbl ₃ perovskites: Ferroelasticity revealed. Science Advances, 2017, 3, e1602165.	4.7	257
2054	Luminescent manganese-doped CsPbCl3 perovskite quantum dots. Scientific Reports, 2017, 7, 45906.	1.6	78

#	Article	IF	CITATIONS
2055	Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO ₂ layer. Journal of Materials Chemistry A, 2017, 5, 9402-9411.	5.2	127
2056	Efficient Red Perovskite Lightâ€Emitting Diodes Based on Solutionâ€Processed Multiple Quantum Wells. Advanced Materials, 2017, 29, 1606600.	11.1	155
2057	Au Nanoparticles Doped TiO ₂ Mesoporous Perovskite Solar Cells. Materials Science Forum, 0, 896, 18-25.	0.3	3
2058	300% Enhancement of Carrier Mobility in Uniaxialâ€Oriented Perovskite Films Formed by Topotacticâ€Oriented Attachment. Advanced Materials, 2017, 29, 1606831.	11.1	120
2059	Origin and Whereabouts of Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9705-9713.	1.5	65
2060	Synergetic Effect of Chloride Doping and CH ₃ NH ₃ PbCl ₃ on CH ₃ NH ₃ Pbl _{3â~<i>x</i>} Cl _{<i>x</i>} Perovskiteâ€Based Solar Cells. ChemSusChem, 2017, 10, 2365-2369.	3.6	53
2061	Benchmarking photoactive thinâ€film materials using a laserâ€induced steadyâ€state photocarrier grating. Progress in Photovoltaics: Research and Applications, 2017, 25, 605-613.	4.4	4
2062	High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chemical Physics Letters, 2017, 683, 211-215.	1.2	31
2063	Photovoltaic Effect of 2D Homologous Perovskites. Electrochimica Acta, 2017, 240, 98-107.	2.6	15
2064	Topological nature in cubic phase of perovskite CsPbI 3 : By DFT. Solid State Communications, 2017, 259, 10-15.	0.9	38
2065	Halide Perovskites for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 1999-2011.	2.1	47
2066	In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chemical Communications, 2017, 53, 5231-5234.	2.2	78
2067	Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chemical Science, 2017, 8, 4587-4594.	3.7	57
2068	Neutral-colored semitransparent solar cells based on pseudohalide (SCN ^{â^'})-doped perovskite. Sustainable Energy and Fuels, 2017, 1, 1034-1040.	2.5	24
2069	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
2070	Investigation of Carrier Dynamics in Templated Perovskite Films with Different Densities of Nanopores. Chemistry Letters, 2017, 46, 1105-1108.	0.7	2
2071	Temperature and Electrical Poling Effects on Ionic Motion in MAPbI ₃ Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700265.	10.2	26
2072	Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes. Solar Energy Materials and Solar Cells, 2017, 169, 78-85.	3.0	38

#	Article	IF	CITATIONS
2073	Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nature Communications, 2017, 8, 15152.	5.8	83
2074	Transient absorption imaging of carrier dynamics in disordered semiconductors. Proceedings of SPIE, 2017, , .	0.8	Ο
2075	Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 18103-18112.	4.0	35
2076	A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. Journal of the American Chemical Society, 2017, 139, 7504-7512.	6.6	330
2077	Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12034-12042.	5.2	64
2078	Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 2017, 5, 12602-12652.	5.2	303
2079	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} 1 ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	7.8	103
2080	Trimethylsulfonium Lead Triiodide: An Air-Stable Hybrid Halide Perovskite. Inorganic Chemistry, 2017, 56, 6302-6309.	1.9	52
2081	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	2.7	24
2082	Molecular design of interfacial layers based on conjugated polythiophenes for polymer and hybrid solar cells. Polymer International, 2017, 66, 1333-1348.	1.6	18
2083	Photocurrent Enhancement of Perovskite Solar Cells at the Absorption Edge by Electrode-Coupled Plasmons of Silver Nanocubes. Journal of Physical Chemistry C, 2017, 121, 11693-11699.	1.5	18
2084	Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700027.	3.1	24
2085	A Perylenediimide Tetramerâ€Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell. Solar Rrl, 2017, 1, 1700046.	3.1	28
2086	Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 3844-3853.	4.5	101
2087	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	3.2	237
2088	"Supertrap―at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbI ₃ Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy. ACS Nano, 2017, 11, 5391-5404.	7.3	92
2089	Perovskite as a Platform for Active Flexible Metaphotonic Devices. ACS Photonics, 2017, 4, 1595-1601.	3.2	86
2090	Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials Chemistry A, 2017, 5, 10092-10109.	5.2	136

#	Article	IF	CITATIONS
2091	Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH 3 NH 3 PbI 3 based photovoltaics. Solar Energy Materials and Solar Cells, 2017, 169, 40-46.	3.0	21
2092	Temperature-modulated crystal growth and performance for highly reproducible and efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 13147-13152.	1.3	18
2093	Synthesis of a nanostructured rutile TiO ₂ electron transporting layer via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 12340-12353.	5.2	25
2094	Multistep Photoluminescence Decay Reveals Dissociation of Geminate Charge Pairs in Organolead Trihalide Perovskites. Advanced Energy Materials, 2017, 7, 1700405.	10.2	8
2095	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	10.2	190
2096	Direct Observation of Confined I ^{â^'} â‹â‹l ₂ â‹â‹â‹l ^{â^'} Interactions Metal–Organic Framework: Iodine Capture and Sensing. Chemistry - A European Journal, 2017, 23, 8409-8413.	s in a 1.7	64
2097	Incorporation of High-Mobility and Room-Temperature-Deposited Cu _{<i>x</i>} S as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700038.	3.1	51
2098	High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Science China Materials, 2017, 60, 407-414.	3.5	42
2099	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017, 2, 1214-1222.	8.8	826
2100	The atomic size effect on hybrid inorganic–organic perovskite CH ₃ NH ₃ <i>BI</i> ₃ (<i>B</i> = Pb, Sn) from first-principles study. Modern Physics Letters B, 2017, 31, 1750139.	1.0	2
2101	Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renewable and Sustainable Energy Reviews, 2017, 78, 1-14.	8.2	49
2102	Enhanced Photovoltaic Properties Induced by Ferroelectric Domain Structures in Organometallic Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 11151-11158.	1.5	44
2103	Strong ferroelectric polarization of CH ₃ NH ₃ Gel ₃ with high-absorption and mobility transport anisotropy: theoretical study. Journal of Materials Chemistry C, 2017, 5, 5356-5364.	2.7	101
2104	Theoretical studies on the structural, electronic and optical properties of orthorhombic perovskites CH3NH3PbX3(XÂ=ÂI, Br, Cl). Journal of Physics and Chemistry of Solids, 2017, 110, 145-151.	1.9	7
2105	Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 2017, 168, 214-220.	3.0	50
2106	Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. Journal of Physical Chemistry Letters, 2017, 8, 2247-2252.	2.1	101
2107	Low-temperature solution-processed NiO _x films for air-stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11071-11077.	5.2	113
2108	Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain <i>Ab Initio</i> Study. ACS Energy Letters, 2017, 2, 1270-1278.	8.8	151

#	Article	IF	CITATIONS
2109	Efficient planar perovskite solar cells using solution-processed amorphous WO x /fullerene C 60 as electron extraction layers. Organic Electronics, 2017, 46, 253-262.	1.4	51
2110	Increased Efficiency for Perovskite Photovoltaics Based on Aluminum-Doped Zinc Oxide Transparent Electrodes via Surface Modification. Journal of Physical Chemistry C, 2017, 121, 10282-10288.	1.5	14
2111	Pinhole-Free Hybrid Perovskite Film with Arbitrarily-Shaped Micro-Patterns for Functional Optoelectronic Devices. Nano Letters, 2017, 17, 3563-3569.	4.5	57
2112	Efficient Bulk Heterojunction CH ₃ NH ₃ PbI ₃ –TiO ₂ Solar Cells with TiO ₂ Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy. ACS Applied Materials & Interfaces, 2017, 9, 16202-16214.	4.0	18
2113	Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy. Science and Technology of Advanced Materials, 2017, 18, 307-315.	2.8	26
2116	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	5.2	96
2117	Efficient and Airâ€Stable Mixedâ€Cation Lead Mixedâ€Halide Perovskite Solar Cells with nâ€Doped Organic Electron Extraction Layers. Advanced Materials, 2017, 29, 1604186.	11.1	237
2118	Carbonâ€Based Materials Used for Perovskite Solar Cells. ChemNanoMat, 2017, 3, 75-88.	1.5	24
2119	An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt. Chemical Communications, 2017, 53, 432-435.	2.2	11
2120	Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 118-126.	2.7	26
2121	On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals. Chemical Communications, 2017, 53, 1241-1244.	2.2	28
2122	Open-circuit Voltage Loss in CH ₃ NH ₃ SnI ₃ Perovskite Solar Cells. Chemistry Letters, 2017, 46, 253-256.	0.7	46
2123	Competitive ion-exchange of manganese and gadolinium in titanate nanotubes. Catalysis Today, 2017, 284, 146-152.	2.2	9
2124	Stabilitävon Perowskitâ€Solarzellen: Einfluss der Substitution von Aâ€Kation und Xâ€Anion. Angewandte Chemie, 2017, 129, 1210-1233.	1.6	27
2125	Pressureâ€Induced Bandgap Optimization in Leadâ€Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability. Advanced Functional Materials, 2017, 27, 1604208.	7.8	167
2126	Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters. Advanced Materials, 2017, 29, 1602940.	11.1	116
2127	Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells. Organic Electronics, 2017, 41, 42-48.	1.4	45
2128	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	5.2	18

		CITATION REPORT		
# 2129	ARTICLE Graphene-based flexible electronic devices. Materials Science and Engineering Reports,	2017, 118, 1-43.	IF 14.8	Citations
2130	Vacancy dipole interactions and the correlation with monovalent cation dependent ion lead halide perovskite solar cell materials. Nano Energy, 2017, 38, 537-543.	movement in	8.2	43
2131	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparise photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321	on with other -1344.	8.2	240
2132	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methy Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	vlammonium	3.2	42
2133	First-Principles Prediction of a Stable Hexagonal Phase of CH ₃ NH ₃ PbI ₃ . Chemistry of Materials, 2017, 29,	, 6003-6011.	3.2	62
2134	Pressure Dependence of Mixed Conduction and Photo Responsiveness in Organolead T Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2944-2950.	ribromide	2.1	33
2135	Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and le perovskites. Chemical Science, 2017, 8, 5628-5635.	ad halide	3.7	93
2136	Long-Lived Photoinduced Polarons in Organohalide Perovskites. Journal of Physical Che Letters, 2017, 8, 3081-3086.	mistry	2.1	59
2137	All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Mater Combining Ionic and Coordinate Bonds in Molecular Crystals. Journal of the American C Society, 2017, 139, 9281-9290.		6.6	146
2138	Degradation in perovskite solar cells stored under different environmental conditions. Jo Physics D: Applied Physics, 2017, 50, 325105.	burnal	1.3	19
2139	Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability an electrode. Organic Electronics, 2017, 48, 308-313.	d metal-free	1.4	18
2140	Hydrogen-Bonding Evolution during the Polymorphic Transformations in CH ₃ NH ₃ PbBr ₃ : Experiment and Theory. Chemis 2017, 29, 5974-5981.	try of Materials,	3.2	80
2141	Air-processed organo-metal halide perovskite solar cells and their air stability. Journal of Science, 2017, 52, 10886-10897.	Materials	1.7	11
2142	Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. I Optoelectronics, 2017, 10, 103-110.	Frontiers of	1.9	15
2143	Theoretical insight into the carrier mobility anisotropy of hole transport material Spiro-C Current Applied Physics, 2017, 17, 1316-1322.)MeTAD.	1.1	11
2144	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transp Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9,	orting Layer for 23181-23188.	4.0	120
2145	High-performance direct conversion X-ray detectors based on sintered hybrid lead triioc perovskite wafers. Nature Photonics, 2017, 11, 436-440.	lide	15.6	442
2146	Secondary Hydrothermally Processed Engineered Titanium Dioxide Nanostructures for B Perovskite Solar Cells. Energy Technology, 2017, 5, 1775-1787.	Efficient	1.8	6

#	Article	IF	CITATIONS
2147	In Situ Observation of Crystallization of Methylammonium Lead Iodide Perovskite from Microdroplets. Small, 2017, 13, 1604125.	5.2	39
2148	Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy, 2017, 38, 1-11.	8.2	65
2149	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	1.7	23
2150	The optimization of organic-inorganic perovskite films by annealing atmosphere for applications in transistors. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700170.	0.8	16
2151	Properties of cesium tin iodide (Cs-Sn-I) systems after annealing under different atmospheres. Materials Chemistry and Physics, 2017, 197, 27-35.	2.0	22
2152	The Nature of Electron Mobility in Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Nano Letters, 2017, 17, 3646-3654.	4.5	50
2153	Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior. Journal of Materials Chemistry A, 2017, 5, 13032-13038.	5.2	82
2154	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	2.7	28
2155	Hydrogenated TiO ₂ Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells. Advanced Science, 2017, 4, 1700008.	5.6	22
2156	Performanceâ€Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnOâ€Nanowire Hybrid Structures. Advanced Optical Materials, 2017, 5, 1700206.	3.6	96
2157	Stable High-Performance Flexible Photodetector Based on Upconversion Nanoparticles/Perovskite Microarrays Composite. ACS Applied Materials & Interfaces, 2017, 9, 19176-19183.	4.0	70
2158	Effect of water on the effective Goldschmidt tolerance factor and photoelectric conversion efficiency of organic–inorganic perovskite: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 14955-14960.	1.3	10
2159	High-current perovskite solar cells fabricated with optically enhanced transparent conductive oxides. Applied Physics Express, 2017, 10, 062301.	1.1	7
2160	Perovskite/Polymer Hybrid Thin Films for High External Quantum Efficiency Photodetectors with Wide Spectral Response from Visible to Nearâ€Infrared Wavelengths. Advanced Optical Materials, 2017, 5, 1700213.	3.6	51
2161	Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700302.	10.2	239
2162	Diammonium and Monoammonium Mixedâ€Organic ation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	10.2	121
2163	Thiophene–Arylamine Holeâ€Transporting Materials in Perovskite Solar Cells: Substitution Position Effect. Energy Technology, 2017, 5, 1788-1794.	1.8	44
2164	NiOx mesoporous films derived from Ni(OH)2 nanosheets for perovskite solar cells. Journal of Alloys and Compounds, 2017, 722, 839-845.	2.8	19

#	Article	IF	CITATIONS
2165	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017, 29, 5931-5941.	3.2	35
2166	Interfacial Investigation on Printable Carbon-Based Mesoscopic Perovskite Solar Cells with NiO _{<i>x</i>} /C Back Electrode. ACS Applied Materials & Interfaces, 2017, 9, 25204-25215.	4.0	44
2167	Enhanced long-term stability of perovskite solar cells using a double-layer hole transport material. Journal of Materials Chemistry A, 2017, 5, 14881-14886.	5.2	34
2168	Optimization of a compact layer of TiO ₂ via atomic-layer deposition for high-performance perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 1533-1540.	2.5	59
2169	Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 2017, 5, 15124-15129.	5.2	213
2170	Deciphering the NH ₄ PbI ₃ Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. Advanced Functional Materials, 2017, 27, 1701804.	7.8	117
2171	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	11.1	140
2172	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Science China Materials, 2017, 60, 608-616.	3.5	12
2173	A 200-nm length TiO2 nanorod array with a diameter of 13 nm and areal density of 1100 Âμmâ^2 for efficient perovskite solar cells. Ceramics International, 2017, 43, 12534-12539.	2.3	15
2174	Investigation of organic–inorganic hybrid perovskite solar cells based on Al 2 O 3 nanorods. Solar Energy, 2017, 153, 77-82.	2.9	16
2175	Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells: The effect of core metal on photovoltaic performance. Solar Energy, 2017, 155, 121-129.	2.9	40
2176	Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 3289-3298.	2.1	41
2177	Perovskite Nanopillar Array Based Tandem Solar Cell. ACS Photonics, 2017, 4, 2025-2035.	3.2	24
2178	New PCBM/carbon based electron transport layer for perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 17960-17966.	1.3	54
2179	Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Advanced Electronic Materials, 2017, 3, 1700141.	2.6	81
2180	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	10.2	74
2181	Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helvetica Chimica Acta, 2017, 100, e1700090.	1.0	24
2182	Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for Highâ€Performance Perovskite Photovoltaic Cells with Stability. Small, 2017, 13, 1700418.	5.2	13

ARTICLE IF CITATIONS Theoretical insights into the structural, electronic and optical properties of 2183 0.5 6 benzotrithiophene-based hole-transporting materials. Theoretical Chemistry Accounts, 2017, 136, 1. Low-cost synthesis, fluorescent properties, growth mechanism and structure of CH3NH3PbI3 with 2184 1.4 9 millimeter grains. Optik, 2017, 142, 293-300. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, 2185 4.0 84 diffusion length and photovoltaic performance. Journal of Power Sources, 2017, 360, 11-20. Performance enhancement of perovskite solar cell by controlling deposition temperature of copper 2186 1.4 phthalocyanine as a dopant-free hole transporting layer. Organic Electronics, 2017, 48, 211-216. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic 2187 3.0 45 performance. Solar Energy Materials and Solar Cells, 2017, 170, 178-186. Efficient electron transfer layer based on Al 2 O 3 passivated TiO 2 nanorod arrays for high performance evaporation-route deposited FAPbI 3 perovskite solar cells. Solar Energy Materials and 2188 3.0 Solar Cells, 2017, 170, 187-196. Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hýbrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 2189 1.576 13496-13506. The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. 2190 4.5 226 Nano Letters, 2017, 17, 4270-4276. Refractive index and extinction coefficient of NH₂CH $a\in$ a \in a \in a \in a \in NH₂PbI₃27 2191 perovskite photovoltaic material. Journal of Physics Condensed Matter, 2017, 29, 245702. The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy 10.2 Materials, 2017, 7, 1700491. O ₃ fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH ₃ NH ₃ I vapor-assisted processed CH ₃ NH ₃ Pbl ₃ 2193 0.7 5 solar cells. Chinese Physics B, 2017, 26, 068803. Engineering charge transport by heterostructuring solution-processed semiconductors. Nature 2194 23.3 105 Reviews Materials, 2017, 2, . The photocurrent response in the perovskite device based on coordination polymers: structure, 2195 1.6 9 topology, band gap and matched energy levels. Dalton Transactions, 2017, 46, 7866-7877. Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C, 2017, 5, 5610-5627. 2196 2.7 60 Studies on conducting nanocomposite with gallium nitride–doped ferrite, part-II. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and 2197 0.50 Nanosystems, 2017, 231, 53-63. Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy 2198 Materials, 2017, 7, 1602596. Theoretical Treatment of CH₃NH₃Pbl₃ Perovskite Solar Cells. 2199 7.2 107 Angewandte Chemie - International Edition, 2017, 56, 15806-15817. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite 2200 solar cells. Energy and Environmental Science, 2017, 10, 1530-1539.

#	Article	IF	Citations
2201	Reduced Interfaceâ€Mediated Recombination for High Open ircuit Voltages in CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2017, 29, 1700159.	11.1	210
2202	Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Organic Electronics, 2017, 48, 165-171.	1.4	87
2203	Improved electronic transport properties of tin-halide perovskites. Solar Energy Materials and Solar Cells, 2017, 170, 8-12.	3.0	14
2204	Understanding perovskite formation through the intramolecular exchange method in ambient conditions. Journal of Photonics for Energy, 2017, 7, 022002.	0.8	12
2205	Theoretische Abhandlung über CH ₃ NH ₃ Pbl ₃ â€Perowskitâ€Solarzellen. Angewandte Chemie, 2017, 129, 16014-16026.	1.6	5
2206	Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers. Advanced Energy Materials, 2017, 7, 1700600.	10.2	163
2207	Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. Journal of Materials Chemistry A, 2017, 5, 12699-12717.	5.2	52
2208	Two cyclohexanofullerenes used as electron transport materials in perovskite solar cells. Inorganica Chimica Acta, 2017, 468, 146-151.	1.2	11
2209	Sequential multi-drop coating method for large crystallized α-(NH 2) 2 CHPbI 3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells. Journal of Power Sources, 2017, 359, 147-156.	4.0	24
2210	Controllable Structures Designed with Multiple-Dielectric Responses in Hybrid Perovskite-Type Molecular Crystals. Inorganic Chemistry, 2017, 56, 7058-7064.	1.9	13
2211	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	1.5	148
2212	Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH ₃ NH ₃ Pbl ₃) Perovskite Photochemistry. Nano Letters, 2017, 17, 4151-4157.	4.5	55
2213	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	8.8	31
2214	Nonradiative Losses in Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1515-1525.	8.8	290
2215	Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2017, 2, 1539-1548.	8.8	928
2216	Halide perovskite solar cells using monocrystalline TiO ₂ nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology, 2017, 28, 274001.	1.3	67
2217	Hole Blocking Layer-Free Perovskite Solar Cells with over 15% Efficiency. Energy Procedia, 2017, 105, 188-193.	1.8	8
2218	Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI3-xClx into Mesoporous TiO2 for Stable Hybrid Perovskite Solar Cells. Electrochimica Acta, 2017, 245, 734-741.	2.6	14

#	Article	IF	CITATIONS
2219	An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. Journal of Power Sources, 2017, 359, 303-310.	4.0	38
2220	Aqueous self-assembled perovskite microfibers for sensitive photodetectors. Organic Electronics, 2017, 48, 106-111.	1.4	13
2221	Investigation of Interfacial Charge Transfer in Solution Processed Cs ₂ Snl ₆ Thin Films. Journal of Physical Chemistry C, 2017, 121, 13092-13100.	1.5	66
2222	<i>Shift Happens</i> . How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2017, 2, 1507-1514.	8.8	282
2223	Four-Wave Mixing in Perovskite Photovoltaic Materials Reveals Long Dephasing Times and Weaker Many-Body Interactions than GaAs. ACS Photonics, 2017, 4, 1515-1521.	3.2	29
2224	Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nature Communications, 2017, 8, 15565.	5.8	72
2225	Charge transport in a two-dimensional hybrid metal halide thiocyanate compound. Journal of Materials Chemistry C, 2017, 5, 5930-5938.	2.7	37
2226	Nanostructured Materials for Next-Generation Energy Storage and Conversion. , 2017, , .		7
2227	Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. RSC Advances, 2017, 7, 29944-29952.	1.7	16
2228	Impact of the Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide Perovskites. ACS Energy Letters, 2017, 2, 1621-1627.	8.8	215
2229	Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nature Communications, 2017, 8, 15330.	5.8	356
2230	A Pbl _{2â~`x} Cl _x seed layer for obtaining efficient planar-heterojunction perovskite solar cells via an interdiffusion process. Nanoscale, 2017, 9, 9396-9403.	2.8	15
2231	First determination of the valence band dispersion of CH ₃ NH ₃ PbI ₃ hybrid organic–inorganic perovskite. Journal Physics D: Applied Physics, 2017, 50, 26LT02.	1.3	33
2232	Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Modern Electronic Materials, 2017, 3, 1-25.	0.2	29
2233	Impact of Reabsorption on the Emission Spectra and Recombination Dynamics of Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 2977-2983.	2.1	79
2234	Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15447-15459.	5.2	125
2235	Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 2936-2940.	2.1	169
2236	[(CH ₃) ₃ PCH ₂ OH][CdBr ₃] is a perovskite-type ferroelastic compound above room temperature. Chemical Communications, 2017, 53, 7756-7759.	2.2	31

#	Article	IF	CITATIONS
2237	Electronic properties and lattice configurations ofÂAu/CH3NH3PbI3 interface. Modern Physics Letters B, 2017, 31, 1750199.	1.0	3
2238	Preferential CH ₃ NH ₃ ⁺ Alignment and Octahedral Tilting Affect Charge Localization in Cubic Phase CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry C, 2017, 121, 8319-8326.	1.5	24
2239	Direct Observation of Charge Collection at Nanometer-Scale Iodide-Rich Perovskites during Halide Exchange Reaction on CH ₃ NH ₃ PbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 1724-1728.	2.1	26
2240	Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers. AIP Conference Proceedings, 2017, , .	0.3	6
2241	Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research, 2017, 32, 1798-1824.	1.2	16
2242	A Solutionâ€Processed Highâ€Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Advanced Materials, 2017, 29, 1606175.	11.1	80
2243	Atomic force microscopy investigation of a step generation and bunching on the (100) facet of a CH ₃ NH ₃ PbI ₃ crystal, grown from γâ€Butyrolactone. Crystal Research and Technology, 2017, 52, 1700021.	0.6	6
2244	Performance improvement of dual processed perovskite solar cell-acid-modified ZnO nanorods with Cl-doped light harvesting layer. International Journal of Energy Research, 2017, 41, 1847-1854.	2.2	9
2245	Effects of precursor concentration and annealing temperature on CH 3 NH 3 PbI 3 film crystallization and photovoltaic performance. Journal of Physics and Chemistry of Solids, 2017, 107, 55-61.	1.9	6
2246	Dual Roles of the Fullerene Interlayer on Light Harvesting and Electron Transfer for Highly Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2017, 121, 8722-8730.	1.5	4
2247	Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 14129-14135.	4.0	9
2248	Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3. Applied Physics Letters, 2017, 110, .	1.5	16
2249	Revealing the stability and efficiency enhancement in mixed halide perovskites MAPb(I 1–x Cl x) 3 with ab initio calculations. Journal of Power Sources, 2017, 350, 65-72.	4.0	53
2250	Effective hot-air annealing for improving the performance of perovskite solar cells. Solar Energy, 2017, 146, 359-367.	2.9	20
2251	Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: The role of CH 3 NH 3 I concentration. Solar Energy, 2017, 147, 222-227.	2.9	17
2252	Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Solar Energy Materials and Solar Cells, 2017, 166, 100-107.	3.0	31
2253	A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11518-11549.	5.2	463
2254	Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices, Journal of Materials Chemistry C. 2017, 5, 3427-3437.	2.7	111

#	Article	IF	Citations
2255	Powering up perovskite photoresponse. Science, 2017, 355, 1260-1261.	6.0	27
2256	Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites. Advanced Optical Materials, 2017, 5, 1700139.	3.6	136
2257	Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Letters, 2017, 17, 3231-3237.	4.5	149
2258	Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. Journal of Materials Chemistry A, 2017, 5, 7905-7911.	5.2	99
2259	Fast Fabrication of a Stable Perovskite Solar Cell with an Ultrathin Effective Novel Inorganic Hole Transport Layer. Langmuir, 2017, 33, 3624-3634.	1.6	22
2260	Evolution of the Dynamics of As-Deposited and Annealed Lead Halide Perovskites. ACS Photonics, 2017, 4, 1195-1206.	3.2	3
2261	Bose–Einstein oscillators and the excitation mechanism of free excitons in 2D layered organic–inorganic perovskites. RSC Advances, 2017, 7, 18366-18373.	1.7	9
2262	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	1.7	30
2263	Thermochromic Perovskite Inks for Reversible Smart Window Applications. Chemistry of Materials, 2017, 29, 3367-3370.	3.2	130
2264	Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chemistry of Materials, 2017, 29, 3526-3537.	3.2	37
2265	Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 1784-1792.	2.1	220
2266	Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1207-1212.	15.6	288
2267	Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method. Journal of Applied Physics, 2017, 121,	1.1	34
2268	Photovoltaic Devices Based on Colloidal PbX Quantum Dots: Progress and Prospects. Solar Rrl, 2017, 1, 1600021.	3.1	39
2269	Organic–Inorganic Copper(II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application. Journal of Physical Chemistry Letters, 2017, 8, 1804-1809.	2.1	103
2270	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	2.1	97
2271	Dry-Stamping-Transferred PC71BM Charge Transport Layer via an Interface-Controlled Polyurethane Acrylate Mold Film for Efficient Planar-Type Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 15623-15630.	4.0	15
2272	FAPb _{1â^'x} Sn _x I ₃ mixed metal halide perovskites with improved light harvesting and stability for efficient planar heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 9097-9106.	5.2	56

#	Article	IF	CITATIONS
2273	Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9, 6136-6144.	2.8	42
2274	Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. Journal of Power Sources, 2017, 353, 123-130.	4.0	22
2275	Degradation behavior of planar heterojunction CH 3 NH 3 PbI 3 perovskite solar cells. Synthetic Metals, 2017, 227, 43-51.	2.1	31
2276	Enhanced optoelectronic quality of perovskite films with excess CH ₃ NH ₃ I for high-efficiency solar cells in ambient air. Nanotechnology, 2017, 28, 205401.	1.3	18
2277	Addressing Toxicity of Lead: Progress and Applications of Lowâ€Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
2278	Intermolecular Interactions in Hybrid Perovskites Understood from a Combined Density Functional Theory and Effective Hamiltonian Approach. ACS Energy Letters, 2017, 2, 937-942.	8.8	28
2279	Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A, 2017, 5, 7811-7815.	5.2	209
2280	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	2.7	24
2281	Potassium-chemical synthesis of 3D graphene from CO ₂ and its excellent performance in HTM-free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7749-7752.	5.2	66
2282	Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application. Journal of Power Sources, 2017, 351, 123-129.	4.0	71
2283	Transformation of PbI ₂ , PbBr ₂ and PbCI ₂ salts into MAPbBr ₃ perovskite by halide exchange as an effective method for recombination reduction. Physical Chemistry Chemical Physics, 2017, 19, 10913-10921.	1.3	27
2284	Enhanced Efficiency and stability of Perovskite Solar Cells using Porous Hierarchical TiO 2 Nanostructures of Scattered Distribution as Scaffold. Electrochimica Acta, 2017, 236, 351-358.	2.6	40
2285	Study on the role of additional ions in CH 3 NH 3 PbI 3â^'x Cl x planar solar cells. Solar Energy, 2017, 148, 70-77.	2.9	5
2286	Efficiency evaluation on Cs x [NH 2 CH = NH 2] 1â^' x Pb(I 1â^' y Br y) 3 /crystalline silicon tandem solar cells. Solar Energy, 2017, 147, 432-438.	2.9	7
2287	A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. Nanoscale, 2017, 9, 5828-5834.	2.8	53
2288	Dynamics of Charged Excitons and Biexcitons in CsPbBr ₃ Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 1413-1418.	2.1	149
2289	Electronic Properties, Screening, and Efficient Carrier Transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>NaSbS</mml:mi></mml:mrow><mml:mrow>< Physical Review Applied, 2017, 7, .</mml:mrow></mml:msub></mml:mrow></mml:math 	:mmi:mn>2	2<36 2
2290	Comparison of life cycle environmental impacts of different perovskite solar cell systems. Solar Energy Materials and Solar Cells, 2017, 166, 9-17.	3.0	79

#	Article	IF	CITATIONS
2292	Dualâ€Source Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604758.	11.1	142
2293	Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Microwires. ACS Applied Materials & Interfaces, 2017, 9, 11662-11668.	4.0	81
2294	Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model. ACS Photonics, 2017, 4, 934-942.	3.2	98
2295	CH ₃ NH ₃ PbBr ₃ Perovskite Nanocrystals as Efficient Lightâ€Harvesting Antenna for Fluorescence Resonance Energy Transfer. Chemistry - an Asian Journal, 2017, 12, 988-995.	1.7	14
2296	Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Applied Surface Science, 2017, 410, 393-400.	3.1	47
2297	How the Structures and Properties of Two-Dimensional Layered Perovskites MAPbI ₃ and CsPbI ₃ Vary with the Number of Layers. Journal of Physical Chemistry Letters, 2017, 8, 1517-1523.	2.1	89
2298	Elucidating the role of chlorine in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7423-7432.	5.2	95
2299	Modulation of electronic and optical properties in mixed halide perovskites CsPbCl3 <i>x</i> Br3(1- <i>x</i>) and CsPbBr3 <i>x</i> l3(1- <i>x</i>). Applied Physics Letters, 2017, 110, .	1.5	28
2300	Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Science Advances, 2017, 3, e1602164.	4.7	165
2301	Direct Evidence of Chlorine-Induced Preferential Crystalline Orientation in Methylammonium Lead Iodide Perovskites Grown on TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 7596-7602.	1.5	23
2302	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	1.6	60
2303	Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells. Science China Chemistry, 2017, 60, 472-489.	4.2	52
2304	TiO 2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today, 2017, 7, 112-119.	2.3	24
2305	An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Organic Electronics, 2017, 46, 22-27.	1.4	33
2306	Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 2017, 7, 17044-17062.	1.7	317
2307	Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor. Sustainable Energy and Fuels, 2017, 1, 755-766.	2.5	77
2308	Atomic Layer Deposition Enabled Perovskite/PEDOT Solar Cells in a Regular n–i–p Architectural Design. Advanced Materials Interfaces, 2017, 4, 1700043.	1.9	33
2309	Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications. Nano-Micro Letters, 2017, 9, 36.	14.4	73

#	Article	IF	CITATIONS
2310	Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive. ACS Energy Letters, 2017, 2, 897-903.	8.8	285
2311	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	1.6	175
2312	Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Science China Materials, 2017, 60, 285-294.	3.5	48
2313	Ultrasensitivity broadband photodetectors based on perovskite: Research on film crystallization and electrode optimization. Organic Electronics, 2017, 46, 35-43.	1.4	23
2314	Nano metal-enhanced power conversion efficiency in CH 3 NH 3 PbI 3 solar cells. Journal of Physics and Chemistry of Solids, 2017, 103, 16-21.	1.9	1
2315	Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. Journal of Materials Chemistry A, 2017, 5, 1548-1557.	5.2	115
2316	Quantitative Correlation of Perovskite Film Morphology to Light Emitting Diodes Efficiency Parameters. Advanced Functional Materials, 2017, 27, 1603219.	7.8	47
2317	Correlation of annealing time with crystal structure, composition, and electronic properties of CH ₃ NH ₃ PbI _{3â^`x} Cl _x mixed-halide perovskite films. Physical Chemistry Chemical Physics, 2017, 19, 828-836.	1.3	40
2318	The Influence of Morphology and PbI ₂ on the Intrinsic Trap State Distribution in Perovskite Films Determined by Using Temperatureâ€Dependent Fluorescence Spectroscopy. ChemPhysChem, 2017, 18, 310-317.	1.0	7
2319	Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor. Advanced Energy Materials, 2017, 7, 1602333.	10.2	209
2320	High concentration PbI 2 ·DMSO complex precursor solution of 1.7ÂM in DMF for high-thickness and full-coverage CH 3 NH 3 PbI 3â^'x Br x thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 5603-5608.	1.1	7
2321	Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells. Chemical Physics Letters, 2017, 669, 143-149.	1.2	9
2322	Molten Salt-Assisted Growth of Perovskite Films with Submillimeter-Sized Grains. Industrial & Engineering Chemistry Research, 2017, 56, 524-529.	1.8	3
2323	Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy, 2017, 2, .	19.8	544
2324	Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides. Advanced Materials, 2017, 29, 1604733.	11.1	154
2325	Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways. Journal of Physical Chemistry C, 2017, 121, 1062-1071.	1.5	22
2326	Efficient Generation of Long‣ived Triplet Excitons in 2D Hybrid Perovskite. Advanced Materials, 2017, 29, 1604278.	11.1	81
2327	Sequential Introduction of Cations Deriving Largeâ€Grain Cs <i>_x</i> FA _{1â^'} <i>_x</i> PbI ₃ Thin Film for Planar Hybrid Solar Cells: Insight into Phaseâ€Segregation and Thermalâ€Healing Behavior. Small, 2017, 13, 1603225.	5.2	69

ARTICLE IF CITATIONS Lattice Distortions Drive Electron–Hole Correlation within Micrometer-Size Lead-Iodide Perovskite 2328 8.8 19 Crystals. ACS Energy Letters, 2017, 2, 265-269. Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in 2329 4.5 232 Nanoengineering Templates. Nano Letters, 2017, 17, 523-530. ZrO₂/TiO₂ Electron Collection Layer for Efficient Meso-Superstructured 2330 4.0 41 Hybrid Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 2342-2349. Impact of Crystal Surface on Photoexcited States in Organic–Inorganic Perovskites. Advanced Functional Materials, 2017, 27, 1604995. Ultrafast Allâ€Optical Switching. Advanced Optical Materials, 2017, 5, 1600665. 2332 185 3.6 Plasmonics in Organic and Perovskite Solar Cells: Optical and Electrical Effects. Advanced Optical Materials, 2017, 5, 1600698. 3.6 Modifying CH 3 NH 3 PbBr 3 nanocrystals with arylamines. Journal of Physics and Chemistry of Solids, 2334 1.9 7 2017, 103, 164-169. A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar 2335 8.2 44 perovskite solar cells. Nano Energy, 2017, 32, 310-319. Crystallization process of PbI2 solution in two-step deposition of CH3NH3PbI3 for high-performance 2336 3.0 12 perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 444-448. Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired 3.2 Intrinsic Photovoltaic Functionalities. Chemistry of Materials, 2017, 29, 524-538. Organic Small Molecule as the Underlayer Toward High Performance Planar Perovskite Solar Cells. 2338 4.023 ACS Applied Materials & amp; Interfaces, 2017, 9, 2295-2300. Influence of Interface Morphology on Hysteresis in Vaporâ€Deposited Perovskite Solar Cells. Advanced 2339 Electronic Materials, 2017, 3, 1600470. Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite 2340 7.2 42 Nanocrystal/Fullerene Composites. Angewandte Chemie - International Edition, 2017, 56, 1214-1218. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy, 2017, 32, 414-421. 2341 8.2 Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite 2342 1.6 15 Nanocrystal/Fullerene Čomposites. Angewandte Chemie, 2017, 129, 1234-1238. Low-temperature and Ambient Air Processes of Amorphous SnO<i>_x</i>-based Mixed Halide 2343 28 Perovskite Planar Solar Cell. Chemistry Letters, 2017, 46, 382-384. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal 2344 1.342 Physics D: Applied Physics, 2017, 50, 033001. Monitoring Thermal Annealing of Perovskite Solar Cells with In Situ Photoluminescence. Advanced 2345 Energy Materials, 2017, 7, 1601822.

#	Article	IF	CITATIONS
2346	Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis. Journal of Crystal Growth, 2017, 459, 167-172.	0.7	18
2347	Kinetic Control of Perovskite Thin-Film Morphology and Application in Printable Light-Emitting Diodes. ACS Energy Letters, 2017, 2, 81-87.	8.8	16
2348	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	1.8	26
2349	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	3.2	35
2350	Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters, 2017, 17, 269-275.	4.5	307
2351	2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2346-2354.	5.2	92
2352	Understanding the Role of the Electronâ€Transport Layer in Highly Efficient Planar Perovskite Solar Cells. ChemPhysChem, 2017, 18, 617-625.	1.0	44
2353	Low Density of Conduction and Valence Band States Contribute to the High Open-Circuit Voltage in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 1455-1462.	1.5	57
2354	Crystallization Kinetics of Lead Halide Perovskite Film Monitored by In Situ Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 401-406.	2.1	36
2355	Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region. ACS Applied Materials & Interfaces, 2017, 9, 1569-1576.	4.0	110
2356	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	2.8	61
2357	Passivated perovskite crystallization and stability in organic–inorganic halide solar cells by doping a donor polymer. Journal of Materials Chemistry A, 2017, 5, 2572-2579.	5.2	115
2358	Long Minority arrier Diffusion Length and Low Surfaceâ€Recombination Velocity in Inorganic Leadâ€Free CsSnI ₃ Perovskite Crystal for Solar Cells. Advanced Functional Materials, 2017, 27, 1604818.	7.8	164
2359	Organometallic Perovskite Metasurfaces. Advanced Materials, 2017, 29, 1604268.	11.1	118
2360	Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating. Journal of Alloys and Compounds, 2017, 705, 205-210.	2.8	52
2361	Structural Stabilities and Electronic Properties of High-Angle Grain Boundaries in Perovskite Cesium Lead Halides. Journal of Physical Chemistry C, 2017, 121, 1715-1722.	1.5	99
2362	Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. Journal of Physical Chemistry Letters, 2017, 8, 394-400.	2.1	151
2363	Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency. Nano Energy, 2017, 32, 187-194.	8.2	23

#	Article	IF	CITATIONS
2364	Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2066-2072.	5.2	198
2365	Enhanced Efficiency of Hotâ€Cast Largeâ€Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials, 2017, 7, 1601660.	10.2	191
2366	Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers. Superlattices and Microstructures, 2017, 102, 94-102.	1.4	22
2367	Highâ€Performance Colorâ€Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film. Advanced Materials, 2017, 29, 1603157.	11.1	218
2368	Successive surface engineering of TiO ₂ compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1724-1733.	5.2	77
2369	Annealing-free perovskite films based on solvent engineering for efficient solar cells. Journal of Materials Chemistry C, 2017, 5, 842-847.	2.7	63
2370	Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale, 2017, 9, 1229-1236.	2.8	50
2371	Interconnection Optimization for Highly Efficient Perovskite Modules. IEEE Journal of Photovoltaics, 2017, 7, 404-408.	1.5	86
2372	Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. Advanced Energy Materials, 2017, 7, 1602120.	10.2	188
2373	A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 2017, 70, 1286-1297.	8.2	709
2374	Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites. Nanoscale, 2017, 9, 1475-1483.	2.8	37
2375	Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Antiâ€Solvent Additive Deposition. Advanced Materials, 2017, 29, 1604056.	11.1	63
2376	Tetraphenylmethaneâ€Arylamine Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2017, 10, 968-975.	3.6	45
2377	Influence of ï€-linker on triphenylamine-based hole transporting materials in perovskite solar cells. Dyes and Pigments, 2017, 139, 129-135.	2.0	69
2378	Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability. Solar Energy Materials and Solar Cells, 2017, 161, 347-354.	3.0	80
2379	Instability and Efficiency of Mixed Halide Perovskites CH ₃ NH ₃ Al _{3–<i>x</i>} Cl _{<i>x</i>} (A = Pb and Sn): A First-Principles, Computational Study. Chemistry of Materials, 2017, 29, 682-689.	3.2	18
2380	Multinuclear Magnetic Resonance Tracking of Hydro, Thermal, and Hydrothermal Decomposition of CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry C, 2017, 121, 1013-1024.	1.5	77
2381	Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017, 8, 2522-2536.	3.7	233

#	Article	IF	CITATIONS
2382	Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy and Environmental Science, 2017, 10, 516-522.	15.6	720
2383	First principles modelling of perovskite solar cells based on TiO ₂ and Al ₂ O ₃ : stability and interfacial electronic structure. Journal of Materials Chemistry A, 2017, 5, 2339-2345.	5.2	34
2384	The Effect of Methylammonium lodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Angewandte Chemie - International Edition, 2017, 56, 16073-16076.	7.2	16
2385	CsPbBr ₃ Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition. Chemistry of Materials, 2017, 29, 9767-9774.	3.2	178
2386	Lead-Free Hybrid Material with an Exceptional Dielectric Phase Transition Induced by a Chair-to-Boat Conformation Change of the Organic Cation. Inorganic Chemistry, 2017, 56, 13078-13085.	1.9	35
2387	Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale, 2017, 9, 17893-17901.	2.8	20
2388	A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2509-2515.	15.6	437
2389	Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. Journal of Materials Chemistry A, 2017, 5, 25211-25219.	5.2	53
2390	Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS Applied Materials & Interfaces, 2017, 9, 42011-42019.	4.0	5
2391	The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. ACS Energy Letters, 2017, 2, 2686-2693.	8.8	154
2392	Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion. ACS Nano, 2017, 11, 11488-11496.	7.3	105
2393	Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells. ACS Nano, 2017, 11, 11542-11549.	7.3	44
2394	Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films. Journal of Materials Chemistry A, 2017, 5, 24728-24739.	5.2	41
2395	High-Performance Simple-Structured Planar Heterojunction Perovskite Solar Cells Achieved by Precursor Optimization. ACS Omega, 2017, 2, 6250-6258.	1.6	19
2396	Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiO x hole transport layer. Superlattices and Microstructures, 2017, 112, 383-393.	1.4	26
2397	Pinning Down the Anomalous Light Soaking Effect toward High-Performance and Fast-Response Perovskite Solar Cells: The Ion-Migration-Induced Charge Accumulation. Journal of Physical Chemistry Letters, 2017, 8, 5069-5076.	2.1	60
2398	Wafer-scale reliable switching memory based on 2-dimensional layered organic–inorganic halide perovskite. Nanoscale, 2017, 9, 15278-15285.	2.8	113
2399	Large-area electrospray-deposited nanocrystalline Cu _X O hole transport layer for perovskite solar cells. RSC Advances, 2017, 7, 46651-46656.	1.7	29

ARTICLE IF CITATIONS Effects of Spin States on Photovoltaic Actions in Organo-Metal Halide Perovskite Solar Cells Based 2400 3.2 18 on Circularly Polarized Photoexcitation. ACS Photonics, 2017, 4, 2821-2827. Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture 2401 2.7 treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127. Light Soaking Phenomena in Organic–Inorganic Mixed Halide Perovskite Single Crystals. ACS 2402 3.231 Photonics, 2017, 4, 2813-2820. High-Performance and Hysteresis-Free Planar Solar Cells with PC₇₁BM and C₆₀ Composed Structure Prepared Irrespective of Humidity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9718-9724. 2403 The Stability Effect of Atomic Layer Deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> on 2404 0.4 3 CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cell Fabricated by Vapor Deposition. Key Engineering Materials, 0, 753, 156-162 Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vaporâ€"Solution Method. Advanced Materials, 2017, 29, 1703256. 11.1 Slowâ€Photonâ€Effectâ€Induced Photoelectricalâ€Conversion Efficiency Enhancement for 2406 Carbonâ€Quantumâ€Dotâ€Sensitized Inorganic CsPbBr₃ Inverse Opal Perovskite Solar Cells. 11.1 133 Advanced Materials, 2017, 29, 1703682. Electrical Heatingâ€Assisted Multiple Coating Method for Fabrication of Highâ€Performance Perovskite 2407 1.9 16 Fiber Solar Cells by Thickness Control. Advanced Materials Interfaces, 2017, 4, 1700833. Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill 2408 5.2 40 factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium 2409 0.2 Lead Halide Perovskite Films. Journal of Visualized Experiments, 2017, , . Free Carrier Radiative Recombination and Photon Recycling in Lead Halide Perovskite Solar Cell 2410 2.0 65 Materials. Bulletin of the Chemical Society of Japan, 2017, 90, 1129-1140. Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced 11.1 Materials, 2017, 29, 1702838. Effect of Water Addition during Preparation on the Earlyâ€Time Photodynamics of 2412 1.0 4 CH₃NH₃Pbl₃Pérovskite Layers. ChemPhysChem, 2017, 18, 3320-3324. Enhanced Photovoltaic Performance of the Inverted Planar Perovskite Solar Cells by Using Mixed-Phase Crystalline Perovskite Film with Trace Amounts of PbI₂ as an Absorption 2413 1.5 Layer. Journal of Physical Chemistry C, 2017, 121, 22607-22620. Realâ€Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites. Small, 2017, 2414 148 5.213, 1701711. Physicochemical Interface Engineering of Cul/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21935-21944. 2415 Anisotropic Electric Field Effect on the Photoluminescence of CH₃NH₃Pbl₃Perovskite Sandwiched between Conducting and 2416 1.512 Insulating Films. Journal of Physical Chemistry C, 2017, 121, 22700-22706. Exploring the Antipolar Nature of Methylammonium Lead Halides: A Monte Carlo and Pyrocurrent 2417 2.1 24 Study. Journal of Physical Chemistry Letters, 2017, 8, 4906-4911.

#	Article	IF	CITATIONS
2418	Simple and low-cost thiophene and benzene-conjugated triaryamines as hole-transporting materials for perovskite solar cells. RSC Advances, 2017, 7, 45478-45483.	1.7	17
2419	Organometal Trihalide Perovskites with Intriguing Ferroelectric and Piezoelectric Properties. Advanced Functional Materials, 2017, 27, 1702207.	7.8	37
2420	Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI ₃ Perovskites. Journal of the American Chemical Society, 2017, 139, 14800-14806.	6.6	230
2421	Imaging the Anomalous Charge Distribution Inside CsPbBr ₃ Perovskite Quantum Dots Sensitized Solar Cells. ACS Nano, 2017, 11, 10214-10221.	7.3	103
2422	Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nature Communications, 2017, 8, 687.	5.8	63
2423	Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358, 768-771.	6.0	1,285
2424	Impact of halide stoichiometry on structure-tuned formation of CH3NH3PbX3â^'aYa hybrid perovskites. Solar Energy, 2017, 158, 367-379.	2.9	10
2425	High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors. Journal Physics D: Applied Physics, 2017, 50, 495102.	1.3	8
2426	Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy, 2017, 42, 157-165.	8.2	98
2427	Impact of metal electrode work function of CH 3 NH 3 PbI 3 /p-Si planar heterojunction perovskite solar cells. Solar Energy, 2017, 158, 424-431.	2.9	28
2428	Photoluminescence–Voltage (PL– <i>V</i>) Hysteresis of Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 24389-24396.	1.5	16
2429	Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.	15.6	178
2430	Slow hot carrier cooling in cesium lead iodide perovskites. Applied Physics Letters, 2017, 111, .	1.5	56
2431	Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 38967-38976.	4.0	118
2432	Unraveling current hysteresis effects in regular-type C ₆₀ -CH ₃ NH ₃ PbI ₃ heterojunction solar cells. Nanoscale, 2017, 9, 17802-17806.	2.8	13
2433	Enhanced Efficiency of Perovskite Solar Cells by using Core–Ultrathin Shell Structure Ag@SiO ₂ Nanowires as Plasmonic Antennas. Advanced Electronic Materials, 2017, 3, 1700169.	2.6	24
2434	Structure-Performance Relationships of Hole-Transporting Materials in Perovskite Solar Cells: Minor Structural Discrepancy Effects on the Efficiency. Electrochimica Acta, 2017, 257, 380-387.	2.6	15
2435	Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. Joule, 2017, 1, 328-343.	11.7	148

#	Article	IF	CITATIONS
2436	Molecular Engineering of the Lead Iodide Perovskite Surface: Case Study on Molecules with Pyridyl Groups. Journal of Physical Chemistry C, 2017, 121, 24612-24617.	1.5	20
2437	High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Applied Materials & Interfaces, 2017, 9, 37832-37838.	4.0	91
2438	Influence of the Grain Size on the Properties of CH ₃ NH ₃ PbI ₃ Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 38428-38435.	4.0	25
2439	Enhancing the performance and stability of carbon-based perovskite solar cells by the cold isostatic pressing method. RSC Advances, 2017, 7, 48958-48961.	1.7	12
2440	Understanding the stability of mixed A-cation lead iodide perovskites. Journal of Materials Chemistry A, 2017, 5, 22495-22499.	5.2	91
2441	ABX3 Perovskites for Tandem Solar Cells. Joule, 2017, 1, 769-793.	11.7	176
2442	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	2.7	138
2443	Caesium â~'Methyl Ammonium Mixed-Cation Lead Iodide Perovskite Crystals: Analysis and Application for Perovskite Solar Cells. Electrochimica Acta, 2017, 257, 267-280.	2.6	25
2444	Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	18
2445	Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C ₆₀ . Journal of Physical Chemistry Letters, 2017, 8, 5423-5429.	2.1	32
2446	Efficient and stable perovskite solar cells based on high-quality CH ₃ NH ₃ PbI _{3â^'x} Cl _x films modified by V ₂ O _x additives. Journal of Materials Chemistry A, 2017, 5, 24282-24291.	5.2	27
2447	Development of Dopant-Free Donor–Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 39511-39518.	4.0	42
2448	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	5.2	70
2449	Outstanding Performance of Holeâ€Blocking Layerâ€Free Perovskite Solar Cell Using Hierarchically Porous Fluorineâ€Doped Tin Oxide Substrate. Advanced Energy Materials, 2017, 7, 1700749.	10.2	50
2450	Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials, 2017, 7, 1701136.	10.2	257
2451	A Facile Route to Cesium Lead Bromoiodide Perovskite Microcrystals and Their Potential Application as Sensors for Nitrophenol Explosives. European Journal of Inorganic Chemistry, 2017, 2017, 3755-3760.	1.0	32
2452	Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. Journal of Power Sources, 2017, 365, 1-6.	4.0	63
2453	High-Quality (CH ₃ NH ₃) ₃ Bi ₂ I ₉ Film-Based Solar Cells: Pushing Efficiency up to 1.64%. Journal of Physical Chemistry Letters, 2017, 8, 4300-4307.	2.1	215

#	Article	IF	CITATIONS
2454	Organic–Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31746-31751.	4.0	15
2455	Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale, 2017, 9, 13983-13989.	2.8	40
2456	Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3â~'xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy, 2017, 40, 408-417.	8.2	60
2457	Electrodeposition of SnO2 on FTO and its Application in Planar Heterojunction Perovskite Solar Cells as an Electron Transport Layer. Nanoscale Research Letters, 2017, 12, 498.	3.1	29
2458	Recent Advances in Metal Halideâ€Based Perovskite Lightâ€Emitting Diodes. Energy Technology, 2017, 5, 1734-1749.	1.8	79
2459	Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells. Electrochimica Acta, 2017, 251, 307-315.	2.6	39
2460	Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 368-375.	3.0	59
2461	lon Migration Heals Trapping Centers in CH ₃ NH ₃ PbBr ₃ Perovskite. ACS Energy Letters, 2017, 2, 2133-2139.	8.8	51
2462	Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. Journal of Materials Chemistry C, 2017, 5, 9376-9382.	2.7	44
2463	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	7.3	48
2464	Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 2017, 3, e1700106.	4.7	588
2465	Graded Heterojunction Engineering for Hole onductorâ€Free Perovskite Solar Cells with High Hole Extraction Efficiency and Conductivity. Advanced Materials, 2017, 29, 1701221.	11.1	80
2466	Lowâ€Noise and Largeâ€Linearâ€Dynamicâ€Range Photodetectors Based on Hybridâ€Perovskite Thinâ€Singleâ€Crystals. Advanced Materials, 2017, 29, 1703209.	11.1	281
2467	Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission. Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.	2.1	147
2468	A review on low dimensional metal halides: Vapor phase epitaxy and physical properties. Journal of Materials Research, 2017, 32, 3992-4024.	1.2	18
2469	Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31950-31958.	4.0	26
2470	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	3.7	74
2471	Optical study on intrinsic exciton states in high-quality <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: single crystals_Physical Paviow B_2017_96</mml: </mml:msub></mml:mrow></mml:math 		nl :@ @n>

#	Article	IF	CITATIONS
2472	Singleâ€Mode Distributed Feedback Laser Operation in Solutionâ€Processed Halide Perovskite Alloy System. Advanced Optical Materials, 2017, 5, 1700545.	3.6	28
2473	Sequentially Deposited Antimony-Doped CH3NH3PbI3 Films in Inverted Planar Heterojunction Solar Cells with a High Open-Circuit Voltage. Journal of Physical Chemistry C, 2017, 121, 20177-20187.	1.5	21
2474	Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths. Journal of Physical Chemistry Letters, 2017, 8, 4386-4390.	2.1	83
2475	A facilely synthesized â€~spiro' hole-transporting material based on spiro[3.3]heptane-2,6-dispirofluorene for efficient planar perovskite solar cells. RSC Advances, 2017, 7, 41903-41908.	1.7	31
2476	Modelling and loss analysis of meso-structured perovskite solar cells. Journal of Applied Physics, 2017, 122, .	1.1	24
2477	Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI ₃ . Science Advances, 2017, 3, e1701293.	4.7	325
2478	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086.	3.1	167
2479	Improved performance of mesoscopic perovskite solar cell using an accelerated crystalline formation method. Journal of Power Sources, 2017, 365, 169-178.	4.0	17
2480	Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Physica B: Condensed Matter, 2017, 526, 136-142.	1.3	26
2481	Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure. Journal of Physical Chemistry C, 2017, 121, 23886-23895.	1.5	38
2482	Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Materials, 2017, 9, e431-e431.	3.8	44
2483	Simple synthesis and molecular engineering of low-cost and star-shaped carbazole-based hole transporting materials for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20263-20276.	5.2	92
2484	Ultrasensitive and Fast Allâ€Inorganic Perovskiteâ€Based Photodetector via Fast Carrier Diffusion. Advanced Materials, 2017, 29, 1703758.	11.1	255
2485	Al ₂ O ₃ Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells. ChemSusChem, 2017, 10, 3810-3817.	3.6	34
2486	Bismuth Incorporation Stabilized α-CsPbI ₃ for Fully Inorganic Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2219-2227.	8.8	468
2487	Electronic excitation induced hydrogen-bond adjustment and lattice control in organic–inorganic hybrid cubic perovskites: a fixed occupation molecular dynamics study. Physical Chemistry Chemical Physics, 2017, 19, 26164-26168.	1.3	2
2488	Improved perovskite film quality and solar cell performances using dual single solution coating. Journal of Applied Physics, 2017, 122, .	1.1	13
2489	Electronic and optical properties of the wurtzite-ZnO/CH3NH3PbI3 interface: first-principles calculations. Journal of Materials Science, 2017, 52, 13841-13851.	1.7	10

#	Article	IF	CITATIONS
2490	Effects of different small molecule hole transporters on the performance and charge transfer dynamics of perovskite solar cells. Synthetic Metals, 2017, 232, 181-187.	2.1	8
2491	Green Perovskite Distributed Feedback Lasers. Scientific Reports, 2017, 7, 11727.	1.6	72
2492	Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21604-21624.	5.2	86
2493	Polaronic Charge Carrier–Lattice Interactions in Lead Halide Perovskites. ChemSusChem, 2017, 10, 3705-3711.	3.6	18
2494	Absence of ferroelectricity in methylammonium lead iodide perovskite. AIP Advances, 2017, 7, 095110.	0.6	27
2495	Adsorptive and photocatalytic properties of S-doped SrTiO3 under simulated solar irradiation. AIP Conference Proceedings, 2017, , .	0.3	3
2496	CH ₃ NH ₃ Br Additive for Enhanced Photovoltaic Performance and Air Stability of Planar Perovskite Solar Cells prepared by Twoâ€Step Dipping Method. Energy Technology, 2017, 5, 1887-1894.	1.8	18
2497	Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers. Journal of Physical Chemistry C, 2017, 121, 27256-27262.	1.5	40
2498	High-Stability, Self-Powered Perovskite Photodetector Based on a CH ₃ NH ₃ PbI ₃ /GaN Heterojunction with C ₆₀ as an Electron Transport Layer. Journal of Physical Chemistry C, 2017, 121, 21541-21545.	1.5	64
2499	Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 34970-34978.	4.0	65
2500	Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction. ACS Applied Materials & Interfaces, 2017, 9, 35018-35029.	4.0	62
2501	Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nature Communications, 2017, 8, 590.	5.8	207
2502	Postsynthesis Transformation of Insulating Cs ₄ PbBr ₆ Nanocrystals into Bright Perovskite CsPbBr ₃ through Physical and Chemical Extraction of CsBr. ACS Energy Letters, 2017, 2, 2445-2448.	8.8	177
2503	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287.	2.7	15
2504	A Rising Star: Truxene as a Promising Hole Transport Material in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21729-21739.	1.5	32
2505	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	5.2	10
2506	A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207.	0.6	5
2507	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	3.5	38

#	Article	IF	CITATIONS
2508	Properties of perovskite ferroelectrics deposited on F doped SnO 2 electrodes and the prospect of their integration into perovskite solar cells. Materials and Design, 2017, 135, 112-121.	3.3	13
2509	The Renaissance of fullerenes with perovskite solar cells. Nano Energy, 2017, 41, 84-100.	8.2	104
2510	Thermal conductivity of a perovskite-type metal–organic framework crystal. Dalton Transactions, 2017, 46, 13342-13344.	1.6	38
2511	High-temperature synthesis in nonpolar solvent for CsPbBr3 and CH3NH3PbBr3 perovskite nanocrystals with high-efficient luminescence. Wuhan University Journal of Natural Sciences, 2017, 22, 429-434.	0.2	4
2512	Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy, 2017, 41, 75-83.	8.2	190
2513	Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals. Applied Physics Letters, 2017, 111, .	1.5	19
2514	Hybrid Organic–Inorganic Perovskite Photodetectors. Small, 2017, 13, 1702107.	5.2	334
2515	Lowâ€Cost TiS ₂ as Holeâ€Transport Material for Perovskite Solar Cells. Small Methods, 2017, 1, 1700250.	4.6	47
2516	A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, 2017, 29, 1605242.	11.1	590
2517	Microstructural Characterisations of Perovskite Solar Cells – From Grains to Interfaces: Techniques, Features, and Challenges. Advanced Energy Materials, 2017, 7, 1700912.	10.2	76
2518	Crystallization Dependent Stability of Perovskite Solar Cells With Different Hole Transporting Layers. Solar Rrl, 2017, 1, 1700141.	3.1	7
2519	Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 2017, 157, 853-859.	2.9	31
2520	Two Regimes of Carrier Diffusion in Vapor-Deposited Lead-Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 21600-21609.	1.5	33
	Chemistry C, 2017, 121, 21600-21609.	1.0	
2521	Impact of Interfaces and Laser Repetition Rate on Photocarrier Dynamics in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4698-4703.	2.1	13
2521 2522	Impact of Interfaces and Laser Repetition Rate on Photocarrier Dynamics in Lead Halide Perovskites.		13 169
	Impact of Interfaces and Laser Repetition Rate on Photocarrier Dynamics in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4698-4703. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites.	2.1	
2522	Impact of Interfaces and Laser Repetition Rate on Photocarrier Dynamics in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4698-4703. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. Journal of Materials Chemistry A, 2017, 5, 20843-20850. Monolithic MAPbI ₃ films for high-efficiency solar cells via coordination and a heat	2.1 5.2	169

		CITATION REPORT		
#	Article		IF	CITATIONS
2526	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017,	136, 54-80.	3.3	83
2527	Solid Ligand-Assisted Storage of Air-Stable Formamidinium Lead Halide Quantum Dots the Highly Dynamic Surface toward Brightly Luminescent Light-Emitting Diodes. ACS P 2504-2512.		3.2	50
2528	A benzobis(thiadiazole)-based small molecule as a solution-processing electron extract planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10777-10784.	tion material in	2.7	25
2529	Tracking the maximum power point of hysteretic perovskite solar cells using a predicti Journal of Materials Chemistry C, 2017, 5, 10152-10157.	ve algorithm.	2.7	18
2530	Dipole Order in Halide Perovskites: Polarization and Rashba Band Splittings. Journal of Chemistry C, 2017, 121, 23045-23054.	Physical	1.5	56
2531	Dielectric relaxation and Ac conductivity of perovskites CH ₃ NH ₃ PbX ₃ (X = Br, I). Ferroelectrics, 2017,	514, 146-157.	0.3	20
2532	P-Type and Inorganic Hole Transporting Materials for Perovskite Solar Cells. Series on G Energy and the Environment, 2017, , 63-109.	Chemistry,	0.3	1
2533	Fast Drying Boosted Performance Improvement of Low-Temperature Paintable Carbon Solar Cell. ACS Sustainable Chemistry and Engineering, 2017, 5, 9758-9765.	-Based Perovskite	3.2	35
2534	Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a M ACS Energy Letters, 2017, 2, 2239-2244.	lolecular Dipole.	8.8	93
2535	Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells. Reports, 2017, 7, 7859.	Scientific	1.6	28
2536	Water-resistance of macromolecules adsorbed on CH3NH3PbI3 surfaces: A first-princip Chemical Physics Letters, 2017, 686, 203-211.	ples study.	1.2	7
2537	Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Scientifi 7, 7843.	c Reports, 2017,	1.6	61
2538	Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Solar Cells with Excellent Device Performance. Advanced Functional Materials, 2017, 2	Perovskite 27, 1703061.	7.8	175
2539	Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientif 7962.	fic Reports, 2017, 7,	1.6	69
2540	Highly stable, phase pure Cs ₂ AgBiBr ₆ double perovskite thir optoelectronic applications. Journal of Materials Chemistry A, 2017, 5, 19972-19981.	ו films for	5.2	509
2541	Current progress and challenges in engineering viable artificial leaf for solar water split Journal of Science: Advanced Materials and Devices, 2017, 2, 399-417.	ting.	1.5	26
2542	Analysis of crystalline phases and integration modelling of charge quenching yields in l halide perovskite solar cell materials. Nano Energy, 2017, 40, 596-606.	nybrid lead	8.2	17
2543	Highly efficient air-stable/hysteresis-free flexible inverted-type planar perovskite and or cells employing a small molecular organic hole transporting material. Nano Energy, 20	ganic solar 17, 41, 10-17.	8.2	59

#	Article	IF	CITATIONS
2544	Effects of Selfâ€Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 2017, 10, 3794-3803.	3.6	185
2545	Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbl ₃ in Thin Films. Chemistry of Materials, 2017, 29, 8385-8394.	3.2	170
2546	Electroabsorption Spectroscopy Studies of (C ₄ H ₉ NH ₃) ₂ PbI ₄ Organic–Inorganic Hybrid Perovskite Multiple Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 4557-4564.	2.1	48
2547	Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Physical Chemistry Chemical Physics, 2017, 19, 21407-21413.	1.3	8
2548	Multi-Influences of Ionic Migration on Illumination-Dependent Electrical Performances of Inverted Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 16051-16057.	1.5	25
2549	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	1.9	65
2550	A Hybrid Perovskite Solar Cell Modified With Copper Indium Sulfide Nanocrystals to Enhance Hole Transport and Moisture Stability. Solar Rrl, 2017, 1, 1700078.	3.1	19
2551	18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar Rrl, 2017, 1, 1700097.	3.1	97
2552	Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. Nano Letters, 2017, 17, 5140-5147.	4.5	78
2553	Comprehensive Study of Sol–Gel versus Hydrolysis–Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26234-26241.	4.0	28
2554	DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 26937-26947.	4.0	75
2555	Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9, 11841-11845.	2.8	75
2556	Highly stable perovskite solar cells in humid and hot environment. Journal of Materials Chemistry A, 2017, 5, 14733-14740.	5.2	51
2557	High Quality Hybrid Perovskite Semiconductor Thin Films with Remarkably Enhanced Luminescence and Defect Suppression via Quaternary Alkyl Ammonium Salt Based Treatment. Advanced Materials Interfaces, 2017, 4, 1700562.	1.9	32
2558	In situ recycle of PbI ₂ as a step towards sustainable perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 1022-1033.	4.4	42
2559	Efficient planar perovskite solar cells based on high-quality perovskite films with smooth surface and large crystal grains fabricated in ambient air conditions. Solar Energy, 2017, 155, 942-950.	2.9	32
2560	TiO2/RbPbI3 halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 44-54.	3.0	53
2561	Dynamics of Exciton–Mn Energy Transfer in Mn-Doped CsPbCl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 17143-17149.	1.5	158

		CITATION REPORT		
#	Article	I	IF	CITATIONS
2562	Effects of SbBr3 addition to CH3NH3PbI3 solar cells. AIP Conference Proceedings, 2017, , .	,	0.3	11
2563	Effects of copper addition on photovoltaic properties of perovskite CH ₃ NH ₃ Pbl _{3â^'<i>x</i>} Cl _{<i>x</i>} solar cells. F Status Solidi (A) Applications and Materials Science, 2017, 214, 1700268.	hysica	0.8	17
2564	All Inorganic Cesium Lead Iodide Perovskite Nanowires with Stabilized Cubic Phase at Room Temperature and Nanowire Array-Based Photodetectors. Nano Letters, 2017, 17, 4951-4957.		4.5	210
2565	Extra long electron–hole diffusion lengths in CH ₃ NH ₃ Pbl _{3â^²x} Cl _x perovskite single crystals of Materials Chemistry C, 2017, 5, 8431-8435.	. Journal	2.7	91
2566	TiO ₂ Nanocrystal/Perovskite Bilayer for Highâ€Performance Photodetectors. Advance Electronic Materials, 2017, 3, 1700251.	d :	2.6	39
2567	Addition of Lithium Iodide into Precursor Solution for Enhancing the Photovoltaic Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1814-1819.		1.8	4
2568	Conjugated Small Molecule for Efficient Hole Transport in Highâ€Performance pâ€iâ€n Type Perov Cells. Advanced Functional Materials, 2017, 27, 1702613.	skite Solar ,	7.8	131
2569	Strongly Enhanced Photovoltaic Performance and Defect Physics of Air‣table Bismuth Oxyiodid (BiOI). Advanced Materials, 2017, 29, 1702176.	2	11.1	139
2570	Towards a Universal Approach for the Analysis of Impedance Spectra of Perovskite Solar Cells: Equivalent Circuits and Empirical Analysis. ChemElectroChem, 2017, 4, 2891-2901.	:	1.7	84
2571	Tuning Charge Carrier Types, Superior Mobility and Absorption in Lead-free Perovskite CH3NH3Gel Theoretical Study. Electrochimica Acta, 2017, 247, 891-898.	3:	2.6	56
2572	Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells. Organic Electronics, 2017, 50, 33-42.	:	1.4	23
2573	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.		5.2	64
2574	Monovalent Cation Doping of CH ₃ NH ₃ PbI ₃ for Efficient Perovskite Solar Cells. Journal of Visualized Experiments, 2017, , .	ſ	0.2	20
2575	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.		10.2	240
2576	Optical Analysis of Planar Multicrystalline Perovskite Solar Cells. Advanced Optical Materials, 2017 1700151.	, 5,	3.6	51
2577	Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700183.		5.6	117
2578	Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrod Advanced Energy Materials, 2017, 7, 1700492.	е.	10.2	79
2579	Organohalide Perovskites are Fast Ionic Conductors. Advanced Energy Materials, 2017, 7, 170071	0.	10.2	60

#	Article	IF	CITATIONS
2580	Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh <i>V</i> _{oc} Enhanced Stability in the pâ€iâ€n Photovoltaics. Advanced Energy Materials, 2017, 7, 1701038.	10.2	319
2581	High Efficiency MAPbI ₃ Perovskite Solar Cell Using a Pure Thin Film of Polyoxometalate as Scaffold Layer. ChemSusChem, 2017, 10, 3773-3779.	3.6	40
2582	Optical Properties and Modeling of 2D Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700062.	3.1	48
2583	High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process. ACS Applied Materials & Interfaces, 2017, 9, 26915-26920.	4.0	11
2584	Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale, 2017, 9, 12677-12683.	2.8	18
2585	Efficient and Stable Inverted Planar Perovskite Solar Cells Employing CuI as Holeâ€Transporting Layer Prepared by Solid–Gas Transformation. Energy Technology, 2017, 5, 1836-1843.	1.8	94
2586	Bulk and interface recombination in planar lead halide perovskite solar cells: A Drift-Diffusion study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 118-122.	1.3	23
2587	Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research, 2017, 32, 3011-3020.	1.2	30
2588	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Solar Energy Materials and Solar Cells, 2017, 172, 133-139.	3.0	22
2589	Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3MnI3/TiO2 heterojunction. RSC Advances, 2017, 7, 37419-37425.	1.7	24
2590	Origin of Hysteresis in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films. Advanced Functional Materials, 2017, 27, 1701924.	7.8	86
2591	Oneâ€step Solutionâ€Processed Formamidinium Lead Tribromide Formation for Better Reproducible Planar Perovskite Solar Cells. Energy Technology, 2017, 5, 1807-1813.	1.8	10
2592	Dynamic Disorder and Potential Fluctuation in Two-Dimensional Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 3875-3880.	2.1	31
2593	Photoluminescent-dielectric duple switch in a perovskite-type high-temperature phase transition compound: [(CH ₃) ₃ PCH ₂ OCH ₃][PbBr ₃]. Dalton Transactions, 2017, 46, 9528-9534.	1.6	15
2594	Evaluation of physics-based numerical modelling for diverse design architecture of perovskite solar cells. Materials Research Express, 2017, 4, 085906.	0.8	4
2595	Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. ACS Applied Materials & amp; Interfaces, 2017, 9, 27720-27726.	4.0	95
2596	Improved Morphology and Efficiency of n–i–p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives. ACS Energy Letters, 2017, 2, 1960-1968.	8.8	47
2597	Interfacial Electron Injection Probed by a Substrate-Specific Excitonic Signature. Journal of the American Chemical Society, 2017, 139, 11584-11589.	6.6	27

#	Article	IF	CITATIONS
2598	Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chemical Society Reviews, 2017, 46, 5714-5729.	18.7	197
2599	Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 2017, 9, 12316-12323.	2.8	169
2600	Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal Physics D: Applied Physics, 2017, 50, 375101.	1.3	25
2601	Large enhanced conversion efficiency of perovskite solar cells by CsBr doping. Journal of Materials Science, 2017, 52, 13203-13211.	1.7	5
2602	Polymer assisted growth of high-quality perovskite films by Lewis acid-base adduct for efficient planar-heterojunction solar cells. Materials Research Bulletin, 2017, 95, 216-222.	2.7	9
2603	Dielectric relaxation of CH3NH3PbI3 thin film. Thin Solid Films, 2017, 638, 277-281.	0.8	23
2604	CsPb ₂ Br ₅ Single Crystals: Synthesis and Characterization. ChemSusChem, 2017, 10, 3746-3749.	3.6	130
2605	Potassium doped methylammonium lead iodide (MAPbI 3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties. Physica B: Condensed Matter, 2017, 522, 57-65.	1.3	30
2606	Direct Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3902-3907.	2.1	32
2607	Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Organic Electronics, 2017, 50, 279-289.	1.4	34
2608	Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH ₂) ₃] ⁺ -based hybrid perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 18561-18568.	5.2	8
2609	Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	19
2610	Efficient and Hysteresisâ€Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1701144.	10.2	114
2611	Solvent-assisted crystallization via a delayed-annealing approach for highly efficient hybrid mesoscopic/planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 270-276.	3.0	14
2612	Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio. IEEE Journal of Photovoltaics, 2017, 7, 1674-1680.	1.5	116
2613	Advances in Small Perovskiteâ€Based Lasers. Small Methods, 2017, 1, 1700163.	4.6	268
2614	Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI ₃ . ACS Applied Materials & Interfaces, 2017, 9, 28418-28425.	4.0	73
2615	EMIMBF ₄ -Assisted SnO ₂ -Based Planar Perovskite Films for Label-Free Photoelectrochemical Sensing. ACS Omega, 2017, 2, 4341-4346.	1.6	2

#	Article	IF	CITATIONS
2616	Amorphous polymer with Cî€O to improve the performance of perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 9037-9043.	2.7	45
2617	A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. CheM, 2017, 3, 290-302.	5.8	335
2618	Combining theory and experiment in the design of a lead-free ((CH ₃ NH ₃) ₂ AgBil ₆) double perovskite. New Journal of Chemistry, 2017, 41, 9598-9601.	1.4	72
2619	High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustainable Energy and Fuels, 2017, 1, 1935-1943.	2.5	96
2620	Small molecule-driven directional movement enabling pin-hole free perovskite film via fast solution engineering. Nanoscale, 2017, 9, 15778-15785.	2.8	2
2621	Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2017, 19, 27184-27190.	1.3	18
2622	Recombination at high carrier density in methylammonium lead iodide studied using time-resolved microwave conductivity. Journal of Applied Physics, 2017, 122, .	1.1	27
2623	Largeâ€Scale Synthesis of Freestanding Layerâ€Structured PbI ₂ and MAPbI ₃ Nanosheets for Highâ€Performance Photodetection. Advanced Materials, 2017, 29, 1702759.	11.1	111
2624	Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr ₃ Films. Journal of Physical Chemistry Letters, 2017, 8, 4148-4154.	2.1	145
2625	Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 32635-32642.	4.0	49
2626	Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. Sustainable Energy and Fuels, 2017, 1, 1339-1350.	2.5	32
2627	Solution-processed field-effect transistors based on polyfluorene –cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics. Organic Electronics, 2017, 50, 213-219.	1.4	36
2628	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276
2629	Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of PbI ₂ and CsI. ACS Omega, 2017, 2, 4464-4469.	1.6	49
2630	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	7.7	272
2631	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, .	19.8	1,169
2632	Anthracene–arylamine hole transporting materials for perovskite solar cells. Chemical Communications, 2017, 53, 9558-9561.	2.2	45
2633	A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. Journal of Materials Chemistry A, 2017, 5, 19431-19438.	5.2	126

#	Article	IF	CITATIONS
2634	DFT analysis and FDTD simulation of CH ₃ NH ₃ PbI _{3â^`<i>x</i>} Cl _{<i>x</i>} mixed halide perovskite solar cells: role of halide mixing and light trapping technique. Journal Physics D: Applied Physics, 2017, 50, 415501.	1.3	34
2635	Impact of Postsynthetic Surface Modification on Photoluminescence Intermittency in Formamidinium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 6041-6047.	2.1	67
2636	Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study. Journal of Physical Chemistry C, 2017, 121, 28306-28311.	1.5	93
2637	Spatially inhomogeneous photoluminescence-voltage hysteresis in planar heterojunction perovskite-based solar cells. Applied Physics Letters, 2017, 111, 223901.	1.5	4
2638	Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: more kinetically favorable than traditional double-layer architecture. Science China Materials, 2017, 60, 963-976.	3.5	13
2639	Ultrafast Exciton Dynamics in Shape-Controlled Methylammonium Lead Bromide Perovskite Nanostructures: Effect of Quantum Confinement on Charge Carrier Recombination. Journal of Physical Chemistry C, 2017, 121, 28556-28565.	1.5	19
2640	Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.	19.8	445
2641	Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9, 18759-18771.	2.8	25
2642	Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes. Applied Physics Letters, 2017, 111, 213301.	1.5	6
2643	Molecular "Flower―as the High-Mobility Hole-Transport Material for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43855-43860.	4.0	31
2644	Fabrication-Method-Dependent Excited State Dynamics in CH3NH3PbI3 Perovskite Films. Scientific Reports, 2017, 7, 16516.	1.6	5
2645	Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity. Applied Physics Letters, 2017, 111, .	1.5	14
2646	Comparison of performance and stability of perovskite solar cells with CuInS2 and PH1000 hole transport layers fabricated in a humid atmosphere. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	6
2647	Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions. Physical Review B, 2017, 96, .	1.1	13
2648	Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and <i>J</i> – <i>V</i> Modeling. Journal of Physical Chemistry Letters, 2017, 8, 6073-6079.	2.1	69
2649	Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2017, 9, 43910-43919.	4.0	90
2650	Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications, 2017, 8, 1890.	5.8	467
2651	Spatial Inhomogeneity of Methylammonium Lead-Mixed Halide Perovskite Examined by Space- and Time-Resolved Microwave Conductivity. ACS Omega, 2017, 2, 8020-8026.	1.6	4

#	Article	IF	CITATIONS
2652	Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. Journal of Materials Chemistry A, 2017, 5, 25485-25493.	5.2	41
2653	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	4.7	635
2654	Inorganic Lattice Fluctuation Induces Charge Separation in Lead Iodide Perovskites: Theoretical Insights. Journal of Physical Chemistry C, 2017, 121, 26648-26654.	1.5	10
2655	High-performance planar perovskite solar cells: Influence of solvent upon performance. Applied Materials Today, 2017, 9, 598-604.	2.3	66
2656	Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials. Journal of Physical Chemistry C, 2017, 121, 26180-26187.	1.5	26
2657	Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH3NH3PbBr3 using terahertz time-domain spectroscopy. Applied Physics Letters, 2017, 111, .	1.5	54
2658	Segregation of Native Defects to the Grain Boundaries in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 5935-5942.	2.1	56
2659	Photoluminescence, optical gain, and lasing threshold in CH ₃ NH ₃ PbI ₃ methylammonium lead-halide perovskites obtained by <i>ab initio</i> calculations. Journal of Materials Chemistry C, 2017, 5, 12758-12768.	2.7	5
2660	Unique Trapped Dimer State of the Photogenerated Hole in Hybrid Orthorhombic CH ₃ NH ₃ PbI ₃ Perovskite: Identification, Origin, and Implications. Nano Letters, 2017, 17, 7724-7730.	4.5	19
2661	Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead lodide-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41898-41905.	4.0	51
2662	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.	5.2	41
2663	Enhancing moisture-tolerance and photovoltaic performances of FAPbI ₃ by bismuth incorporation. Journal of Materials Chemistry A, 2017, 5, 25258-25265.	5.2	50
2664	First-Principles Study of Electron Injection and Defects at the TiO ₂ /CH ₃ NH ₃ PbI ₃ Interface of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5840-5847.	2.1	31
2665	Highly Efficient Porphyrinâ€Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Advanced Materials, 2017, 29, 1703980.	11.1	176
2666	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ PbI ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	2.6	130
2667	Additiveâ€Enhanced Crystallization of Solution Process for Planar Perovskite Solar Cells with Efficiency Exceeding 19 %. Chemistry - A European Journal, 2017, 23, 18140-18145.	1.7	33
2668	Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41845-41854.	4.0	19
2669	Transfer Matrix Formalism-Based Analytical Modeling and Performance Evaluation of Perovskite Solar Cells. IEEE Transactions on Electron Devices, 2017, 64, 5034-5041.	1.6	16

#	Article	IF	CITATIONS
2670	Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells. Journal of Power Sources, 2017, 372, 235-244.	4.0	66
2671	Twoâ€Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced Optical Materials, 2017, 5, 1700809.	3.6	33
2672	Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH ₃ NH ₃ PbI ₃ :CdS perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12112-12120.	2.7	16
2673	Carrier diffusion in thin-film CH3NH3PbI3 perovskite measured using four-wave mixing. Applied Physics Letters, 2017, 111, .	1.5	29
2674	Organolead trihalide perovskite as light absorber for IGZO phototransistor. , 2017, , .		1
2675	The Effect of Methylammonium lodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Angewandte Chemie, 2017, 129, 16289-16292.	1.6	0
2676	Spatially Resolved Photophysical Dynamics in Perovskite Microplates Fabricated Using an Antisolvent Treatment. Journal of Physical Chemistry C, 2017, 121, 26250-26255.	1.5	18
2677	Self-Catalyzed Vapor–Liquid–Solid Growth of Lead Halide Nanowires and Conversion to Hybrid Perovskites. Nano Letters, 2017, 17, 7561-7568.	4.5	37
2678	Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 41546-41552.	4.0	89
2679	Interplay between Exciton and Free Carriers in Organolead Perovskite Films. Scientific Reports, 2017, 7, 14760.	1.6	7
2680	Elucidating the Methylammonium (MA) Conformation in MAPbBr ₃ Perovskite with Application in Solar Cells. Inorganic Chemistry, 2017, 56, 14214-14219.	1.9	64
2681	Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH ₃ NH ₃ Pbl ₃ Perovskite. Journal of Physical Chemistry C, 2017, 121, 26698-26705.	1.5	11
2682	Promises and challenges of perovskite solar cells. Science, 2017, 358, 739-744.	6.0	1,510
2683	Predictive Modeling of Ion Migration Induced Degradation in Perovskite Solar Cells. ACS Nano, 2017, 11, 11505-11512.	7.3	63
2684	Surface engineering of perovskite films for efficient solar cells. Scientific Reports, 2017, 7, 14478.	1.6	50
2685	Lead free double perovskite oxides Ln 2 NiMnO 6 (Ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 10-17.	1.7	82
2686	Atmospherically Processed and Stable Cs-Pb Based Perovskite Solar Cells. MRS Advances, 2017, 2, 3083-3090.	0.5	5
2687	Lowâ€Cost Carbazoleâ€Based Holeâ€Transport Material for Highly Efficient Perovskite Solar Cells. ChemSusChem, 2017, 10, 3111-3117.	3.6	40

#	Article	IF	Citations
2688	Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy, 2017, 39, 60-68.	8.2	197
2689	Application of luminescence downshifting materials for enhanced stability of CH3NH3PbI3(1-x)Cl3x perovskite photovoltaic devices. Organic Electronics, 2017, 49, 129-134.	1.4	25
2690	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions andÂcations. Nature Energy, 2017, 2, .	19.8	1,694
2691	Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nature Communications, 2017, 8, 34.	5.8	91
2692	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
2693	Tuning the Fermi Level of TiO ₂ Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1820-1826.	1.8	42
2694	Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Materials Today Energy, 2017, 5, 205-213.	2.5	75
2695	Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Organic Electronics, 2017, 49, 355-359.	1.4	21
2696	Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nature Communications, 2017, 8, 15882.	5.8	157
2697	Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25323-25331.	4.0	115
2698	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	1.7	8
2699	A theoretical study of hybrid lead iodide perovskite homologous semiconductors with 0D, 1D, 2D and 3D structures. Journal of Materials Chemistry A, 2017, 5, 16786-16795.	5.2	43
2700	Facile in situ synthesis of stable luminescent organic–inorganic lead halide perovskite nanoparticles in a polymer matrix. Journal of Materials Chemistry C, 2017, 5, 7207-7214.	2.7	26
2701	Melt Processing of Hybrid Organic–Inorganic Lead Iodide Layered Perovskites. Chemistry of Materials, 2017, 29, 6200-6204.	3.2	67
2702	Power output and carrier dynamics studies of perovskite solar cells under working conditions. Physical Chemistry Chemical Physics, 2017, 19, 19922-19927.	1.3	4
2703	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	23.3	927
2704	Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH ₃ NH ₃ SnI ₃ Perovskite Thin Films and Solar Cells. Journal of Physical Chemistry C, 2017, 121, 16158-16165.	1.5	90
2705	Perovskite solar cells $\hat{a} \in \hat{~}$ The stars of photovoltaic industry. , 2017, , .		0

#	Article	IF	CITATIONS
2706	Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49, 347-354.	1.4	70
2707	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	4.0	453
2708	Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Science China Materials, 2017, 60, 1063-1078.	3.5	60
2709	Room-Temperature Processing of TiO _{<i>x</i>} Electron Transporting Layer for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 3206-3210.	2.1	36
2710	Rashba Effect in a Single Colloidal CsPbBr ₃ Perovskite Nanocrystal Detected by Magneto-Optical Measurements. Nano Letters, 2017, 17, 5020-5026.	4.5	180
2711	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. ACS Applied Materials & Interfaces, 2017, 9, 23624-23634.	4.0	8
2712	Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters, 2017, 2, 1662-1668.	8.8	204
2713	High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells. ACS Nano, 2017, 11, 7101-7109.	7.3	90
2714	A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. Journal of Materials Chemistry C, 2017, 5, 6115-6122.	2.7	107
2715	Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Films, 2017, 636, 512-518.	0.8	28
2716	High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. Journal of Physical Chemistry C, 2017, 121, 15318-15325.	1.5	50
2717	Pbl ₂ platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition. Semiconductor Science and Technology, 2017, 32, 074003.	1.0	18
2718	Benzoyl Peroxide as an Efficient Dopant for Spiroâ€OMeTAD in Perovskite Solar Cells. ChemSusChem, 2017, 10, 3098-3104.	3.6	37
2719	Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH ₃ NH ₃ Pbl ₃ Perovskite as a Possible Cooling Bottleneck. Journal of Physical Chemistry Letters, 2017, 8, 3211-3215.	2.1	73
2720	Dynamic Electronic Junctions in Organic–Inorganic Hybrid Perovskites. Nano Letters, 2017, 17, 4831-4839.	4.5	26
2721	Microscopic Analysis of Inherent Void Passivation in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1705-1710.	8.8	14
2722	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	3.8	17
2723	Quantifying ultrafast charge carrier injection from methylammonium lead iodide into the hole-transport material H101 and mesoporous TiO ₂ using Vis-NIR transient absorption. Physical Chemistry Chemical Physics, 2017, 19, 17952-17959.	1.3	5

#	Article	IF	CITATIONS
2724	On the efficiency limit of ZnO/CH ₃ NH ₃ PbI ₃ /CuI perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 19916-19921.	1.3	12
2725	xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:mi>A</mml:mi> -site cation in determining the properties of the hybrid perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math mathvariant="bold">CH<mml:mn>3</mml:mn><mml:msub><mml:mi< td=""><td>1.1</td><td>10</td></mml:mi<></mml:msub></mml:math </mml:math 	1.1	10
2726	Twoâ€Dimensional Nonâ€Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2017, 27, 1603254.	7.8	161
2727	Efficient Indiumâ€Doped TiO <i></i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€5ilicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	10.2	167
2728	Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Organic Electronics, 2017, 40, 13-23.	1.4	41
2729	Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching. Solar Energy Materials and Solar Cells, 2017, 160, 193-202.	3.0	47
2730	Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics. Advanced Optical Materials, 2017, 5, 1600512.	3.6	63
2731	Fullerenes and derivatives as electron transport materials in perovskite solar cells. Science China Chemistry, 2017, 60, 144-150.	4.2	28
2732	Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. Journal of Alloys and Compounds, 2017, 695, 555-560.	2.8	39
2733	Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017, 2, .	19.8	1,633
2734	Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. Journal of Alloys and Compounds, 2017, 694, 1232-1238.	2.8	70
2735	Effects of polysilaneâ€doped spiroâ€OMeTAD hole transport layers on photovoltaic properties. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600591.	0.8	13
2736	Physics-based modeling and performance analysis of dual junction perovskite/silicon tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600306.	0.8	3
2737	Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Research, 2017, 10, 1223-1233.	5.8	96
2738	Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching. Journal of Materials Chemistry A, 2017, 5, 3812-3818.	5.2	61
2739	Synthesis, structure, optical, and thermal properties of diallylammonium hexabromostannate(IV) hybrid. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 58-63.	0.8	5
2740	Efficient Planar Heterojunction Perovskite Solar Cells via Low-Pressure Proximity Evaporation Technique. IEEE Journal of Photovoltaics, 2017, 7, 184-190.	1.5	7
2741	Study on cobalt doped tin based perovskite material with enhanced air stability. Materials Science in Semiconductor Processing, 2017, 57, 95-98.	1.9	19

#	Article	IF	CITATIONS
2742	Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. Journal of Materials Chemistry A, 2017, 5, 113-123.	5.2	115
2743	Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 583-589.	3.0	54
2744	Solution-Processed ZnO-Based Low-Cost \$\$hbox {CH}_{3} hbox {NH}_{3} hbox {Pbl}_{3}\$\$ CH 3 NH 3 PbI 3 Solar Cells by Ambient Air, Hole Transport Layer-Free Synthesis. Arabian Journal for Science and Engineering, 2017, 42, 4317-4325.	1.7	1
2745	Filling perovskite (5-AVA)y(CH3NH3)1â^'yPbI3 or (5-AVA)y(CH3NH3)1â^'yPbI3â^'xClx halide in a 3D gel framework for multi-deformable perovskite solar cell. Solar Energy Materials and Solar Cells, 2017, 160, 67-76.	3.0	8
2746	CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 77-84.	3.0	39
2747	Catalytic role of H ₂ O in degradation of inorganic-organic perovskite (CH ₃) Tj ETQq1 :	L 0,784314 2.2	4 rggT /Overle
2748	Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€Temperature Processed Yâ€Doped SnO ₂ Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769.	5.2	183
2749	The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells. Energy Technology, 2017, 5, 442-451.	1.8	15
2750	High-quality inorganic–organic perovskite CH3NH3PbI3 single crystals for photo-detector applications. Journal of Materials Science, 2017, 52, 276-284.	1.7	61
2751	Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science, 2017, 8, 734-741.	3.7	102
2752	Role of interface in stability of perovskite solar cells. Current Opinion in Chemical Engineering, 2017, 15, 1-7.	3.8	37
2753	Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. Journal of Alloys and Compounds, 2017, 692, 492-502.	2.8	33
2754	Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 251-264.	3.0	106
2755	Growth and interfacial structure of methylammonium lead iodide thin films on Au(111). Surface Science, 2017, 656, 17-23.	0.8	24
2756	Chlorine Incorporation in the CH ₃ NH ₃ PbI ₃ Perovskite: Small Concentration, Big Effect. Inorganic Chemistry, 2017, 56, 74-83.	1.9	40
2757	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy and Environmental Science, 2017, 10, 145-152.	15.6	319
2758	Numerical analysis of a hysteresis model in perovskite solar cells. Computational Materials Science, 2017, 126, 22-28.	1.4	13
2759	The energy level alignment at the CH3NH3PbI3/pentacene interface. Applied Surface Science, 2017, 393, 417-421.	3.1	12

#	Article	IF	CITATIONS
2760	One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, 2017, 159, 362-369.	3.0	156
2761	Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications. Inorganic Chemistry, 2017, 56, 26-32.	1.9	37
2762	Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16, 115-120.	13.3	369
2763	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	2.2	357
2764	Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating. Solar Energy Materials and Solar Cells, 2017, 159, 412-417.	3.0	41
2765	A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy, 2017, 31, 322-330.	8.2	117
2766	A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. Journal of Materials Chemistry A, 2017, 5, 1348-1373.	5.2	298
2767	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the Aâ€Cation and Xâ€Anion. Angewandte Chemie - International Edition, 2017, 56, 1190-1212.	7.2	473
2768	W(Nb)O x -based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy, 2017, 31, 424-431.	8.2	85
2769	Solutionâ€Processed MoS ₂ /Organolead Trihalide Perovskite Photodetectors. Advanced Materials, 2017, 29, 1603995.	11.1	187
2770	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â^{^2}} <i>_x</i> Cl <i>_x</i>) for Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601297.	10.2	106
2770 2771	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â^²} <i>_x</i> Cl <i>_x</i>) for Planar Heterojunction Perovskite		106 142
	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â[^]} <i>_x</i> Cl <i>_x</i>) for Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601297. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31,	10.2	
2771	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â[^]} <i>_x</i> Cl <i>_x</i>) for Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601297. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217. Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for	10.2 8.2	142
2771 2772	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â~} <i>sub>x</i> Cl <i>sub>x</i>) for Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601297.Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217.Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite	10.2 8.2 10.2	142 152
2771 2772 2773	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3a⁻} <i>sub>xxAmorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217. Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Solar Energy Materials and Solar Cells, 2017, 159, 1</i>	10.2 8.2 10.2 3.0	142 152 31
2771 2772 2773 2774	Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbl _{3â~} 3â~ <i>_x</i> <fu><i>_x_x</i> Solar Cells. Advanced Energy Materials, 2017, 7, 1601297. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217. Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251. Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Solar Energy Materials and Solar Cells, 2017, 159, 143-150. Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects. Inorganic Chemistry, 2017, 56, 11-25. Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. Journal of Photochemistry and Photobiology A:</fu>	10.2 8.2 10.2 3.0 1.9	142 152 31 45

#	Article	IF	CITATIONS
2778	Charge carrier injection at the heterointerface in CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> perovskite solar cells studied by time-resolved photoluminescence and photocurrent imaging spectroscopy. , 2017, , .		1
2779	Exciton-phonon scattering effects on photoluminescence of hybrid lead halide perovskite. , 2017, , .		1
2780	Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega, 2017, 2, 9231-9240.	1.6	19
2781	Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrxI1â^'x)3 Crystals Synthesized via a Solvothermal Method. Scientific Reports, 2017, 7, 17695.	1.6	18
2782	Importance of Pbl ₂ morphology in two-step deposition of CH ₃ NH ₃ Pbl ₃ for high-performance perovskite solar cells. Chinese Physics B, 2017, 26, 128801.	0.7	12
2783	Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nature Communications, 2017, 8, 2230.	5.8	220
2784	Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films. Physics of the Solid State, 2017, 59, 2486-2490.	0.2	14
2785	Tailoring the surface morphology with annealing temperature of the lead free perovskite solar cell, CH 3 NH 3 SnCl 3 and its relation to the cell performance. Materials Today: Proceedings, 2017, 4, 12657-12660.	0.9	3
2786	Recent advances of flexible hybrid perovskite solar cells. Journal of the Korean Physical Society, 2017, 71, 593-607.	0.3	16
2787	Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Science Advances, 2017, 3, eaaq0208.	4.7	65
2788	Effect of Carrier Transport in NiO on the Photovoltaic Properties of Lead Iodide Perovskite Solar Cells. Electrochemistry, 2017, 85, 231-235.	0.6	19
2789	Critical analysis of stability and performance of organometal halide perovskite solar cells via various fabrication method (Review). EPJ Web of Conferences, 2017, 162, 01043.	0.1	0
2790	Free Carrier Emergence and Onset of Electron–Phonon Coupling in Methylammonium Lead Halide Perovskite Films. Journal of the American Chemical Society, 2017, 139, 18262-18270.	6.6	78
2791	Grain and Grain Boundary Geometrical Shape Considerations on Sodium and Potassium Diffusion Through Molybdenum Films. , 2017, , .		0
2792	Integration of Quantum Dots and Quantum Wells into InGaAs Metamorphic Subcell for Radiation Hard 3-J ELO IMM Photovoltaics. , 2017, , .		0
2793	Parameters affecting morphologies and efficiencies of mesoporous perovskite solars cells. IOP Conference Series: Materials Science and Engineering, 2017, 220, 012023.	0.3	0
2794	Facile solvothermal method to synthesize hybrid perovskite CH_3NH_3PbX_3 (X = I, Br, Cl) crystals. Optical Materials Express, 2017, 7, 4156.	1.6	11
2795	Wide-angle polarization-free plasmon-enhanced light absorption in perovskite films using silver nanowires. Optics Express, 2017, 25, 3594.	1.7	7

#	Article	IF	CITATIONS
2796	Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells. Optics Express, 2017, 25, A253.	1.7	16
2797	Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25, A1162.	1.7	35
2798	Solvent-induced textured structure and improved crystallinity for high performance perovskite solar cells. Optical Materials Express, 2017, 7, 2150.	1.6	29
2799	TiO_2 nanotube/TiO_2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes. Optical Materials Express, 2017, 7, 3322.	1.6	15
2800	Tunable luminescent CsPb_2Br_5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Research, 2017, 5, 473.	3.4	79
2801	A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures. Chinese Physics Letters, 2017, 34, 068103.	1.3	1
2802	Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA). Coatings, 2017, 7, 115.	1.2	8
2803	Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials, 2017, 10, 837.	1.3	30
2804	Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells. Micromachines, 2017, 8, 55.	1.4	27
2805	One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials, 2017, 7, 95.	1.9	41
2806	Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots. Polymers, 2017, 9, 35.	2.0	45
2807	Are E-W trackers a better option for future investments in PV sector-A detailed Techno-Commercial Study. , 2017, , .		0
2808	Hole-Transporting Materials for Printable Perovskite Solar Cells. Materials, 2017, 10, 1087.	1.3	94
2809	CH3NH3Cl Assisted Solvent Engineering for Highly Crystallized and Large Grain Size Mixed-Composition (FAPbl3)0.85(MAPbBr3)0.15 Perovskites. Crystals, 2017, 7, 272.	1.0	26
2810	A PCBM-Modified TiO ₂ Blocking Layer towards Efficient Perovskite Solar Cells. International Journal of Photoenergy, 2017, 2017, 1-9.	1.4	20
2811	Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap. , 0, , .		1
2812	Short-circuit current-density enhancement of silicon solar cells using plasmonics antireflective coating and luminescent downshifting. , 2017, , .		0
2813	Effects of NH ₄ Cl addition to perovskite CH ₃ NH ₃ PbI ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2017, 125, 303-307.	0.5	36

#	ARTICLE Effect of Halogen Substitution on the Absorption and Emission Profile of Organometallic	IF	CITATIONS
2814 2815	Perovskites. MATEC Web of Conferences, 2017, 131, 03001. A new two-dimensional polymeric cadmium(II) complex containing dicyanamide bridging ligands. Acta	0.1	0
2816	Crystallographica Section C, Structural Chemistry, 2017, 73, 885-888. Light Intensity Dependence of Performance of Lead Halide Perovskite Solar Cells. Journal of	0.1	23
2817	Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 577-582. Recent Research Progress on Lead-free or Less-lead Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, , 4915-4927.	0.5	2
2818	F-doped TiO2 Compact Film for High-Efficient Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, 12, 1064-1074.	0.5	15
2819	Recent Progresses in Perovskite Solar Cells. , 2017, , .		3
2820	Fabrication and Characterization of Element-Doped Perovskite Solar Cells. , 2017, , .		1
2821	An exploratory review on some inorganic materials and structure of solar cells. International Journal of Materials and Structural Integrity, 2017, 11, 62.	0.1	5
2823	Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. Journal of Alloys and Compounds, 2018, 746, 391-398.	2.8	47
2824	Tin oxide as an emerging electron transport medium in perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 102-117.	3.0	43
2825	Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density. Thin Solid Films, 2018, 651, 117-123.	0.8	17
2826	Electronic Level Alignment at an Indium Tin Oxide/PbI ₂ Interface and Its Applications for Organic Electronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 8909-8916.	4.0	8
2827	Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2635-2651.	2.7	114
2828	Solid-State Thin-Film Dye-Sensitized Solar Cell Co-Sensitized with Methylammonium Lead Bromide Perovskite. Bulletin of the Chemical Society of Japan, 2018, 91, 754-760.	2.0	14
2829	Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells. Advanced Science, 2018, 5, 1700780.	5.6	144
2830	The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains. Advanced Materials, 2018, 30, e1706208.	11.1	149
2831	420 nm thick \${m{CH}}_{3}{m{NH}}_{3}{m{Pbl}}_{3-{{x}}}{m{Br}}_{{{x}}}\$ capping layers for efficient TiO 2 nanorod array perovskite solar cells. Chinese Physics B, 2018, 27, 018804.	0.7	3
2832	Oxide Hole Transport Materials in Inverted Planar Perovskite Solar Cells. , 2018, , 117-158.		2

#	Article	IF	CITATIONS
2833	Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone Radical with Improved Trap Passivation Capabilities. Advanced Functional Materials, 2018, 28, 1707444.	7.8	94
2834	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	11.1	54
2835	First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1â^'xI3 mixed perovskites. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
2836	Prospects of Ternary Cd1â^'xZn x S as an Electron Transport Layer and Associated Interface Defects in a Planar Lead Halide Perovskite Solar Cell via Numerical Simulation. Journal of Electronic Materials, 2018, 47, 3051-3058.	1.0	13
2837	Influence of a cobalt additive in spiro-OMeTAD on charge recombination and carrier density in perovskite solar cells investigated using impedance spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 10114-10120.	1.3	26
2838	Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 3945-3950.	2.7	36
2839	Graphene and its derivatives for solar cells application. Nano Energy, 2018, 47, 51-65.	8.2	284
2840	Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 2018, 179, 80-86.	3.0	104
2841	Molecular engineering of the organometallic perovskites/HTMs in the PSCs: Photovoltaic behavior and energy conversion. Solar Energy Materials and Solar Cells, 2018, 180, 46-58.	3.0	14
2842	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	1.4	75
2843	Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures. Applied Physics Letters, 2018, 112, .	1.5	10
2844	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	5.6	348
2845	A study of different central metals in octamethyl-substituted phthalocyanines as dopant-free hole-transport layers for planar perovskite solar cells. Organic Electronics, 2018, 56, 276-283.	1.4	19
2846	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	3.0	31
2847	Evidence of tunable macroscopic polarization in perovskite films using photo-Kelvin Probe Force Microscopy. Materials Letters, 2018, 217, 308-311.	1.3	5
2848	MoS ₂ : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018, 29, 205201.	1.3	73
2849	Evaporation-Induced Self-Assembly of Semi-Crystalline PbI2(DMSO) Complex Films as a Facile Route to Reproducible and Efficient Planar p-i-n Perovskite Solar Cells. MRS Advances, 2018, 3, 1807-1817.	0.5	2
2850	Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5507-5537.	5.2	104

#	Article	IF	Citations
2851	Enhanced Performance of Hole-Conductor-Free Perovskite Solar Cells by Utilization of Core/Shell-Structured β-NaYF4:Yb3+,Er3+@SiO2 Nanoparticles in Ambient Air. IEEE Journal of Photovoltaics, 2018, 8, 132-136.	1.5	23
2852	Graphene–Perovskite Schottky Barrier Solar Cells. Advanced Sustainable Systems, 2018, 2, 1700106.	2.7	12
2853	Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9849-9857.	4.0	58
2854	Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6319-6326.	5.2	28
2855	High-efficiency and stable piezo-phototronic organic perovskite solar cell. RSC Advances, 2018, 8, 8694-8698.	1.7	13
2856	Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. Journal of Physical Chemistry Letters, 2018, 9, 1573-1583.	2.1	167
2857	Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells. ACS Energy Letters, 2018, 3, 835-839.	8.8	30
2858	Improved performance of perovskite photodetectors based on a solution-processed CH3NH3PbI3/SnO2 heterojunction. Organic Electronics, 2018, 57, 206-210.	1.4	31
2859	Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties. Journal of Physical Chemistry C, 2018, 122, 5940-5947.	1.5	104
2860	Unveil the Full Potential of Integrated-Back-Contact Perovskite Solar Cells Using Numerical Simulation. ACS Applied Energy Materials, 2018, 1, 970-975.	2.5	29
2861	Solvent-Assisted Thermal-Pressure Strategy for Constructing High-Quality CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Films as High-Performance Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 8393-8398.	4.0	16
2862	Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	7
2863	Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films. Chinese Physics B, 2018, 27, 018807.	0.7	0
2864	Enhanced performance of perovskite solar cells <i>via</i> anti-solvent nonfullerene Lewis base IT-4F induced trap-passivation. Journal of Materials Chemistry A, 2018, 6, 5919-5925.	5.2	127
2865	Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Dalton Transactions, 2018, 47, 8509-8516.	1.6	65
2867	Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation. Applied Surface Science, 2018, 443, 176-183.	3.1	43
2868	Classical modelling of grain size and boundary effects in polycrystalline perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 76-82.	3.0	49
2869	Quantitative analysis of the transient photoluminescence of CH ₃ NH ₃ Pbl ₃ /PC ₆₁ BM heterojunctions by numerical simulations. Sustainable Energy and Fuels, 2018, 2, 1027-1034.	2.5	103

#	Article	IF	CITATIONS
2870	Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
2871	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
2872	On the importance of ferroelectric domains for the performance of perovskite solar cells. Nano Energy, 2018, 48, 20-26.	8.2	52
2873	Prospects for Mitigating Intrinsic Organic Decomposition in Methylammonium Lead Triiodide Perovskite. Journal of Physical Chemistry Letters, 2018, 9, 2411-2417.	2.1	58
2874	Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. Communications Physics, 2018, 1, .	2.0	32
2875	Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI ₂ precursor in mesostructured perovskite solar cells. Materials Research Express, 2018, 5, 066404.	0.8	4
2876	Device simulation of inverted CH3NH3PbI3â^'xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 2018, 169, 11-18.	2.9	92
2877	Investigating Recombination and Charge Carrier Dynamics in a One-Dimensional Nanopillared Perovskite Absorber. ACS Nano, 2018, 12, 4233-4245.	7.3	44
2878	Influence of hole transport material/metal contact interface on perovskite solar cells. Nanotechnology, 2018, 29, 255201.	1.3	13
2879	Enhanced efficiency of perovskite solar cells by introducing controlled chloride incorporation into MAPb13 perovskite films. Electrochimica Acta, 2018, 275, 1-7.	2.6	25
2880	Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer. Nano Energy, 2018, 49, 230-236.	8.2	15
2881	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	5.8	165
2882	Photoluminescence properties and device application of CsPb 2 Br 5 quantum dots in glasses. Materials Research Bulletin, 2018, 105, 63-67.	2.7	28
2883	ZnO/SnO ₂ Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH ₃ NH ₃ Pbl ₃ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2215-2221.	2.5	59
2884	Lewis Acid–Base Interaction-Induced Porous PbI ₂ Film for Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2114-2122.	2.5	20
2885	Investigation on Organic Molecule Additive for Moisture Stability and Defect Passivation via Physisorption in CH ₃ NH ₃ PbI ₃ Based Perovskite. ACS Applied Energy Materials, 2018, 1, 1870-1877.	2.5	37
2886	Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 8886-8894.	5.2	80
2887	Environmentalâ€Friendly Urea Additive Induced Large Perovskite Grains for High Performance Inverted Solar Cells. Solar Rrl, 2018, 2, 1800054.	3.1	51

#	Article	IF	CITATIONS
2888	First-principles calculation of the optoelectronic properties of doped methylammonium lead halide perovskites: A DFT-based study. Computational Materials Science, 2018, 150, 439-447.	1.4	16
2889	Recent progress in lead-free perovskite (-like) solar cells. Materials Today Energy, 2018, 8, 157-165.	2.5	60
2890	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	4.0	89
2891	Rubidium as an Alternative Cation for Efficient Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16852-16860.	4.0	36
2892	Planar Perovskite Solar Cells with High Openâ€Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant. ChemPhysChem, 2018, 19, 1363-1370.	1.0	17
2893	Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Organic Electronics, 2018, 58, 153-158.	1.4	69
2894	Room temperature ferroelectricity of hybrid organic–inorganic perovskites with mixed iodine and bromine. Journal of Materials Chemistry A, 2018, 6, 9665-9676.	5.2	26
2895	Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness. Japanese Journal of Applied Physics, 2018, 57, 052301.	0.8	14
2896	In Situ Investigation of the Growth of Methylammonium Lead Halide (MAPbI _{3–<i>x</i>} Br _{<i>x</i>}) Perovskite from Microdroplets. Crystal Growth and Design, 2018, 18, 3458-3464.	1.4	8
2897	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	2.8	169
2898	Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. Journal of Materials Chemistry C, 2018, 6, 5375-5383.	2.7	62
2899	Remarkable long-term stability of nanoconfined metal–halide perovskite crystals against degradation and polymorph transitions. Nanoscale, 2018, 10, 8320-8328.	2.8	14
2900	Enhancement of photocurrent extraction and electron injection in dual-functional CH ₃ NH ₃ PbBr ₃ perovskite-based optoelectronic devices via interfacial engineering. Nanotechnology, 2018, 29, 275704.	1.3	12
2901	Slot-Die Coated Perovskite Films Using Mixed Lead Precursors for Highly Reproducible and Large-Area Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16133-16139.	4.0	92
2902	Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 962-970.	7.1	39
2903	Synthesis of SnO ₂ nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale, 2018, 10, 8275-8284.	2.8	51
2904	A solution-processed pillar[5]arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells. Nanoscale, 2018, 10, 8088-8098.	2.8	20
2905	Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review. Renewable and Sustainable Energy Reviews, 2018, 90, 248-274.	8.2	50

#	Article	IF	CITATIONS
2906	Unraveling the Chemical Nature of the 3D "Hollow―Hybrid Halide Perovskites. Journal of the American Chemical Society, 2018, 140, 5728-5742.	6.6	132
2907	Facile Sol–Gel-Derived Craterlike Dual-Functioning TiO ₂ Electron Transport Layer for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14649-14658.	4.0	18
2908	Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy and Environmental Science, 2018, 11, 2035-2045.	15.6	217
2909	Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science, 2018, 360, 67-70.	6.0	554
2910	Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors. Nano-Micro Letters, 2018, 10, 43.	14.4	77
2911	Low-pressure assisted solution synthesis of CH3NH3PbI3-Cl perovskite solar cells. Ceramics International, 2018, 44, 11603-11609.	2.3	10
2912	A review of perovskite solar cells with a focus on wire-shaped devices. Renewable Energy Focus, 2018, 25, 17-23.	2.2	9
2913	Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Scientific Reports, 2018, 8, 5590.	1.6	47
2914	Stable perovskite solar cells using thiazolo [5,4-d]thiazole-core containing hole transporting material. Nano Energy, 2018, 49, 372-379.	8.2	35
2915	Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Physics in Medicine, 2018, 5, 20-23.	0.6	62
2916	Tunable Crystallization and Nucleation of Planar CH ₃ NH ₃ PbI ₃ through Solvent-Modified Interdiffusion. ACS Applied Materials & Interfaces, 2018, 10, 14673-14683.	4.0	14
2917	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	4.0	81
2918	Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS ₂ as an Electron Transport Layer for Highly Efficient and Stable Planar n–i–p Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14796-14802.	4.0	49
2919	Interfacial Passivation of the pâ€Doped Holeâ€Transporting Layer Using General Insulating Polymers for Highâ€Performance Inverted Perovskite Solar Cells. Small, 2018, 14, e1704007.	5.2	105
2920	Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 6806-6814.	5.2	45
2921	Hot Biexciton Effect on Optical Gain in CsPbl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 2222-2228.	2.1	67
2922	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	4.0	66
2923	Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018, 91, 1058-1068.	2.0	84

#	Article	IF	CITATIONS
2924	Photoelectrode for water splitting: Materials, fabrication and characterization. Science China Materials, 2018, 61, 806-821.	3.5	44
2925	Surfaces modification of MAPbI3 films with hydrophobic β-NaYF4:Yb,Er up-conversion ultrathin layers for improving the performance of perovskite solar cells. Applied Surface Science, 2018, 448, 145-153.	3.1	21
2926	Degradation Kinetics of Inverted Perovskite Solar Cells. Scientific Reports, 2018, 8, 5977.	1.6	44
2927	Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2. Applied Physics Letters, 2018, 112, .	1.5	50
2928	Recent Advances in Halide Perovskite Photodetectors Based on Different Dimensional Materials. Advanced Optical Materials, 2018, 6, 1701302.	3.6	107
2929	Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device. Journal of Physical Chemistry C, 2018, 122, 5341-5348.	1.5	43
2930	Electrode quenching control for highly efficient CsPbBr ₃ perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles. Nanotechnology, 2018, 29, 175203.	1.3	26
2931	Highly flexible and scalable photo-rechargeable power unit based on symmetrical nanotube arrays. Nano Energy, 2018, 46, 168-175.	8.2	44
2932	Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 2890-2896.	6.6	288
2933	Mixed Valence Perovskite Cs ₂ Au ₂ I ₆ : A Potential Material for Thinâ€Film Pbâ€Free Photovoltaic Cells with Ultrahigh Efficiency. Advanced Materials, 2018, 30, e1707001.	11.1	79
2934	Enhancing thermoelectric performance of the CH3NH3PbI3 polycrystalline thin films by using the excited state on photoexcitation. Organic Electronics, 2018, 55, 90-96.	1.4	24
2935	Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Organic Electronics, 2018, 55, 140-145.	1.4	39
2936	Morphology and Optoelectronic Variations Underlying the Nature of the Electron Transport Layer in Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 602-615.	2.5	25
2937	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via Ï€â€Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	11.1	241
2938	On the growth of CH 3 NH 3 PbI 3-x Cl x single crystal and characterization. Physica B: Condensed Matter, 2018, 537, 7-11.	1.3	7
2939	Ligand-exchange TiO2 nanocrystals induced formation of high-quality electron transporting layers at low temperature for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 178, 65-73.	3.0	34
2940	Enhancement of Morphological and Optoelectronic Properties of Perovskite Films by CH ₃ NH ₃ Cl Treatment for Efficient Solar Minimodules. ACS Applied Energy Materials, 2018, 1, 1047-1052.	2.5	31
2941	Efficient Planar-Heterojunction Perovskite Solar Cells Fabricated by High-Throughput Sheath-Gas-Assisted Electrospray. ACS Applied Materials & Interfaces, 2018, 10, 7281-7288.	4.0	9

	CITATION RE	PORT	
#	Article	IF	CITATIONS
2942	Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performances of perovskite solar cells. Electrochimica Acta, 2018, 266, 118-129.	2.6	17
2943	Impact of PCBM/C60 electron transfer layer on charge transports on ordered and disordered perovskite phases and hysteresis-free perovskite solar cells. Organic Electronics, 2018, 56, 163-169.	1.4	34
2944	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.	2.9	36
2945	Structural and compositional characteristics of vacuum deposited methylammonium lead halide perovskite layers in dependence on background pressure and substrate temperature. Thin Solid Films, 2018, 650, 51-57.	0.8	6
2946	Fast Voltage Decay in Perovskite Solar Cells Caused by Depolarization of Perovskite Layer. Journal of Physical Chemistry C, 2018, 122, 4822-4827.	1.5	30
2947	Effect of Bromine Substitution on the Ion Migration and Optical Absorption in MAPbI ₃ Perovskite Solar Cells: The First-Principles Study. ACS Applied Energy Materials, 2018, 1, 1374-1380.	2.5	46
2948	Growth of mixed-halide perovskite single crystals. CrystEngComm, 2018, 20, 1635-1643.	1.3	35
2949	Largely enhanced <i>V</i> _{OC} and stability in perovskite solar cells with modified energy match by coupled 2D interlayers. Journal of Materials Chemistry A, 2018, 6, 4860-4867.	5.2	61
2950	CH3NH3Pb1â^'xMgxI3 perovskites as environmentally friendly photovoltaic materials. AIP Advances, 2018, 8, 015218.	0.6	16
2951	Charge Transport Layer Doping Influence on Perovskite CH ₃ NH ₃ PbI _{3-x} Cl _x Solar Cell Performance. Key Engineering Materials, 0, 762, 249-254.	0.4	0
2952	Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule, 2018, 2, 558-570.	11.7	403
2953	Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications. MRS Advances, 2018, 3, 1819-1823.	0.5	18
2954	Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-Micro Letters, 2018, 10, 34.	14.4	105
2956	Covalent organic nanosheets for effective charge transport layers in planar-type perovskite solar cells. Nanoscale, 2018, 10, 4708-4717.	2.8	31
2957	Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Advanced Materials, 2018, 30, 1705786.	11.1	209
2958	Influence of coating steps of perovskite on low-temperature amorphous compact TiO <i> _x </i> upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 03EJ06.	0.8	8
2959	Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance. Journal of Materials Research, 2018, 33, 387-400.	1.2	38
2960	Interplay Between Extra Charge Injection and Lattice Evolution in VO ₂ /CH ₃ NH ₃ PbI ₃ Heterostructure. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700416.	1.2	3

#	Article	IF	CITATIONS
2961	Hybrid Perovskites: Prospects for Concentrator Solar Cells. Advanced Science, 2018, 5, 1700792.	5.6	76
2962	High-Quality CH ₃ NH ₃ PbI ₃ Films Obtained via a Pressure-Assisted Space-Confined Solvent-Engineering Strategy for Ultrasensitive Photodetectors. Nano Letters, 2018, 18, 1213-1220.	4.5	35
2963	High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism. Journal of Materials Chemistry A, 2018, 6, 4179-4188.	5.2	31
2964	Variation in the Photocurrent Response Due to Different Emissive States in Methylammonium Lead Bromide Perovskites. Journal of Physical Chemistry C, 2018, 122, 3818-3823.	1.5	11
2965	Near-Band-Edge Optical Responses of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mrow><mml: Single Crystals: Photon Recycling of Excitonic Luminescence. Physical Review Letters, 2018, 120, 057404.</mml: </mml:mrow></mml:msub></mml:mrow></mml:math>	:mn>32.9	۱۳۶;mn>
2966	Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 095501.	1.3	21
2967	Spectral Studies of Leadâ€Free Organicâ€Inorganic Hybrid Solidâ€State Perovskites CH ₃ NH ₃ Bi _{2/3} I ₃ and CH ₃ NH ₃ Pb _{1/2} Bi _{1/3} I ₃ ?botential Photo Absorbers. ChemistrySelect, 2018, 3, 794-800.	0.7	5
2968	Planar perovskite solar cells employing copper(I) thiocyanate/ <i>N</i> , <i>N</i> â€2-di(1-naphthyl)- <i>N</i> , <i>N</i> â€2-diphenyl-(1,1â€2-biphenyl)-4,4â€2-diamine structure as hole transport layers. Japanese Journal of Applied Physics, 2018, 57, 02CE07.	bila yer	2
2969	Humidityâ€Induced Degradation via Grain Boundaries of HC(NH ₂) ₂ PbI ₃ Planar Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1705363.	7.8	260
2970	Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer. Advanced Energy Materials, 2018, 8, 1702287.	10.2	121
2971	Inorganic Perovskite Solar Cells: A Rapidly Growing Field. Solar Rrl, 2018, 2, 1700188.	3.1	193
2972	Charge-Carrier Dynamics and Crystalline Texture of Layered Ruddlesden–Popper Hybrid Lead Iodide Perovskite Thin Films. ACS Energy Letters, 2018, 3, 380-386.	8.8	97
2973	Superfast Roomâ€Temperature Activation of SnO ₂ Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics. Advanced Materials, 2018, 30, 1704825.	11.1	73
2974	Electrodeposition of organic–inorganic tri-halide perovskites solar cell. Journal of Power Sources, 2018, 378, 717-731.	4.0	36
2975	Predicted Lead-Free Perovskites for Solar Cells. Chemistry of Materials, 2018, 30, 718-728.	3.2	102
2976	Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH ₃ NH ₃ PbI ₃) Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 426-434.	2.1	68
2977	Interfacial engineering <i>via</i> inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3435-3443.	5.2	30
2978	Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films. Journal of Energy Chemistry, 2018, 27, 1170-1174.	7.1	23

#	Article	IF	CITATIONS
2979	Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 939-946.	2.1	88
2980	Application of dye-sensitized and perovskite solar cells on flexible substrates. Flexible and Printed Electronics, 2018, 3, 013002.	1.5	14
2981	Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic Applications. Solar Rrl, 2018, 2, 1700186.	3.1	98
2982	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	5.8	763
2983	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	15.6	480
2984	Differences in photoinduced optical transients in perovskite absorbers for solar cells. RSC Advances, 2018, 8, 6479-6487.	1.7	6
2985	ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Science Bulletin, 2018, 63, 343-348.	4.3	33
2986	Lowâ€Voltage, Optoelectronic CH ₃ NH ₃ PbI _{3â^'} <i>_x</i> CI <i>_x</i> Wemory with Integrated Sensing and Logic Operations. Advanced Functional Materials, 2018, 28, 1800080.	7.8	190
2987	Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21, 483-500.	8.3	99
2988	Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy, 2018, 163, 289-306.	2.9	104
2989	Compact layer free mixed-cation lead mixed-halide perovskite solar cells. Chemical Communications, 2018, 54, 2623-2626.	2.2	27
2990	Plasmonicâ€Functionalized Broadband Perovskite Photodetector. Advanced Optical Materials, 2018, 6, 1701271.	3.6	86
2991	An Efficient Amphiphilicâ€Type Triphenylamineâ€Based Organic Hole Transport Material for Highâ€Performance and Ambientâ€Stable Dopantâ€Free Perovskite and Organic Solar Cells. Chemistry - A European Journal, 2018, 24, 6426-6431.	1.7	10
2992	Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. Journal of Physical Chemistry Letters, 2018, 9, 654-658.	2.1	447
2993	Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation. ACS Energy Letters, 2018, 3, 428-435.	8.8	344
2994	Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites. Journal of the American Chemical Society, 2018, 140, 1994-1997.	6.6	59
2995	Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 2018, 42, 2896-2902.	1.4	43
2996	Environment versus sustainable energy: The case of lead halide perovskite-based solar cells. MRS Energy & Sustainability, 2018, 5, 1.	1.3	59

#	Article	IF	CITATIONS
2997	Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nature Communications, 2018, 9, 293.	5.8	243
2998	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	1.6	144
2999	All‣olutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cells with Selfâ€Depleted Na ₂ S Back Contact Modification Layer. Advanced Functional Materials, 2018, 28, 1703369.	7.8	36
3000	Sulfateâ€Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkaliâ€Doped TiO ₂ Electronâ€Transporting Layers. Advanced Functional Materials, 2018, 28, 1706287.	7.8	208
3001	Preferential Orientation of Crystals Induced by Incorporation of Organic Ligands in Mixedâ€Đimensional Hybrid Perovskite Films. Advanced Optical Materials, 2018, 6, 1701311.	3.6	28
3002	How Methylammonium Cations and Chlorine Dopants Heal Defects in Lead Iodide Perovskites. Advanced Energy Materials, 2018, 8, 1702754.	10.2	86
3003	Diffractionâ€Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. Advanced Energy Materials, 2018, 8, 1702960.	10.2	119
3004	Lowâ€Temperature Processed, Efficient, and Highly Reproducible Cesiumâ€Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700209.	3.1	113
3005	Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling. Advanced Materials, 2018, 30, 1704737.	11.1	86
3006	Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Letters, 2018, 3, 669-676.	8.8	242
3007	Screening of point defects in methylammonium lead halides: a Monte Carlo study. Journal of Materials Chemistry C, 2018, 6, 1487-1494.	2.7	6
3008	Perovskite Thin Film Synthesised from Sputtered Lead Sulphide. Scientific Reports, 2018, 8, 1563.	1.6	56
3009	A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity. Advanced Functional Materials, 2018, 28, 1706377.	7.8	134
3010	Simultaneous Improvement in Efficiency and Stability of Lowâ€Temperatureâ€Processed Perovskite Solar Cells by Interfacial Control. Advanced Energy Materials, 2018, 8, 1702934.	10.2	84
3011	Organic Cation Substitution in Hybrid Perovskite CH ₃ NH ₃ PbI ₃ with Hydroxylammonium (NH ₃ OH ⁺): A First-Principles Study. Journal of Physical Chemistry C, 2018, 122, 3548-3557.	1.5	13
3012	Influence of Rutile-TiO2 nanorod arrays on Pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process. Journal of Alloys and Compounds, 2018, 738, 422-431.	2.8	23
3013	Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. Journal of Alloys and Compounds, 2018, 738, 405-414.	2.8	36
3014	Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 1909-1916.	4.0	115

#	Article	IF	CITATIONS
3015	Forming Intermediate Phase on the Surface of PbI ₂ Precursor Films by Short-Time DMSO Treatment for High-Efficiency Planar Perovskite Solar Cells via Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2018, 10, 1781-1791.	4.0	41
3016	MAPbl ₃ Solar Cells with Absorber Deposited by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. ACS Energy Letters, 2018, 3, 270-275.	8.8	32
3017	Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Optical and Quantum Electronics, 2018, 50, 1.	1.5	26
3018	Hexamethylenetetramine-mediated growth of grain-boundary-passivation CH 3 NH 3 PbI 3 for highly reproducible and stable perovskite solar cells. Journal of Power Sources, 2018, 377, 103-109.	4.0	30
3019	Giant Twoâ€Photon Absorption in Mixed Halide Perovskite CH ₃ NH ₃ Pb _{0.75} Sn _{0.25} I ₃ Thin Films and Application to Photodetection at Optical Communication Wavelengths. Advanced Optical Materials, 2018, 6, 1700819.	3.6	44
3020	Enhanced Twoâ€Photonâ€Pumped Emission from In Situ Synthesized Nonblinking CsPbBr ₃ /SiO ₂ Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018, 6, 1700997.	3.6	116
3021	Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH ₃ NH ₃ PbI ₃ : Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 2018, 5, 1700662.	5.6	130
3022	Analysis of Ionâ€Diffusionâ€Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode. Advanced Energy Materials, 2018, 8, 1702197.	10.2	55
3023	Effective approach for reducing the migration of ions and improving the stability of organic–inorganic perovskite solar cells. Journal of Alloys and Compounds, 2018, 741, 489-494.	2.8	20
3024	Electron–Phonon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles. Journal of Physical Chemistry C, 2018, 122, 1361-1366.	1.5	29
3025	Controllable Crystal Film Growth via Appropriate Substrate-Preheating Treatment for Perovskite Solar Cells Using Mixed Lead Sources. IEEE Journal of Photovoltaics, 2018, 8, 162-170.	1.5	6
3026	Lowâ€Temperature Processed Nanostructured Rutile TiO ₂ Array Films for Perovskite Solar Cells With High Efficiency and Stability. Solar Rrl, 2018, 2, 1700164.	3.1	18
3027	Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs ₃ Sb ₂ I ₉ . ACS Applied Materials & Interfaces, 2018, 10, 2566-2573.	4.0	137
3028	Exploring the transposition effects on the electronic and optical properties of Cs ₂ AgSbCl ₆ <i>via</i> a combined computational-experimental approach. Journal of Materials Chemistry A, 2018, 6, 2346-2352.	5.2	100
3029	Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy, 2018, 45, 280-286.	8.2	67
3030	Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	44
3031	Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. Materials Today Energy, 2018, 7, 260-266.	2.5	30
3032	Incorporating C ₆₀ as Nucleation Sites Optimizing PbI ₂ Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method. ACS Applied Materials & amp; Interfaces, 2018, 10, 2603-2611.	4.0	27

#	Article	IF	CITATIONS
3033	Passivated Perovskite Crystallization via <i>g</i> ₃ N ₄ for Highâ€Performance Solar Cells. Advanced Functional Materials, 2018, 28, 1705875.	7.8	208
3034	Influence of the Nature of A Cation on Dynamics of Charge Transfer Processes in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706073.	7.8	58
3035	The Dawn of Leadâ€Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs ₂ AgBiBr ₆ Film. Advanced Science, 2018, 5, 1700759.	5.6	363
3036	A Lowâ€Temperature Thinâ€Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell. Advanced Energy Materials, 2018, 8, 1701928.	10.2	136
3037	Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization. Advanced Energy Materials, 2018, 8, 1702369.	10.2	74
3038	<i>In situ</i> simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energy and Environmental Science, 2018, 11, 383-393.	15.6	77
3039	Allâ€Solutionâ€Processed Silver Nanowire Window Electrodeâ€Based Flexible Perovskite Solar Cells Enabled with Amorphous Metal Oxide Protection. Advanced Energy Materials, 2018, 8, 1702182.	10.2	108
3040	Scanning Probe Microscopy Applied to Organic–Inorganic Halide Perovskite Materials and Solar Cells. Small Methods, 2018, 2, 1700295.	4.6	57
3041	Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy, 2018, 45, 28-36.	8.2	241
3042	Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. Journal of Physical Chemistry Letters, 2018, 9, 263-268.	2.1	23
3043	Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Physical Chemistry Chemical Physics, 2018, 20, 2388-2395.	1.3	40
3044	Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering. Advanced Materials Interfaces, 2018, 5, 1701256.	1.9	60
3045	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	3.6	114
3046	Effect of guanidinium on the optical properties and structure of the methylammonium lead halide perovskite. Journal of Alloys and Compounds, 2018, 739, 1059-1064.	2.8	25
3047	Distinguishing Thermal and Electronic Effects in Ultrafast Optical Spectroscopy Using Oxide Heterostructures. Journal of Physical Chemistry C, 2018, 122, 115-123.	1.5	25
3048	Fabrication and characterization of CH ₃ NH ₃ (Cs)Pb(Sn)I ₃ (Cl) perovskite solar cells with TiO ₂ nanoparticle layers. Japanese Journal of Applied Physics, 2018, 57, 02CE03.	0.8	11
3049	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	3.1	31
3050	Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells. Joule, 2018, 2, 296-306.	11.7	138

	CHATION R	LPORT	
#	ARTICLE	IF	CITATIONS
3051	Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2018, 3, 204-213.	8.8	444
3052	Direct Observation of Ultrafast Exciton Dissociation in Lead Iodide Perovskite by 2D Electronic Spectroscopy. ACS Photonics, 2018, 5, 852-860.	3.2	57
3053	Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1573-1578.	2.7	33
3054	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	2.8	28
3055	Thermal Stability of Mixed Cation Metal Halide Perovskites in Air. ACS Applied Materials & Interfaces, 2018, 10, 5485-5491.	4.0	123
3056	Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%. Nanoscale, 2018, 10, 3245-3253.	2.8	33
3057	Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study. Applied Surface Science, 2018, 440, 35-41.	3.1	54
3058	High Quality Perovskite Crystals for Efficient Film Photodetectors Induced by Hydrolytic Insulating Oxide Substrates. Advanced Functional Materials, 2018, 28, 1705220.	7.8	34
3059	Anisotropic ionic transportation performances of (100) and (112) planes in MAPbI3 single crystal. Materials Research Bulletin, 2018, 99, 466-470.	2.7	12
3060	Performance enhancement of perovskite solar cells using NH4I additive in a solution processing method. Solar Energy, 2018, 162, 8-13.	2.9	11
3061	Ultrafast Imaging of Carrier Cooling in Metal Halide Perovskite Thin Films. Nano Letters, 2018, 18, 1044-1048.	4.5	33
3062	Selfâ€Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite. Advanced Materials, 2018, 30, 1705230.	11.1	79
3063	Excitations Partition into Two Distinct Populations in Bulk Perovskites. Advanced Optical Materials, 2018, 6, 1700975.	3.6	8
3064	Band Engineering via Snâ€doping of Zinc Oxide Electron Transport Materials for Perovskite Solar Cells. ChemistrySelect, 2018, 3, 363-367.	0.7	9
3065	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	11.1	81
3066	Pyridine-Modulated Mn Ion Emission Properties of C ₁₀ H ₁₂ N ₂ MnBr ₄ and C ₅ H ₆ NMnBr ₃ Single Crystals. Journal of Physical Chemistry C, 2018. 122. 3130-3137.	1.5	88
3067	Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. ACS Energy Letters, 2018, 3, 322-328.	8.8	143
3068	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	15.6	209

#	Article	IF	CITATIONS
3069	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
3070	Mechanism and effect of \hat{I}^3 -butyrolactone solvent vapor post-annealing on the performance of a mesoporous perovskite solar cell. RSC Advances, 2018, 8, 724-731.	1.7	27
3071	Controlled synthesis of brightly fluorescent CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals employing Pb(C ₁₇ H ₃₃ COO) ₂ as the sole lead source. RSC Advances, 2018, 8, 1132-1139.	1.7	6
3072	Enhanced crystallinity of CH ₃ NH ₃ Pbl ₃ by the pre-coordination of Pbl ₂ –DMSO powders for highly reproducible and efficient planar heterojunction perovskite solar cells. RSC Advances, 2018, 8, 1005-1013.	1.7	33
3073	Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources, 2018, 378, 483-490.	4.0	51
3074	Construction of Perovskite Solar Cells Using Inorganic Hole-Extracting Components. ACS Omega, 2018, 3, 46-54.	1.6	21
3075	A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 2406-2431.	5.2	179
3076	Compositionally Graded Absorber for Efficient and Stable Nearâ€Infraredâ€Transparent Perovskite Solar Cells. Advanced Science, 2018, 5, 1700675.	5.6	65
3077	Theoretical insight into the carrier mobility anisotropy of organic-inorganic perovskite CH3NH3PbI3. Journal of Electroanalytical Chemistry, 2018, 810, 11-17.	1.9	16
3078	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	8.2	19
3079	Effect of Interfacial Energetics on Charge Transfer from Lead Halide Perovskite to Organic Hole Conductors. Journal of Physical Chemistry C, 2018, 122, 1326-1332.	1.5	32
3080	Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition. Nano Letters, 2018, 18, 846-852.	4.5	38
3081	High-Performance Photodetectors Based on Solution-Processed Epitaxial Grown Hybrid Halide Perovskites. Nano Letters, 2018, 18, 994-1000.	4.5	105
3082	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	7.1	90
3083	Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120.	10.2	85
3084	Alignment of Cascaded Band-Gap via PCBM/ZnO Hybrid Interlayers for Efficient Perovskite Photovoltaic Cells. Macromolecular Research, 2018, 26, 472-476.	1.0	16
3085	Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society, 2018, 140, 6317-6324.	6.6	338
3086	Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9220-9227.	5.2	55

#	Article	IF	CITATIONS
3087	Hydrogen evolution with CsPbBr3 perovskite nanocrystals under visible light in solution. Materials Today Communications, 2018, 16, 90-96.	0.9	30
3088	One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy, 2018, 49, 523-528.	8.2	95
3089	From Ultrafast to Ultraslow: Charge-Carrier Dynamics of Perovskite Solar Cells. Joule, 2018, 2, 879-901.	11.7	190
3090	Carbon nanotubes as the effective charge transport pathways for planar perovskite photodetector. Organic Electronics, 2018, 59, 156-163.	1.4	19
3091	Local Optoelectronic Characterization of Solvent-Annealed, Lead-Free, Bismuth-Based Perovskite Films. Langmuir, 2018, 34, 7647-7654.	1.6	30
3092	Functional graded fullerene derivatives for improving the fill factor and device stability of inverted-type perovskite solar cells. Nanotechnology, 2018, 29, 305701.	1.3	18
3093	Microstructures, optical and photovoltaic properties of CH ₃ NH ₃ Pbl _{3(1â^'<i>x</i>)} Cl _{<i>x</i>} perovskite films with CuSCN additive. Materials Research Express, 2018, 5, 055504.	0.8	11
3094	Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving Highâ€Quality MAPbI ₃ Perovskite Films in Humid Atmosphere. ChemSusChem, 2018, 11, 2348-2357.	3.6	70
3095	Interface Design for Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1287-1293.	8.8	98
3096	Reflectivity Effects on Pump–Probe Spectra of Lead Halide Perovskites: Comparing Thin Films <i>versus</i> Nanocrystals. ACS Nano, 2018, 12, 5719-5725.	7.3	35
3097	Pressure-induced strong ferroelectric polarization in tetra-phase perovskite CsPbBr ₃ . Physical Chemistry Chemical Physics, 2018, 20, 14718-14724.	1.3	71
3098	Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification. Solar Energy Materials and Solar Cells, 2018, 183, 157-163.	3.0	38
3099	Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging. Nano Letters, 2018, 18, 3024-3031.	4.5	38
3100	Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure. Nano Letters, 2018, 18, 3600-3607.	4.5	114
3101	Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties. Sustainable Energy and Fuels, 2018, 2, 1430-1445.	2.5	78
3102	Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 2018, 49, 324-332.	8.2	52
3103	Photovoltaic-targeted photoluminescence lifetime engineering in bright type-II alloy quantum dots. Solar Energy, 2018, 169, 75-83.	2.9	2
3104	Synthesis and characterization of thiophene-mediated hole transport materials for perovskite solar cells. Synthetic Metals, 2018, 241, 54-68.	2.1	8

#	Article	IF	CITATIONS
3105	Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study. Computational Materials Science, 2018, 150, 411-417.	1.4	18
3106	Study of carbon-based hole-conductor-free perovskite solar cells. International Journal of Hydrogen Energy, 2018, 43, 11403-11410.	3.8	11
3107	Evaluation of the effect that the substitution of the ion MA by the ion Cs produces on the properties of thin films of Cs MA1-PbI3 prepared by spin-coating. Journal of Alloys and Compounds, 2018, 750, 286-291.	2.8	5
3108	High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application. Journal of Power Sources, 2018, 390, 270-277.	4.0	28
3109	Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Solar Energy, 2018, 169, 128-135.	2.9	51
3110	A Versatile Thin-Film Deposition Method for Multidimensional Semiconducting Bismuth Halides. Chemistry of Materials, 2018, 30, 3538-3544.	3.2	52
3111	Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nature Photonics, 2018, 12, 355-361.	15.6	408
3112	Enhanced performance of perovskite solar cells based on vertical TiO 2 nanotube arrays with full filling of CH 3 NH 3 PbI 3. Applied Surface Science, 2018, 451, 250-257.	3.1	32
3113	Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer. Journal of Power Sources, 2018, 390, 134-141.	4.0	25
3114	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	8.2	23
3115	Imaging Carrier Diffusion in Perovskites with a Diffractive Optic-Based Transient Absorption Microscope. Journal of Physical Chemistry C, 2018, 122, 10650-10656.	1.5	31
3116	Excitonic Effects in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2595-2603.	2.1	107
3117	Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. ACS Energy Letters, 2018, 3, 1225-1232.	8.8	148
3118	High-Performance Photodetectors Based on Single All-Inorganic CsPbBr ₃ Perovskite Microwire. ACS Photonics, 2018, 5, 2113-2119.	3.2	61
3119	High performance planar p-i-n perovskite solar cells based on a thin Alq ₃ cathode buffer layer. RSC Advances, 2018, 8, 15961-15966.	1.7	16
3120	Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices. Semiconductor Science and Technology, 2018, 33, 065012.	1.0	28
3121	Fabrication of hole-conductor-free perovskite solar cells based on Al doped ZnO and low-cost carbon electrode. Journal of Materials Science: Materials in Electronics, 2018, 29, 10092-10101.	1.1	6
3122	Effects of annealing on CH ₃ NH ₃ PbI ₃ (Cl) perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2018, 126, 56-60.	0.5	32

#	Article	IF	CITATIONS
3123	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	11.1	106
3124	Revealing Bound Exciton Physics inÂStrongly Interacting Band Insulators. Springer Theses, 2018, , 109-168.	0.0	0
3125	Enhanced performance of planar perovskite solar cells using low-temperature processed Ga-doped TiO 2 compact film as efficient electron-transport layer. Electrochimica Acta, 2018, 272, 68-76.	2.6	19
3126	Evidence of Bipolar Resistive Switching Memory in Perovskite Solar Cell. IEEE Journal of the Electron Devices Society, 2018, 6, 454-463.	1.2	15
3127	Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced Materials, 2018, 30, e1706246.	11.1	242
3128	Highâ€Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustionâ€Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 2018, 8, 1703432.	10.2	279
3129	Improving the Performance of a Perovskite Solar Cell by Adjusting the Dispersant for Titanium Dioxide. Energy Technology, 2018, 6, 677-682.	1.8	2
3130	Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment. IScience, 2018, 2, 148-155.	1.9	156
3131	Secondary crystal growth for efficient planar perovskite solar cells in ambient atmosphere. Organic Electronics, 2018, 58, 119-125.	1.4	3
3132	Review of recent developments and persistent challenges in stability of perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 90, 210-222.	8.2	96
3133	(C ₆ H ₁₃ N) ₂ Bil ₅ : A One-Dimensional Lead-Free Perovskite-Derivative Photoconductive Light Absorber. Inorganic Chemistry, 2018, 57, 4239-4243.	1.9	76
3134	Advances in Spray-Cast Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 1977-1984.	2.1	106
3135	Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics. ACS Energy Letters, 2018, 3, 1068-1076.	8.8	44
3136	Effect of the post-annealing temperature on the thermal-decomposed NiO _{<i>x</i>} hole contact layer for perovskite solar cells. Journal of Advanced Dielectrics, 2018, 08, 1850006.	1.5	8
3137	Synthesis and Characterization of an Efficient Hole-Conductor Free Halide Perovskite CH ₃ NH ₃ PbI ₃ Semiconductor Absorber Based Photovoltaic Device for IOT. Journal of the Electrochemical Society, 2018, 165, B3023-B3029.	1.3	27
3138	The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites. Advanced Functional Materials, 2018, 28, 1706995.	7.8	28
3139	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385.	10.2	167
3140	Surface Rutilization of Anatase TiO2 for Efficient Electron Extraction and Stable Pmax Output of Perovskite Solar Cells. CheM, 2018, 4, 911-923.	5.8	28

#	Article	IF	CITATIONS
3141	Computational Study of Structural and Electronic Properties of Lead-Free CsMI ₃ Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba). Journal of Physical Chemistry C, 2018, 122, 7838-7848.	1.5	62
3142	Highly (100)-oriented CH ₃ NH ₃ PbI ₃ (Cl) perovskite solar cells prepared with NH ₄ Cl using an air blow method. RSC Advances, 2018, 8, 10389-10395.	1.7	63
3143	Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH ₃ NH ₃ Pbl ₃ Perovskites. Chinese Physics Letters, 2018, 35, 028401.	1.3	5
3144	Highly Efficient and Stable Solar Cells with 2D MA ₃ Bi ₂ I ₉ /3D MAPbI ₃ Heterostructured Perovskites. Advanced Energy Materials, 2018, 8, 1703620.	10.2	94
3145	Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes. ACS Applied Materials & Interfaces, 2018, 10, 12878-12885.	4.0	38
3146	Elucidating the Impact of Thin Film Texture on Charge Transport and Collection in Perovskite Solar Cells. ACS Omega, 2018, 3, 3522-3529.	1.6	8
3147	Lead-free, air-stable hybrid organic–inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. Nanoscale, 2018, 10, 8578-8584.	2.8	136
3148	SKPM study on organic-inorganic perovskite materials. AIP Advances, 2018, 8, .	0.6	9
3149	Dendrimer ligands-capped CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water. Nanotechnology, 2018, 29, 235603.	1.3	8
3150	Overcoming Bulk Recombination Limits of Layered Perovskite Solar Cells with Mesoporous Substrates. Journal of Physical Chemistry C, 2018, 122, 14177-14185.	1.5	20
3151	Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 2018, 3, .	23.3	764
3152	Cal ₂ : a more effective passivator of perovskite films than Pbl ₂ for high efficiency and long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 7903-7912.	5.2	69
3153	Colloidal synthesis of monolayer-thick formamidinium lead bromide perovskite nanosheets with a lateral size of micrometers. Chemical Communications, 2018, 54, 4021-4024.	2.2	14
3154	Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air. Chinese Physics B, 2018, 27, 038402.	0.7	2
3155	First-Principles Modeling of Bismuth Doping in the MAPbl ₃ Perovskite. Journal of Physical Chemistry C, 2018, 122, 14107-14112.	1.5	64
3156	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10835-10841.	4.0	28
3157	Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation. ACS Applied Materials & Interfaces, 2018, 10, 11722-11731.	4.0	24
3158	CH ₃ NH ₃ Pb _{1â^'x} Eu _x I ₃ mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability. RSC Advances, 2018, 8, 11095-11101.	1.7	45

# 3159	ARTICLE Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy and Environmental Science, 2018, 11, 1460-1469.	IF 15.6	CITATIONS
3160	Optical properties of CH3NH3PbI3 single crystal. Journal of Luminescence, 2018, 199, 160-164.	1.5	1
3161	Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation. Inorganic Chemistry, 2018, 57, 4181-4188.	1.9	51
3162	Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555, 497-501.	13.7	1,336
3163	Perovskite–silicon tandem solar modules with optimised light harvesting. Energy and Environmental Science, 2018, 11, 1489-1498.	15.6	104
3164	Importance of ligands on TiO 2 nanocrystals for perovskite solar cells. Chinese Physics B, 2018, 27, 018401.	0.7	1
3165	What Remains Unexplained about the Properties of Halide Perovskites?. Advanced Materials, 2018, 30, e1800691.	11.1	231
3166	Highlyâ€Stable Organoâ€Lead Halide Perovskites Synthesized Through Green Selfâ€Assembly Process. Solar Rrl, 2018, 2, 1800052.	3.1	56
3167	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	18.7	339
3168	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide. RSC Advances, 2018, 8, 11455-11461.	1.7	4
3169	A novel ball milling technique for room temperature processing of TiO ₂ nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018, 6, 7114-7122.	5.2	35
3170	Excess iodine as the interface recombination center limiting the open-circuit voltage of Cul-based perovskite planar solar cell. Journal of Materials Science: Materials in Electronics, 2018, 29, 8838-8846.	1.1	9
3171	Improved performance of mesostructured perovskite solar cells via an anti-solvent method. Journal of Crystal Growth, 2018, 491, 66-72.	0.7	6
3172	Reducing Architecture Limitations for Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1706226.	11.1	181
3173	Photorefractive Effect in Organic–Inorganic Hybrid Perovskites and Its Application to Optical Phase Shifter. Advanced Optical Materials, 2018, 6, 1701366.	3.6	38
3174	Strong Photonicâ€Bandâ€Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. ChemPhysChem, 2018, 19, 2101-2106.	1.0	12
3175	Halogen in materials design: Fluoroammonium lead triiodide (FNH ₃ PbI ₃) perovskite as a newly discovered dynamical bandgap semiconductor in 3D. International Journal of Quantum Chemistry, 2018, 118, e25621.	1.0	2
3176	Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2, 1700316.	4.6	95

ARTICLE IF CITATIONS Bandâ€Engineered PbS Nanoparticles in CH₃NH₃PbI₃ Solar Cells to 3177 3.1 8 Extend Activity Toward Nearâ€Infrared Region. Solar Rrl, 2018, 2, 1800012. Crystallisation behaviour of CH3NH3PbI3 films: The benefits of sub-second flash lamp annealing. Thin 3178 0.8 Solid Films, 2018, 653, 204-214. Additive Selection Strategy for High Performance Perovskite Photovoltaics. Journal of Physical 3179 1.5 71 Chemistry C, 2018, 122, 13884-13893. Improving the photovoltaic performance of planar heterojunction perovskite solar cells by mixed 3180 solvent vapor treatment. RSC Advances, 2018, 8, 11574-11579. Ru-Doping in TiO₂electron transport layers of planar heterojunction perovskite solar 3181 2.7 65 cells for enhanced performance. Journal of Materials Chemistry C, 2018, 6, 4746-4752. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. Journal of Materials Science and Technology, 2018, 34, 1474-1480. 5.6 Dopant-free i€-conjugated polymers as hole-transporting materials for stable perovskite solar cells. 3183 1.1 7 Journal of Materials Science: Materials in Electronics, 2018, 29, 9058-9066. Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin 3184 4.0 Plasma Polymers. ACS Applied Materials & amp; Interfaces, 2018, 10, 11587-11594. First-principles investigation of the Lewis acidâ€"base adduct formation at the methylammonium lead 3185 1.3 9 iodide surface. Physical Chemistry Chemical Physics, 2018, 20, 11183-11195. The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin 2.7 spectroscopy and density functional theory. Journal of Materials Chemistry C, 2018, 6, 3861-3868. Kelvin Probe Force Microscopy Characterization of Organic and Hybrid Perovskite Solar Cells. 3187 7 0.3 Springer Series in Surface Sciences, 2018, , 331-365. Nature of Photoinduced Quenching Traps in Methylammonium Lead Triiodide Perovskite Revealed by 3188 3.2 Reversible Photoluminescence Decline. ACS Photonics, 2018, 5, 2034-2043. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries 3189 1.1 17 in perovskite solar cells. Journal of Applied Physics, 2018, 123, . Fabrication of mixed perovskite organic cation thin films via controllable cation exchange. Chinese Physics B, 2018, 27, 024208. 3190 Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 3191 3.6 54 1701254. Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399. Thermodynamically Selfâ€Healing 1D–3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 3193 10.2 158 8, 1703421. Distinctive electroluminescence characteristics behind efficient mesoscopic perovskite solar cell. 3194 Materials Science in Semiconductor Processing, 2018, 80, 174-178.

#	Article	IF	CITATIONS
3195	Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Organic Electronics, 2018, 57, 221-225.	1.4	7
3196	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters, 2018, 18, 2459-2466.	4.5	114
3197	Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9, 1076.	5.8	507
3198	Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals. Chemical Communications, 2018, 54, 3640-3643.	2.2	58
3199	Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 2018, 8, 10489-10508.	1.7	171
3200	Highly π-extended copolymer as additive-free hole-transport material for perovskite solar cells. Nano Research, 2018, 11, 185-194.	5.8	24
3201	Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 81, 2812-2822.	8.2	153
3202	Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3â^'xBrx films with solvent annealing. Superlattices and Microstructures, 2018, 113, 1-12.	1.4	9
3203	Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018, 11, 762-768.	5.8	94
3204	Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1091-1100.	7.1	28
3205	BCP influenced crystallization of MAPbI3-xClx for enhanced power conversion efficiency and stability in perovskite solar cell. Organic Electronics, 2018, 52, 130-137.	1.4	10
3206	Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52, 172-183.	1.4	83
3207	Low cost and solution processible sandwiched CH3NH3PbI3-xClx based photodetector. Materials Research Bulletin, 2018, 99, 79-85.	2.7	17
3208	UNDERSTANDING THE EFFECT OF DEPRESSOR ON THE TIO ₂ COMPACT LAYER FOR THE PHOTOCURRENT PERFORMANCE OF PEROVSKITE SOLAR CELLS. Surface Review and Letters, 2018, 25, 1950019.	0.5	0
3209	Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nano Research, 2018, 11, 3306-3312.	5.8	12
3210	Printable carbon-based hole-conductor-free mesoscopic perovskite solar cells: From lab to market. Materials Today Energy, 2018, 7, 221-231.	2.5	47
3211	Characterization of Low-Frequency Excess Noise in CH ₃ NH ₃ PbI ₃ -Based Solar Cells Grown by Solution and Hybrid Chemical Vapor Deposition Techniques. ACS Applied Materials & Interfaces, 2018, 10, 371-380.	4.0	22
3212	Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy and Environmental Science, 2018, 11, 151-165.	15.6	586

ARTICLE IF CITATIONS Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic 3213 1.9 316 Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1700623. Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces. Journal of Solid State 3214 1.4 Chemistry, 2018, 258, 488-494. Fast-response and high-responsivity FA MA(1â[^])PbI3 photodetectors fabricated via doctor-blading 3215 1.4 23 deposition in ambient condition. Organic Electronics, 2018, 52, 190-194. Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 2018, 5, 559-576. Cs₂AgInCl₆ Double Perovskite Single Crystals: Parity Forbidden Transitions 3217 3.2 317 and Their Application For Sensitive and Fast UV Photodetectors. ACS Photonics, 2018, 5, 398-405. Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport 3.2 layers. Materials Chemistry Frontiers, 2018, 2, 81-89. Effect of doping of Nal monovalent cation halide on the structural, morphological, optical and optoelectronic properties of MAPbI3 perovskite. Journal of Materials Science: Materials in 3219 1.1 29 Electronics, 2018, 29, 205-210. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser 3220 1.0 19 Evaporation. Journal of Electronic Materials, 2018, 47, 917-926. ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. Journal of 3221 7.1 26 Energy Chemistry, 2018, 27, 1461-1467. Novel CsPbI3 QDs glass with chemical stability and optical properties. Journal of the European 2.8 Ceramic Society, 2018, 38, 1998-2004. Effect of Rb doping on modulating grain shape and semiconductor properties of MAPbI3 perovskite 3223 1.3 24 layer. Materials Letters, 2018, 211, 328-330. A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells. 3224 14.4 102 Nano-Micro Letters, 2018, 10, 5. Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of 3225 7.1 48 Energy Chemistry, 2018, 27, 637-649. Synthesis of highly luminescent CsPb2Br5 nanoplatelets and their application for light-emitting diodes. Materials Letters, 2018, 211, 199-202. 1.3 Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost 3227 and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 8.2 83 2018, 82, 845-857. Improving the stability of inverted perovskite solar cells under ambient conditions with 3228 graphene-based inorganic charge transporting layers. Carbon, 2018, 126, 208-214. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic 3229 11.1 141 Performance. Advanced Materials, 2018, 30, 1700764. Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.

#	Article	IF	CITATIONS
3231	Methylammonium lead mixed halide films processed with a new composition for planar perovskite solar cells. Applied Surface Science, 2018, 427, 421-426.	3.1	6
3232	The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Applied Surface Science, 2018, 429, 9-15.	3.1	45
3233	Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden–Popper Perovskites for Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2018, 8, 1700979.	10.2	286
3234	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	10.2	77
3235	Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics, 2018, 24, 1227-1233.	1.2	12
3236	Donor–Acceptor Type Dopantâ€Free, Polymeric Hole Transport Material for Planar Perovskite Solar Cells (19.8%). Advanced Energy Materials, 2018, 8, 1701935.	10.2	116
3237	Hybrid Organic/Inorganic and Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 187-227.	0.4	2
3238	Quantifying energy losses in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 206-213.	3.0	76
3239	On the Use of Luminescence Intensity Images for Quantified Characterization of Perovskite Solar Cells: Spatial Distribution of Series Resistance. Advanced Energy Materials, 2018, 8, 1701522.	10.2	29
3240	Molecular Interlayers in Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701544.	10.2	80
3241	Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 2018, 427, 782-790.	3.1	93
3242	Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – An Overview. Advanced Materials Interfaces, 2018, 5, 1700731.	1.9	321
3243	Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity. Advanced Energy Materials, 2018, 8, 1700677.	10.2	459
3244	Selfâ€Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Advanced Energy Materials, 2018, 8, 1701722.	10.2	46
3245	Prediction on electronic structure of CH 3 NH 3 PbI 3 /Fe 3 O 4 interfaces. Solid State Communications, 2018, 269, 90-95.	0.9	3
3246	Geometric structure and photovoltaic properties of mixed halide germanium perovskites from theoretical view. Organic Electronics, 2018, 53, 50-56.	1.4	74
3247	Lightâ€Responsive Ionâ€Redistributionâ€Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Advanced Functional Materials, 2018, 28, 1704665.	7.8	169
3248	Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Research, 2018, 11, 2669-2681.	5.8	116

#	Article	IF	CITATIONS
3249	Multi-functional organic molecules for surface passivation of perovskite. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 42-47.	2.0	12
3250	Interfacial Interactions in Monolayer and Fewâ€Layer SnS/CH ₃ NH ₃ PbI ₃ Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties. ChemPhysChem, 2018, 19, 291-299.	1.0	12
3251	Allâ€Inorganic Metal Halide Perovskite Nanostructures: From Photophysics to Lightâ€Emitting Applications. Small Methods, 2018, 2, 1700252.	4.6	83
3252	Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells. Applied Surface Science, 2018, 434, 1336-1343.	3.1	49
3253	Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CulnS2 quantum dots. Journal of Colloid and Interface Science, 2018, 513, 693-699.	5.0	32
3254	ZnSe quantum dots downshifting layer for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 736-741.	7.1	27
3255	Tinâ€Based Perovskite with Improved Coverage and Crystallinity through Tinâ€Fluorideâ€Assisted Heterogeneous Nucleation. Advanced Optical Materials, 2018, 6, 1700615.	3.6	67
3256	High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 282-289.	1.3	23
3257	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1
3258	A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improving the Performance and Stability in Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 236-244.	1.5	50
3259	Enhancing Ferroelectric Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ : Strain and Doping Engineering. Journal of Physical Chemistry C, 2018, 122, 177-184.	1.5	35
3260	Metal ions diffusion at heterojunction chromium Oxide/CH 3 NH 3 Pbl 3 interface on the stability of perovskite solar cells. Surfaces and Interfaces, 2018, 10, 93-99.	1.5	31
3261	The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?. Energy and Environmental Science, 2018, 11, 234-242.	15.6	196
3262	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Advanced Functional Materials, 2018, 28, 1705589.	7.8	42
3263	Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials. Journal of Physical Chemistry Letters, 2018, 9, 176-183.	2.1	91
3264	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	7.8	69
3265	Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%. Superlattices and Microstructures, 2018, 113, 761-768.	1.4	25
3266	Enhanced electrical properties of Li–doped NiO x hole extraction layer in p–i–n type perovskite solar cells. Current Applied Physics, 2018, 18, S55-S59.	1.1	27

#	Article	IF	CITATIONS
3267	Effect of rubrene:P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods. Journal of Energy Chemistry, 2018, 27, 455-462.	7.1	32
3268	High-efficiency perovskite solar cells based on MAI(PbI2)1â^'x(FeCl2)x absorber layers. Solar Energy, 2018, 159, 786-793.	2.9	23
3269	Dynamical Rashba Band Splitting in Hybrid Perovskites Modeled by Local Electric Fields. Journal of Physical Chemistry C, 2018, 122, 124-132.	1.5	8
3270	The mixing effect of organic cations on the structural, electronic and optical properties of FA _x MA _{1â°'x} PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2018, 20, 941-950.	1.3	24
3271	Facile fabrication of perovskite layers with large grains through a solvent exchange approach. Inorganic Chemistry Frontiers, 2018, 5, 348-353.	3.0	34
3272	Allâ€Inorganic Perovskite Quantum Dots/pâ€5i Heterojunction Lightâ€Emitting Diodes under DC and AC Driving Modes. Advanced Optical Materials, 2018, 6, 1700897.	3.6	39
3273	Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisâ€Free, and Stable Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.	2.6	101
3274	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	10.2	82
3275	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 2018, 2, 1700280.	4.6	141
3276	High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer. Journal of Power Sources, 2018, 376, 46-54.	4.0	38
3277	Photophysical Model for Non-Exponential Relaxation Dynamics in Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2018, 122, 1119-1124.	1.5	15
3278	Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy and Environmental Science, 2018, 11, 78-86.	15.6	246
3279	DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application. Journal Physics D: Applied Physics, 2018, 51, 025502.	1.3	10
3280	Revealing the Chemistry between Band Gap and Binding Energy for Leadâ€∤Tinâ€Based Trihalide Perovskite Solar Cell Semiconductors. ChemSusChem, 2018, 11, 449-463.	3.6	27
3281	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	5.6	329
3282	Surface-Guided CsPbBr ₃ Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Letters, 2018, 18, 424-433.	4.5	107
3283	Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 388-393.	6.6	163
3284	Effect of tantalum doping in a TiO ₂ compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 1037-1047.	5.2	86

#	Article	IF	CITATIONS
3285	Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27, 1017-1039.	7.1	37
3286	Nanocrystals of halide perovskite: Synthesis, properties, and applications. Journal of Energy Chemistry, 2018, 27, 622-636.	7.1	43
3287	Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups?. Journal of Energy Chemistry, 2018, 27, 1409-1414.	7.1	13
3288	Perovskite Solar Cells with ZnO Electronâ€Transporting Materials. Advanced Materials, 2018, 30, 1703737.	11.1	319
3289	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
3290	Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43, 47-54.	8.2	126
3291	Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Materials Chemistry Frontiers, 2018, 2, 121-128.	3.2	95
3292	Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups. Journal of Molecular Structure, 2018, 1155, 389-393.	1.8	5
3293	Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy, 2018, 43, 72-80.	8.2	43
3294	Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering. Journal of Electronic Materials, 2018, 47, 1285-1292.	1.0	12
3295	Microstructural and optical properties of HC(NH2)2PbI3 thin films prepared by single source thermal evaporation. Journal of Materials Science: Materials in Electronics, 2018, 29, 2267-2274.	1.1	6
3296	High-Performance Perovskite Solar Cells with a Weak Covalent TiO ₂ :Eu ³⁺ Mesoporous Structure. ACS Applied Energy Materials, 2018, 1, 93-102.	2.5	17
3297	Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 46-53.	8.8	158
3298	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	11.1	162
3299	Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1701791.	10.2	556
3300	New insight into the ultra-long lifetime of excitons in organic–inorganic perovskite: Reverse intersystem crossing. Journal of Energy Chemistry, 2018, 27, 1496-1500.	7.1	11
3301	Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal–halide perovskite photovoltaics. Inorganic Chemistry Frontiers, 2018, 5, 84-89.	3.0	12
3302	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	5.6	223

#	Article	IF	CITATIONS
3303	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
3304	Thickness-dependent photovoltaic performance of TiO 2 blocking layer for perovskite solar cells. Journal of Alloys and Compounds, 2018, 736, 87-92.	2.8	26
3305	Effect of ferroelectricity on charge conduction in a PCBM/perovskite device structure. Organic Electronics, 2018, 53, 96-100.	1.4	6
3306	Deciphering perovskite crystal growth in interdiffusion protocol for planar heterojunction photovoltaic devices. Organic Electronics, 2018, 53, 88-95.	1.4	2
3307	Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Organic Electronics, 2018, 52, 309-316.	1.4	22
3308	Modulation of Charge Recombination in CsPbBr ₃ Perovskite Films with Electrochemical Bias. Journal of the American Chemical Society, 2018, 140, 86-89.	6.6	41
3309	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	2.5	84
3310	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	2.5	209
3311	The Ising Model of the Hoke Effect in Hybrid Perovskites. Applied Solar Energy (English Translation of) Tj ETQq0 C	0 0 rgBT /C	verlock 10 Ti
3313	Solution Processed Trilayer Structure for High-Performance Perovskite Photodetector. Nanoscale Research Letters, 2018, 13, 399.	3.1	42
3314	Numerical Analysis: Toward the Design of Lead Free Highly-Efficient Perovskite Solar Cells. , 2018, , .		1
3315	Growth and characteristics of perovskite CH3NH3PbBr3 crystal for optoelectronic applications. Ferroelectrics, 2018, 533, 72-81.	0.3	1
3316	Fabrication of fully non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact. Sustainable Energy and Fuels, 2018, 2, 2778-2787.	2.5	27
3317	Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA ₃ Sb ₂ 1 ₉ . Journal of Materials Chemistry A, 2018, 6, 20753-20759.	5.2	67
3318	Using microgels to control the morphology and optoelectronic properties of hybrid organic–inorganic perovskite films. Physical Chemistry Chemical Physics, 2018, 20, 27959-27969.	1.3	10
3319	Photo-induced dual passivation <i>via</i> Usanovich acid–base on surface defects of methylammonium lead triiodide perovskite. Physical Chemistry Chemical Physics, 2018, 20, 28068-28074.	1.3	5
3320	Synergic effects of upconversion nanoparticles NaYbF ₄ :Ho ³⁺ and ZrO ₂ enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale, 2018, 10, 22003-22011.	2.8	35
3321	Incorporation of potassium halides in the mechanosynthesis of inorganic perovskites: feasibility and limitations of ion-replacement and trap passivation. RSC Advances, 2018, 8, 41548-41551.	1.7	21

#	Article	IF	CITATIONS
3322	Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces. Sustainable Energy and Fuels, 2018, 2, 2754-2761.	2.5	61
3323	Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets. CrystEngComm, 2018, 20, 7473-7478.	1.3	44
3324	Low-temperature-processed inorganic perovskite solar cells <i>via</i> solvent engineering with enhanced mass transport. Journal of Materials Chemistry A, 2018, 6, 23602-23609.	5.2	67
3325	Precursor purity effects on solution-based growth of MAPbBr ₃ single crystals towards efficient radiation sensing. CrystEngComm, 2018, 20, 7818-7825.	1.3	43
3326	Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10, 20963-20989.	2.8	44
3327	Tailoring a dynamic crystalline process during the conversion of lead-halide perovskite layer to achieve high performance solar cells. Journal of Materials Chemistry A, 2018, 6, 24793-24804.	5.2	24
3328	Highly efficient and stable inverted perovskite solar cells with two-dimensional ZnSe deposited using a thermal evaporator for electron collection. Journal of Materials Chemistry A, 2018, 6, 22713-22720.	5.2	10
3330	Quantitative fraction analysis of coexisting phases in a polycrystalline CH3NH3PbI3 perovskite. Applied Physics Express, 2018, 11, 101401.	1.1	5
3331	Photoconductivity of Pb-Sn Perovskite Induced by UV Pump and IR Push Pulses. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 157-162.	0.1	4
3332	A Simple Route Towards Heat Resistant Halide Perovskite-Based Optoelectronics. , 2018, , .		0
3333	Investigating Electron-Phonon Coupling in Formamidinium Lead Iodide Perovskite Using Ultrafast Laser Spectroscopy. , 2018, , .		0
3335	High-Efficiency Spray-Coated Perovskite Solar Cells Utilizing Vacuum-Assisted Solution Processing. ACS Applied Materials & Interfaces, 2018, 10, 39428-39434.	4.0	74
3336	Structural geometry of the layered perovskite-type (CH3CH2CH2NH3)2CuCl4 single crystal near phase transition temperatures. AIP Advances, 2018, 8, 105324.	0.6	4
3337	Facile NiOx Sol-Gel Synthesis Depending on Chain Length of Various Solvents without Catalyst for Efficient Hole Charge Transfer in Perovskite Solar Cells. Polymers, 2018, 10, 1227.	2.0	10
3338	Modeling and analysis of I-V hysteresis behaviors caused by defects in tin perovskite thin films. Journal of Applied Physics, 2018, 124, .	1.1	6
3339	Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials, 2018, 1, 133-154.	3.2	128
3340	Solution evaporation processed high quality perovskite films. Science Bulletin, 2018, 63, 1591-1596.	4.3	34
3341	First-Principles Insight into the Degradation Mechanism of CH ₃ NH ₃ PbI ₃ Perovskite: Light-Induced Defect Formation and Water Dissociation. Journal of Physical Chemistry C, 2018, 122, 27340-27349.	1.5	28

#	Article	IF	CITATIONS
3342	Experimental Demonstration of Correlated Flux Scaling in Photoconductivity and Photoluminescence of Lead-Halide Perovskites. Physical Review Applied, 2018, 10, .	1.5	11
3343	Performance loss analysis and design space optimization of perovskite solar cells. Journal of Applied Physics, 2018, 124, .	1.1	21
3344	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
3345	Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices. NPG Asia Materials, 2018, 10, 1076-1085.	3.8	35
3346	High efficiency flexible perovskite solar cells using SnO2/graphene electron selective layer and silver nanowires electrode. Applied Physics Letters, 2018, 113, .	1.5	16
3347	Direct synthesis of high-quality perovskite nanocrystals on a flexible substrate and deterministic transfer. Science Bulletin, 2018, 63, 1576-1582.	4.3	10
3348	An Additive of Sulfonic Lithium Salt for Highâ€Performance Perovskite Solar Cells. ChemistrySelect, 2018, 3, 12320-12324.	0.7	8
3349	Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface. IScience, 2018, 9, 337-346.	1.9	82
3350	Organic–Inorganic FAPbBr ₃ Perovskite Quantum Dots as a Quantum Light Source: Single-Photon Emission and Blinking Behaviors. ACS Photonics, 2018, 5, 4937-4943.	3.2	34
3351	Recent advancements in compact layer development for perovskite solar cells. Heliyon, 2018, 4, e00912.	1.4	20
3352	Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 2018, 9, 4785.	5.8	238
3353	Communicating Two States in Perovskite Revealed by Time-Resolved Photoluminescence Spectroscopy. Scientific Reports, 2018, 8, 16482.	1.6	18
3354	First-Principle Insights of Electronic and Optical Properties of Cubic Organic–Inorganic MAGe _{<i>x</i>} Pb _(1–<i>x</i>) I ₃ Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2018, 122, 28245-28255.	1.5	34
3355	Anomalous Scaling Exponents in the Capacitance–Voltage Characteristics of Perovskite Thin Film Devices. Journal of Physical Chemistry C, 2018, 122, 27935-27940.	1.5	10
3356	Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solutionâ€Processed Perovskites. Advanced Energy Materials, 2018, 8, 1801954.	10.2	40
3357	Exploring the Carrier Dynamics in Zinc Oxide–Metal Halide-Based Perovskite Nanostructures: Toward Reduced Dielectric Loss and Improved Photocurrent. Journal of Physical Chemistry C, 2018, 122, 27273-27283.	1.5	19
3358	Theoretical Insights into Perovskite Compounds MAPb _{1â^α} X _α I _{3â^'β} Y _β (X = Ge, Sn; Y = Cl, Br): An Exploration for Superior Optical Performance. Journal of Physical Chemistry C, 2018, 122, 27205-27213.	n1.5	7
3359	Kinetics of Ion-Exchange Reactions in Hybrid Organic–Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 6750-6754.	2.1	28

#	Article	IF	CITATIONS
3360	Increased luminescent efficiency of perovskite light emitting diodes based on modified two-step deposition method providing gradient concentration. APL Materials, 2018, 6, 111101.	2.2	3
3361	Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	13
3362	Photovoltaic and photocatalytic properties of bismuth oxyiodide–graphene nanocomposites. RSC Advances, 2018, 8, 42254-42261.	1.7	17
3363	Ab Initio Study of Optoelectronic and Magnetic Properties of Ternary Chromium Chalcogenides. Advances in Materials Science and Engineering, 2018, 2018, 1-6.	1.0	2
3364	Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices. ACS Nano, 2019, 13, 1168-1176.	7.3	90
3365	High-Performance Inverted Perovskite Solar Cells with Mesoporous NiO <i>_x</i> Hole Transport Layer by Electrochemical Deposition. ACS Omega, 2018, 3, 18434-18443.	1.6	38
3366	Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells. Materials, 2018, 11, 2570.	1.3	16
3367	[((<i>R</i>)-C ₈ H ₁₂ N) ₄][Bi ₂ Br ₁₀] and [((<i>S</i>)-C ₈ H ₁₂ N) ₄][Bi ₂ Br ₁₀]: Chiral Hybrid Bismuth Bromides Templated by Chiral Organic Cations. ACS Omega, 2018, 3, 17895-17903.	1.6	54
3368	Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews, 2018, 5, .	5.5	175
3369	Effects of Decaphenylcyclopentasilane Addition on Photovoltaic Properties of Perovskite Solar Cells. Coatings, 2018, 8, 461.	1.2	15
3370	Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers. Journal of the Korean Physical Society, 2018, 73, 1787-1793.	0.3	12
3371	Fabrication and Characterization of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Added with Polysilanes. International Journal of Photoenergy, 2018, 2018, 1-7.	1.4	27
3372	Dual interfacial modification engineering with p-type NiO nanocrystals for preparing efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 13034-13042.	2.7	37
3373	Suppressed hysteresis and enhanced performance of triple cation perovskite solar cell with chlorine incorporation. Journal of Materials Chemistry C, 2018, 6, 13157-13161.	2.7	18
3374	A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 12912-12918.	2.7	80
3375	Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite. Journal of Materials Chemistry C, 2018, 6, 11707-11713.	2.7	14
3376	Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films. Journal of the Korean Physical Society, 2018, 73, 1725-1728.	0.3	5
3377	CH ₃ NH ₃ PbI ₃ crystal growth, structure and composition. Journal of Physics: Conference Series, 2018, 1124, 041008.	0.3	4

#	Article	IF	CITATIONS
3379	Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive. Advanced Materials, 2019, 31, e1805554.	11.1	134
3380	The Role of Charge Selective Contacts in Perovskite Solar Cell Stability. Advanced Energy Materials, 2019, 9, 1803140.	10.2	120
3381	Influence of the Concentration of Cs on the Properties of Thin Films of Cs <inf>X</inf> MA <inf>(1-X)</inf> PbI <inf>3</inf> to be used as Active Layer in Hybrid Solar Cells. , 2018, , .		0
3382	Firstâ€Principles Study of Aziridinium Lead Iodide Perovskite for Photovoltaics. ChemPhysChem, 2019, 20, 602-607.	1.0	8
3383	Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots. ACS Nano, 2018, 12, 12436-12443.	7.3	86
3384	Dielectric Behavior as a Screen in Rational Searches for Electronic Materials: Metal Pnictide Sulfosalts. Journal of the American Chemical Society, 2018, 140, 18058-18065.	6.6	69
3389	Indium Zinc Oxide Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 28491-28496.	1.5	10
3390	A spatially smoothed device model for meso-structured perovskite solar cells. Journal of Applied Physics, 2018, 124, .	1.1	2
3391	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753.	7.8	145
3392	Effects of Electron–Phonon Coupling on Electronic Properties of Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 7090-7097.	2.1	44
3393	Major Impediment to Highly Efficient, Stable and Low-Cost Perovskite Solar Cells. Metals, 2018, 8, 964.	1.0	26
3394	Compositional engineering of tin-lead halide perovskites for efficient and stable low band gap solar cells. , 2018, , .		7
3395	Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renewable and Sustainable Energy Reviews, 2018, 98, 469-488.	8.2	46
3396	Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets. ACS Nano, 2018, 12, 10151-10158.	7.3	89
3397	Recent advances in high-performance semitransparent perovskite solar cells. Current Opinion in Electrochemistry, 2018, 11, 114-121.	2.5	9
3398	Addition Effect of Pyreneammonium Iodide to Methylammonium Lead Halide Perovskiteâ€2D/3D Heterostructured Perovskite with Enhanced Stability. Advanced Functional Materials, 2018, 28, 1804856.	7.8	48
3399	Interfacial Charge Transfer between Excited CsPbBr ₃ Nanocrystals and TiO ₂ : Charge Injection versus Photodegradation. Journal of Physical Chemistry Letters, 2018, 9, 5962-5969.	2.1	47
3400	Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. Journal of Materials Chemistry A, 2018, 6, 20702-20711.	5.2	22

#	Article	IF	CITATIONS
3401	Insight into Photon Recycling in Perovskite Semiconductors from the Concept of Photon Diffusion. Physical Review Applied, 2018, 10, .	1.5	20
3402	Additive engineering induced perovskite crystal growth for high performance perovskite solar cells. Organic Electronics, 2018, 63, 207-215.	1.4	26
3403	Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin Interface Engineering. ACS Applied Materials & Interfaces, 2018, 10, 36493-36504.	4.0	25
3404	Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability. ACS Energy Letters, 2018, 3, 2671-2678.	8.8	126
3405	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	14.4	50
3406	Dynamic Disorder Dominates Delocalization, Transport, and Recombination in Halide Perovskites. CheM, 2018, 4, 2826-2843.	5.8	104
3407	Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping. Joule, 2018, 2, 2421-2433.	11.7	308
3408	All-inorganic Cs ₂ CuX ₄ (X = Cl, Br, and Br/l) perovskite quantum dots with blue-green luminescence. Chemical Communications, 2018, 54, 11638-11641.	2.2	99
3409	Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite. Journal of Materials Chemistry A, 2018, 6, 20365-20373.	5.2	34
3410	High-performance light-emitting diode with poly(ethylene oxide) passivated quasi two dimensional perovskite emitting layer. Organic Electronics, 2018, 63, 216-221.	1.4	22
3411	Nature of the Electronic and Optical Excitations of Ruddlesden–Popper Hybrid Organic–Inorganic Perovskites: The Role of the Many-Body Interactions. Journal of Physical Chemistry Letters, 2018, 9, 5891-5896.	2.1	51
3412	Efficient and Stable Perovskite Solar Cells Using Lowâ€Cost Anilineâ€Based Enamine Holeâ€Transporting Materials. Advanced Materials, 2018, 30, e1803735.	11.1	68
3413	Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.	10.2	22
3414	Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrodeâ€Interface Architecture. Advanced Energy Materials, 2018, 8, 1802085.	10.2	33
3415	Highâ€Quality Sequentialâ€Vaporâ€Deposited Cs ₂ AgBiBr ₆ Thin Films for Leadâ€Free Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800217.	3.1	138
3416	Spatial Inhomogeneity Analysis of Cesium-Rich Wrinkles in Triple-Cation Perovskite. Journal of Physical Chemistry C, 2018, 122, 23345-23351.	1.5	24
3417	Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.	2.6	50
3418	The Importance of Pendant Groups on Triphenylamineâ€Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency. Advanced Energy Materials, 2018, 8, 1701209.	10.2	134

#	Article	IF	CITATIONS
3419	Recovering MAPbI ₃ -Based Perovskite Films From Water-Caused Permanent Degradations by Dipping in MAI Solution. IEEE Journal of Photovoltaics, 2018, 8, 1692-1700.	1.5	2
3420	Recent insights for achieving mixed halide perovskites without halide segregation. Current Opinion in Electrochemistry, 2018, 11, 84-90.	2.5	33
3421	Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication. Nano Letters, 2018, 18, 6915-6923.	4.5	98
3422	Significantly-enhanced Stabilities in Flexible Hybrid Organic-Inorganic Perovskite Resistive Random Access Memories by Employing Multilayer Graphene Transparent Conductive Electrodes. Journal of the Korean Physical Society, 2018, 73, 934-939.	0.3	11
3423	Brightness Enhancement in Pulsed-Operated Perovskite Light-Emitting Transistors. ACS Applied Materials & Interfaces, 2018, 10, 37316-37325.	4.0	46
3424	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ PbI ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	7.3	67
3425	Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells. Solar Energy, 2018, 174, 933-939.	2.9	27
3426	Optical properties of photovoltaic materials: Organic-inorganic mixed halide perovskites CH3NH3Pb(I1-yXy)3 (X = Cl, Br). Computational and Theoretical Chemistry, 2018, 1144, 1-8.	1.1	12
3427	Unravelling the Improved Electronic and Structural Properties of Methylammonium Lead Iodide Deposited from Acetonitrile. Chemistry of Materials, 2018, 30, 7737-7743.	3.2	23
3428	Slow Diffusion and Long Lifetime in Metal Halide Perovskites for Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 24570-24577.	1.5	22
3429	Longitudinal Optical Phonons Modified by Organic Molecular Cation Motions in Organic-Inorganic Hybrid Perovskites. Physical Review Letters, 2018, 121, 145506.	2.9	55
3430	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	5.2	12
3431	Recent Studies of Semitransparent Solar Cells. Coatings, 2018, 8, 329.	1.2	39
3432	Incorporation of Cesium Ions into MA _{1–<i>x</i>} Cs _{<i>x</i>} PbI ₃ Single Crystals: Crystal Growth, Enhancement of Stability, and Optoelectronic Properties. Journal of Physical Chemistry Letters, 2018, 9, 5833-5839.	2.1	19
3433	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	5.8	109
3434	J-V characteristic of perovskite solar cells using lead(II) thiocyanate doped-methylammonium lead iodide (MAPbI3) as active material. Journal of Physics: Conference Series, 2018, 1080, 012012.	0.3	2
3435	C60-assisted crystal engineering for perovskite solar cells with enhanced efficiency and stability. Organic Electronics, 2018, 63, 276-282.	1.4	15
3436	Effects of Hydroiodic Acid Concentration on the Properties of CsPbl ₃ Perovskite Solar Cells. ACS Omega, 2018, 3, 11937-11944.	1.6	83

#	Article	IF	CITATIONS
3437	Repairing Defects of Halide Perovskite Films To Enhance Photovoltaic Performance. ACS Applied Materials & Interfaces, 2018, 10, 37005-37013.	4.0	40
3438	Steady-state microwave conductivity reveals mobility-lifetime product in methylammonium lead iodide. Applied Physics Letters, 2018, 113, 153902.	1.5	9
3439	Time-Domain ab Initio Analysis Rationalizes the Unusual Temperature Dependence of Charge Carrier Relaxation in Lead Halide Perovskite. ACS Energy Letters, 2018, 3, 2713-2720.	8.8	68
3440	Simulation of Inverted Perovskite Solar Cells. , 2018, , .		5
3441	Exploring Anisotropy on Oriented Wafers of MAPbBr ₃ Crystals Grown by Controlled Antisolvent Diffusion. Crystal Growth and Design, 2018, 18, 6652-6660.	1.4	62
3442	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	3.2	17
3443	Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Solar Energy, 2018, 174, 1133-1141.	2.9	75
3444	Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Communications, 2018, 9, 4482.	5.8	266
3445	Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2018, 2, 2706-2721.	11.7	124
3446	Impact of iodine antisite (IPb) defects on the electronic properties of the (110) CH3NH3PbI3 surface. Journal of Chemical Physics, 2018, 149, 164704.	1.2	17
3447	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	11.1	244
3448	Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers. ACS Applied Materials & Interfaces, 2018, 10, 41586-41591.	4.0	23
3449	Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX ₃ (X =) Tj ETQqO	0 0 rgBT /0 1.5	Overlock 10 24
3450	Illuminationâ€Induced Halide Segregation in Gradient Bandgap Mixedâ€Halide Perovskite Nanoplatelets. Advanced Optical Materials, 2018, 6, 1801107.	3.6	30
3451	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	10.2	59
3452	Rotationally Free and Rigid Sublattices of the Single Crystal Perovskite CH ₃ NH ₃ PbBr ₃ (001): The Case of the Lattice Polar Liquid. Journal of Physical Chemistry C, 2018, 122, 25506-25514.	1.5	8
3453	Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites. Chemistry of Materials, 2018, 30, 7423-7427.	3.2	67
3454	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	1.6	26

#	Article	IF	CITATIONS
3455	Modulating Surface Morphology Related to Crystallization Speed of Perovskite Grain and Semiconductor Properties of Optical Absorber Layer under Controlled Doping of Potassium Ions for Solar Cells. Materials, 2018, 11, 1605.	1.3	11
3456	Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy, 2018, 54, 218-226.	8.2	72
3457	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ Pbl ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
3458	Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FA MA1-PbI3 planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process. Nano Energy, 2018, 54, 251-263.	8.2	32
3459	Large Area Perovskite Solar Cell via Two-step Ultrasonic Spray Deposition. , 2018, , .		0
3460	Tunable Control of Mie Resonances Based on Hybrid VO2 and Dielectric Metamaterial. Symmetry, 2018, 10, 423.	1.1	4
3461	Highly Efficient Perovskite Solar Cells via Nickel Passivation. Advanced Functional Materials, 2018, 28, 1804286.	7.8	100
3462	Long-Term Durability of Bromide-Incorporated Perovskite Solar Cells via a Modified Vapor-Assisted Solution Process. ACS Applied Energy Materials, 2018, 1, 6018-6026.	2.5	17
3463	Highly Efficient Phenoxazine Core Unit Based Hole Transport Materials for Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 36608-36614.	4.0	41
3464	Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation. Journal of Physical Chemistry C, 2018, 122, 25260-25267.	1.5	31
3465	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	2.1	56
3466	CsBr-Induced Stable CsPbI _{3–<i>x</i>} Br _{<i>x</i>} (<i>x</i> < 1) Perovskite Films at Low Temperature for Highly Efficient Planar Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38183-38192.	4.0	63
3467	Significantly Enhanced Emission Stability of CsPbBr ₃ Nanocrystals via Chemically Induced Fusion Growth for Optoelectronic Devices. ACS Applied Nano Materials, 2018, 1, 6091-6098.	2.4	42
3468	Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis. ACS Energy Letters, 2018, 3, 2743-2749.	8.8	17
3469	Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6227-6233.	2.5	88
3470	Inverted structure perovskite solar cells: A theoretical study. Current Applied Physics, 2018, 18, 1583-1591.	1.1	15
3471	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	11.1	296
3472	Control of ï€â€"ï€ Stacking of Dithienopyrrole-Based, Hole-Transporting Materials via Lateral Substituents for High-Efficiency Perovskite Solar Cells. ACS Photonics, 2018, 5, 4694-4701.	3.2	21

#	Article	IF	CITATIONS
3473	Efficient flexible printed perovskite solar cells based on lead acetate precursor. Solar Energy, 2018, 176, 406-411.	2.9	16
3474	Analysis of Photocarrier Dynamics at Interfaces in Perovskite Solar Cells by Time-Resolved Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 26805-26815.	1.5	79
3475	Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Solar Energy, 2018, 173, 1315-1322.	2.9	31
3476	New Tin(II) Fluoride Derivative as a Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 27284-27291.	1.5	26
3477	Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Scientific Reports, 2018, 8, 16139.	1.6	30
3478	Ambient-Stable Cubic-Phase Hybrid Perovskite Reaching the Shockley–Queisser Fill Factor Limit via Inorganic Additive-Assisted Process. ACS Applied Energy Materials, 2018, 1, 5865-5871.	2.5	13
3479	Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI3 Thin Films by RF-Magnetron Sputtering. Scientific Reports, 2018, 8, 15388.	1.6	30
3480	Research Update: Recombination and open-circuit voltage in lead-halide perovskites. APL Materials, 2018, 6, .	2.2	56
3481	Highâ€Performance Flexible Perovskite Solar Cells Enabled by Lowâ€Temperature ALDâ€Assisted Surface Passivation. Advanced Optical Materials, 2018, 6, 1801153.	3.6	33
3482	A Universal Doubleâ€6ide Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	10.2	387
3483	Atomic-layer-deposited ultra-thin VO _x film as a hole transport layer for perovskite solar cells. Semiconductor Science and Technology, 2018, 33, 115016.	1.0	22
3484	Hamiltonians and order parameters for crystals of orientable molecules. Physical Review B, 2018, 98, .	1.1	9
3485	Interfacial Sulfur Functionalization Anchoring SnO ₂ and CH ₃ NH ₃ PbI ₃ for Enhanced Stability and Trap Passivation in Perovskite Solar Cells. ChemSusChem, 2018, 11, 3941-3948.	3.6	58
3486	Synthesis and dielectric characterisation of triiodide perovskite methylammonium lead iodide for energy applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 18693-18698.	1.1	2
3487	Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: Combining theories with practices. Journal of Power Sources, 2018, 402, 82-90.	4.0	31
3488	Effect of BaSi ₂ template growth duration on the generation of defects and performance of p-BaSi ₂ /n-Si heterojunction solar cells. Japanese Journal of Applied Physics, 2018, 57, 042301.	0.8	8
3489	Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements. ACS Energy Letters, 2018, 3, 2321-2328.	8.8	119
3490	Efficient Design of Perovskite Solar Cell Using Parametric Grading of Mixed Halide Perovskite and Copper Iodide. Journal of Electronic Materials, 2018, 47, 6935-6942.	1.0	31

#	Article	IF	Citations
3491	Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. Journal of Power Sources, 2018, 401, 303-311.	4.0	19
3492	Versatile perovskite solar cell encapsulation by low-temperature ALD-Al ₂ O ₃ with long-term stability improvement. Sustainable Energy and Fuels, 2018, 2, 2468-2479.	2.5	66
3493	Carrier Dynamics Engineering for High-Performance Electron-Transport-Layer-free Perovskite Photovoltaics. CheM, 2018, 4, 2405-2417.	5.8	57
3494	Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2018, 288, 115-125.	2.6	40
3495	Ultra-stable 2D layered methylammonium cadmium trihalide perovskite photoelectrodes. Journal of Materials Chemistry C, 2018, 6, 11552-11560.	2.7	20
3497	Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.	2.8	14
3498	An all-inorganic lead halide perovskite-based photocathode for stable water reduction. Chemical Communications, 2018, 54, 11459-11462.	2.2	61
3499	Improvements in printable mesoscopic perovskite solar cells <i>via</i> thinner spacer layers. Sustainable Energy and Fuels, 2018, 2, 2412-2418.	2.5	21
3500	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. IScience, 2018, 7, 110-119.	1.9	14
3501	Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr ₃ perovskite solar cells. Dalton Transactions, 2018, 47, 15283-15287.	1.6	28
3502	Improved performance of CsPbBr ₃ perovskite light-emitting devices by both boundary and interface defects passivation. Nanoscale, 2018, 10, 18315-18322.	2.8	29
3503	Solvent-engineering toward CsPb(I _x Br _{1â^x}) ₃ films for high-performance inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 19810-19816.	5.2	47
3504	Influence of solvent additive on the chemical and electronic environment of wide bandgap perovskite thin films. Journal of Materials Chemistry C, 2018, 6, 12052-12061.	2.7	31
3505	Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Materials, 2018, 11, 1626.	1.3	27
3506	A Cryogenic Process for Antisolventâ€Free Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2018, 30, e1804402.	11.1	47
3507	Investigation of Interface Effect on the Performance of CH ₃ NH ₃ PbCl ₃ /ZnO UV Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 34744-34750.	4.0	40
3508	Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. ACS Nano, 2018, 12, 10452-10462.	7.3	78
3509	Highly Efficient Infrared Light-Converting Perovskite Solar Cells: Direct Electron Injection from NaYF ₄ :Yb ³⁺ , Er ³⁺ to the TiO ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 14004-14009.	3.2	12

#	Article	IF	CITATIONS
3510	Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18750-18765.	5.2	87
3511	Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide perovskites?. Journal of Applied Physics, 2018, 124, .	1.1	39
3512	Screen printed carbon CsPbBr ₃ solar cells with high open-circuit photovoltage. Journal of Materials Chemistry A, 2018, 6, 18677-18686.	5.2	46
3513	Two-dimensional optical excitations in the mixed-valence Cs ₂ Au ₂ I ₆ fully inorganic double perovskite. Journal of Materials Chemistry C, 2018, 6, 10197-10201.	2.7	32
3516	Allâ€Inorganic CsPbBr ₃ Nanowire Based Plasmonic Lasers. Advanced Optical Materials, 2018, 6, 1800674.	3.6	107
3517	Flexible Linearly Polarized Photodetectors Based on Allâ€Inorganic Perovskite CsPbI ₃ Nanowires. Advanced Optical Materials, 2018, 6, 1800679.	3.6	85
3519	Precursor effects on methylamine gas-induced CH3NH3PbI3 films for stable carbon-based perovskite solar cells. Solar Energy, 2018, 174, 139-148.	2.9	16
3520	Excitation Wavelength Dependent Interfacial Charge Transfer Dynamics in a CH ₃ NH ₃ PbI ₃ Perovskite Film. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 633-642.	0.1	10
3521	Efficiency Exceeding 20% in Perovskite Solar Cells with Sideâ€Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers. Advanced Energy Materials, 2018, 8, 1801637.	10.2	48
3522	Effects of mixed solvent on morphology of CH3NH3PbI3 absorption layers and photovoltaic performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 18868-18877.	1.1	2
3523	Enhanced performance and stability of inverted planar perovskite solar cells by incorporating 1,6-diaminohexane dihydrochloride additive. Solar Energy Materials and Solar Cells, 2018, 188, 140-148.	3.0	23
3524	Crystalline-Size Dependence of Dual Emission Peak on Hybrid Organic Lead-Iodide Perovskite Films at Low Temperatures. Journal of Physical Chemistry C, 2018, 122, 22717-22727.	1.5	7
3525	Perovskite Solar Cells: The Challenging Issues for Stable Power Conversion Efficiency. , 2018, , .		3
3526	Realâ€Time In Situ Observation of Microstructural Change in Organometal Halide Perovskite Induced by Thermal Degradation. Advanced Functional Materials, 2018, 28, 1804039.	7.8	45
3527	Highly Efficient and Stable Selfâ€Powered Ultraviolet and Deepâ€Blue Photodetector Based on Cs ₂ AgBiBr ₆ /SnO ₂ Heterojunction. Advanced Optical Materials, 2018, 6, 1800811.	3.6	130
3528	Variations in the Composition of the Phases Lead to the Differences in the Optoelectronic Properties of MAPbBr3 Thin Films and Crystals. Journal of Physical Chemistry C, 2018, 122, 21817-21823.	1.5	15
3529	Interface Engineering in nâ€iâ€p Metal Halide Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800177.	3.1	53
3530	Effects of the concentration of PbI2 and CH3NH3I on the perovskite films and the performance of perovskite solar cells based on ZnO-TiO2 nanorod arrays. Superlattices and Microstructures, 2018,	1.4	12

#	Article	IF	CITATIONS
3531	In Situ Cesium Modification at Interface Enhances the Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 33205-33213.	4.0	27
3532	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	2.7	131
3533	UV Treatment of Low-Temperature Processed SnO2 Electron Transport Layers for Planar Perovskite Solar Cells. Nanoscale Research Letters, 2018, 13, 216.	3.1	17
3534	Improved Charge Carrier Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Films Synthesized by Means of Laser-Assisted Crystallization. ACS Applied Energy Materials, 2018, 1, 5101-5111.	2.5	31
3535	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
3536	Perovskite/Organic Bulkâ€Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Nearâ€Infrared External Quantum Efficiency over 70%. Small, 2018, 14, e1802349.	5.2	52
3537	Improving the Power Conversion Efficiency and Stability of Planar Perovskite Solar Cells via Small Molecule Doping. Journal of Electronic Materials, 2018, 47, 6894-6900.	1.0	8
3538	A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414.	8.2	60
3539	Unraveling the Passivation Process of PbI ₂ to Enhance the Efficiency of Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 21269-21276.	1.5	97
3540	Optoelectronic Dichotomy of Mixed Halide CH ₃ NH ₃ Pb(Br _{1–<i>x</i>} Cl _{<i>x</i>}) ₃ Single Crystals: Surface versus Bulk Photoluminescence. Journal of the American Chemical Society, 2018, 140, 11811-11819.	6.6	22
3541	Tuning spontaneous polarization and optical absorption by intercalating Sr–Cl-layers in organic–inorganic halide perovskite CH ₃ NH ₃ PbI ₃ thin films. Journal of Materials Chemistry A, 2018, 6, 17800-17806.	5.2	6
3542	Study of transport and recombination mechanism in hole transporter free perovskite solar cell. Materials Research Express, 2018, 5, 105508.	0.8	2
3543	Ultra-thin Cadmium Sulfide Electron-transporting Layer for Planar Perovskite Solar Cell. Chemistry Letters, 2018, 47, 1350-1353.	0.7	3
3544	Effect of incorporation of highlyâ€ordered aâ€Ge:H nanoparticles on the performance of perovskite solar cells. Micro and Nano Letters, 2018, 13, 1111-1116.	0.6	6
3545	Investigation on Charge Carrier Recombination of Hybrid Organic–Inorganic Perovskites Doped with Aggregationâ€induced Emission Luminogen under High Photon Flux Excitation. Advanced Optical Materials, 2018, 6, 1800221.	3.6	7
3546	Structural and Electronic Properties of Inorganic Mixed Halide Perovskites. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800193.	1.2	19
3547	Diffusion Enhancement in Highly Excited MAPbI ₃ Perovskite Layers with Additives. Journal of Physical Chemistry Letters, 2018, 9, 3167-3172.	2.1	46
3548	A Sandwich‣ike Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water. Advanced Energy Materials, 2018, 8, 1800795.	10.2	106

#	Article	IF	CITATIONS
3549	Spectroscopic Limited Practical Efficiency (SLPE) model for organometal halide perovskites solar cells evaluation. Organic Electronics, 2018, 59, 389-398.	1.4	6
3550	Photovoltaics and Nanotechnology as Alternative Energy. Environmental Chemistry for A Sustainable World, 2018, , 211-241.	0.3	1
3551	The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Singleâ€Crystal Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800224.	1.9	58
3552	Seeded Spaceâ€Limited Crystallization of CH ₃ NH ₃ Pbl ₃ Singleâ€Crystal Plates for Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700655.	2.6	43
3553	17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy, 2018, 50, 201-211.	8.2	148
3554	Acetate Anion Assisted Crystal Orientation Reconstruction in Organic–Inorganic Lead Halide Perovskite. ACS Applied Energy Materials, 2018, 1, 2730-2739.	2.5	23
3555	Copolymers of poly(3-thiopheneacetic acid) with poly(3-hexylthiophene) as hole-transporting material for interfacially engineered perovskite solar cell by modulating band positions for higher efficiency. Physical Chemistry Chemical Physics, 2018, 20, 15890-15900.	1.3	14
3556	Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal, 2018, 24, 12183-12205.	1.7	138
3557	Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials and Solar Cells, 2018, 184, 15-21.	3.0	179
3558	Thermal-evaporated selenium as a hole-transporting material for planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 130-135.	3.0	22
3559	Exciton Diffusion and Halo Effects in Monolayer Semiconductors. Physical Review Letters, 2018, 120, 207401.	2.9	193
3560	Plasmonic enhancement for high efficient and stable perovskite solar cells by employing "hot spots" Au nanobipyramids. Organic Electronics, 2018, 60, 1-8.	1.4	32
3561	Large-Scale Compositional and Electronic Inhomogeneities in CH ₃ NH ₃ PbI ₃ Perovskites and Their Effect on Device Performance. ACS Applied Energy Materials, 2018, 1, 2410-2416.	2.5	26
3562	<i>A</i> -Site Cation in Inorganic <i>A</i> ₃ Sb ₂ I ₉ Perovskite Influences Structural Dimensionality, Exciton Binding Energy, and Solar Cell Performance. Chemistry of Materials, 2018, 30, 3734-3742.	3.2	134
3563	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	7.3	56
3564	Fundamental Carrier Lifetime Exceeding 1 µs in Cs ₂ AgBiBr ₆ Double Perovskite. Advanced Materials Interfaces, 2018, 5, 1800464.	1.9	173
3565	A CsPbBr ₃ /TiO ₂ Composite for Visibleâ€Lightâ€Driven Photocatalytic Benzyl Alcohol Oxidation. ChemSusChem, 2018, 11, 2057-2061.	3.6	130
3566	D–A–D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Applied Materials & Interfaces, 2018, 10, 19697-19703.	4.0	101

#	Article	IF	CITATIONS
3567	Diammonium Cations in the FASnI ₃ Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. ACS Energy Letters, 2018, 3, 1470-1476.	8.8	114
3568	The performance enhancement of HTM-free ZnO nanowire-based perovskite solar cells via low-temperature TiCl4 treatment. Solar Energy, 2018, 170, 158-163.	2.9	11
3569	ZnO-Assisted Growth of CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Film and Efficient Planar Perovskite Solar Cells with a TiO ₂ /ZnO/C ₆₀ Electron Transport Trilayer. ACS Applied Materials & amp; Interfaces, 2018, 10, 20578-20590.	4.0	19
3570	Tunable syngas production from photocatalytic CO ₂ reduction with mitigated charge recombination driven by spatially separated cocatalysts. Chemical Science, 2018, 9, 5334-5340.	3.7	89
3571	The Cu/Cu ₂ 0 nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6280-6286.	2.7	16
3572	Grain-boundary effect and post treatment of active layer for efficient inverted planar perovskite solar cells. Electrochimica Acta, 2018, 281, 9-16.	2.6	15
3573	Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor. Electronic Materials Letters, 2018, 14, 712-717.	1.0	9
3574	Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nature Communications, 2018, 9, 2130.	5.8	153
3575	Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells. Nanoscale, 2018, 10, 12141-12148.	2.8	75
3576	The electronic properties of CH ₃ NH ₃ PbI ₃ perovskite surfaces tuned by inverted polarities of pyridine and ethylamine. Journal of Materials Chemistry C, 2018, 6, 6733-6738.	2.7	3
3577	Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures. Journal of Materials Chemistry C, 2018, 6, 6739-6746.	2.7	36
3578	Stable Formamidiniumâ€Based Perovskite Solar Cells via In Situ Grain Encapsulation. Advanced Energy Materials, 2018, 8, 1800232.	10.2	78
3579	Simultaneous performance and stability improvement of perovskite solar cells by a sequential twice anti-solvent deposition process. Organic Electronics, 2018, 59, 358-365.	1.4	2
3580	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	2.7	54
3581	Improved performance and reproducibility of perovskite solar cells by jointly tuning the hole transport layer and the perovskite layer deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 12652-12661.	1.1	2
3582	Effect of the vapor diffusion and improved light harvesting for Perovskite-Cu2ZnSnS4 hybridized solar cells. Organic Electronics, 2018, 59, 190-195.	1.4	2
3583	Excellent Stability of Perovskite Solar Cells by Passivation Engineering. Solar Rrl, 2018, 2, 1800088.	3.1	61
3584	Reduced-Dimensional α-CsPbX3 Perovskites for Efficient and Stable Photovoltaics. Joule, 2018, 2, 1356-1368.	11.7	344

#	Article	IF	CITATIONS
3585	Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Science Bulletin, 2018, 63, 726-731.	4.3	38
3586	Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials, 2018, 30, 3827-3835.	3.2	68
3587	High-performance stretchable photodetector based on CH ₃ NH ₃ PbI ₃ microwires and graphene. Nanoscale, 2018, 10, 10538-10544.	2.8	41
3588	Monolayer methylammonium lead iodide films deposited on Au(111). Surface Science, 2018, 675, 78-82.	0.8	5
3589	Stability and Degradation in Hybrid Perovskites: Is the Glass Half-Empty or Half-Full?. Journal of Physical Chemistry Letters, 2018, 9, 3000-3007.	2.1	102
3590	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	4.0	22
3591	Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6, 6398-6405.	2.7	168
3592	Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer. Journal of Materials Chemistry A, 2018, 6, 10379-10387.	5.2	51
3593	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
3594	The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH3NH3PbI3-xClx. Solid State Sciences, 2018, 82, 19-23.	1.5	18
3595	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498.	8.8	70
3596	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Scientific Reports, 2018, 8, 8115.	1.6	32
3597	Fullerene derivative as an additive for highly efficient printable mesoscopic perovskite solar cells. Organic Electronics, 2018, 62, 653-659.	1.4	10
3598	Employing Pentacene To Balance the Charge Transport in Inverted Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 17110-17117.	1.5	6
3599	Temperature-Dependent Photoluminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots and Bulk Counterparts. Journal of Physical Chemistry Letters, 2018, 9, 4066-4074.	2.1	128
3600	Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters, 2018, 3, 1815-1823.	8.8	22
3600 3601	Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters, 2018, 3, 1815-1823. MAPbCl ₃ -Mediated Decomposition Process to Tune Cl/Pbl ₂ Distribution in MAPbl ₃ Films. ACS Energy Letters, 2018, 3, 1801-1807.	8.8 8.8	22 18

ARTICLE IF CITATIONS Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation 3603 11.1 30 Transmutation. Advanced Materials, 2018, 30, e1802080. Ultralow Thermal Conductivity and Ultrahigh Thermal Expansion of Single-Crystal Organicâ \in "Inorganic Hybrid Perovskite CH₃NH₃PbX₃(X = Cl, Br, I). 3604 1.5 93 Journal of Physical Chemistry C, 2018, 122, 15973-15978. All-inorganic bifacial CsPbBr₃ perovskite solar cells with a 98.5%-bifacial factor. 3605 2.2 25 Chemical Communications, 2018, 54, 8237-8240. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and 3606 Four-Terminal Perovskite/Silicon Tandem Device Exploration. Journal of Nanomaterials, 2018, 2018, 1-8. Fabrication of planar heterojunction CsPbBr₂1 perovskite solar cells using ZnO as an 3607 electron transport layer and improved solar energy conversion efficiency. New Journal of Chemistry, 1.4 55 2018, 42, 14104-14110. lonic liquid modified SnO₂ nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 22086-22095. 5.2 66 In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Advanced Optical 3609 3.6 176 Materials, 2018, 6, 1800380. Semiconducting Metal Oxides for High Performance Perovskite Solar Cells., 2018, 241-265. 3610 Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano 3611 8.2 145 Energy, 2018, 51, 408-424. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. ACS Applied Materials & amp; 84 Interfaces, 2018, 10, 23928-23937. Efficient Perovskite Solar Cells with Reduced Photocurrent Hysteresis through Tuned Crystallinity 3613 8 1.6 of Hybrid Perovskite Thin Films. ACS Omega, 2018, 3, 7069-7076. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers. 3614 1.3 Nanotechnology, 2018, 29, 385401. Current perspectives in engineering of viable hybrid photocathodes for solar hydrogen generation. 3615 0.7 5 Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 023001. Exposed the mechanism of lead chloride dopant for high efficiency planar-structure perovskite solar cells. Organic Electronics, 2018, 62, 499-504. 1.4 Role of Additives on the Performance of CsPbI₃ Solar Cells. Journal of Physical Chemistry 3617 1.5 23 C, 2018, 122, 15903-15910. Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS Nano, 2018, 12, 7301-7311. 3618 101 Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials, 3619 1.5224 2018, 2018, 1-15. Evolution of Perovskite Solar Cells., 2018, , 43-88.

ARTICLE IF CITATIONS Fabrication and Life Time of Perovskite Solar Cells., 2018, , 231-287. 7 3621 Heterojunction Perovskite Solar Cells., 2018, , 323-339. Perovskite Photovoltaics., 2018,, 447-480. 7 3623 Memory properties of (110) preferring oriented CH3NH3PbI3 perovskite film prepared using PbS-buffered 3624 0.8 three-step growth method. Thin Solid Films, 2018, 660, 320-327. Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 3625 1.7 17 bilayered electron transport layers. RSC Advances, 2018, 8, 23019-23026. Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. 10.2 Advanced Energy Materials, 2018, 8, 1800591. Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. 3627 0.7 13 ChemistrySelect, 2018, 3, 6802-6809. Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. 3.1Solar Rrl, 2018, 2, 1800069. Computational modeling of the photovoltaic activities in EABX3 (EA = ethylammonium, B = Pb, Sn, Ge,) Ţj ৄTQq0 0,2 rgBT /Ov 3629 Halide Perovskites for Selective Ultraviolet-Harvesting Transparent Photovoltaics. Joule, 2018, 2, 11.7 1827-1837. High-efficiency hole-conductor-free rutile TiO2-Nanorod/CH3NH3PbI3 heterojunction solar cells with 3631 2.9 3 commercial carbon ink as counter-electrode. Solar Energy, 2018, 170, 1087-1094. Balancing transformation and dissolution–crystallization for pure phase CH3NH3PbI3 growth and its effect on photovoltaic performance in planar-structure perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 464-470. 3.0 Designing Efficient Energy Funneling Kinetics in Ruddlesden–Popper Perovskites for Highâ€Performance 3633 11.1 85 Lightấ€Emitting Diodes. Ádvanced Materials, 2018, 30, e1800818. Interface Engineering for Allâ€Inorganic CsPbI₂Br Perovskite Solar Cells with Efficiency 3634 11.1 over 14%. Advanced Materials, 2018, 30, e1802509. 3635 High efficient perovskite whispering-gallery solar cells. Nano Energy, 2018, 51, 556-562. 8.2 51 I-V and impedance characterization of a solution processed perovskite based heterojunction 3636 23 photodetector. Superlattices and Microstructures, 2018, 122, 410-418.

3637	High Current Density and Low Hysteresis Effect of Planar Perovskite Solar Cells via PCBM-doping and Interfacial Improvement. ACS Applied Materials & Interfaces, 2018, 10, 29954-29964.	4.0	35
3638	Magnesium-Doped MAPbl ₃ Perovskite Layers for Enhanced Photovoltaic Performance in Humid Air Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 24543-24548.	4.0	79

#	Article	IF	CITATIONS
3639	Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Advances, 2018, 8, 24110-24115.	1.7	10
3640	Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices. MRS Advances, 2018, 3, 3075-3084.	0.5	8
3641	Charge-Transporting Materials for Perovskite Solar Cells. Advances in Inorganic Chemistry, 2018, , 185-246.	0.4	8
3642	Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Organic Electronics, 2018, 62, 615-620.	1.4	20
3643	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 2525.	5.8	129
3644	Ultrahigh open-circuit voltage for high performance mixed-cation perovskite solar cells using acetate anions. Journal of Materials Chemistry A, 2018, 6, 14387-14391.	5.2	18
3645	Graphene Oxide/Perovskite Interfaces For Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16715-16726.	1.5	22
3646	Activation Energy of Organic Cation Rotation in CH ₃ NH ₃ Pbl ₃ CD ₃ NH ₃ Pbl ₃ : Quasi-Elastic Neutron Scattering Measurements and First-Principles Analysis Including Nuclear Quantum Effects. Journal of Physical Chemistry Letters, 2018, 9, 3969-3977.	2.1	34
3647	Research Update: Bismuth based materials for photovoltaics. APL Materials, 2018, 6, .	2.2	79
3648	Ionic Additive Engineering Toward Highâ€Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density. Advanced Functional Materials, 2018, 28, 1801985.	7.8	130
3649	Interfacial Charge Behavior Modulation in Perovskite Quantum Dotâ€Monolayer MoS ₂ 0Dâ€2D Mixedâ€Dimensional van der Waals Heterostructures. Advanced Functional Materials, 2018, 28, 1802015.	7.8	107
3650	High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51, 324-332.	8.2	53
3651	Point defect engineering in thin-film solar cells. Nature Reviews Materials, 2018, 3, 194-210.	23.3	275
3652	Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 2985-2992.	15.6	216
3653	Highly efficient and reproducible planar perovskite solar cells with mitigated hysteresis enabled by sequential surface modification of electrodes. Journal of Materials Science, 2018, 53, 16062-16073.	1.7	5
3654	Study of the Crystallization of Metal Halide Perovskites Containing Additives via Differential Scanning Calorimetry. Journal of Electronic Materials, 2018, 47, 6319-6327.	1.0	2
3655	Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy, 2018, 52, 300-306.	8.2	112
3656	Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. , 0, , .		5

#	Article	IF	CITATIONS
3657	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. Solar Energy, 2018, 173, 407-424.	2.9	56
3658	Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure. Solar Energy Materials and Solar Cells, 2018, 187, 69-75.	3.0	70
3659	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	1.7	27
3660	Selfâ€Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1802985.	7.8	161
3661	Dithiafulvenylâ€Naphthalenediimideâ€based Small Molecules as efficient Nonâ€Fullerene Electronâ€Transport Layer for Inverted Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2294-2301.	1.3	21
3662	Improving Performance of Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification. Solar Rrl, 2018, 2, 1800136.	3.1	180
3663	A simple method to improve the performance of perovskite light-emitting diodes <i>via</i> layer-by-layer spin-coating CsPbBr ₃ quantum dots. RSC Advances, 2018, 8, 27201-27206.	1.7	5
3664	Dew point temperature as an invariant replacement for relative humidity for advanced perovskite solar cell fabrication systems. Journal of Materials Chemistry A, 2018, 6, 20695-20701.	5.2	10
3665	In Silico Optimization of Organic–Inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution. Journal of Physical Chemistry C, 2018, 122, 20918-20922.	1.5	6
3666	Highly-flexible perovskite photodiodes employing doped multilayer-graphene transparent conductive electrodes. Nanotechnology, 2018, 29, 425203.	1.3	13
3667	Controllable Synthesis of 2D Perovskite on Different Substrates and Its Application as Photodetector. Nanomaterials, 2018, 8, 591.	1.9	20
3668	Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment. Advanced Optical Materials, 2018, 6, 1800262.	3.6	58
3669	Comparative Study on Perovskite Solar Cells based on Titanium, Nickel and Cadmium doped BiFeO3 active material. Optical Materials, 2018, 84, 681-688.	1.7	19
3670	Alanine induced structure reconstruction of PEDOT:PSS films in perovskite solar cells. Organic Electronics, 2018, 62, 468-473.	1.4	8
3671	Blue and red wavelength resolved impedance response of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2407-2411.	2.5	18
3672	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	1.9	41
3673	All-Inorganic Perovskite CsPb2Br5 Microsheets for Photodetector Application. Frontiers in Physics, 2018, 5, .	1.0	26
3674	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	2.7	9

#	Article	IF	CITATIONS
3675	<i>Ab initio</i> study of the moisture stability of lead iodine perovskites. Journal of Physics Condensed Matter, 2018, 30, 355501.	0.7	10
3676	Achieving High Openâ€Circuit Voltage for pâ€iâ€n Perovskite Solar Cells Via Anode Contact Engineering. Solar Rrl, 2018, 2, 1800151.	3.1	14
3677	A C ₆₀ Modification Layer Using a Scalable Deposition Technology for Efficient Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800174.	3.1	19
3678	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291.		0
3679	Electronâ€Transport Materials in Perovskite Solar Cells. Small Methods, 2018, 2, 1800082.	4.6	136
3680	Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOX hole transport layer. Electrochimica Acta, 2018, 284, 253-259.	2.6	37
3681	Effects of halide addition to arsenic-doped perovskite photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	4
3682	Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800260.	1.9	215
3683	Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	1.9	40
3684	Synergistic combination of semiconductor quantum dots and organic-inorganic halide perovskites for hybrid solar cells. Coordination Chemistry Reviews, 2018, 374, 279-313.	9.5	51
3685	Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2, 1662-1673.	11.7	297
3686	A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3. Nano Energy, 2018, 52, 11-21.	8.2	32
3687	Analysis of Defects and Traps in N–I–P Layered-Structure of Perovskite Solar Cells by Charge-Based Deep Level Transient Spectroscopy (<i>Q</i> -DLTS). Journal of Physical Chemistry C, 2018, 122, 17601-17611.	1.5	23
3688	Widely used hardly known. An insight into electric and dynamic properties of formamidinium iodide. RSC Advances, 2018, 8, 26506-26516.	1.7	9
3689	Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800645.	1.9	43
3690	Surface Modification of Methylamine Lead Halide Perovskite with Aliphatic Amine Hydroiodide. Langmuir, 2018, 34, 9507-9515.	1.6	6
3691	Photo-induced thiol coupling and C–H activation using nanocrystalline lead-halide perovskite catalysts. Catalysis Science and Technology, 2018, 8, 4257-4263.	2.1	106
3692	Structural stabilities of organic–inorganic perovskite crystals. Japanese Journal of Applied Physics, 2018, 57, 08RE12.	0.8	42

#	Article	IF	Citations
3693	Modified solvent bathing method for forming high quality perovskite films. Thin Solid Films, 2018, 661, 60-64.	0.8	6
3694	Structural and Chemical Features Giving Rise to Defect Tolerance of Binary Semiconductors. Chemistry of Materials, 2018, 30, 5583-5592.	3.2	36
3695	Additive-assisted one-step formed perovskite/hole conducting materials graded heterojunction for efficient perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532, 182-189.	5.0	17
3696	Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon. Solar Energy, 2018, 173, 7-16.	2.9	22
3697	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	2.5	58
3698	Frequency upconverted amplified spontaneous emission and lasing from inorganic perovskite under simultaneous six-photon absorption. Optics Letters, 2018, 43, 2066.	1.7	19
3699	Effects of PbI ₂ addition and TiO ₂ electron transport layers for perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 08RE05.	0.8	22
3700	Ultrahigh Quality Upconverted Singleâ€Mode Lasing in Cesium Lead Bromide Spherical Microcavity. Advanced Optical Materials, 2018, 6, 1800391.	3.6	47
3701	Anomalous effect of UV light on the humidity dependence of photocurrent in perovskite solar cells. Nanotechnology, 2018, 29, 405701.	1.3	3
3702	Observation of Hybrid MAPbBr3 Perovskite Bulk Crystals Grown by Repeated Crystallizations. Crystals, 2018, 8, 260.	1.0	9
3703	Identifying an Optimum Perovskite Solar Cell Structure by Kinetic Analysis: Planar, Mesoporous Based, or Extremely Thin Absorber Structure. ACS Applied Energy Materials, 2018, 1, 3722-3732.	2.5	36
3705	Facilely Synthesized spiro[fluoreneâ€9,9′â€phenanthrenâ€10′â€one] in Donor–Acceptor–Donor Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2018, 11, 3225-3233.	3.6	47
3706	Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3998-4005.	2.1	129
3707	Light-Induced Formation of Pb ³⁺ Paramagnetic Species in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 1840-1847.	8.8	28
3708	Atomic Layer Deposited TiO 2 –IrO x Alloy as a Hole Transport Material for Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800191.	1.9	15
3709	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
3710	Zinc as a New Dopant for NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells with Stable Efficiency near 20%. ACS Applied Energy Materials, 2018, 1, 3947-3954.	2.5	87
3711	Long Carrier Lifetimes in PbI ₂ -Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2018, 3, 1868-1874.	8.8	54

#	Article	IF	CITATIONS
3712	A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.	19.8	1,856
3713	Preparation and Characteristics of MAPbBr3 Perovskite Quantum Dots on NiOx Film and Application for High Transparent Solar Cells. Micromachines, 2018, 9, 205.	1.4	16
3714	The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 2018, 8, 356.	1.9	30
3715	Improved Performance of Perovskite Light-Emitting Diodes by Quantum Confinement Effect in Perovskite Nanocrystals. Nanomaterials, 2018, 8, 459.	1.9	9
3716	Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654.	19.8	552
3717	Famatinite Cu ₃ SbS ₄ nanocrystals as hole transporting material for efficient perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 7989-7993.	2.7	20
3718	Electron extraction layer based on diketopyrrolopyrrole/isoindigo to improve the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 8429-8434.	2.7	27
3719	Probing the structure–property–composition relationship in organic–inorganic tri-halide perovskites. Physical Chemistry Chemical Physics, 2018, 20, 20489-20496.	1.3	2
3720	Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials, 2018, 30, 5264-5271.	3.2	30
3721	Static and Dynamic Disorder in Triple-Cation Hybrid Perovskites. Journal of Physical Chemistry C, 2018, 122, 17473-17480.	1.5	21
3722	High-Efficiency Planar Hybrid Perovskite Solar Cells Using Indium Sulfide as Electron Transport Layer. ACS Applied Energy Materials, 2018, 1, 4050-4056.	2.5	30
3723	Towards large-area perovskite solar cells: the influence of compact and mesoporous TiO ₂ electron transport layers. Materials Research Express, 2018, 5, 085506.	0.8	14
3724	1D Hexagonal HC(NH ₂) ₂ PbI ₃ for Multilevel Resistive Switching Nonvolatile Memory. Advanced Electronic Materials, 2018, 4, 1800190.	2.6	70
3725	Lead-free (CH3NH3)3Bi2I9 perovskite solar cells with fluorinated PDI films as organic electron transport layer. Journal of Alloys and Compounds, 2018, 767, 870-876.	2.8	32
3726	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	8.2	59
3727	Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Organic Electronics, 2018, 62, 21-25.	1.4	27
3728	Can SHG Measurements Determine the Polarity of Hybrid Lead Halide Perovskites?. ACS Energy Letters, 2018, 3, 1887-1891.	8.8	22
3729	Statistics of the Auger Recombination of Electrons and Holes via Defect Levels in the Band Gap—Application to Lead-Halide Perovskites. ACS Omega, 2018, 3, 8009-8016.	1.6	55

#	Article	IF	CITATIONS
3730	Generation of Coherent Optical Phonons in Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2018, 122, 17035-17041.	1.5	13
3731	Inverted (p–i–n) perovskite solar cells using a low temperature processed TiO _x interlayer. RSC Advances, 2018, 8, 24836-24846.	1.7	17
3732	In Situ Interface Engineering of TiO ₂ Nanocrystals for Fully Ambientâ€Processed Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800103.	3.1	14
3733	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	3.1	17
3734	Perovskite Single-Crystal Microarrays for Efficient Photovoltaic Devices. Chemistry of Materials, 2018, 30, 4590-4596.	3.2	33
3735	Phonon Coupling with Excitons and Free Carriers in Formamidinium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 4245-4250.	2.1	56
3736	The Role of Surface Defects in Photoluminescence and Decay Dynamics of High-Quality Perovskite MAPbI ₃ Single Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4221-4226.	2.1	54
3737	Broadband Frequency-Tunable Whispering-Gallery-Mode Superradiant Light from Quantum Dots in Colloidal Solution. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	2
3738	Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics, 2018, 1, 404-410.	13.1	351
3739	Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. Journal of Materials Chemistry A, 2018, 6, 15386-15394.	5.2	53
3740	Aerosol-assisted chemical vapor deposition of ultra-thin CuO _{<i>x</i>} films as hole transport material for planar perovskite solar cells. Functional Materials Letters, 2018, 11, 1850035.	0.7	17
3741	Efficient and stable planar p-i-n perovskite solar cells by doping tungsten compound into PEDOT:PSS to facilitate perovskite crystalline. Electrochimica Acta, 2018, 283, 922-930.	2.6	27
3742	Laser-Induced Flash-Evaporation Printing CH ₃ NH ₃ PbI ₃ Thin Films for High-Performance Planar Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26206-26212.	4.0	10
3743	Multiscale model for disordered hybrid perovskites: The concept of organic cation pair modes. Physical Review B, 2018, 98, .	1.1	15
3744	Sequential Preparation of Dual‣ayer Fluorineâ€Doped Tin Oxide Films for Highly Efficient Perovskite Solar Cells. ChemSusChem, 2018, 11, 3234-3242.	3.6	7
3745	Dynamically Disordered Lattice in a Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional Infrared Spectroscopy. Journal of the American Chemical Society, 2018, 140, 9882-9890.	6.6	49
3746	Patterned Perovskites for Optoelectronic Applications. Small Methods, 2018, 2, 1800110.	4.6	67
3747	Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochimica Acta, 2018, 283, 1134-1145.	2.6	13

# 3748	ARTICLE Modified Sequential Deposition Route through Localized-Liquid-Liquid-Diffusion for Improved Perovskite Multi-Crystalline Thin Films with Micrometer-Scaled Grains for Solar Cells. Nanomaterials, 2018, 8, 416.	IF 1.9	Citations 8
3749	Inorganic pâ€Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. Advanced Sustainable Systems, 2018, 2, 1800032.	2.7	26
3750	Erbium (III) tris(8-hydroxyquinoline) doped zinc oxide interfacial layer for improved performance of polymer solar cells. Organic Electronics, 2018, 62, 65-71.	1.4	14
3751	All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer. Electrochimica Acta, 2018, 283, 1115-1124.	2.6	46
3752	Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite. ACS Applied Energy Materials, 2018, 1, 3807-3814.	2.5	36
3753	Suppressing TiO ₂ /Perovskite Interfacial Electron Trapping in Perovskite Solar Cell for Efficient Charge Extraction and Improved Device Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 11295-11302.	3.2	18
3754	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
3755	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	10.2	247
3756	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2018, 10, 17973-17984.	4.0	31
3757	Structural, optical and morphological studies of Cd2+ doping in CH3NH3PbI3 perovskite semiconductor at Pb2+ site for photovoltaic applications. AIP Conference Proceedings, 2018, , .	0.3	0
3758	1D Organic–Inorganic Hybrid Perovskite Micro/Nanocrystals: Fabrication, Assembly, and Optoelectronic Applications. Small Methods, 2018, 2, 1700340.	4.6	27
3759	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
3760	Impact of short-time annealing of methylammonium lead iodide on the performance of perovskite solar cells prepared under a high humidity condition. Molecular Crystals and Liquid Crystals, 2018, 660, 79-84.	0.4	3
3761	A Strategy for Architecture Design of Crystalline Perovskite Lightâ€Emitting Diodes with High Performance. Advanced Materials, 2018, 30, e1800251.	11.1	148
3762	Laser Desorption/Ionization Mass Spectrometry of Perovskite Solar Cells: Identification of Interface Interactions and Degradation Reactions. Solar Rrl, 2018, 2, 1800022.	3.1	9
3763	Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH ₃ NH ₃ PbI ₃ Perovskite Devices in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 16482-16489.	4.0	78
3764	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	8.8	106
3765	Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells. Applied Physics Letters, 2018, 112, .	1.5	36

#	Article	IF	CITATIONS
3766	lonic Liquidâ€Assisted Improvements in the Thermal Stability of CH ₃ NH ₃ PbI ₃ Perovskite Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800130.	1.2	27
3767	Characterization of novel nitrogen-less derived 2D hybrid perovskite of C6H8N2PbBr3 as a light-harvesting material for perovskite solar cell application. Materials Letters, 2018, 227, 62-65.	1.3	5
3768	Evaluation of silicon, organic, and perovskite solar cell reliability with low-frequency noise spectroscopy. , 2018, , .		3
3769	CH ₃ NH ₃ PbI ₃ and HC(NH ₂) ₂ PbI ₃ Powders Synthesized from Lowâ€Grade PbI ₂ : Single Precursor for Highâ€Efficiency Perovskite Solar Cells. ChemSusChem, 2018, 11, 1813-1823.	3.6	61
3770	Wideâ€Bandgap Perovskite Solar Cells With Large Openâ€Circuit Voltage of 1653 mV Through Interfacial Engineering. Solar Rrl, 2018, 2, 1800083.	3.1	67
3771	Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 19019-19026.	4.0	75
3772	Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency. ACS Omega, 2018, 3, 5038-5043.	1.6	38
3773	Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nature Communications, 2018, 9, 1829.	5.8	189
3774	Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47, 7050-7058.	1.6	34
3775	Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites. Applied Physics Letters, 2018, 112, .	1.5	21
3776	Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. ACS Applied Materials & Interfaces, 2018, 10, 30607-30613.	4.0	91
3777	Mechanism suppressing charge recombination at iodine defects in CH3NH3PbI3 by polaron formation. Journal of Materials Chemistry A, 2018, 6, 16863-16867.	5.2	26
3778	Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy, 2018, 53, 17-26.	8.2	110
3779	All-Solution-Processed Thermally and Chemically Stable Copper–Nickel Core–Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30337-30347.	4.0	24
3780	Influence of organic cations on intrinsic properties of lead iodide perovskite solar cells. Organic Electronics, 2018, 62, 269-276.	1.4	10
3781	Influence of anti-solvents on CH3NH3PbI3 films surface morphology for fabricating efficient and stable inverted planar perovskite solar cells. Thin Solid Films, 2018, 663, 105-115.	0.8	11
3782	Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. Journal of Materials Chemistry A, 2018, 6, 17426-17436.	5.2	33
3783	Stateâ€ofâ€theâ€Art Electron‣elective Contacts in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800408.	1.9	38

		CITATION REPORT		
#	Article		IF	Citations
3784	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 52	28-533.	15.6	371
3785	Structural effects on optoelectronic properties of halide perovskites. Chemical Society 47, 7045-7077.	Reviews, 2018,	18.7	108
3786	Picosecond Capture of Photoexcited Electrons Improves Photovoltaic Conversion in MAPbl ₃ :C ₇₀ â€Doped Planar and Mesoporous Solar Cells. Ac 2018, 30, e1801496.	dvanced Materials,	11.1	17
3787	Efficient Perovskite Solar Cells Fabricated Through CsClâ€Enhanced PbI ₂ Sequential Deposition. Advanced Materials, 2018, 30, e1803095.	Precursor via	11.1	109
3788	Effects of Ti precursors on the performance of planar perovskite solar cells. Applied Su 2018, 462, 598-605.	rface Science,	3.1	11
3789	Oxygen management in carbon electrode for high-performance printable perovskite sc Energy, 2018, 53, 160-167.	olar cells. Nano	8.2	83
3790	Methylammonium, formamidinium and ethylenediamine mixed triple-cation perovskite high efficiency and remarkable stability. Journal of Materials Chemistry A, 2018, 6, 176		5.2	37
3791	Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a latera characterized by time-of-flight photoconductivity. Materials Chemistry and Physics, 20		2.0	11
3792	Interface engineering of TiO2/perovskite interface via fullerene derivatives for high per planar perovskite solar cells. Organic Electronics, 2018, 62, 459-467.	formance	1.4	32
3793	Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability. ACS Energ 2246-2251.	y Letters, 2018, 3,	8.8	64
3794	Rigorous wave-optical treatment of photon recycling in thermodynamics of photovolta thin-film solar cells. Physical Review B, 2018, 98, .	aics: Perovskite	1.1	31
3795	Semiconducting Organic–Inorganic Hybrid Material with Distinct Switchable Dielect Transition. Journal of Physical Chemistry C, 2018, 122, 20989-20995.	ric Phase	1.5	25
3796	Nonlinear optical properties of lead halide perovskites. , 2018, , .			0
3797	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materi Interfaces, 2018, 10, 31586-31593.	als &	4.0	41
3798	Transformation from crystalline precursor to perovskite in PbCl2-derived MAPbI3. Natu Communications, 2018, 9, 3458.	ire	5.8	77
3799	Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High Solar Cells. Scientific Reports, 2018, 8, 12885.	-Performance	1.6	109
3800	Completing the Picture of 2-(Aminomethylpyridinium) Lead Hybrid Perovskites: Insight Conductivity Behavior, and Optical Properties. Chemistry of Materials, 2018, 30, 6289		3.2	32
3801	Investigation Au Nanoparticles Fabrication and Efficiency of the TiO2/Au NPs Mesopor Solar Cells. , 2018, , .	ous Perovskite		0

#	Article	IF	CITATIONS
3802	Pathways Towards High-Stable, Low-Cost and Efficient Perovskite Solar Cells. , 0, , .		3
3803	Surface polarization and recombination in organic-inorganic hybrid perovskite solar cells based on photo- and electrically induced negative capacitance studies. Organic Electronics, 2018, 62, 203-208.	1.4	28
3804	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	5.1	334
3805	Photophysics of metal halide perovskites: From materials to devices. Japanese Journal of Applied Physics, 2018, 57, 090101.	0.8	59
3806	Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4955-4962.	2.1	46
3807	First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. ACS Energy Letters, 2018, 3, 2206-2222.	8.8	202
3808	Low defects, large area and high stability of all-inorganic lead halide perovskite CsPbBr ₃ thin films with micron-grains <i>via</i> heat-spraying process for self-driven photodetector. RSC Advances, 2018, 8, 29089-29095.	1.7	21
3809	A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells. Crystals, 2018, 8, 44.	1.0	13
3810	Graphene-Based Semiconductor Heterostructures for Photodetectors. Micromachines, 2018, 9, 350.	1.4	68
3811	Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532, 387-394.	5.0	31
3812	A Combined Theoretical and Experimental Study of CH ₃ NH ₃ PbI ₃ Containing AVAI Films Prepared via an Intramolecular Exchange Process. Journal of Physical Chemistry C, 2018, 122, 19705-19711.	1.5	2
3813	Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance. Small, 2018, 14, e1802033.	5.2	24
3814	High-Quality Perovskite Film Preparations for Efficient Perovskite Solar Cells. , 0, , .		0
3815	Impact of Environmental Stresses Onto Transport Properties of Hybrid Perovskite Investigated by Steady State Photocarrier Grating and Steady State Photocurrent Techniques. Solar Rrl, 2018, 2, 1800192.	3.1	7
3816	High Resolution Mapping of Two-Photon Excited Photocurrent in Perovskite Microplate Photodetector. Journal of Physical Chemistry Letters, 2018, 9, 5017-5022.	2.1	35
3817	Enhanced Photovoltaic Performance of Perovskite Solar Cells by Tuning Alkaline Earth Metal-Doped Perovskite-Structured Absorber and Metal-Doped TiO ₂ Hole Blocking Layer. ACS Applied Energy Materials, 2018, 1, 4849-4859.	2.5	13
3818	Visualization and Investigation of Charge Transport in Mixedâ€Halide Perovskite via Lateral‣tructured Photovoltaic Devices. Advanced Functional Materials, 2018, 28, 1804067.	7.8	27
3819	High-performance organic–inorganic hybrid perovskite thin-film field-effect transistors. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	17

#	Article	IF	CITATIONS
3820	A Zero-Dimensional Mixed-Anion Hybrid Halogenobismuthate(III) Semiconductor: Structural, Optical, and Photovoltaic Properties. Inorganic Chemistry, 2018, 57, 10576-10586.	1.9	26
3821	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. ACS Energy Letters, 2018, 3, 2199-2205.	8.8	119
3822	Fast two-step deposition of perovskite <i>via</i> mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 12447-12454.	5.2	83
3823	High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C, 2018, 6, 6975-6981.	2.7	51
3824	Spontaneous Selfâ€Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap. Advanced Materials, 2018, 30, e1801117.	11.1	163
3825	Anomalous Dielectric Behavior of a Pb/Sn Perovskite: Effect of Trapped Charges on Complex Photoconductivity. ACS Photonics, 2018, 5, 3189-3197.	3.2	21
3826	Heteroatom Effect on Starâ€6haped Holeâ€Transporting Materials for Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1801734.	7.8	62
3827	Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials. Journal of Physical Chemistry Letters, 2018, 9, 3779-3792.	2.1	17
3828	Polystyrene with a methoxytriphenylamine-conjugated-thiophene moiety side-chain as a dopant-free hole-transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13123-13132.	5.2	29
3829	Tuning Excitonic Properties of Pure and Mixed Halide Perovskite Thin Films via Interfacial Engineering. Advanced Materials Interfaces, 2018, 5, 1800209.	1.9	1
3830	Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy, 2018, 50, 710-716.	8.2	44
3831	Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application. Electrochimica Acta, 2018, 282, 81-88.	2.6	31
3832	Surface properties of lead-free halide double perovskites: Possible visible-light photo-catalysts for water splitting. Applied Physics Letters, 2018, 112, .	1.5	46
3833	Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9, 2225.	5.8	526
3834	Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Applied Physics Letters, 2018, 112, .	1.5	84
3835	Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6982-6987.	2.7	19
3836	High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule, 2018, 2, 1421-1436.	11.7	173
3837	Pentacene as a hole transport material for high performance planar perovskite solar cells. Current Applied Physics, 2018, 18, 1095-1100.	1.1	13

#	Article	IF	CITATIONS
3838	Porphyrin Dimers as Hole-Transporting Layers for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1620-1626.	8.8	62
3839	Photocarrier dynamics in perovskite-based solar cells revealed by intensity-modulated photovoltage spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 17918-17926.	1.3	16
3840	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	4.6	71
3841	A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 12842-12875.	5.2	168
3842	Introduction of Graphene Nanofibers into the Perovskite Layer of Perovskite Solar Cells. ChemSusChem, 2018, 11, 2921-2929.	3.6	17
3843	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	1.5	70
3844	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Materials Horizons, 2018, 5, 868-873.	6.4	25
3845	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	1.0	17
3846	Colloidal Nanocrystals as a Platform for Rapid Screening of Charge Trap Passivating Molecules for Metal Halide Perovskite Thin Films. Chemistry of Materials, 2018, 30, 4515-4526.	3.2	19
3847	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
3848	A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13751-13760.	5.2	26
3849	Obtaining white perovskite film for efficient solar cells. Journal Physics D: Applied Physics, 2018, 51, 295105.	1.3	4
3850	Nanocrystalline Pyrite for Photovoltaic Applications. ChemistrySelect, 2018, 3, 6488-6524.	0.7	25
3851	Multiâ€Color Excitonic Emissions in Chemical Dipâ€Coated Organolead Mixedâ€Halide Perovskite. ChemistrySelect, 2018, 3, 6525-6530.	0.7	3
3852	Biexciton Generation and Dissociation Dynamics in Formamidinium- and Chloride-Doped Cesium Lead Iodide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 3673-3679.	2.1	31
3853	Methodologies toward Efficient and Stable Cesium Lead Halide Perovskiteâ€Based Solar Cells. Advanced Science, 2018, 5, 1800509.	5.6	53
3854	High isotropic dispiro structure hole transporting materials for planar perovskite solar cells. Journal of Energy Chemistry, 2019, 32, 152-158.	7.1	7
3855	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	3.5	20

#	Article	IF	CITATIONS
3856	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
3857	Improving the stability of metal halide perovskite solar cells from material to structure. Journal of Energy Chemistry, 2019, 33, 90-99.	7.1	33
3858	Effect of number and position of methoxy substituents on fine-tuning the electronic structures and photophysical properties of designed carbazole-based hole-transporting materials for perovskite solar cells: DFT calculations. Arabian Journal of Chemistry, 2019, 12, 1-20.	2.3	27
3859	Anomalous Ambipolar Phototransistors Based on Allâ€Inorganic CsPbBr ₃ Perovskite at Room Temperature. Advanced Optical Materials, 2019, 7, 1900676.	3.6	33
3860	Perovskite-Betavoltaic Cells: A Novel Application of Organic–Inorganic Hybrid Halide Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 32969-32977.	4.0	20
3861	Cold Antisolvent Bathing Derived Highly Efficient Largeâ€Area Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901719.	10.2	67
3862	Co-harvesting Light and Mechanical Energy Based on Dynamic Metal/Perovskite Schottky Junction. Matter, 2019, 1, 639-649.	5.0	77
3863	Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines. ACS Applied Energy Materials, 2019, 2, 6230-6236.	2.5	18
3864	Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers. Solar Energy Materials and Solar Cells, 2019, 201, 110071.	3.0	32
3865	Internal quantum efficiency of radiation in a bulk CH3NH3PbBr3 perovskite crystal quantified by using the omnidirectional photoluminescence spectroscopy. APL Materials, 2019, 7, .	2.2	24
3866	In-situ Interfacial Passivation for Stable Perovskite Solar Cells. Frontiers in Materials, 2019, 6, .	1.2	8
3867	Perovskite-based lasers. , 2019, , 41-74.		5
3868	Influence of shape on the carrier relaxation dynamics of CsPbBr ₃ perovskite nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 19318-19326.	1.3	37
3869	Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates. ACS Applied Materials & Interfaces, 2019, 11, 32159-32168.	4.0	41
3870	Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902902.	11.1	366
3871	Enhanced efficiency and stability of perovskite solar cells by synergistic effect of magnesium acetate introducing into CH3NH3PbI3. Materials Science in Semiconductor Processing, 2019, 104, 104671.	1.9	8
3872	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	2.1	60
3873	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	8.2	26

#	Article	IF	CITATIONS
3874	Revealing the structural, electronic and optical properties of lead-free perovskite derivatives of Rb2SnX6(X = Cl, Br and I): A theory calculation. Solar Energy, 2019, 190, 272-277.	2.9	50
3875	Metal Halide Perovskite and Phosphorus Doped g-C ₃ N ₄ Bulk Heterojunctions for Air-Stable Photodetectors. ACS Energy Letters, 2019, 4, 2315-2322.	8.8	36
3876	Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters, 2019, 4, 2205-2212.	8.8	58
3877	Enhanced long-term stability of perovskite solar cells by passivating grain boundary with polydimethylsiloxane (PDMS). Journal of Materials Chemistry A, 2019, 7, 20832-20839.	5.2	31
3878	Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. APL Materials, 2019, 7, 081116.	2.2	46
3879	Potassium-Doped Nickel Oxide as the Hole Transport Layer for Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6705-6713.	2.5	35
3880	Stable lead-free Te-based double perovskites with tunable band gaps: a first-principles study. New Journal of Chemistry, 2019, 43, 14892-14897.	1.4	32
3881	Spaceâ€Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl ₃ Microplatelet for Nearâ€Ultraviolet Photodetection. Small, 2019, 15, e1902618.	5.2	77
3882	Charge Transfer and Diffusion at the Perovskite/PCBM Interface Probed by Transient Absorption and Reflection. Journal of Physical Chemistry C, 2019, 123, 22095-22103.	1.5	26
3883	Carrier Lifetimes and Recombination Pathways in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 5041-5046.	2.1	14
3884	Energy Level Tuning at the MAPbI ₃ Perovskite/Contact Interface Using Chemical Treatment. ACS Energy Letters, 2019, 4, 2181-2184.	8.8	45
3885	Stable Lead-Free (CH ₃ NH ₃) ₃ Bi ₂ I ₉ Perovskite for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15080-15085.	3.2	93
3886	Photophysics of lead-free tin halide perovskite films and solar cells. APL Materials, 2019, 7, .	2.2	32
3887	A Highly Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell. European Journal of Inorganic Chemistry, 2019, 2019, 3699-3703.	1.0	31
3888	High-Speed Vapor Transport Deposition of Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 32928-32936.	4.0	24
3889	Fabrication of Efficient and Stable CsPbl ₃ Perovskite Solar Cells through Cation Exchange Process. Advanced Energy Materials, 2019, 9, 1901685.	10.2	101
3890	Short Photoluminescence Lifetimes in Vacuum-Deposited CH ₃ NH ₃ PbI ₃ Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. Journal of Physical Chemistry Letters, 2019, 10, 5167-5172.	2.1	24
3891	Stabilization of all-inorganic <i>î±</i> -CsPbl ₃ perovskite by Bi or Sb doping. Materials Research Express, 2019, 6, 105529.	0.8	12

# 3892	ARTICLE Spinâ€Polarized Electronic Transport through Ferromagnet/Organic–Inorganic Hybrid Perovskite Spinterfaces at Room Temperature. Advanced Materials Interfaces, 2019, 6, 1900718.	IF 1.9	Citations 21
3893	lon-migration and carrier-recombination inhibition by the cation-Ï€ interaction in planar perovskite solar cells. Organic Electronics, 2019, 75, 105387.	1.4	17
3894	Molecular dynamics of hybrid halide perovskite (CH3NH3)2CuX4 (X = Br and Cl) determined by nuclear magnetic resonance relaxation processes. Solid State Sciences, 2019, 96, 105955.	1.5	2
3895	Efficient Passivation with Lead Pyridineâ€2â€Carboxylic for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901852.	10.2	147
3896	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy and Environmental Science, 2019, 12, 3063-3073.	15.6	111
3897	Microstructural investigation of a compact TiO2 layer for improvement of perovskite solar cells. Applied Physics Letters, 2019, 115, 053902.	1.5	1
3898	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	7.8	43
3899	Rational Design of Dopantâ€Free Coplanar Dâ€Ï€â€D Holeâ€Transporting Materials for Highâ€Performance Perovskite Solar Cells with Fill Factor Exceeding 80%. Advanced Energy Materials, 2019, 9, 1901268.	10.2	77
3900	Enhancing the performance of perovskite solar cells via interface modification. Journal of Materials Science, 2019, 54, 14134-14142.	1.7	17
3901	Solvent-free synthesis of organometallic halides CH3NH3PbI3 and (CH3NH3)3Bi2I9 and their thermoelectric transport properties. Applied Physics Letters, 2019, 115, 072104.	1.5	17
3902	Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites. Chinese Physics Letters, 2019, 36, 028401.	1.3	2
3903	Sputtering of TiO ₂ for High-Efficiency Perovskite and 23.1% Perovskite/Silicon 4-Terminal Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2, 6263-6268.	2.5	19
3904	High-Performance CsPbIBr ₂ Perovskite Solar Cells: Effectively Promoted Crystal Growth by Antisolvent and Organic Ion Strategies. ACS Applied Materials & Interfaces, 2019, 11, 33868-33878.	4.0	52
3905	Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 32301-32309.	4.0	37
3906	Anomalous Temperature-Dependent Charge Recombination in CH ₃ NH ₃ PbI ₃ Perovskite: Key Roles of Charge Localization and Thermal Effect. ACS Applied Materials & Interfaces, 2019, 11, 32069-32075.	4.0	22
3907	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	7.3	59
3908	All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chemical Science, 2019, 10, 9530-9541.	3.7	43
3909	Effects of guanidinium addition to CH ₃ NH ₃ PbI _{3â^`} <i>_{xperovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2019, 127, 491-497.}</i>	sub><	;/i>Cl <i< td=""></i<>

#	Article	IF	CITATIONS
3910	Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. ACS Applied Materials & Interfaces, 2019, 11, 28431-28441.	4.0	60
3911	Variation of Interfacial Interactions in PC ₆₁ BM-like Electron-Transporting Compounds for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34408-34415.	4.0	29
3912	Identification of defects and defect energy distribution in the perovskite layer of MAPbI _{3â^x} Cl _x perovskite solar cell. Materials Research Express, 2019, 6, 105510.	0.8	4
3913	Liquid-chalk painted perovskite films toward low-cost photovoltaic devices. Organic Electronics, 2019, 75, 105371.	1.4	3
3914	High-Temperature Dielectric Switching and Photoluminescence in a Corrugated Lead Bromide Layer Hybrid Perovskite Semiconductor. Inorganic Chemistry, 2019, 58, 10357-10363.	1.9	43
3915	Electronic Properties and Photovoltaic Functionality of Zn-Doped Orthorhombic CH3NH3PbI3: A GCA+vdW Study. Journal of Electronic Materials, 2019, 48, 6327-6334.	1.0	2
3916	Color-Tunable All-Inorganic CsPbBr ₃ Perovskites Nanoplatelet Films for Photovoltaic Devices. ACS Applied Nano Materials, 2019, 2, 5149-5155.	2.4	3
3917	Recycling of Perovskite Films: Route toward Cost-Efficient and Environment-Friendly Perovskite Technology. ACS Omega, 2019, 4, 11880-11887.	1.6	54
3918	A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, 2019, 7, 18275-18284.	5.2	28
3919	Cesium Oleate Passivation for Stable Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2019, 11, 27882-27889.	4.0	12
3920	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18898-18905.	5.2	36
3921	Enhanced long wavelength omnidirectional photoresponses in photonic-structured perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7, 9573-9580.	2.7	21
3922	Compositional Engineering of Mixed-Cation Lead Mixed-Halide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 28005-28012.	4.0	27
3923	Tunable thiocyanate-doped perovskite microstructure via water-ethanol additives for stable solar cells at ambient conditions. Solar Energy Materials and Solar Cells, 2019, 200, 110029.	3.0	11
3924	Influence of titanium dioxide surface activation on the performance of mesoscopic perovskite solar cells. Thin Solid Films, 2019, 686, 137418.	0.8	4
3925	Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Advanced Materials, 2019, 31, e1902037.	11.1	71
3926	A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Materials Today Nano, 2019, 7, 100045.	2.3	46
3927	Electromodulation and Transient Absorption Spectroscopy Suggest Conduction Band Electron Lifetime, Electron Trapping Parameters, and CH ₃ NH ₃ Pbl ₃ Solar Cell Fill Factor Are Correlated Journal of Physical Chemistry C 2019, 123, 18160-18170	1.5	9

#	Article	IF	CITATIONS
3928	Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .	2.0	36
3929	Synergy of the ray tracing+carrier transport approach: On efficiency of perovskite solar cells with a back reflector. Solar Energy Materials and Solar Cells, 2019, 200, 110050.	3.0	7
3930	Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328.	6.6	61
3931	Intraband Cooling in Allâ€Inorganic and Hybrid Organic–Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2019, 29, 1901725.	7.8	42
3932	The effect of the magnitude and direction of the dipoles of organic cations on the electronic structure of hybrid halide perovskites. Physical Chemistry Chemical Physics, 2019, 21, 16564-16572.	1.3	22
3933	Effective electron extraction from active layer for enhanced photodetection of photoconductive type detector with structure of Au/CH3NH3Pbl3/Au. Organic Electronics, 2019, 74, 197-203.	1.4	6
3934	Ultrafast Carrier Dynamics of Dual Emissions from the Orthorhombic Phase in Methylammonium Lead Iodide Perovskites Revealed by Two-Dimensional Coherent Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4625-4631.	2.1	9
3935	Side-Chain Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells—The Impact of Substituents' Positions in Carbazole on Device Performance. ACS Applied Materials & Interfaces, 2019, 11, 26928-26937.	4.0	36
3936	Ligand-Size Related Dimensionality Control in Metal Halide Perovskites. ACS Energy Letters, 2019, 4, 1830-1838.	8.8	38
3937	Enhancement of Stability of Inverted Flexible Perovskite Solar Cells by Employing Graphene-Quantum-Dots Hole Transport Layer and Graphene Transparent Electrode Codoped with Gold Nanoparticles and Bis(trifluoromethanesulfonyl)amide. ACS Sustainable Chemistry and Engineering. 2019. 7. 13178-13185.	3.2	29
3938	Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 505-524.	1.0	62
3939	Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials, 2019, 4, 573-587.	23.3	200
3940	Effect of interlayer spacing in layered perovskites on resistive switching memory. Nanoscale, 2019, 11, 14330-14338.	2.8	39
3941	The effect of structural dimensionality on carrier mobility in lead-halide perovskites. Journal of Materials Chemistry A, 2019, 7, 23949-23957.	5.2	38
3942	High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180286.	1.6	28
3943	Mechanistic Insight into Surface Defect Control in Perovskite Nanocrystals: Ligands Terminate the Valence Transition from Pb ²⁺ to Metallic Pb ⁰ . Journal of Physical Chemistry Letters, 2019, 10, 4222-4228.	2.1	51
3944	One-Step Synthesis of TiO ₂ /Graphene Nanocomposites by Laser Pyrolysis with Well-Controlled Properties and Application in Perovskite Solar Cells. ACS Omega, 2019, 4, 11906-11913.	1.6	33
3945	Perovskiteâ€Based Optoelectronic Biointerfaces for Nonâ€Biasâ€Assisted Photostimulation of Cells. Advanced Materials Interfaces, 2019, 6, 1900758.	1.9	7

#	Article	IF	CITATIONS
3946	Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products. Journal of Power Sources, 2019, 436, 226853.	4.0	75
3947	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
3948	Modified photoelectric properties of CH3NH3PbI3 via surface passivation induced by argon ions bombardment. Thin Solid Films, 2019, 685, 360-365.	0.8	3
3949	Understanding the enhancement of responsitivity in perovskite/organic semiconductor bilayer-structured photodetectors. Organic Electronics, 2019, 75, 105372.	1.4	12
3950	Light capacitances in silicon and perovskite solar cells. Solar Energy, 2019, 189, 103-110.	2.9	19
3951	Phonon-Assisted Trapping and Re-excitation of Free Carriers and Excitons in Lead Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 19429-19436.	1.5	5
3952	Characterization of structural transitions and lattice dynamics of hybrid organic–inorganic perovskite CH ₃ NH ₃ Pbl ₃ *. Chinese Physics B, 2019, 28, 076102.	0.7	10
3953	Enhanced Electrons Extraction of Lithium-Doped SnO\$_{2}\$ Nanoparticles for Efficient Planar Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1273-1279.	1.5	10
3954	Carbon Nanotube-Perovskite Composites for Ultrasensitive Broadband Photodiodes. ACS Applied Nano Materials, 2019, 2, 4974-4982.	2.4	18
3955	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
3956	Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr ₃ . Journal of Physical Chemistry Letters, 2019, 10, 4490-4498.	2.1	52
3957	Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: Competition between Polaron Stabilization and Cation Disorder. ACS Energy Letters, 2019, 4, 2013-2020.	8.8	43
3958	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
3959	On the Relation between the Open ircuit Voltage and Quasiâ€Fermi Level Splitting in Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901631.	10.2	275
3960	Ascorbic Acidâ€Assisted Stabilization of αâ€Phase CsPbI ₃ Perovskite for Efficient and Stable Photovoltaic Devices. Solar Rrl, 2019, 3, 1900287.	3.1	25
3961	Monitoring Electron–Phonon Interactions in Lead Halide Perovskites Using Time-Resolved THz Spectroscopy. ACS Nano, 2019, 13, 8826-8835.	7.3	52
3962	Ultrafast carrier dynamics in high-performance α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell. Organic Electronics, 2019, 75, 105384.	1.4	4
3963	Large negative thermo-optic coefficients of a lead halide perovskite. Science Advances, 2019, 5, eaax0786.	4.7	46

#	Article	IF	CITATIONS
3964	Short duration high temperature thermal processing to reduce interfacial trapping states in perovskite solar cells obtained by a green route. Solar Energy, 2019, 189, 285-290.	2.9	2
3965	Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO ₂ Electron Transport Layer on the Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 19376-19384.	1.5	32
3966	<i>N</i> -Methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films. Inorganic Chemistry Frontiers, 2019, 6, 2458-2463.	3.0	26
3967	Effect of interfacial recombination, bulk recombination and carrier mobility on the <i>J</i> – <i>V</i> hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Physical Chemistry Chemical Physics, 2019, 21, 17836-17845.	1.3	37
3968	Effects of ZnSe modification on the perovskite films and perovskite solar cells based on ZnO nanorod arrays. Applied Surface Science, 2019, 495, 143552.	3.1	12
3969	Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19881-19888.	5.2	28
3970	Simple fabrication of a highly conductive and passivated PEDOT:PSS film <i>via</i> cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 10247-10256.	2.7	24
3971	Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19423-19429.	5.2	29
3972	Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews, 2019, 6, 031402.	5.5	88
3973	Theoretical Analysis of Twoâ€Terminal and Fourâ€Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar Rrl, 2019, 3, 1900303.	3.1	38
3974	MAPbI3 Incorporated with Carboxyl Group Chelated Titania for Planar Perovskite Solar Cells in Low-Temperature Process. Nanomaterials, 2019, 9, 908.	1.9	10
3975	Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges. Energy and Environmental Materials, 2019, 2, 107-118.	7.3	72
3976	Impact of Linking Topology on the Properties of Carbazoleâ€Based Holeâ€Transport Materials and their Application in Solidâ€State Mesoscopic Solar Cells. Solar Rrl, 2019, 3, 1900196.	3.1	17
3977	Effects of CsPbBr3 nanocrystals concentration on electronic structure and surface composition of perovskite films. Organic Electronics, 2019, 73, 327-331.	1.4	22
3978	Achieving high performance and stable inverted planar perovskite solar cells using lithium and cobalt co-doped nickel oxide as hole transport layers. Journal of Materials Chemistry C, 2019, 7, 9270-9277.	2.7	37
3979	Enhanced stability of the optical responses from all-inorganic perovskite nanocrystals embedded in a synthetic opal matrix. Nanotechnology, 2019, 30, 405206.	1.3	10
3980	The Role of Surface Passivation Layer Preparation on Crystallization and Optoelectronic Performance of Hybrid Evaporated-Spincoated Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1428-1435.	1.5	2
3981	Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Up calable Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 79-92.	7.3	79

#	Article	IF	CITATIONS
3982	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
3983	Modulation of Ni3+ and crystallization of dopant-free NiOx hole transporting layer for efficient p-i-n perovskite solar cells. Electrochimica Acta, 2019, 319, 41-48.	2.6	22
3984	Ultrafast probes at the interfaces of solar energy conversion materials. Physical Chemistry Chemical Physics, 2019, 21, 16399-16407.	1.3	31
3985	Scalable Deposition Methods for Largeâ€area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2, 119-145.	7.3	153
3986	Lower symmetric carbazole fused hole-transporting material for stable and efficient perovskite solar cells. Journal of Power Sources, 2019, 435, 226817.	4.0	17
3987	WWMOD? What would metal oxides do?: Redefining their applicability in today's energy technologies. Polyhedron, 2019, 170, 334-358.	1.0	8
3988	Fast and Accurate Artificial Neural Network Potential Model for MAPbI ₃ Perovskite Materials. ACS Omega, 2019, 4, 10950-10959.	1.6	31
3989	High-Efficiency and Thermally Sustainable Perovskite Solar Cells with Sandpaper-Aided Flexible Haze/Antireflective Films. ACS Sustainable Chemistry and Engineering, 2019, 7, 12981-12989.	3.2	11
3990	Unraveling photoexcitation dynamics at "dots-in-a-perovskite―heterojunctions from first-principles. Journal of Materials Chemistry A, 2019, 7, 18012-18019.	5.2	12
3991	Solvent Engineering for Intermediates Phase, All-Ambient-Air-Processed in Organic–Inorganic Hybrid Perovskite Solar Cells. Nanomaterials, 2019, 9, 915.	1.9	9
3992	Additional Organicâ€Solventâ€Rinsing Process to Enhance Perovskite Photovoltaic Performance. Advanced Electronic Materials, 2019, 5, 1900244.	2.6	10
3993	Vitrification Transformation of Poly(Ethylene Oxide) Activating Interface Passivation for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900134.	3.1	43
3994	Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	3.1	4
3995	Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy, 2019, 63, 103866.	8.2	60
3996	Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 5431-5441.	3.2	53
3997	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	7.8	89
3998	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
3999	Imaging and Mapping Characterization Tools for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900444.	10.2	44

#	Article	IF	Citations
" 4000	Effect of Halide Ion Migration on the Electrical Properties of Methylammonium Lead Tri-Iodide	1.5	41
4000	Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 17728-17734.	1.0	41
4001	Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating. RSC Advances, 2019, 9, 20917-20924.	1.7	51
4002	Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. ACS Central Science, 2019, 5, 1857-1865.	5.3	45
4003	On the discreet spectrum of fractional quantum hydrogen atom in two dimensions. Physica Scripta, 2019, 94, 125108.	1.2	0
4004	A High Efficient FEMD-Based Data Hiding Algorithm. Journal of Physics: Conference Series, 2019, 1335, 012014.	0.3	0
4005	The influence of disorder on the exciton spectra in two-dimensional structures. Physical Chemistry Chemical Physics, 2019, 21, 21847-21855.	1.3	9
4006	A Review of Perovskite Photovoltaic Materials' Synthesis and Applications via Chemical Vapor Deposition Method. Materials, 2019, 12, 3304.	1.3	25
4007	Highâ€Throughput Combinatorial Optimizations of Perovskite Lightâ€Emitting Diodes Based on Allâ€Vacuum Deposition. Advanced Functional Materials, 2019, 29, 1903607.	7.8	72
4008	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	7.8	125
4009	Highly Stable and Efficient FASnI ₃ â€Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Advanced Materials, 2019, 31, e1903721.	11.1	266
4010	Ruddlesden–Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications. Advanced Science, 2019, 6, 1900941.	5.6	112
4011	Predictions and Strategies Learned from Machine Learning to Develop Highâ€Performing Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901891.	10.2	83
4012	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	10.2	89
4013	Facetâ€Dependent Onâ€Surface Reactions in the Growth of CdSe Nanoplatelets. Angewandte Chemie, 2019, 131, 17928-17934.	1.6	1
4014	Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Small, 2019, 15, e1904372.	5.2	32
4015	Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2019, 7, 1901440.	3.6	51
4016	Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation. Journal of Visualized Experiments, 2019, , .	0.2	3
4017	Rare earth ions doped NiO hole transport layer for efficient and stable inverted perovskite solar cells. Journal of Power Sources, 2019, 444, 227267.	4.0	41

#	Article	IF	Citations
4018	Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.	1.9	19
4019	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388.	2.1	46
4020	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	4.0	17
4021	Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. Journal of the American Chemical Society, 2019, 141, 17659-17669.	6.6	104
4022	Durable and stable UV–Vis perovskite photodetectors based on CH3NH3PbI3 crystals synthesized via a solvothermal method. Journal of Materials Science: Materials in Electronics, 2019, 30, 19437-19443.	1.1	6
4023	Dicyanovinylene and Thiazolo[5,4- <i>d</i>]thiazole Core Containing D–A–D Type Hole-Transporting Materials for Spiro-OMeTAD-Free Perovskite Solar Cell Applications with Superior Atmospheric Stability. ACS Applied Energy Materials, 2019, 2, 7609-7618.	2.5	26
4024	Oxidation states in perovskite layers formed using various deposition techniques. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	3
4025	Ternary diagrams of the phase, optical bandgap energy and photoluminescence of mixed-halide perovskites. Acta Materialia, 2019, 181, 460-469.	3.8	14
4026	Size-Dependent Biexciton Spectrum in CsPbBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 2639-2645.	8.8	53
4027	Detailed balance analysis of plasmonic metamaterial perovskite solar cells. Optics Express, 2019, 27, A1241.	1.7	31
4028	High-performance g-C3N4 added carbon-based perovskite solar cells insulated by Al2O3 layer. Solar Energy, 2019, 193, 859-865.	2.9	36
4029	Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment. Scientific Reports, 2019, 9, 15159.	1.6	52
4030	Suboptimal biventricular pacing. What is the mechanism?. Journal of Arrhythmia, 2019, 35, 673-675.	0.5	0
4031	Engineering Halide Perovskite Crystals through Precursor Chemistry. Small, 2019, 15, e1903613.	5.2	82
4032	Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH ₃ NH ₃ PbI ₃ nanocomposite as photoactive layer. Energy and Environmental Science, 2019, 12, 1265-1273.	15.6	53
4033	Effect of chloride substitution on interfacial charge transfer processes in MAPbl ₃ perovskite thin film solar cells: planar <i>versus</i> mesoporous. Nanoscale Advances, 2019, 1, 827-833.	2.2	21
4034	Insights into Fullerene Passivation of SnO ₂ Electron Transport Layers in Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905883.	7.8	124
4035	Low ost and Highly Efficient Carbonâ€Based Perovskite Solar Cells Exhibiting Excellent Longâ€Term Operational and UV Stability. Small, 2019, 15, e1904746.	5.2	83

#	Article	IF	CITATIONS
4036	The effect of phase purification on photovoltaic performance of perovskite solar cells. Applied Physics Letters, 2019, 115, 192105.	1.5	4
4037	Review of the fundamental issues in new generation high efficiency perovskite solar cells. Materials Today: Proceedings, 2019, 18, 1882-1887.	0.9	1
4038	Influence of Poly(Vinylidene fluoride) on photovoltaic performance of interfacially engineered band gap modulated P3TAA-co-P3HT perovskite solar cell at ambient condition. Polymer, 2019, 185, 121973.	1.8	6
4039	Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication. Accounts of Chemical Research, 2019, 52, 3233-3243.	7.6	79
4040	Study on the Property of Electron-Transport Layer in the Doped Formamidinium Lead Iodide Perovskite Based on DFT. ACS Omega, 2019, 4, 20024-20035.	1.6	17
4041	Solvent-free and large area compatible deposition of methylammonium lead bromide perovskite by close space sublimation and its application in PIN diodes. Thin Solid Films, 2019, 692, 137585.	0.8	4
4042	Halogen Engineering for Operationally Stable Perovskite Solar Cells via Sequential Deposition. Advanced Energy Materials, 2019, 9, 1902239.	10.2	41
4043	Transient carrier visualization of organic-inorganic hybrid perovskite thin films by using time-resolved microscopic second-harmonic generation (TRM-SHG). Organic Electronics, 2019, 75, 105416.	1.4	1
4044	In praise and in search of highly-polarizable semiconductors: Technological promise and discovery strategies. APL Materials, 2019, 7, .	2.2	21
4045	Carrier-resolved photo-Hall effect. Nature, 2019, 575, 151-155.	13.7	66
4046			
	Temperature-Dependent Lasing of CsPbl ₃ Triangular Pyramid. Journal of Physical Chemistry Letters, 2019, 10, 7056-7061.	2.1	9
4047		2.1	9 29
4047 4048	Letters, 2019, 10, 7056-7061. Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity.	2.1	
	Letters, 2019, 10, 7056-7061. Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640. First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3		29
4048	Letters, 2019, 10, 7056-7061. Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640. First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3 surface. Materials Research Express, 2019, 6, 116219. Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4,	0.8	29 5
4048 4049	Letters, 2019, 10, 7056-7061. Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640. First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3 surface. Materials Research Express, 2019, 6, 116219. Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974. Defectâ€Engineeringâ€Enabled Highâ€Efficiency Allâ€Inorganic Perovskite Solar Cells. Advanced Materials,	0.8 8.8	29 5 124
4048 4049 4050	Letters, 2019, 10, 7056-7061. Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640. First-principles calculation of stability, electronic and optical properties of PCBM-adsorbed MAPbI3 surface. Materials Research Express, 2019, 6, 116219. Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974. Defectâ€Engineeringâ€Enabled Highâ€Efficiency Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903448. Sequentially Deposited Compact and Pinhole-Free Perovskite Layers via Adjusting the Permittivity of the Conversion Solution. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences,	0.8 8.8 11.1	29 5 124 143

#	Article	IF	CITATIONS
4054	Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (C <i>_x</i> H ₂ <i>_x+1NH₃)₂PbI_{4(<i>x</i> = 4–9). Journal of Physical Chemistry C, 2019, 123, 27904-27916.}</i>		
4055	Identification of the Band Gap Energy of Two-dimensional (OA) ₂ (MA) _{<i>n</i>â^`1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Perovskite with up to 10 Layers. Journal of Physical Chemistry Letters, 2019, 10, 7025-7030.	2.1	21
4056	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	2.5	51
4057	Inorganic CuFeO ₂ Delafossite Nanoparticles as Effective Hole Transport Materials for Highly Efficient and Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45142-45149.	4.0	53
4058	Imaging Excited State Dynamics in Layered 2D Perovskites with Transient Absorption Microscopy. Journal of Physical Chemistry A, 2019, 123, 11012-11021.	1.1	21
4059	Equalization scheme with misalignment estimation based on multi-layer perceptrons for holographic data storage systems. Japanese Journal of Applied Physics, 2019, 58, SKKD02.	0.8	1
4060	Highly efficient perovskite solar cell utilizing a solution-processable tetrabenzoporphyrin hole transport material with p-type dopants. Applied Physics Express, 2019, 12, 112009.	1.1	2
4061	Enhanced Incorporation of Guanidinium in Formamidiniumâ€Based Perovskites for Efficient and Stable Photovoltaics: The Role of Cs and Br. Advanced Functional Materials, 2019, 29, 1905739.	7.8	41
4062	A Highly Emissive Surface Layer in Mixedâ€Halide Multication Perovskites. Advanced Materials, 2019, 31, e1902374.	11.1	57
4063	Templateâ€Assisted Formation of Highâ€Quality αâ€Phase HC(NH 2) 2 PbI 3 Perovskite Solar Cells. Advanced Science, 2019, 6, 1901591.	5.6	29
4064	Carbonâ€based perovskite solar cells: From singleâ€junction to modules. , 2019, 1, 109-123.		61
4065	Solvent and Spinning Speed Effects on CH 3 NH 3 PbI 3 Films Deposited by Spin Coating. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900340.	0.8	2
4066	Pâ€l 1.16: Synthesis of CsPbBr ₃ Nanorods with Tuneable Optical Anisotropy for Optoelectronic Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 949-952.	0.1	0
4067	Highâ€Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopantâ€Free Hole Transporting Layer. Small, 2019, 15, e1904715.	5.2	47
4068	Effect of CsCl Additive on the Morphological and Optoelectronic Properties of Formamidinium Lead Iodide Perovskite. Solar Rrl, 2019, 3, 1900294.	3.1	30
4069	Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells. Solar Energy, 2019, 193, 878-884.	2.9	8
4070	Morphology control of the perovskite thin films via the surface modification of nickel oxide nanoparticles layer using a bidentate chelating ligand 2,2'-Bipyridine. Synthetic Metals, 2019, 258, 116197.	2.1	8
4071	Carrier Extraction from Perovskite to Polymeric Charge Transport Layers Probed by Ultrafast Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6921-6928.	2.1	19

#	Article	IF	CITATIONS
4072	Anharmonicity Extends Carrier Lifetimes in Lead Halide Perovskites at Elevated Temperatures. Journal of Physical Chemistry Letters, 2019, 10, 6219-6226.	2.1	66
4073	Detection and Prediction of Internal Damage in the Ancient Timber Structure Based on Optimal Combined Model. Advances in Civil Engineering, 2019, 2019, 1-18.	0.4	2
4074	The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells. Molecules, 2019, 24, 3466.	1.7	14
4075	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Physics of Fluids, 2019, 31, 083303.	1.6	17
4076	Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH ₃ CH(sub>2CH(NH ₃)CH ₂]BiCl ₅ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 880-886.	0.5	43
4077	Realizing a Rechargeable Highâ€Performance Cu–Zn Battery by Adjusting the Solubility of Cu ²⁺ . Advanced Functional Materials, 2019, 29, 1905979.	7.8	54
4078	Dualâ€Phase Allâ€Inorganic Cesium Halide Perovskites for Conductingâ€Bridge Memoryâ€Based Artificial Synapses. Advanced Functional Materials, 2019, 29, 1906686.	7.8	79
4079	Halogenatedâ€Methylammonium Based 3D Halide Perovskites. Advanced Materials, 2019, 31, e1903830.	11.1	40
4080	3D Nanoprinting of Perovskites. Advanced Materials, 2019, 31, e1904073.	11.1	64
4081	Van der Waals Integration of Bismuth Quantum Dots–Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasmaâ€Enhanced Optoelectronic Applications. Small, 2019, 15, e1903233.	5.2	45
4082	Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. Small, 2019, 15, e1903599.	5.2	101
4083	Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
4084	Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials, 2019, 7, 1901451.	3.6	24
4085	Mechanistic Insights into Photochemical Reactions on CH3NH3PbBr3Perovskite Nanoparticles from Singleâ€Particle Photoluminescence Spectroscopy. ChemNanoMat, 2019, 5, 340-345.	1.5	5
4086	Density functional theory study on the electronic structures and related properties of Ag-doped CH3NH3PbI3 perovskite. Results in Physics, 2019, 15, 102709.	2.0	10
4087	Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers. Optical Materials, 2019, 88, 630-634.	1.7	10
4088	High-efficiency optical terahertz modulation of organometallic halide perovskite nanoplates on silicon. Optical Materials, 2019, 96, 109368.	1.7	8
4089	Hydrogen bond enables highly efficient and stable two-dimensional perovskite solar cells based on 4-pyridine-ethylamine. Organic Electronics, 2019, 67, 122-127.	1.4	22

#	Article	IF	CITATIONS
4090	Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA) ₃ InBr ₆ with Direct Band Gap. Inorganic Chemistry, 2019, 58, 15602-15609.	1.9	81
4091	Drying Dynamics of Solutionâ€Processed Perovskite Thinâ€Film Photovoltaics: In Situ Characterization, Modeling, and Process Control. Advanced Energy Materials, 2019, 9, 1901581.	10.2	42
4092	Analysis of Optimum Copper Oxide Hole Transporting Layer for Perovskite Solar Cells. , 2019, , .		4
4093	Effects of Chlorine Addition to TiO ₂ Nanorods-Based Perovskite Solar Cells. Nano, 2019, 14, 1950077.	0.5	1
4094	Optical Simulation and Investigation of the Effect of Hysteresis on the Perovskite Solar Cells. Nano, 2019, 14, 1950127.	0.5	15
4095	Lead-Free Antimony-Based Light-Emitting Diodes through the Vapor–Anion-Exchange Method. ACS Applied Materials & Interfaces, 2019, 11, 35088-35094.	4.0	74
4096	A facile way to improve the efficiency of perovskite/silicon four-terminal tandem solar cell based on the optimization of long-wavelength spectral response. AIP Conference Proceedings, 2019, , .	0.3	1
4097	Perovskite based Low Power Synaptic Memristor Device for Neuromorphic application. , 2019, , .		12
4098	Enhanced efficiency and thermal stability of mesoscopic perovskite solar cells by adding PC70BM acceptor. Solar Energy Materials and Solar Cells, 2019, 202, 110130.	3.0	23
4099	Ultrafast Charge Carrier Relaxation in Inorganic Halide Perovskite Single Crystals Probed by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 5414-5421.	2.1	16
4100	Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 13680-13708.	2.7	50
4101	Database-driven high-throughput study of coating materials for hybrid perovskites. New Journal of Physics, 2019, 21, 083018.	1.2	6
4102	Charge carrier migration and hole extraction from MAPbI3. Journal of Physics: Conference Series, 2019, 1220, 012053.	0.3	0
4103	Enhanced photovoltaic properties of perovskite solar cells by the addition of cellulose derivatives to MAPbI3 based photoactive layer. Cellulose, 2019, 26, 9229-9239.	2.4	18
4104	Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34964-34972.	4.0	48
4105	Morphological and opto-electrical studies of newly decorated nano organo-lead halide-based perovskite photovoltaics. Journal of Sol-Gel Science and Technology, 2019, 92, 548-553.	1.1	1
4106	High-Efficiency and Stable Perovskite Solar Cells Prepared Using Chlorobenzene/Acetonitrile Antisolvent. ACS Applied Materials & Interfaces, 2019, 11, 34989-34996.	4.0	38
4107	Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites. ACS Energy Letters, 2019, 4, 2386-2392.	8.8	38

#	Article	IF	Citations
4108	One-step solution deposition of CsPbBr ₃ based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22420-22428.	5.2	116
4109	Poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer for perovskite solar cells with improved performance. Journal of Materials Chemistry C, 2019, 7, 12204-12210.	2.7	28
4110	Enabling Self-passivation by Attaching Small Grains on Surfaces of Large Grains toward High-Performance Perovskite LEDs. IScience, 2019, 19, 378-387.	1.9	26
4111	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy, 2019, 65, 104050.	8.2	44
4112	First-principles study of structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic CH3NH3SnI3 under pressure. European Physical Journal B, 2019, 92, 1.	0.6	2
4113	Efficient inverted perovskite solar cells with truxene-bridged PDI trimers as electron transporting materials. Materials Chemistry Frontiers, 2019, 3, 2137-2142.	3.2	22
4114	Barium acetate as an additive for high performance perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 11411-11418.	2.7	7
4115	Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1120.	1.9	31
4116	Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy, 2019, 66, 104070.	8.2	48
4117	Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic–Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies. Journal of Physical Chemistry C, 2019, 123, 23323-23333.	1.5	15
4118	Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies. Journal of Materials Chemistry A, 2019, 7, 20494-20518.	5.2	62
4119	The Way to Pursue Truly High-Performance Perovskite Solar Cells. Nanomaterials, 2019, 9, 1269.	1.9	10
4120	Acetylacetone Improves the Performance of Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 23807-23816.	1.5	12
4121	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & amp; Interfaces, 2019, 11, 35914-35923.	4.0	65
4122	Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters, 2019, 4, 2393-2401.	8.8	127
4123	Copolymerization strategy to prepare polymethyl methacrylate-based copolymer with broad-band ultraviolet shielding and luminescent down-shifting properties. Journal of Materials Science, 2019, 54, 14624-14633.	1.7	12
4124	Two-step fabrication of \$\$hbox {MAPbI}_{3}\$\$ perovskite thin films with improved stability. Bulletin of Materials Science, 2019, 42, 1.	0.8	8
4125	Modulating Crystallization in Semitransparent Perovskite Films Using Submicrometer Spongelike Polymer Colloid Particles to Improve Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 6624-6633	2.5	14

#	Article	IF	CITATIONS
4126	Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. Journal of Materials Chemistry A, 2019, 7, 21085-21095.	5.2	16
4127	Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation Cs <i>_x</i> MA _{1–<i>x</i>} PbBr ₃ and Cs <i>_x</i> FA _{1–<i>x</i>} PbBr ₃ Perovskites. Journal of Physical Chemistry C. 2019. 123. 23838-23844.	1.5	5
4128	Cyclic Peptide Stabilized Lead Halide Perovskite Nanoparticles. Scientific Reports, 2019, 9, 12966.	1.6	10
4129	PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nanoscale Advances, 2019, 1, 4109-4118.	2.2	32
4130	<i>In situ</i> monitoring of the charge carrier dynamics of CH ₃ NH ₃ PbI ₃ perovskite crystallization process. Journal of Materials Chemistry C, 2019, 7, 12170-12179.	2.7	10
4131	Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation–Mixed Halide Hybrid Perovskites. ACS Applied Energy Materials, 2019, 2, 6990-6997.	2.5	9
4132	Contrasting Effects of Organic Chloride Additives on Performance of Direct and Inverted Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 37833-37841.	4.0	17
4133	Enhancing the Photovoltaic Performance of Perovskite Solar Cells Using Plasmonic Au@Pt@Au Core-Shell Nanoparticles. Nanomaterials, 2019, 9, 1263.	1.9	17
4134	Minimizing Voltage Loss in Efficient All-Inorganic CsPbI ₂ Br Perovskite Solar Cells through Energy Level Alignment. ACS Energy Letters, 2019, 4, 2491-2499.	8.8	68
4135	Setting an Upper Bound to the Biexciton Binding Energy in CsPbBr3 Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 5680-5686.	2.1	29
4136	Electron trapping and extraction kinetics on carrier diffusion in metal halide perovskite thin films. Journal of Materials Chemistry A, 2019, 7, 25838-25844.	5.2	8
4137	Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with Heterovalent Neodymium Cations. ACS Omega, 2019, 4, 15873-15878.	1.6	13
4138	Interfacial recombination kinetics in aged perovskite solar cells measured using transient photovoltage techniques. Nanoscale, 2019, 11, 20024-20029.	2.8	21
4139	Control of aggregation and dissolution of small molecule hole transport layers <i>via</i> a doping strategy for highly efficient perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 11932-11942.	2.7	8
4140	The Cesium doping using the nonstoichiometric precursor for improved CH3NH3PbI3 perovskite films and solar cells in ambient air. Thin Solid Films, 2019, 690, 137563.	0.8	8
4141	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 39930-39939.	4.0	26
4142	Two-Dimensional Model for Perovskite Nanorod Solar Cells: A Dark Case Study. IEEE Journal of Photovoltaics, 2019, 9, 1668-1677.	1.5	2
4143	Well-grown low-defect MAPbI3–xClx films for perovskite solar cells with over 20% efficiency fabricated under controlled ambient humidity conditions. Electrochimica Acta, 2019, 326, 134950.	2.6	10

#	Article	IF	CITATIONS
4144	Ultrasonically sprayed-on perovskite solar cells-effects of organic cation on defect formation of CH3NH3PbI3 films. Current Applied Physics, 2019, 19, 1427-1435.	1.1	3
4145	Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) <i>_x</i> (MA) _{1–<i>x</i>} PbI ₃ -Based Perovskite Solar Cells. ACS Omega, 2019, 4, 16840-16846.	1.6	25
4146	Temperature-Dependent Thermal Decomposition Pathway of Organic–Inorganic Halide Perovskite Materials. Chemistry of Materials, 2019, 31, 8515-8522.	3.2	83
4147	4-(Aminoethyl)pyridine as a Bifunctional Spacer Cation for Efficient and Stable 2D Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 37804-37811.	4.0	36
4148	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	7.3	40
4149	Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid. Solar Energy, 2019, 193, 95-101.	2.9	30
4150	Facile RbBr interface modification improves perovskite solar cell efficiency. Materials Today Chemistry, 2019, 14, 100179.	1.7	18
4151	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	5.8	49
4152	Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2019, 737, 136822.	1.2	44
4153	Low temperature ZnO/TiOx electron-transport layer processed from aqueous solution for highly efficient and stable planar perovskite solar cells. Materials Today Energy, 2019, 14, 100351.	2.5	14
4154	Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue. ACS Applied Materials & Interfaces, 2019, 11, 40172-40179.	4.0	39
4155	Low temperature formation of CH3NH3PbI3 perovskite films in supercritical carbon dioxide. Journal of Supercritical Fluids, 2019, 154, 104604.	1.6	6
4156	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
4157	Multivariate approach for studying the degradation of perovskite solar cells. Solar Energy, 2019, 193, 12-19.	2.9	4
4158	Fullerene derivative layer induced phase separation and charge transport improvement for inverted polymer solar cells. Thin Solid Films, 2019, 690, 137559.	0.8	3
4159	Large metal halide perovskite crystals for field-effect transistor applications. Applied Physics Letters, 2019, 115, .	1.5	34
4160	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. Nano Letters, 2019, 19, 7217-7225.	4.5	42
4161	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy and Environmental Science, 2019, 12, 169-176.	15.6	115

	C	ITATION REPOI	2T	
#	Article	IF		CITATIONS
4162	Enhanced efficiency in perovskite solar cells by eliminating the electron contact barrier between the metal electrode and electron transport layer. Journal of Materials Chemistry A, 2019, 7, 1349-1355.	5.3	2	32
4163	Improving the conductivity of sol–gel derived NiO _x with a mixed oxide composite to realize over 80% fill factor in inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 9578-9586.	5.:	2	47
4164	Reliable Measurement of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803231.	11	.1	62
4165	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	11	.1	92
4166	High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Ef of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 2019, 129, 270-276.	fect	9	24
4167	Improving the efficiency of degenerated perovskite solar cells by a simple freeze treatment. Materials Science in Semiconductor Processing, 2019, 93, 260-265.	1.9	9	2
4168	Highly efficient prismatic perovskite solar cells. Energy and Environmental Science, 2019, 12, 929-93	7. 15	i.6	54
4169	Influence of mixed organic cations on the structural and optical properties of lead tri-iodide perovskites. Nanoscale, 2019, 11, 5215-5221.	2.	8	11
4170	Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors. Journal of Materials Chemistry C, 2019, 7, 609-616.	2.'	7	29
4171	Unexpected surface interactions between fluorocarbons and hybrid organic inorganic perovskites evidenced by PM-IRRAS and their application towards tuning the surface potential. Materials Horizon 2019, 6, 192-197.	s, 6.	4	10
4172	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	5.	2	26
4173	<i>Ab initio</i> study of the dynamics of electron trapping and detrapping processes in the CH ₃ NH ₃ Pbl ₃ perovskite. Journal of Materials Chemistry A, 20 2135-2147.	19, 7, 5.:	2	25
4174	Bandgap aligned Cu ₁₂ Sb ₄ S ₁₃ quantum dots as efficient inor hole transport materials in planar perovskite solar cells with enhanced stability. Sustainable Energy and Fuels, 2019, 3, 831-840.	ganic 2.	5	17
4175	All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 365-375.	3.:	2	133
4176	Enhanced Efficiency of MAPbI3 Perovskite Solar Cells with FAPbX3 Perovskite Quantum Dots. Nanomaterials, 2019, 9, 121.	1.9	9	28
4177	Conductive glass free carbon nanotube micro yarn based perovskite solar cells. Applied Surface Science, 2019, 478, 327-333.	3.	1	29
4178	Shining a light on the photoluminescence behaviour of methylammonium lead iodide perovskite: investigating the competing photobrightening and photodarkening processes. Materials Letters, 201 243, 191-194.	9, 1.8	3	16
4179	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-553	3. 23	3.0	822

#	Article	IF	CITATIONS
4180	Bifacial Passivation of Organic Hole Transport Interlayer for NiO <i>_x</i> â€Based pâ€iâ€n Perovskite Solar Cells. Advanced Science, 2019, 6, 1802163.	5.6	92
4181	Electric-field effect on photoluminescence of lead-halide perovskites. Materials Today, 2019, 28, 31-39.	8.3	21
4182	Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites. ACS Energy Letters, 2019, 4, 615-621.	8.8	51
4183	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nature Communications, 2019, 10, 484.	5.8	88
4184	Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors. RSC Advances, 2019, 9, 3800-3808.	1.7	14
4185	Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1803384.	10.2	219
4186	Origin of increased efficiency and decreased hysteresis of perovskite solar cells by using 4-tert-butyl pyridine as interfacial modifier for TiO2. Journal of Power Sources, 2019, 415, 197-206.	4.0	7
4187	High performance printable perovskite solar cells based on Cs0.1FA0.9PbI3 in mesoporous scaffolds. Journal of Power Sources, 2019, 415, 105-111.	4.0	34
4188	Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 2019, 10, 520.	5.8	405
4189	Flexible quintuple cation perovskite solar cells with high efficiency. Journal of Materials Chemistry A, 2019, 7, 4960-4970.	5.2	93
4190	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	5.6	80
4191	Fast Growth of Thin MAPbI ₃ Crystal Wafers on Aqueous Solution Surface for Efficient Lateral‣tructure Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807707.	7.8	62
4192	Influence of Urbach Energy, Temperature, and Longitudinal Position in the Active Layer on Carrier Diffusion Length in Perovskite Solar Cells. ChemPhysChem, 2019, 20, 2712-2717.	1.0	41
4193	Importance of Oxygen Partial Pressure in Annealing NiO Film for High Efficiency Inverted Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800339.	3.1	38
4194	Impact of the Solvation State of Lead Iodide on Its Two‧tep Conversion to MAPbI ₃ : An In Situ Investigation. Advanced Functional Materials, 2019, 29, 1807544.	7.8	45
4195	Functional polymers for growth and stabilization of CsPbBr ₃ perovskite nanoparticles. Chemical Communications, 2019, 55, 1833-1836.	2.2	32
4196	Enhancing charge transport in an organic photoactive layer <i>via</i> vertical component engineering for efficient perovskite/organic integrated solar cells. Nanoscale, 2019, 11, 4035-4043.	2.8	22
4197	Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Advanced Materials, 2019, 31, e1804284.	11.1	161

#	Article	IF	Citations
4198	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
4199	Stability and Performance of Nanostructured Perovskites for Lightâ€Harvesting Applications. Small Methods, 2019, 3, 1800404.	4.6	10
4200	Light- and bias-induced structural variations in metal halide perovskites. Nature Communications, 2019, 10, 444.	5.8	81
4201	Natively textured surface of Ga-doped ZnO films electron transporting layer for perovskite solar cells: further performance analysis from device simulation. Journal of Materials Science: Materials in Electronics, 2019, 30, 4726-4736.	1.1	10
4202	Chlorine doping for black Î ³ -CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58, 175-182.	8.2	170
4203	17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer. Applied Surface Science, 2019, 478, 417-425.	3.1	84
4204	Improve the crystallinity and morphology of perovskite films by suppressing the formation of intermediate phase of CH3NH3PbCl3. Organic Electronics, 2019, 68, 96-102.	1.4	9
4205	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nature Communications, 2019, 10, 504.	5.8	121
4206	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	5.2	62
4207	Conjugated Molecules "Bridgeâ€: Functional Ligand toward Highly Efficient and Longâ€Term Stable Perovskite Solar Cell. Advanced Functional Materials, 2019, 29, 1808119.	7.8	88
4208	Efficient Photodoping of Graphene in Perovskite–Graphene Heterostructure. Advanced Electronic Materials, 2019, 5, 1800940.	2.6	8
4209	N-i-p-type perovskite solar cells employing n-type graphene transparent conductive electrodes. Journal of Alloys and Compounds, 2019, 786, 614-620.	2.8	21
4210	Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Organic Electronics, 2019, 68, 76-84.	1.4	21
4211	Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS Applied Materials & Interfaces, 2019, 11, 9149-9155.	4.0	54
4212	Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 2019, 4, 169-188.	23.3	598
4213	Hybrid organic nanocrystal/carbon nanotube film electrodes for air- and photo-stable perovskite photovoltaics. Nanoscale, 2019, 11, 3733-3740.	2.8	14
4214	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	5.2	173
4215	Morphological and compositional progress in halide perovskite solar cells. Chemical Communications, 2019, 55, 1192-1200.	2.2	136

#	Article	IF	CITATIONS
4216	Bifacial stamping for high efficiency perovskite solar cells. Energy and Environmental Science, 2019, 12, 308-321.	15.6	91
4217	Tunable hysteresis behaviour related to trap filling dependence of surface barrier in an individual CH ₃ NH ₃ PbI ₃ micro/nanowire. Nanoscale, 2019, 11, 3360-3369.	2.8	23
4218	Melting temperature suppression of layered hybrid lead halide perovskites <i>via</i> organic ammonium cation branching. Chemical Science, 2019, 10, 1168-1175.	3.7	55
4219	Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chemical Science, 2019, 10, 1904-1935.	3.7	279
4220	High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable Energy and Fuels, 2019, 3, 550-563.	2.5	57
4221	Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. Journal of Materials Chemistry A, 2019, 7, 2095-2105.	5.2	63
4222	Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. Journal of Materials Chemistry A, 2019, 7, 322-329.	5.2	42
4223	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 2019, 7, 1107-1114.	5.2	100
4224	Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. Journal of Materials Chemistry A, 2019, 7, 2412-2420.	5.2	14
4225	Correlation of recombination and open circuit voltage in planar heterojunction perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 1273-1279.	2.7	22
4226	Titanate hollow nanospheres as electron-transport layer in mesoscopic perovskite solar cell with enhanced performance. Journal of Materials Chemistry C, 2019, 7, 1948-1954.	2.7	24
4227	Smallâ€Moleculeâ€Doped Organic Crystals with Longâ€Persistent Luminescence. Advanced Functional Materials, 2019, 29, 1902503.	7.8	80
4228	Optimizing solution-processed C60 electron transport layer in planar perovskite solar cells by interfacial modification with solid-state ionic-liquids. Journal of Solid State Chemistry, 2019, 276, 302-308.	1.4	26
4229	Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry, 2019, 1, 380-393.	4.4	146
4230	Influence of Electrical Traps on the Current Density Degradation of Inverted Perovskite Solar Cells. Materials, 2019, 12, 1644.	1.3	16
4231	Waterâ€Based TiO ₂ Nanocrystal as an Electronic Transport Layer for Operationally Stable Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900167.	3.1	12
4232	Fabrication of efficient formamidinium perovskite solar cells under ambient air via intermediate-modulated crystallization. Solar Energy, 2019, 187, 147-155.	2.9	34
4233	Nitrogenâ€Dopantâ€Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902489.	7.8	18

#	Article	IF	Citations
4234	Highâ€Performance and Stable Perovskite Solar Cells Based on Dopantâ€Free Arylamineâ€Substituted Copper(II) Phthalocyanine Holeâ€Transporting Materials. Advanced Energy Materials, 2019, 9, 1901019.	10.2	80
4235	Efficiency and stability enhancement of organic–inorganic perovskite solar cells through micropatterned Norland Optical Adhesive and polyethylene terephthalate encapsulation. Materials Today Communications, 2019, 20, 100537.	0.9	8
4236	Probing Facet-Dependent Surface Defects in MAPbI ₃ Perovskite Single Crystals. Journal of Physical Chemistry C, 2019, 123, 14144-14151.	1.5	70
4237	Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics, 2019, 13, 532-539.	15.6	273
4238	Efficient Planar Perovskite Solar Cells via a Sputtered Cathode. Solar Rrl, 2019, 3, 1900209.	3.1	14
4239	Leadâ€Free Tinâ€Based Perovskite Solar Cells: Strategies Toward High Performance. Solar Rrl, 2019, 3, 1900213.	3.1	44
4240	Bifunctional π-conjugated ligand assisted stable and efficient perovskite solar cell fabrication <i>via</i> interfacial stitching. Journal of Materials Chemistry A, 2019, 7, 16533-16540.	5.2	29
4241	Influence of Defects on Excited-State Dynamics in Lead Halide Perovskites: Time-Domain ab Initio Studies. Journal of Physical Chemistry Letters, 2019, 10, 3788-3804.	2.1	66
4242	Transient Sub-Band-Gap States at Grain Boundaries of CH ₃ NH ₃ PbI ₃ Perovskite Act as Fast Temperature Relaxation Centers. ACS Energy Letters, 2019, 4, 1741-1747.	8.8	33
4243	Detection of Xâ€Rays by Solutionâ€Processed Cesiumâ€Containing Mixed Triple Cation Perovskite Thin Films. Advanced Functional Materials, 2019, 29, 1902346.	7.8	74
4244	Chargeâ€Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites. Advanced Functional Materials, 2019, 29, 1902656.	7.8	45
4245	Structurally Stabilizing and Environment Friendly Triggers: Doubleâ€Metallic Leadâ€Free Perovskites. Solar Rrl, 2019, 3, 1900148.	3.1	36
4246	Triplet Sensitization by Lead Halide Perovskite Thin Films for Efficient Solid-State Photon Upconversion at Subsolar Fluxes. Matter, 2019, 1, 705-719.	5.0	84
4247	Efficient and Stable Perovskite Solar Cell Achieved with Bifunctional Interfacial Layers. ACS Applied Materials & Interfaces, 2019, 11, 25218-25226.	4.0	23
4248	Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films. Journal of the American Chemical Society, 2019, 141, 10812-10820.	6.6	104
4249	Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs ₂ AgBiBr ₆ . Journal of Materials Chemistry C, 2019, 7, 8350-8356.	2.7	149
4250	Ferroelectricity-free lead halide perovskites. Energy and Environmental Science, 2019, 12, 2537-2547.	15.6	80
4251	Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: <i>in situs/i> GIWAXS measurements during spin coating. Sustainable Energy and Fuels, 2019, 3, 2287-2297</i>	2.5	38

ARTICLE IF CITATIONS Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving 4252 2.7 6 layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711. Blocking effect of morphology-controllable TiO2 films in carbon-based hole-conductor-free 4253 0.8 perovskite solar cells. Materials Research Express, 2019, 6, 095501. Integrated advantages from perovskite photovoltaic cell and 2D MoTe2 transistor towards 4254 8.2 19 self-power energy harvesting and photosensing. Nano Energy, 2019, 63, 103833. Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost 4255 solar panels. International Journal of Extreme Manufacturing, 2019, 1, 022004. High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 4256 1.9 63 2,2,2-Trifluoroethanol-Incorporated SnO2. IScience, 2019, 16, 433-441. Efficient NiO<i>x</i> Hole Transporting Layer Obtained by the Oxidation of Metal Nickel Film for Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 4700-4707. 2.5 37 Enhancing Efficiency and Stability of Hot Casting p–i–n Perovskite Solar Cell via Dipolar Ion 4258 2.5 49 Passivation. ACS Applied Energy Materials, 2019, 2, 4821-4832. Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar 4259 4.0 Modules. ACS Applied Materials & amp; Interfaces, 2019, 11, 25195-25204. Carbon Dots, Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. 4260 5.2 113 Small, 2019, 15, e1901803. In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability 3.1 of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900199. γâ€Ga₂O₃ Nanocrystals Electronâ€Transporting Layer for Highâ€Performance 4262 3.113 Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900201. Effects of precursor composition on morphology and microstructure of hybrid organic–inorganic 1.7 perovskite solar cells. Journal of Materials Science, 2019, 54, 12758-12766. Dopant-free Spiro-OMeTAD as hole transporting layer for stable and efficient perovskite solar cells. 4264 1.4 22 Organic Electronics, 2019, 74, 7-12. Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable 4265 1.6 Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11388. Toward scalable perovskiteâ€based multijunction solar modules. Progress in Photovoltaics: Research 4266 4.4 17 and Applications, 2019, 27, 733-738. Perovskite solar cell towards lower toxicity: a theoretical study of physical lead reduction strategy. 4267 54 Science Bulletin, 2019, 64, 1255-1261. Refractive index change dominates the transient absorption response of metal halide perovskite thin 4268 1.327 films in the near infrared. Physical Chemistry Chemical Physics, 2019, 21, 14663-14670. New Spiroâ€Phenylpyrazole/Dibenzosuberene Derivatives as Holeâ€Transporting Material for Perovskite 3.1 Solar Cells. Solar Ŕrĺ, 2019, 3, 1900143.

#	Article	IF	CITATIONS
4270	Highâ€Performance Inverted Perovskite Solar Cells by Reducing Electron Capture Region for Electron Transport Layers. Solar Rrl, 2019, 3, 1900207.	3.1	6
4271	Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8344-8349.	2.7	14
4272	Chemical Vapor Transport Deposition of Stable Cubic CsPbI3 Optical Films on the Porous Alumina Substrate. MRS Advances, 2019, 4, 1973-1979.	0.5	0
4273	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	3.6	35
4274	A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells. Journal of Alloys and Compounds, 2019, 801, 277-284.	2.8	29
4275	Improving the Performance of Planar Perovskite Solar Cells through a Preheated, Delayed Annealing Process To Control Nucleation and Phase Transition of Perovskite Films. Crystal Growth and Design, 2019, 19, 4314-4323.	1.4	7
4276	Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers. ACS Applied Materials & Interfaces, 2019, 11, 23152-23159.	4.0	89
4277	Hole-Transport Layer Molecular Weight and Doping Effects on Perovskite Solar Cell Efficiency and Mechanical Behavior. ACS Applied Materials & amp; Interfaces, 2019, 11, 23757-23764.	4.0	42
4278	Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles. ACS Applied Nano Materials, 2019, 2, 4267-4274.	2.4	26
4279	A New Class of Bifunctional Perovskites BaMX ₄ (M = Co, Ni, Fe, Mn; X = F, Cl, Br, I): An n-Type Semiconductor with Combined Multiferroic and Photovoltaic Properties. Journal of Physical Chemistry C, 2019, 123, 14303-14311.	1.5	1
4280	Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2019, 123, 15204-15208.	1.5	18
4281	High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Applied Materials & Interfaces, 2019, 11, 22021-22027.	4.0	80
4282	Analytic approximations for solar cell open circuit voltage, short circuit current and fill factor. Solar Energy, 2019, 187, 358-367.	2.9	11
4283	Unraveling the Effect of Crystal Structure on Degradation of Methylammonium Lead Halide Perovskite. ACS Applied Materials & Interfaces, 2019, 11, 22228-22239.	4.0	23
4284	Twoâ€Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2019, 3, 1900080.	3.1	55
4285	Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chemical Physics Letters, 2019, 730, 117-123.	1.2	29
4286	CH3NH3PbI3/CdS planar photovoltaic junction by spin-dip coating: Studies on the effects of PbI2 layer thickness and rapid thermal treatments. Solar Energy, 2019, 187, 427-437.	2.9	7
4287	Centimeter-size square 2D layered Pb-free hybrid perovskite single crystal (CH ₃ NH ₃) ₂ MnCl ₄ for red photoluminescence. CrystEngComm, 2019, 21, 4085-4091.	1.3	31

#	Article	IF	CITATIONS
4288	Quantum Dots for Hybrid Energy Harvesting: From Integration to Piezoâ€Phototronics. Israel Journal of Chemistry, 2019, 59, 747-761.	1.0	3
4289	Effects of KBr or KCl addition to CH3NH3PbI3(Cl) photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.3	0
4290	Doping-Induced Rapid Decoherence Suppresses Charge Recombination in Mono/Divalent Cation Mixed Perovskites from Nonadiabatic Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2019, 10, 3433-3439.	2.1	24
4291	Efficacy beyond 17% via engineering the length and quality of grafts in organic halide perovskite/CNT photovoltaics. New Journal of Chemistry, 2019, 43, 10567-10574.	1.4	14
4292	Polarized Ferroelectric Polymers for Highâ€₽erformance Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902222.	11.1	109
4293	Enhanced Uniformity and Stability of Pb–Sn Perovskite Solar Cells via Me 4 NBr Passivation. Advanced Materials Interfaces, 2019, 6, 1900413.	1.9	33
4294	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11266-11272.	7.2	37
4295	Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. Journal of Materials Chemistry A, 2019, 7, 15476-15490.	5.2	85
4296	Improving the Stability and Monodispersity of Layered Cesium Lead Iodide Perovskite Thin Films by Tuning Crystallization Dynamics. Chemistry of Materials, 2019, 31, 4990-4998.	3.2	19
4297	Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 23198-23206.	4.0	46
4298	2D Intermediate Suppression for Efficient Ruddlesden–Popper (RP) Phase Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1513-1520.	8.8	176
4299	Boosting the Efficiency of SnO ₂ â€Triple Cation Perovskite System Beyond 20% Using Nonhalogenated Antisolvent. Advanced Functional Materials, 2019, 29, 1903213.	7.8	66
4300	Numerical Study of Cu ₂ 0, SrCu ₂ 0 ₂ , and CuAlO ₂ as Holeâ€Transport Materials for Application in Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900337.	0.8	40
4301	Effect of heterocyclic spacer on property of hole-transporting materials with silafluorene core for perovskite solar cells. Computational and Theoretical Chemistry, 2019, 1161, 10-17.	1.1	18
4302	Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference. Physical Review Letters, 2019, 122, 225701.	2.9	250
4303	Facile and Controllable Fabrication of Highâ€Performance Methylammonium Lead Triiodide Films Using Lead Acetate Precursor for Lowâ€Threshold Amplified Spontaneous Emission and Distributedâ€Feedback Lasers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900176.	1.2	3
4304	In Situ Observation of Crystallization Dynamics and Grain Orientation in Sequential Deposition of Metal Halide Perovskites. Advanced Functional Materials, 2019, 29, 1902319.	7.8	53
4305	Fabrication of Highly Efficient and Stable Holeâ€Transport Materialâ€Free Perovskite Solar Cells through Morphology and Interface Engineering: Full Ambient Process. Energy Technology, 2019, 7, 1900446.	1.8	7

# 4306	ARTICLE Promoted performance of carbon based perovskite solar cells by environmentally friendly additives of CH3COONH4 and Zn(CH3COO)2. Journal of Alloys and Compounds, 2019, 802, 694-703.	IF 2.8	CITATIONS
4307	Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy, 2019, 63, 103828.	8.2	124
4308	Hydrophobic perovskites based on an alkylamine compound for high efficiency solar cells with improved environmental stability. Journal of Materials Chemistry A, 2019, 7, 14689-14704.	5.2	19
4309	High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy and Environmental Science, 2019, 12, 2233-2243.	15.6	82
4310	Solution-Processed Bismuth Halide Perovskite Thin Films: Influence of Deposition Conditions and A-Site Alloying on Morphology and Optical Properties. Journal of Physical Chemistry Letters, 2019, 10, 3134-3139.	2.1	23
4311	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	4.5	42
4312	High Responsivity and Response Speed Singleâ€Layer Mixedâ€Cation Lead Mixedâ€Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Largeâ€Area Rigid and Flexible Substrates. Advanced Functional Materials, 2019, 29, 1901371.	7.8	39
4313	Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability. Advanced Materials, 2019, 31, e1901519.	11.1	123
4314	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9409-9413.	7.2	118
4315	Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Solar Rrl, 2019, 3, 1900090.	3.1	102
4316	Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy, 2019, 61, 496-504.	8.2	92
4317	Polyoxometalate-Based Inorganic–Organic Hybrid [Cu(phen)2]2[(α-Mo8O26)]: A New Additive to Spiro-OMeTAD for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 4224-4233.	2.5	17
4318	Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small, 2019, 15, e1900854.	5.2	205
4319	Study of perovskite solar cells based on mixed-organic-cation FA _x MA _{1â^'x} PbI ₃ absorption layer. Physical Chemistry Chemical Physics, 2019, 21, 11822-11828.	1.3	14
4320	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	1.1	13
4321	Structural and photovoltaic properties of perovskite solar cells with addition of ammonium iodide. AIP Conference Proceedings, 2019, , .	0.3	3
4322	Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbI ₃ Nanocrystal Films. Advanced Materials, 2019, 31, e1902250.	11.1	66
4323	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie, 2019, 131, 9509-9513.	1.6	23

#	Article	IF	CITATIONS
4324	Benefiting from Spontaneously Generated 2D/3D Bulkâ€Heterojunctions in Ruddlesdenâ"Popper Perovskite by Incorporation of Sâ€Bearing Spacer Cation. Advanced Science, 2019, 6, 1900548.	5.6	61
4325	Rapid processing of perovskite solar cells through pulsed photonic annealing: a review. Journal of Coatings Technology Research, 2019, 16, 1637-1642.	1.2	6
4326	Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells. Journal of Alloys and Compounds, 2019, 797, 1018-1024.	2.8	23
4327	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134
4328	Determination of Carrier Diffusion Length Using Transient Electron Photoemission Microscopy in the GaAs/InSe Heterojunction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900126.	0.7	1
4329	Band offset studies in MAPbI3 perovskite solar cells using X-ray photoelectron spectroscopy. Optical Materials, 2019, 92, 425-431.	1.7	11
4330	Plasmonicâ€Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar Rrl, 2019, 3, 1900138.	3.1	34
4331	Inverted perovskite solar cells with air stable diketopyrrolopyrrole-based electron transport layer. Solar Energy, 2019, 186, 9-16.	2.9	5
4332	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
4333	High performance and stable perovskite solar cells using vanadic oxide as a dopant for spiro-OMeTAD. Journal of Materials Chemistry A, 2019, 7, 13256-13264.	5.2	81
4334	Low-temperature processing of optimally polymer-wrapped α-CsPbI ₃ for self-powered flexible photo-detector application. Journal of Materials Chemistry C, 2019, 7, 6986-6996.	2.7	38
4335	Lead Halide Ultraviolet-Harvesting Transparent Photovoltaics with an Efficiency Exceeding 1%. ACS Applied Energy Materials, 2019, 2, 3972-3978.	2.5	21
4336	Nuclei position-control and crystal growth-guidance on frozen substrates for high-performance perovskite solar cells. Nanoscale, 2019, 11, 12108-12115.	2.8	10
4337	Schottky Barrierâ€Controlled Black Phosphorus/Perovskite Phototransistors with Ultrahigh Sensitivity and Fast Response. Small, 2019, 15, 1901004.	5.2	46
4338	Microstructural Study of Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheet Degradation under Illumination. Nanomaterials, 2019, 9, 722.	1.9	16
4339	Efficient single-layer light-emitting diodes based on organic–inorganic lead halide perovskite and tuning luminescence properties. Journal of Theoretical and Applied Physics, 2019, 13, 133-140.	1.4	5
4340	Phase-Pure Hybrid Layered Lead Iodide Perovskite Films Based on a Two-Step Melt-Processing Approach. Chemistry of Materials, 2019, 31, 4267-4274.	3.2	37
4341	Controlling Orientation Diversity of Mixed Ion Perovskites: Reduced Crystal Microstrain and Improved Structural Stability. Journal of Physical Chemistry Letters, 2019, 10, 2898-2903.	2.1	18

#	Article	IF	CITATIONS
4342	Gradient Sn-Doped Heteroepitaxial Film of Faceted Rutile TiO ₂ as an Electron Selective Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 19638-19646.	4.0	32
4343	<i>In situ</i> growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 13777-13786.	5.2	58
4344	Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14136-14144.	5.2	40
4345	Tunable electronic structures and high efficiency obtained by introducing superalkali and superhalogen into AMX3-type perovskites. Journal of Power Sources, 2019, 429, 120-126.	4.0	43
4346	Improvement of quantum and power conversion efficiency through electron transport layer modification of ZnO/perovskite/PEDOT: PSS based organic heterojunction solar cell. Solar Energy, 2019, 185, 439-444.	2.9	16
4348	Highâ€Quality Singleâ€Mode Lasers Based on Zeroâ€Dimensional Cesium Lead Halide Perovskites. Solar Rrl, 2019, 3, 1900127.	3.1	20
4349	Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Solar Energy, 2019, 186, 156-165.	2.9	30
4350	Charge Trap Formation and Passivation in Methylammonium Lead Tribromide. Journal of Physical Chemistry C, 2019, 123, 13812-13817.	1.5	9
4351	Radiation tolerance of perovskite solar cells under gamma ray. Organic Electronics, 2019, 71, 79-84.	1.4	40
4352	Screened excitons and trions by free carriers in the two-dimensional perovskite structure. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 181-187.	1.3	5
4353	Star-shaped molecule with planar triazine core and perylene diimide branches as an n-type additive for bulk-heterojunction perovskite solar cells. Dyes and Pigments, 2019, 170, 107562.	2.0	18
4354	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
4355	A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells. Advanced Materials, 2019, 31, e1900390.	11.1	101
4356	Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.	10.2	325
4357	Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite?. Advanced Energy Materials, 2019, 9, 1900084.	10.2	54
4358	Halide Perovskite Nanocrystals for Nextâ€Generation Optoelectronics. Small, 2019, 15, e1900801.	5.2	48
4359	Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12635-12644.	5.2	94
4360	Band Tunable Microcavity Perovskite Artificial Human Photoreceptors. Advanced Materials, 2019, 31, e1900231.	11.1	52

#	Article	IF	CITATIONS
4361	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
4362	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
4363	Improving Performance of Hybrid Graphene–Perovskite Photodetector by a Scratch Channel. Advanced Electronic Materials, 2019, 5, 1900168.	2.6	28
4364	Quaternary quantum dots with gradient valence band for all-inorganic perovskite solar cells. Journal of Colloid and Interface Science, 2019, 549, 33-41.	5.0	19
4365	Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading. Optical Materials, 2019, 92, 60-66.	1.7	32
4366	Controlling the Morphology of Organic–Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. ACS Applied Materials & Interfaces, 2019, 11, 17452-17458.	4.0	19
4367	<i>In situ</i> investigation of light soaking in organolead halide perovskite films. APL Materials, 2019, 7, .	2.2	23
4368	Stable Two-Photon Pumped Amplified Spontaneous Emission from Millimeter-Sized CsPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2019, 10, 2357-2362.	2.1	43
4369	Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano, 2019, 13, 5421-5429.	7.3	84
4370	Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. Nanoscale, 2019, 11, 9281-9286.	2.8	9
4371	Simple, Robust, and Going More Efficient: Recent Advance on Electron Transport Layerâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900248.	10.2	62
4372	Effects of Solvent Coordination Strength on the Morphology of Solution-Processed Bil ₃ Thin Films. Journal of Physical Chemistry C, 2019, 123, 13394-13400.	1.5	16
4373	High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. Journal of Materials Chemistry C, 2019, 7, 6956-6963.	2.7	29
4374	ZnO nanowires for solar cells: a comprehensive review. Nanotechnology, 2019, 30, 362001.	1.3	96
4375	The investigation of inverted p-i-n planar perovskite solar cells based on FASnI3 films. Solar Energy Materials and Solar Cells, 2019, 199, 75-82.	3.0	43
4376	Tunable Emission Properties of Manganese Chloride Small Single Crystals by Pyridine Incorporation. ACS Omega, 2019, 4, 8039-8045.	1.6	43
4377	Stable, Highâ€Sensitivity and Fastâ€Response Photodetectors Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Films. Advanced Optical Materials, 2019, 7, 1801732.	3.6	126
4378	Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Lightâ€Emitting Diodes with Enhanced Efficiency and Stability. Israel Journal of Chemistry, 2019, 59, 695-707.	1.0	23

#	Article	IF	CITATIONS
4379	Corrosive Behavior of Silver Electrode in Inverted Perovskite Solar Cells Based on Cu:NiO _x . IEEE Journal of Photovoltaics, 2019, 9, 1081-1085.	1.5	17
4380	Tracking Structural Phase Transitions in Leadâ€Halide Perovskites by Means of Thermal Expansion. Advanced Materials, 2019, 31, e1900521.	11.1	88
4381	Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. Journal of Materials Chemistry C, 2019, 7, 6391-6397.	2.7	9
4382	A Novel Phototransistor Device with Dual Active Layers Composited of CsPbBr3 and ZnO Quantum Dots. Materials, 2019, 12, 1215.	1.3	12
4383	Liquid Crystal Molecule as "Binding Agent―Enables Superior Stable Perovskite Solar Cells with High Fill Factor. Solar Rrl, 2019, 3, 1900125.	3.1	10
4384	Tuning the Optical Properties of Already Crystalized Hybrid Perovskite. Solar Rrl, 2019, 3, 1900128.	3.1	5
4385	Prediction of the Role of Bismuth Dopants in Organic–Inorganic Lead Halide Perovskites on Photoelectric Properties and Photovoltaic Performance. Journal of Physical Chemistry C, 2019, 123, 12684-12693.	1.5	24
4386	Copper Iodide Interlayer for Improved Charge Extraction and Stability of Inverted Perovskite Solar Cells. Materials, 2019, 12, 1406.	1.3	35
4387	Halide Heterogeneity Affects Local Charge Carrier Dynamics in Mixed-Ion Lead Perovskite Thin Films. Chemistry of Materials, 2019, 31, 3712-3721.	3.2	27
4388	White-Light Emission from the Structural Distortion Induced by Control of Halide Composition of Two-Dimensional Perovskites ((C ₆ H ₅ CH ₂ NH ₃) ₂ PbBr _{4–<i>x</i>/i>Inorganic Chemistry, 2019, 58, 6748-6757.}	o>ti	<13x
4389	Lightâ€Emitting Transistors Based on Solutionâ€Processed Heterostructures of Selfâ€Organized Multipleâ€Quantumâ€Well Perovskite and Metalâ€Oxide Semiconductors. Advanced Electronic Materials, 2019, 5, 1800985.	2.6	18
4390	Black Phosphorus Quantum Dots Induced Highâ€Quality Perovskite Film for Efficient and Thermally Stable Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900132.	3.1	49
4391	New insights into active-area-dependent performance of hybrid perovskite solar cells. Journal of Materials Science, 2019, 54, 10825-10835.	1.7	7
4392	One-step methylammonium lead bromide films: Effect of annealing treatment. Journal of Molecular Structure, 2019, 1192, 1-6.	1.8	17
4393	High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. Journal of Power Sources, 2019, 426, 178-187.	4.0	65
4394	A facile method to evaluate the influence of trap densities on perovskite solar cell performance. Journal of Materials Chemistry C, 2019, 7, 5646-5651.	2.7	32
4395	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
4396	Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes. , 2019, , 305-341.		3

#	Article	IF	CITATIONS
4397	Long-Range Charge Extraction in Back-Contact Perovskite Architectures via Suppressed Recombination. Joule, 2019, 3, 1301-1313.	11.7	68
4398	A laminar MAPbBr3/MAPbBr3â^`xlx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. Journal of Materials Chemistry C, 2019, 7, 5670-5676.	2.7	20
4399	Fundamentals of Solar Cells and Light-Emitting Diodes. , 2019, , 1-35.		4
4400	Role of graphene ordered modifiers in regulating the organic halide perovskite devices. Optical Materials, 2019, 92, 81-86.	1.7	10
4401	Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1181-1188.	8.8	115
4402	The effect of water in Carbon-Perovskite Solar Cells with optimized alumina spacer. Solar Energy Materials and Solar Cells, 2019, 197, 76-83.	3.0	26
4403	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
4404	One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 2363-2371.	2.1	25
4405	Conjugated Polyelectrolytes as Multifunctional Passivating and Holeâ€Transporting Layers for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1900067.	11.1	44
4406	Structural and Functional Diversity in Leadâ€Free Halide Perovskite Materials. Advanced Materials, 2019, 31, e1900326.	11.1	198
4407	Simultaneously enhanced performance and stability of inverted perovskite solar cells via a rational design of hole transport layer. Organic Electronics, 2019, 73, 69-75.	1.4	9
4408	Red-Shifted Photoluminescence from Crystal Edges Due to Carrier Redistribution and Reabsorption in Lead Triiodide Perovskites. Journal of Physical Chemistry C, 2019, 123, 12521-12526.	1.5	23
4409	Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5596-5603.	2.7	47
4410	MAPbBr ₃ perovskite solar cells <i>via</i> a two-step deposition process. RSC Advances, 2019, 9, 12906-12912.	1.7	51
4411	Light-Emitting Field-Effect Transistors Based on Composite Films of Polyfluorene and CsPbBr3 Nanocrystals. Physics of the Solid State, 2019, 61, 256-262.	0.2	18
4412	Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Organic Electronics, 2019, 70, 292-299.	1.4	20
4413	High Performance Inverted Planar MAPbI ₃ Perovskite Solar Cells with a Simple Annealing Process. ChemNanoMat, 2019, 5, 715-722.	1.5	6
4414	In situ Investigation of Water Interaction with Lead-Free All Inorganic Perovskite (Cs ₂ Snl <i>_x</i> Cl _{6–<i>x</i>}). Journal of Physical Chemistry C, 2019, 123, 9575-9581.	1.5	23

#	Article	IF	CITATIONS
4415	Triplet-Sensitization by Lead Halide Perovskite Thin Films for Near-Infrared-to-Visible Upconversion. ACS Energy Letters, 2019, 4, 888-895.	8.8	117
4416	How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. Journal of Materials Chemistry A, 2019, 7, 23838-23853.	5.2	57
4417	Microstructural Evolution of Hybrid Perovskites Promoted by Chlorine and its Impact on the Performance of Solar Cell. Scientific Reports, 2019, 9, 4803.	1.6	61
4418	Effects of TiO2 nanoparticles with different sizes on the performance of CH3NH3PbI3-xClx solar cells. AIP Conference Proceedings, 2019, , .	0.3	1
4419	Enhancing surface stabilization of CH3NH3PbI3 perovskite by Cl and Br doping: First-principles study. Journal of Applied Physics, 2019, 125, 115302.	1.1	7
4420	Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics. Advanced Theory and Simulations, 2019, 2, 1800173.	1.3	54
4421	Imaging photoinduced surface potentials on hybrid perovskites by real-time Scanning Electron Microscopy. Micron, 2019, 121, 53-65.	1.1	9
4422	Data mining new energy materials from structure databases. Renewable and Sustainable Energy Reviews, 2019, 107, 554-567.	8.2	38
4423	Controllable Cs <i>_x</i> FA _{1–<i>x</i>} PbI ₃ Single-Crystal Morphology via Rationally Regulating the Diffusion and Collision of Micelles toward High-Performance Photon Detectors. ACS Applied Materials & Interfaces, 2019, 11, 13812-13821.	4.0	35
4424	Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. Journal of Materials Chemistry C, 2019, 7, 5028-5036.	2.7	36
4425	Material patterning on substrates by manipulation of fluidic behavior. National Science Review, 2019, 6, 758-766.	4.6	11
4426	Mitigating scalability issues of perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell architecture. Solar Energy Materials and Solar Cells, 2019, 195, 191-197.	3.0	16
4427	Doping-Enhanced Visible-Light Absorption of CH ₃ NH ₃ PbBr ₃ by the Bi ³⁺ -Induced Impurity Band without Sacrificing a Band gap. Journal of Physical Chemistry C, 2019, 123, 8578-8587.	1.5	18
4428	Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 13491-13498.	4.0	71
4429	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	1.6	8
4430	Porphyrin based hole transport layers for enhanced charge transport and stability in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 7866-7872.	1.1	5
4431	Multifunctional keplerate-type polyoxometalate-organic polymer composite films for interface engineering in perovskite photodetectors. Dyes and Pigments, 2019, 166, 174-180.	2.0	9
4432	A facile green solvent engineering for up-scaling perovskite solar cell modules. Solar Energy, 2019, 183, 386-391.	2.9	41

#	Article	IF	CITATIONS
4433	Toward Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: Systematic Photostability Investigation. Chemistry of Materials, 2019, 31, 2486-2496.	3.2	55
4434	3D hybrid perovskite solid solutions: a facile approach for deposition of nanoparticles and thin films <i>via</i> B-site substitution. New Journal of Chemistry, 2019, 43, 5448-5454.	1.4	5
4435	Effect of CH ₃ NH ₃ I vapour evaporation temperature on the quality of the lead-free bismuth based perovskites thin-films. Materials Research Express, 2019, 6, 066418.	0.8	6
4436	Symmetry Breaking at MAPbI ₃ Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1617-1623.	2.1	65
4437	Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology, 2019, 30, 275202.	1.3	40
4438	Room-temperature electrochemical deposition of ultrathin CuOx film as hole transport layer for perovskite solar cells. Scripta Materialia, 2019, 165, 134-139.	2.6	20
4439	Pulsed Laser Deposition of CsPbBr ₃ Films for Application in Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2305-2312.	2.5	46
4440	Advances in solution-processable near-infrared phototransistors. Journal of Materials Chemistry C, 2019, 7, 3711-3729.	2.7	74
4441	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donorâ€i€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1803766.	10.2	280
4442	Investigation of Rbx(MA)1â^'xPbI3(x = 0, 0.1, 0.3, 0.5, 0.75, 1) perovskites as a potential source of P- and N-type materials for PN-junction solar cell. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
4443	Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy, 2019, 59, 619-625.	8.2	88
4444	Theoretical Studies of Electronic and Optical Behaviors of All-Inorganic CsPbI ₃ and Two-Dimensional MS ₂ (M = Mo, W) Heterostructures. Journal of Physical Chemistry C, 2019, 123, 7158-7165.	1.5	21
4445	Vibrational Probe of the Structural Origins of Slow Recombination in Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 7061-7073.	1.5	29
4446	Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1368-1373.	2.1	191
4447	Enhancing Photostability of Perovskite Solar Cells by Eu(TTA) ₂ (Phen)MAA Interfacial Modification. ACS Applied Materials & Interfaces, 2019, 11, 11481-11487.	4.0	41
4448	lonic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy and Environmental Science, 2019, 12, 1296-1308.	15.6	146
4449	Depth-dependent electronic band structure at the Au/CH ₃ NH ₃ PbI _{3â^'x} Cl _x junction. Physical Chemistry Chemical Physics, 2019, 21, 14541-14545.	1.3	6
4450	Preparation, Thermal, and Physical Properties of Perovskite-Type (C3H7NH3)2CdCl4 Crystals. Crystals, 2019, 9, 108.	1.0	2

#	Article	IF	CITATIONS
4451	High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer. Organic Electronics, 2019, 69, 34-41.	1.4	24
4452	A Conical Intersection Perspective on the Low Nonradiative Recombination Rate in Lead Halide Perovskites. Journal of Physical Chemistry A, 2019, 123, 2661-2673.	1.1	14
4453	Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10, 1066.	5.8	568
4454	Point defect-reduced colloidal SnO2 electron transport layers for stable and almost hysteresis-free perovskite solar cells. RSC Advances, 2019, 9, 7334-7337.	1.7	10
4455	Mechanosynthesis, Optical, and Morphological Properties of MA, FA, Cs‣nX ₃ (X = I, Br) and Phaseâ€Pure Mixedâ€Halide MASnI <i>_x</i> Br ₃ _{–<i>x</i>} Perovskites. European Journal of Inorganic Chemistry, 2019, 2019, 2680-2684.	1.0	25
4456	Nonâ€Planar and Flexible Holeâ€Transporting Materials from Bisâ€Xanthene and Bisâ€Thioxanthene Units for Perovskite Solar Cells. Helvetica Chimica Acta, 2019, 102, e1900056.	1.0	3
4457	Chemical stability and instability of inorganic halide perovskites. Energy and Environmental Science, 2019, 12, 1495-1511.	15.6	510
4458	Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials, 2019, 9, 374.	1.9	238
4459	Electronic and optical properties of perovskite compounds MA _{1â~α} FA _α Pbl _{3â~β} X _β (X = Cl, Br) explored for photovolta applications. RSC Advances, 2019, 9, 7015-7024.	aic1.7	20
4460	Passivating Crystal Boundaries with Potassiumâ€Rich Phase in Organic Halide Perovskite. Solar Rrl, 2019, 3, 1900053.	3.1	64
4461	Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nature Communications, 2019, 10, 1027.	5.8	425
4462	A bendable nickel oxide interfacial layer <i>via</i> polydopamine crosslinking for flexible perovskite solar cells. Chemical Communications, 2019, 55, 3666-3669.	2.2	47
4464	Enhanced UV Detection of Perovskite Photodetector Arrays via Inorganic CsPbBr ₃ Quantum Dot Down onversion Layer. Advanced Optical Materials, 2019, 7, 1801812.	3.6	55
4465	Bifacial Contact Junction Engineering for Highâ€Performance Perovskite Solar Cells with Efficiency Exceeding 21%. Small, 2019, 15, 1900606.	5.2	15
4466	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	2.6	9
4467	Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000â€ ⁻ h. Solar Energy Materials and Solar Cells, 2019, 195, 323-329.	3.0	84
4468	Understanding How Ambiance Affects the Performance of Hole-Conductor-Free Perovskite Solar Cells from a Chemical Perspective. ACS Applied Energy Materials, 2019, 2, 2387-2391.	2.5	5
4469	Low-Temperature Annealed Perovskite Films: A Trade-Off between Fast and Retarded Crystallization via Solvent Engineering. ACS Applied Materials & Interfaces, 2019, 11, 16704-16712.	4.0	23

#	Article	IF	CITATIONS
4470	Simulation and design of folded perovskite x-ray detectors. Scientific Reports, 2019, 9, 5231.	1.6	19
4471	Controllable switching properties in an individual CH3NH3PbI3 micro/nanowire-based transistor for gate voltage and illumination dual-driving non-volatile memory. Journal of Materials Chemistry C, 2019, 7, 4259-4266.	2.7	18
4472	Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale, 2019, 11, 8665-8679.	2.8	119
4473	Direct observation of carrier transport in organic–inorganic hybrid perovskite thin film by transient photoluminescence imaging measurement. Japanese Journal of Applied Physics, 2019, 58, SBBG18.	0.8	1
4474	Sequential Deposition of Highâ€Quality Photovoltaic Perovskite Layers via Scalable Printing Methods. Advanced Functional Materials, 2019, 29, 1900964.	7.8	69
4475	Origin and Suppression of the Graded Phase Distribution in Ruddlesdenâ€Popper Perovskite Films for Photovoltaic Application. Solar Rrl, 2019, 3, 1800357.	3.1	27
4476	Residual Nanoscale Strain in Cesium Lead Bromide Perovskite Reduces Stability and Shifts Local Luminescence. Chemistry of Materials, 2019, 31, 2778-2785.	3.2	53
4477	From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1790-1798.	2.1	72
4478	Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4, 269-285.	23.3	727
4479	Ultrastable Leadâ€Free Double Perovskite Photodetectors with Imaging Capability. Advanced Materials Interfaces, 2019, 6, 1900188.	1.9	62
4480	Density of bulk trap states of hybrid lead halide perovskite single crystals: temperature modulated space-charge-limited-currents. Scientific Reports, 2019, 9, 3332.	1.6	51
4481	Perovskite-related (CH ₃ NH ₃) ₃ Sb ₂ Br ₉ for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale, 2019, 11, 6453-6461.	2.8	121
4482	Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive. Journal of Materials Chemistry A, 2019, 7, 8078-8084.	5.2	62
4483	Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 116-126.	2.0	41
4484	Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. Journal of Materials Chemistry A, 2019, 7, 9025-9033.	5.2	71
4485	[C ₆ N ₂ H ₁₈][SbI ₅]: A Lead-free Hybrid Halide Semiconductor with Exceptional Dielectric Relaxation. Inorganic Chemistry, 2019, 58, 4337-4343.	1.9	24
4486	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	8.2	33
4487	Fast Charge Diffusion in MAPb(I _{1–<i>x</i>} Br <i>_x</i>) ₃ Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. Journal of Physical Chemistry A, 2019, 123, 2674-2678.	1.1	6

#	Article	IF	CITATIONS
4488	Dion–Jacobson Two-Dimensional Perovskite Solar Cells Based on Benzene Dimethanammonium Cation. Nano Letters, 2019, 19, 2588-2597.	4.5	155
4489	Formation of DY center as n-type limiting defects in octahedral semiconductors: the case of Bi-doped hybrid halide perovskites. Journal of Materials Chemistry C, 2019, 7, 4230-4234.	2.7	41
4490	Tunable Ferroelectricity in Ruddlesden–Popper Halide Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 13523-13532.	4.0	32
4491	Tracking Transformative Transitions: From CsPbBr ₃ Nanocrystals to Bulk Perovskite Films. , 2019, 1, 8-13.		35
4492	TiO2 Nanoparticles/Nanotubes for Efficient Light Harvesting in Perovskite Solar Cells. Nanomaterials, 2019, 9, 326.	1.9	39
4493	Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 2019, 31, e1807628.	11.1	64
4494	Probe-induced resistive switching memory based on organic-inorganic lead halide perovskite materials. Organic Electronics, 2019, 69, 106-113.	1.4	13
4495	Performance enhancement of AgBi ₂ I ₇ solar cells by modulating a solvent-mediated adduct and tuning remnant Bil ₃ in one-step crystallization. Chemical Communications, 2019, 55, 4031-4034.	2.2	54
4496	Molecular Engineering of Simple Carbazoleâ€⊺riphenylamine Hole Transporting Materials by Replacing Benzene with Pyridine Unit for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800337.	3.1	48
4497	Materials Discovery of Stable and Nontoxic Halide Perovskite Materials for Highâ€Efficiency Solar Cells. Advanced Functional Materials, 2019, 29, 1804354.	7.8	61
4498	Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. Journal of Power Sources, 2019, 422, 196-207.	4.0	24
4499	Facile synthesis of simple arylamine-substituted naphthalene derivatives as hole-transporting materials for efficient and stable perovskite solar cells. Journal of Power Sources, 2019, 425, 87-93.	4.0	26
4500	Planar Perovskite Solar Cells with High Efficiency and Fill Factor Obtained Using Two-Step Growth Process. ACS Applied Materials & Interfaces, 2019, 11, 15680-15687.	4.0	18
4501	Quantitative optical assessment of photonic and electronic properties in halide perovskite. Nature Communications, 2019, 10, 1586.	5.8	40
4502	Understanding adsorption of nucleobases on CH3NH3PbI3 surfaces toward biological applications of halide perovskite materials. Applied Surface Science, 2019, 483, 1052-1057.	3.1	6
4503	Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials, 2019, 31, 3111-3117.	3.2	35
4504	Enhanced Electronic Quality of Perovskite via a Novel C ₆₀ o-Quinodimethane Bisadducts toward Efficient and Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 8579-8586.	3.2	12
4505	Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 2019, 7, 12191-12200.	5.2	109

#	Article	IF	CITATIONS
4506	Two-dimensional polythiophene homopolymer as promising hole transport material for high-performance perovskite solar cells. Journal of Power Sources, 2019, 426, 55-60.	4.0	19
4507	Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23%. Materials Today Energy, 2019, 12, 363-370.	2.5	30
4508	Morphology, optical and photoelectric properties of CH3NH3PbBr3 single crystal. Physica B: Condensed Matter, 2019, 571, 307-311.	1.3	8
4509	Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nature Communications, 2019, 10, 1698.	5.8	81
4510	Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances. APL Materials, 2019, 7, .	2.2	33
4511	Mn ²⁺ Doping Enhances the Brightness, Efficiency, and Stability of Bulk Perovskite Light-Emitting Diodes. ACS Photonics, 2019, 6, 1111-1117.	3.2	61
4512	Efficient air-stable perovskite solar cells with a (FAI) _{0.14} (PbI ₂) _{0.86} (PbBr active layer fabricated <i>via</i> a vacuum flash-assisted method under RH > 50%. RSC Advances, 2019, 9, 10148-10154.	_{21.7}	sub>) _C
4513	Effect of carrier mobility on performance of perovskite solar cells. Chinese Physics B, 2019, 28, 048802.	0.7	24
4514	Enhancement of perovskite solar cells characteristics by incorporating mixed sodium/cesium cations. Optik, 2019, 185, 1019-1023.	1.4	3
4515	Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state. APL Materials, 2019, 7, .	2.2	42
4516	Low-Cost Culn1â^'xGaxSe2 Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells. Applied Sciences (Switzerland), 2019, 9, 719.	1.3	7
4517	Dual Interfacial Design for Efficient CsPbI ₂ Br Perovskite Solar Cells with Improved Photostability. Advanced Materials, 2019, 31, e1901152.	11.1	328
4518	In situ deposition of black α-FAPbI3 films by vacuum flash evaporation for solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 8381-8389.	1.1	6
4519	Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Materials Science in Semiconductor Processing, 2019, 98, 113-120.	1.9	7
4520	Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Science Bulletin, 2019, 64, 698-704.	4.3	33
4521	Effects of poly(methyl methacrylate) addition to perovskite photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.3	14
4522	Efficiency of MAPbI ₃ -Based Planar Solar Cell Analyzed by Its Thickness-Dependent Exciton Formation, Morphology, and Crystallinity. ACS Applied Materials & Interfaces, 2019, 11, 14810-14820.	4.0	10
4523	Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Materials Chemistry Frontiers, 2019, 3, 941-947.	3.2	54

#	Article	IF	Citations
 4524	Pinhole-free TiO ₂ /Ag _(O) /ZnO configuration for flexible perovskite solar cells with ultralow optoelectrical loss. RSC Advances, 2019, 9, 9160-9170.	1.7	25
4525	Hexagonal MASnI3 exhibiting strong absorption of ultraviolet photons. Applied Physics Letters, 2019, 114, .	1.5	5
4526	Enhanced Charge Transport via Metallic 1T Phase Transition Metal Dichalcogenidesâ€Mediated Hole Transport Layer Engineering for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 1050-1058.	1.5	16
4527	Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. CheM, 2019, 5, 995-1006.	5.8	245
4528	Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste. Energies, 2019, 12, 1117.	1.6	11
4529	Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31, e1806702.	11.1	146
4530	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. Advanced Energy Materials, 2019, 9, 1900185.	10.2	85
4531	Flash Surface Treatment of CH ₃ NH ₃ PbI ₃ Films Using 248 nm KrF Excimer Laser Enhances the Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900020.	3.1	5
4532	Strong Blue Emission from Sb ³⁺ -Doped Super Small CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 1750-1756.	2.1	94
4533	A facile room temperature solution synthesis of SnO ₂ quantum dots for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10636-10643.	5.2	52
4534	A high performance perovskite CH ₃ NH ₃ PbCl ₃ single crystal photodetector: benefiting from an evolutionary preparation process. Journal of Materials Chemistry C, 2019, 7, 5442-5450.	2.7	39
4535	Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3 perovskites. APL Materials, 2019, 7, .	2.2	73
4536	Photodetectors based on inorganic halide perovskites: Materials and devices. Chinese Physics B, 2019, 28, 017803.	0.7	41
4537	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem Structures. Solar Rrl, 2019, 3, 1900083.	3.1	10
4538	Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Materials Science in Semiconductor Processing, 2019, 98, 39-43.	1.9	42
4539	Cesium lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy, 2019, 60, 557-566.	8.2	121
4540	The effect of nitrogen doping of TiO2 compact blocking layers on perovskite solar cell performance. Solid State Sciences, 2019, 92, 68-75.	1.5	8
4541	Structure, optical and electrical properties of CH3NH3SnI3 single crystal. Physica B: Condensed Matter, 2019, 563, 107-112.	1.3	21

#	Article	IF	CITATIONS
4542	Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives. Advanced Functional Materials, 2019, 29, 1902021.	7.8	76
4543	Strainâ€Mediated Phase Stabilization: A New Strategy for Ultrastable αâ€CsPbI ₃ Perovskite by Nanoconfined Growth. Small, 2019, 15, e1900219.	5.2	74
4544	Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials. Science China Chemistry, 2019, 62, 767-774.	4.2	16
4545	Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. Electrochimica Acta, 2019, 307, 334-340.	2.6	27
4546	Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019, 28, 018502.	0.7	18
4547	Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements. Scientific Reports, 2019, 9, 5385.	1.6	65
4548	Morphology control towards a greener, non-halogenated solvent system processed CH ₃ NH ₃ PbI ₃ film for high performance perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 6004-6011.	2.7	10
4549	Study on the defect density of states in light soaking effect enhanced performance of perovskite solar cells. Journal Physics D: Applied Physics, 2019, 52, 265302.	1.3	19
4551	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. Journal of Materials Chemistry C, 2019, 7, 5488-5496.	2.7	19
4552	Perovskite solar cells free of hole transport layer. Journal of Sol-Gel Science and Technology, 2019, 90, 443-449.	1.1	5
4553	Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Science Bulletin, 2019, 64, 547-552.	4.3	32
4554	Nonprecious Copperâ€Based Transparent Top Electrode via Seed Layer–Assisted Thermal Evaporation for Highâ€Performance Semitransparent nâ€iâ€p Perovskite Solar Cells. Advanced Materials Technologies, 2019, 4, 1800688.	3.0	41
4555	Nanophotonic enhancement and improved electron extraction in perovskite solar cells using near-horizontally aligned TiO2 nanorods. Journal of Power Sources, 2019, 417, 176-187.	4.0	17
4556	High-Performance Inverted Perovskite Solar Cells Using Doped Poly(triarylamine) as the Hole Transport Layer. ACS Applied Energy Materials, 2019, 2, 1932-1942.	2.5	52
4557	Poly(methyl methacrylate) embedded perovskite films for improving solar cell performance. Synthetic Metals, 2019, 249, 47-51.	2.1	11
4558	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128
4559	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315
4560	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	11.1	621

#	Article	IF	CITATIONS
4561	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
4562	Advances in Alternating Current Electroluminescent Devices. Advanced Optical Materials, 2019, 7, 1801154.	3.6	92
4563	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
4564	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804419.	7.8	42
4565	Combustion Synthesized Zinc Oxide Electronâ€Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900265.	7.8	121
4566	Bismuth Doping–Induced Stable Seebeck Effect Based on MAPbI ₃ Polycrystalline Thin Films. Advanced Functional Materials, 2019, 29, 1900615.	7.8	42
4567	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
4568	Chlorobenzene: A Processing Solvent Enabling the Fabrication of Perovskite Solar Cells with Consecutive Doubleâ€Perovskite and Perovskite/Organic Semiconductor Bulk Heterojunction Layers. Solar Rrl, 2019, 3, 1800325.	3.1	6
4569	Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. Journal of Materials Science, 2019, 54, 7789-7797.	1.7	60
4570	Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International, 2019, 45, 10013-10020.	2.3	5
4571	Enhancing performance and stability of perovskite solar cells using hole transport layer of small molecule and conjugated polymer blend. Journal of Power Sources, 2019, 418, 167-175.	4.0	28
4572	Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability. Nano Energy, 2019, 59, 481-491.	8.2	82
4573	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	7.3	38
4574	Facile fabrication of highly efficient ETL-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering. Chemical Communications, 2019, 55, 2777-2780.	2.2	61
4575	Localized Traps Limited Recombination in Lead Bromide Perovskites. Advanced Energy Materials, 2019, 9, 1803119.	10.2	28
4576	Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: A CdTe case study. Journal of Applied Physics, 2019, 125, .	1.1	46
4577	Surface grain boundary passivation via mixed antisolvent and PC61BM assistant for stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 3511-3520.	1.1	8
4578	Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3 and CsPb2Br5 nanocrystals and fabrication of all-inorganic perovskite solar cells. Journal of Alloys and Compounds, 2019, 787, 17-26.	2.8	43

~			_
C^{1}	тлті	ON	Report
	IAH		NLPORT

#	Article	IF	CITATIONS
4579	Surface composition of MAPb(lxBr1â^'x)3 (0â€~â‰ ë €¯x â‰ ë €¯1) organic-inorganic mixed-halide perovskites. A Surface Science, 2019, 479, 311-317.	pglied	8
4580	Synthesis and Characterization of Multiple-Cation Rb(MAFA)PbI3 Perovskite Single Crystals. Scientific Reports, 2019, 9, 2022.	1.6	18
4581	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
4582	Exciton Diffusion Lengths and Dissociation Rates in CsPbBr ₃ Nanocrystal–Fullerene Composites: Layerâ€by‣ayer versus Blend Structures. Advanced Optical Materials, 2019, 7, 1801776.	3.6	23
4583	Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell. Electrochimica Acta, 2019, 303, 133-139.	2.6	38
4584	Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy, 2019, 59, 91-101.	8.2	100
4585	Low temperature solution processable TiO2 nano-sol for electron transporting layer of flexible perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 1-6.	3.0	30
4586	Manipulation of Bi ³⁺ /In ³⁺ Transmutation and Mn ²⁺ â€Doping Effect on the Structure and Optical Properties of Double Perovskite Cs ₂ NaBi _{1â€} <i>_x</i> In <i>_x</i> Cl ₆ . Advanced Optical Materials, 2019, 7, 1801435.	3.6	157
4587	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
4588	Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells. Chemistry of Materials, 2019, 31, 1620-1627.	3.2	99
4589	Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications, 2019, 10, 695.	5.8	156
4590	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	1.5	10
4591	Donuts and Spin Vortices at the Fermi Surfaces of Hybrid Lead-Iodide CH ₃ NH ₃ PbI ₃ Perovskites. Journal of Physical Chemistry C, 2019, 123, 6753-6762.	1.5	3
4592	Large polaron formation and its effect on electron transport in hybrid perovskites. Energy and Environmental Science, 2019, 12, 1219-1230.	15.6	106
4593	Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry–Pérot mode lasing. Journal of Materials Chemistry C, 2019, 7, 4102-4108.	2.7	18
4594	Controlled synthesis and photostability of blue emitting Cs ₃ Bi ₂ Br ₉ perovskite nanocrystals by employing weak polar solvents at room temperature. Journal of Materials Chemistry C, 2019, 7, 3688-3695.	2.7	50
4595	Schottky/pâ€n Cascade Heterojunction Constructed by Intentional nâ€Type Doping Perovskite Toward Efficient Electron Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800274.	3.1	43
4596	Series Resistance Measurements of Perovskite Solar Cells Using <i>J_{sc}</i> – <i>V_{oc}</i> Measurements. Solar Rrl, 2019, 3, 1800378.	3.1	61

ARTICLE IF CITATIONS Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable 4597 14.4 238 Optoelectronic Applications. Nano-Micro Letters, 2019, 11, 16. Optical Management with Nanoparticles for a Light Conversion Efficiency Enhancement in Inorganic Î³-CsPbl₃ Solar Cells. Nano Letters, 2019, 19, 1796-1804. 4598 4.5 58 Tailoring Electronic Properties of SnO₂ Quantum Dots via Aluminum Addition for 4599 26 3.1Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900041. Improved photovoltaic performance and device stability of planar heterojunction perovskite solar cells using TiO2 and TiO2 mixed with AgInS2 quantum dots as dual electron transport layers. Organic 4600 Electronics, 2019, 69, 26-33. Multifunctional energy devices caused by ionic behaviors in perovskite-polymer hybrid films. Synthetic 4601 2.1 8 Metals, 2019, 250, 31-34. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 23.0 2,009 119, 3036-3103. Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417. 4603 23.0 404 Unveiling the operation mechanism of layered perovskite solar cells. Nature Communications, 2019, 10, 4604 5.8 216 1008. Solvent engineering based on triethylenetetramine (TETA) for perovskite solar cells processed in 4605 1.6 4 ambient-air. Photochemical and Photobiological Sciences, 2019, 18, 1228-1234. Efficient and carbon-based hole transport layer-free CsPbl₂Br planar perovskite solar 2.7 cells using PMMA modification. Journal of Materials Chemistry C, 2019, 7, 3852-3861. Enhancing the electronic dimensionality of hybrid organic–inorganic frameworks by hydrogen 4607 4 6.4 bonded molecular cations. Materials Horizons, 2019, 6, 1187-1196. Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar 5.2 cells. Journal of Materials Chemistry A, 2019, 7, 6840-6848. Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics 4609 1.5 25 Letters, 2019, 114, . Temperature-Dependent Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, 1.7 74 CH3NH3PbX3 (X = I, Br). Molecules, 2019, 24, 626. Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites. ACS Energy Letters, 4611 219 8.8 2019, 4, 779-785. Influence of A-site cations on the open-circuit voltage of efficient perovskite solar cells: a case of 5.2 43 rubidium and guanidinium additives. Journal of Materials Chemistry A, 2019, 7, 8218-8225. Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the 4613 0.8 10 stability and electronic properties. Journal of the Chinese Chemical Society, 2019, 66, 575-582. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface 4614 5.8 modification of hole-transporting layer. Nature Communications, 2019, 10, 878.

		CITATION R	EPORT	
#	ARTICLE Surface modification <i>via</i> self-assembling large cations for improved performance	and	IF	CITATIONS
4615	modulated hysteresis of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7	7, 6793-6800.	5.2	48
4616	Improved Charge Extraction Beyond Diffusion Length by Layerâ€byâ€Layer Multistackin Graphene Layers inside Quantum Dots Films. Advanced Materials, 2019, 31, e1807894	ng Intercalation of	11.1	21
4617	Hybrid perovskites for device applications. , 2019, , 211-256.			13
4618	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF ₄ ^{â^'} Anion Substitutions. Advanced Functional Materials, 2	2019, 29, 1808833.	7.8	104
4619	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Sit Substrateâ€Heatingâ€Assisted Deposition. Solar Rrl, 2019, 3, 1800318.	:u	3.1	37
4620	Strategies for Modifying TiO ₂ Based Electron Transport Layers to Boost Po Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4586-4618.	erovskite Solar	3.2	83
4621	Doping and Photon Induced Defect Healing of Hybrid Perovskite Thin Films: An Approa Efficient Light Emitting Diodes. ChemNanoMat, 2019, 5, 666-673.	ch Towards	1.5	5
4622	Stability Improvement of Perovskite Solar Cells for Application of CuInS ₂ Dot-Modified TiO ₂ Nanoarrays. ACS Omega, 2019, 4, 3432-3438.	Quantum	1.6	19
4623	Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Physical Ch Chemical Physics, 2019, 21, 5409-5415.	emistry	1.3	20
4624	Crystal structure and optical properties of 1D-bi based organic-inorganic hybrid perovsl Conference Series: Materials Science and Engineering, 2019, 610, 012063.	rite. IOP	0.3	22
4625	Low temperature process of homogeneous and pinhole free Perovskite layers for fully c photovoltaic devices up to 256 cm2 area at ambient condition. , 2019, , .	oated		2
4626	Recent advances in solar energy harvesting materials with particular emphasis on photomaterials. , 2019, , .	pvoltaic		5
4627	\hat{I}^3 -Fe2O3 as a novel Electron Transporting Material for Planar Heterojunction Perovskite simple Room-Temperature Solution method. IOP Conference Series: Earth and Environr 2019, 358, 052022.		0.2	1
4628	Theoretical study of the MAPbI3/SnO2 interface band offset in perovskite solar cells co mobile ions. , 2019, , .	nsidering		0
4629	Impact of antisolvent treatment and of the substitution of the ion FA by the ion Cs on to of CsXFA1-XPbI3 films prepared by spin coating. , 2019, , .	he properties:		0
4631	Germanium/perovskite heterostructure for high-performance and broadband photodet visible to infrared telecommunication band. Light: Science and Applications, 2019, 8, 1		7.7	172
4632	Optimization of TiO2 compact layer formed by atomic layer deposition for efficient per cells. Applied Physics Letters, 2019, 115, 203902.	ovskite solar	1.5	14
4633	Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Solar Cells. Journal of the American Chemical Society, 2019, 141, 19700-19707.	Perovskite	6.6	119

ARTICLE IF CITATIONS Effect of Cu2O Content in Electrodeposited CuOx Film on Perovskite Solar Cells. Nano, 2019, 14, 0.5 3 4634 1950126. Sub-Bandgap States in Lead-Halide Perovskites Revealed by two-Dimensional Electronic Spectroscopy., Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of 4636 5.212 Materials Chemistry A, 2019, 7, 26154-26161. Time-Domain ab Initio Studies of Excited State Dynamics at Nanoscale Interfaces. ACS Symposium Series, 0.5 2019, , 101-136. Acetonitrile based single step slot-die compatible perovskite ink for flexible photovoltaics. RSC 4638 1.7 34 Advances, 2019, 9, 37415-37423. Highly crystalline CsPbI₂Br films for efficient perovskite solar cells <i>via</i>compositional engineering. RSC Advances, 2019, 9, 30534-30540. 1.7 Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites. 4640 1.2 16 Journal of Chemical Physics, 2019, 151, 244706. Dopant-induced localized light absorption in CsPbX₃ (X = Cl, Br, I) perovskite quantum 4641 1.4 dots. New Journal of Chemistry, 2019, 43, 18268-18276. Hot electron injection into semiconducting polymers in polymer based-perovskite solar cells and 4642 2.8 3 their fate. Nanoscale, 2019, 11, 23357-23365. Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI₃ perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 22539-22549. 4643 5.2 Emerging alkali metal ion (Li⁺, Na⁺, K⁺ and Rb⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials 4644 5.2 116 Chemistry A, 2019, 7, 24150-24163. <i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI₂Br 4645 5.2 solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682. Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for 4646 5.2 40 efficient and stable perovskite modules. Journal of Materials Chemistry A, 2019, 7, 26849-26857. Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341. 4647 5.2 44 3D low toxicity Cu–Pb binary perovskite films and their photoluminescent/photovoltaic performance. 4648 5.234 Journal of Materials Chemistry A, 2019, 7, 27225-27235. To enhance the performance of all-inorganic perovskite photodetectors $\langle i \rangle via \langle i \rangle$ constructing both 4649 bilayer heterostructure and bipolar carrier transporting channels. Journal of Materials Chemistry C, 2019, 7, 14938-14948. High-Detectivity/-Speed Flexible and Self-Powered Graphene Quantum Dots/Perovskite Photodiodes. 4650 3.216 ACS Sustainable Chemistry and Engineering, 2019, 7, 19961-19968. A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether Mixed 1.2 Anti-Solvent Engineering. Coatings, 2019, 9, 766.

#	Article	IF	CITATIONS
4652	Critical Roles of High- and Low-Frequency Optical Phonons in Photodynamics of Zero-Dimensional Perovskite-like (C ₆ H ₂₂ N ₄ Cl ₃)SnCl ₃ Crystals. Journal of Physical Chemistry Letters, 2019, 10, 7586-7593.	2.1	28
4653	Efficient Planar Perovskite Solar Cells with Entire Low-Temperature Processes via Brookite TiO2 Nanoparticle Electron Transport Layer. , 2019, , .		0
4654	Synthesis, Structural, Linear, and Nonlinear Optical Studies of Inorganic–Organic Hybrid Semiconductors (R–C6H4CHCH3NH3)2PbI4, (R = CH3, Cl). ACS Omega, 2019, 4, 19565-19572.	1.6	11
4655	Modeling of Charge Transfer in Mesoscopic Perovskite Solar Cells by Considering a Trapassisted Interface. , 2019, , .		1
4656	Lead-Free Perovskites for Lighting and Lasing Applications: A Minireview. Materials, 2019, 12, 3845.	1.3	28
4657	Stacking of Layered Halide Perovskite from Incorporating a Diammonium Cation into Three-Dimensional Perovskites. Langmuir, 2019, 35, 16444-16458.	1.6	5
4658	Regulating Vertical Domain Distribution in Ruddlesden–Popper Perovskites for Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 7949-7955.	2.1	5
4659	Enhanced terahertz emission from imprinted halide perovskite nanostructures. Nanophotonics, 2020, 9, 187-194.	2.9	16
4660	Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells. Nanomaterials, 2019, 9, 1760.	1.9	64
4661	Visualizing the impact of chloride addition on the microscopic carrier dynamics of MAPbI3 thin films using femtosecond transient absorption microscopy. Journal of Chemical Physics, 2019, 151, 234710.	1.2	3
4662	Upconverted excitonic photoluminescence from a two-dimensional lead-halide perovskite. Journal of Chemical Physics, 2019, 151, 234709.	1.2	11
4663	Direct imaging of carrier diffusion length in organic-inorganic perovskites. Applied Physics Letters, 2019, 115, .	1.5	4
4664	Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs. Science and Technology of Advanced Materials, 2019, 20, 1118-1130.	2.8	5
4665	Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets. Nanoscale Advances, 2019, 1, 4459-4465.	2.2	25
4666	Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy and Environmental Science, 2019, 12, 3437-3472.	15.6	223
4667	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
4668	Influence of bromide content on iodide migration in inverted MAPb(I _{1â^'x} Br _x) ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22604-22614.	5.2	42
4670	Research on the degradation of perovskite thin films based on spectrometric ellipsometry. , 2019, , .		1

#	Article	IF	Citations
4671	Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Materials Today, 2019, 22, 67-75.	8.3	204
4672	Effect of annealing temperature on the characteristics of Pt/CH3NH3PbI3 contact. Journal of Crystal Growth, 2019, 505, 10-14.	0.7	0
4673	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	11.1	189
4674	Fluorescence spectroscopy-based study of balanced transport of charge carriers in hot-air-annealed perovskites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 68-72.	2.0	2
4675	A one-pot method for controlled synthesis and selective etching of organic-inorganic hybrid perovskite crystals. Journal of Energy Chemistry, 2019, 33, 149-154.	7.1	3
4676	Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property. Applied Surface Science, 2019, 463, 1107-1116.	3.1	18
4677	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 1219-1225.	1.5	16
4678	Review of current progress in inorganic hole-transport materials for perovskite solar cells. Applied Materials Today, 2019, 14, 175-200.	2.3	158
4679	N,N‑dimethylformamide vapor effect on microstructural and optical properties of CH3NH3PbI3 film during solvent annealing. Surface and Coatings Technology, 2019, 359, 162-168.	2.2	11
4680	Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS Applied Materials & amp; Interfaces, 2019, 11, 3044-3052.	4.0	147
4681	An approach to optimize pre-annealing aging and anneal conditions to improve photovoltaic performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	1.5	11
4682	Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells. Nano Research, 2019, 12, 601-606.	5.8	14
4683	Reduced Defects of MAPbI ₃ Thin Films Treated by FAI for Highâ€Performance Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1805810.	7.8	73
4684	Exploring wide bandgap metal oxides for perovskite solar cells. APL Materials, 2019, 7, .	2.2	54
4685	Highly Compact TiO ₂ Films by Spray Pyrolysis and Application in Perovskite Solar Cells. Advanced Engineering Materials, 2019, 21, 1801196.	1.6	33
4686	Recent Progress in Piezoâ€₽hototronic Effect Enhanced Solar Cells. Advanced Functional Materials, 2019, 29, 1808214.	7.8	57
4687	Dimensionality Controlling of Cs ₃ Sb ₂ I ₉ for Efficient Allâ€Inorganic Planar Thin Film Solar Cells by HClâ€Assisted Solution Method. Advanced Optical Materials, 2019, 7, 1801368.	3.6	86
4688	Enhanced Seebeck Effect of a MAPbBr ₃ Single Crystal by an Organic and a Metal Modified Layer. Advanced Electronic Materials, 2019, 5, 1800759.	2.6	16

#	Article	IF	CITATIONS
4689	Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807047.	7.8	111
4690	Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1804595.	11.1	102
4691	Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 65-71.	3.0	50
4692	Enhancing the power conversion of the perovskite solar cells via structural tuning of BTT(DPP)3-based low bandgap hole transporting material. Dyes and Pigments, 2019, 163, 525-532.	2.0	13
4693	Fully Airâ€Processed Carbonâ€Based Efficient Hole Conductor Free Planar Heterojunction Perovskite Solar Cells With High Reproducibility and Stability. Solar Rrl, 2019, 3, 1800297.	3.1	20
4694	Enhancing the photovoltaic performance of perovskite solar cells by potassium ions doping. Journal of Materials Science: Materials in Electronics, 2019, 30, 2057-2066.	1.1	10
4695	Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. Journal of Energy Chemistry, 2019, 37, 97-110.	7.1	52
4696	Experimental Phonon Dispersion and Lifetimes of Tetragonal CH3NH3PbI3 Perovskite Crystals. Journal of Physical Chemistry Letters, 2019, 10, 1-6.	2.1	15
4697	Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 888-900.	5.2	60
4698	Understanding macroscale functionality of metal halide perovskites in terms of nanoscale heterogeneities. JPhys Energy, 2019, 1, 011002.	2.3	3
4699	Tuning Bandgap of Mixedâ€Halide Perovskite for Improved Photovoltaic Performance Under Monochromaticâ€Light Illumination. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800727.	0.8	8
4700	Improved Moisture Stability of Perovskite Solar Cells with a Surfaceâ€Treated PCBM Layer. Solar Rrl, 2019, 3, 1800289.	3.1	20
4701	Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chemical Engineering Journal, 2019, 361, 937-944.	6.6	95
4702	Improvement of resistive memory properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/CH3NH3PbI3 based device by potassium iodide additives. Journal of Alloys and Compounds, 2019, 783, 478-485.	2.8	16
4703	Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy, 2019, 57, 718-727.	8.2	211
4704	In Situ Monitoring of Thermal Degradation of CH ₃ NH ₃ PbI ₃ Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2019, 123, 1362-1369.	1.5	13
4705	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters, 2019, 10, 380-385.	2.1	55
4706	Efficient Planar Heterojunction FA _{1–<i>x</i>} Cs _{<i>x</i>} PbI ₃ Perovskite Solar Cells with Suppressed Carrier Recombination and Enhanced Open Circuit Voltage via Anion-Exchange Process. ACS Applied Materials & Interfaces, 2019, 11, 4597-4606.	4.0	28

#	Article	IF	CITATIONS
4707	Mazeâ€Like Halide Perovskite Films for Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800268.	3.1	49
4708	Light-induced effects on crystal size and photo-stability of colloidal CsPbBr ₃ perovskite nanocrystals. Materials Research Express, 2019, 6, 045041.	0.8	19
4709	Efficient Inorganic Cesium Lead Mixedâ€Halide Perovskite Solar Cells Prepared by Flashâ€Evaporation Printing. Energy Technology, 2019, 7, 1800986.	1.8	7
4710	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
4711	The dual role of ozone-treated aluminum doped zinc oxide for CH3NH3PbI3 solar cells. Organic Electronics, 2019, 66, 249-257.	1.4	10
4712	Recent Progress of Strong Exciton–Photon Coupling in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1804894.	11.1	60
4713	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	3.0	5
4714	Advances in Solar Energy: Solar Cells and Their Applications. Energy, Environment, and Sustainability, 2019, , 75-127.	0.6	1
4715	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	2.0	18
4716	Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society, 2019, 141, 1171-1190.	6.6	999
4717	Rational Design of Cyclopenta[2,1â€b;3,4â€b′]dithiopheneâ€bridged Hole Transporting Materials for Highly Efficient and Stable Perovskite Solar Cells. Energy Technology, 2019, 7, 307-316.	1.8	18
4718	Hybrid organic-inorganic bismuth(III)-based material [4-NH2C5H4NH]7[BiCl6]2Cl. Crystal structure, dielectric properties and molecular motions of 4-aminopyridinium cations. Journal of Molecular Structure, 2019, 1179, 297-303.	1.8	8
4719	Flexible Photodetector Arrays Based on Patterned CH ₃ NH ₃ PbI _{3â^²} <i>_x</i> Cl <i>_x</i> Perovskite Film for Realâ€Time Photosensing and Imaging. Advanced Materials, 2019, 31, e1805913.	11.1	174
4720	Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy, 2019, 56, 770-791.	8.2	85
4721	Low-temperature processed efficient and colourful semitransparent perovskite solar cells for building integration and tandem applications. Organic Electronics, 2019, 65, 401-411.	1.4	39
4722	A Gradient Heterostructure Based on Tolerance Factor in Highâ€Performance Perovskite Solar Cells with 0.84 Fill Factor. Advanced Materials, 2019, 31, e1804217.	11.1	95
4723	Organohalide Lead Perovskites: More Stable than Glass under Gammaâ€Ray Radiation. Advanced Materials, 2019, 31, e1805547.	11.1	92
4724	P3HT/Phthalocyanine Nanocomposites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800264.	3.1	47

#	Article	IF	CITATIONS
4725	Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochimica Acta, 2019, 297, 1071-1078.	2.6	12
4726	PbS QDs as Electron Blocking Layer Toward Efficient and Stable Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 194-199.	1.5	14
4727	To Reveal Grain Boundary Induced Thermal Instability of Perovskite Semiconductor Thin Films for Photovoltaic Devices. IEEE Journal of Photovoltaics, 2019, 9, 207-213.	1.5	10
4728	Management of Crystallization Kinetics for Efficient and Stable Lowâ€Dimensional Ruddlesden–Popper (LDRP) Leadâ€Free Perovskite Solar Cells. Advanced Science, 2019, 6, 1800793.	5.6	97
4729	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy, 2019, 56, 373-381.	8.2	59
4730	Study on the Stability of Ammonium Iodideâ€Based Mixedâ€Dimensional Perovskite Solar Cells under Different Humidity. Solar Rrl, 2019, 3, 1800276.	3.1	12
4731	Broadband Defects Emission and Enhanced Ligand Raman Scattering in OD Cs ₃ Bi ₂ I ₉ Colloidal Nanocrystals. Advanced Functional Materials, 2019, 29, 1805299.	7.8	44
4732	Metal Halide Perovskite Materials for Solar Cells with Longâ€Term Stability. Advanced Energy Materials, 2019, 9, 1802671.	10.2	97
4733	Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA. International Journal of Advanced Manufacturing Technology, 2019, 101, 329-337.	1.5	6
4734	Random lasing in cesium lead bromine perovskite quantum dots film. Journal of Materials Science: Materials in Electronics, 2019, 30, 1084-1088.	1.1	14
4735	Effective protect of oxygen vacancies in carbon layer coated black TiO2â [~] x/CNNS hetero-junction photocatalyst. Chemical Engineering Journal, 2019, 359, 58-68.	6.6	64
4736	Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air. Solar Energy, 2019, 177, 255-261.	2.9	32
4737	CdSe tetrapod interfacial layer for improving electron extraction in planar heterojunction perovskite solar cells. Nanotechnology, 2019, 30, 065401.	1.3	6
4738	PbTiO ₃ as Electronâ€Selective Layer for Highâ€Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Advanced Functional Materials, 2019, 29, 1806427.	7.8	23
4739	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	2.5	133
4740	Phenanthrenone-based hole transport material for efficient dopant-free perovskite solar cells. Organic Electronics, 2019, 65, 135-140.	1.4	18
4741	Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800500.	2.6	25
4742	Carrier Transfer Behaviors at Perovskite/Contact Layer Heterojunctions in Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801253.	1.9	27

#	Article	IF	CITATIONS
4743	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	7.1	129
4744	Development of Nextâ€Generation Organicâ€Based Solar Cells: Studies on Dyeâ€Sensitized and Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802967.	10.2	36
4745	Surface modification of SnO2 blocking layers for hysteresis elimination of MAPbI3 photovoltaics. Applied Surface Science, 2019, 470, 613-621.	3.1	19
4746	Visualisierung der Phasensegregation in Gemischthalogenid―Perowskiteinkristallen. Angewandte Chemie, 2019, 131, 2919-2924.	1.6	4
4747	Visualizing Phase Segregation in Mixedâ€Halide Perovskite Single Crystals. Angewandte Chemie - International Edition, 2019, 58, 2893-2898.	7.2	77
4748	Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy, 2019, 56, 184-195.	8.2	257
4749	High-Performance <i>n-i-p-</i> Type Perovskite Photodetectors Employing Graphene-Transparent Conductive Electrodes N-Type Doped with Amine Group Molecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 734-739.	3.2	21
4750	A low-cost flexible broadband photodetector based on SnO2/CH3NH3PbI3 hybrid structure. Optical Materials, 2019, 88, 689-694.	1.7	24
4751	Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH ₃ NH ₃ PbI ₃) solar cell. Semiconductor Science and Technology, 2019, 34, 035018.	1.0	10
4752	Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Journal of Colloid and Interface Science, 2019, 539, 619-633.	5.0	43
4753	Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Open-Circuit Voltage of over 1.8 V. ACS Applied Energy Materials, 2019, 2, 243-249.	2.5	44
4754	Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO ₂ for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298.	8.8	75
4755	Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with Post-Treatment Amines. ACS Energy Letters, 2019, 4, 397-404.	8.8	78
4756	High-efficiency perovskite solar cells based on self-assembly n-doped fullerene derivative with excellent thermal stability. Journal of Power Sources, 2019, 413, 459-466.	4.0	24
4757	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
4758	Electronic structure, magnetism properties and optical absorption of organometal halide perovskite CH3NH3XI3 (X = Fe, Mn). Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11
4759	Onâ€Chipâ€Integrated Methylammonium Halide Perovskite Optical Sensors. Advanced Optical Materials, 2019, 7, 1801308.	3.6	15
4760	Correlating variability of modeling parameters with photovoltaic performance: Monte Carlo simulation of a meso-structured perovskite solar cell. Applied Energy, 2019, 237, 131-144.	5.1	20

#	Article	IF	CITATIONS
4761	A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells. Dyes and Pigments, 2019, 164, 1-6.	2.0	31
4762	Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics, 2019, 67, 19-25.	1.4	44
4763	Fe ²⁺ /Fe ³⁺ Doped into MAPbCl ₃ Single Crystal: Impact on Crystal Growth and Optical and Photoelectronic Properties. Journal of Physical Chemistry C, 2019, 123, 1669-1676.	1.5	16
4764	Improving the Performance and Reproducibility of Inverted Planar Perovskite Solar Cells Using Tetraethyl Orthosilicate as the Antisolvent. ACS Applied Materials & Interfaces, 2019, 11, 3909-3916.	4.0	27
4765	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.	11.7	177
4766	Predicted photovoltaic performance of lead-based hybrid perovskites under the influence of a mixed-cation approach: theoretical insights. Journal of Materials Chemistry C, 2019, 7, 371-379.	2.7	32
4767	Enhanced Stability and Optical Absorption in the Perovskiteâ€Based Compounds MA 1â^ x Cs x PbI 3â^ y Br y. ChemPhysChem, 2019, 20, 489-498.	1.0	6
4768	Perylene Diimideâ€Based Electronâ€Transporting Material for Perovskite Solar Cells with Undoped Poly(3â€hexylthiophene) as Holeâ€Transporting Material. ChemSusChem, 2019, 12, 1155-1161.	3.6	31
4769	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
4770	Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2019, 11, 5289-5297.	4.0	37
4771	Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Scientific Reports, 2019, 9, 50.	1.6	95
4772	Extrinsic Electron Concentration in SnO ₂ Electron Extracting Contact in Lead Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801788.	1.9	29
4773	Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 4041-4055.	1.1	7
4774	Lewis acid-base adduct-type organic hole transport material for high performance and air-stable perovskite solar cells. Nano Energy, 2019, 58, 284-292.	8.2	40
4775	Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 2019, 67, 101-108.	1.4	28
4776	Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale, 2019, 11, 1505-1514.	2.8	32
4777	A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2019, 9, 188.	1.3	173
4778	Direct Observation of Charge Injection From CH ₃ NH ₃ Pbl _{3â[^]<i>x</i>} Cl <i>_x</i> to Organic Semiconductors Monitored With subâ€ps Transient Absorption Spectroscopy. Physica Status Solidi (B): Basic Research 2019, 256, 1800265	0.7	8

#	Article	IF	Citations
4779	Enhanced efficiency and ambient stability of planar heterojunction perovskite solar cells by using organic-inorganic double layer electron transporting material. Electrochimica Acta, 2019, 294, 337-344.	2.6	23
4780	Highâ€Mobility Hydrophobic Conjugated Polymer as Effective Interlayer for Air‣table Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800232.	3.1	36
4781	Crafting Inorganic Materials for Use in Energy Capture and Storage. Langmuir, 2019, 35, 9101-9114.	1.6	7
4782	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	23.0	454
4783	Influence of Sn/Ge Cation Exchange on Vacancyâ€Ordered Double Perovskite Cs ₂ Sn _(1â^'<i>x</i>) Ge <i>_x</i> 6: A Firstâ€Principles Theoretical Study. Physica Status Solidi (B): Basic Research, 2019, 256, 1800427.	0.7	22
4784	NDI-based small molecules as electron transporting layers in solution-processed planar perovskite solar cells. Journal of Solid State Chemistry, 2019, 270, 51-57.	1.4	19
4785	Highly efficient inverted planar perovskite solar cells from TiO2 nanoparticles modified interfaces between NiO hole transport layers and conductive glasses. Journal of Materials Science: Materials in Electronics, 2019, 30, 529-536.	1.1	5
4786	Perovskite Methylammonium Lead Trihalide Heterostructures: Progress and Challenges. IEEE Nanotechnology Magazine, 2019, 18, 1-12.	1.1	64
4787	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs. Small Methods, 2019, 3, 1800231.	4.6	77
4788	From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12, 518-549.	15.6	269
4789	Hexa-substituted benzene derivatives as hole transporting materials for efficient perovskite solar cells. Dyes and Pigments, 2019, 163, 267-273.	2.0	10
4790	Insights into the Femtosecond to Nanosecond Charge Carrier Kinetics in Perovskite Materials for Solar Cells. Journal of Physical Chemistry C, 2019, 123, 110-119.	1.5	14
4791	Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2019, 11, 666-673.	4.0	66
4792	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	18.7	845
4793	Tellurium-Based Double Perovskites A ₂ TeX ₆ with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications. ACS Energy Letters, 2019, 4, 228-234.	8.8	58
4794	Understanding Interactions between Lead Iodide Perovskite Surfaces and Lithium Polysulfide toward New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. Journal of Physical Chemistry C, 2019, 123, 82-90.	1.5	10
4795	Influence of Disorder and Anharmonic Fluctuations on the Dynamical Rashba Effect in Purely Inorganic Lead-Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 291-298.	1.5	32
4796	Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells. ACS Energy Letters, 2019, 4, 259-264.	8.8	143

#	Article	IF	CITATIONS
4797	Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6435-6442.	3.2	46
4798	Hydrophobic polythiophene hole-transport layers to address the moisture-induced decomposition problem of perovskite solar cells. Canadian Journal of Chemistry, 2019, 97, 435-441.	0.6	8
4799	Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO ₂ Electron Transport Layer. Advanced Functional Materials, 2019, 29, 1806779.	7.8	118
4800	Rapid Crystallization for Efficient 2D Ruddlesden–Popper (2DRP) Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806831.	7.8	102
4801	Effect of phase transition stress on the photoluminescence of perovskite CH3NH3PbI3 microwires. Journal of Materials Science, 2019, 54, 5331-5342.	1.7	3
4802	Theoretical study on photoelectric properties of lead-free mixed inorganic perovskite RbGe1-xSnxl3. Current Applied Physics, 2019, 19, 279-284.	1.1	42
4803	Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells. Materials Today Communications, 2019, 18, 176-183.	0.9	33
4804	Understanding the transport mechanism of organic-inorganic perovskite solar cells: The effect of exciton or free-charge on diffusion length. Organic Electronics, 2019, 66, 163-168.	1.4	14
4805	Benzobis(thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 437-443.	3.0	7
4806	Novel Insight into the Role of Chlorobenzene Antisolvent Engineering for Highly Efficient Perovskite Solar Cells: Gradient Diluted Chlorine Doping. ACS Applied Materials & Interfaces, 2019, 11, 792-801.	4.0	40
4807	Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 110-117.	8.8	296
4808	Efficiency Enhancement and Hysteresis Mitigation by Manipulation of Grain Growth Conditions in Hybrid Evaporated–Spin-coated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 722-729.	4.0	16
4809	Amplified and Multicolor Emission from Films and Interfacial Layers of Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 133-141.	8.8	41
4810	Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158.	2.5	93
4811	A comparative study of planar and mesoporous perovskite solar cells with printable carbon electrodes. Journal of Power Sources, 2019, 412, 118-124.	4.0	41
4812	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	1.9	11
4813	Semitransparent FAPbI _{3â€} <i>_x</i> Br <i>_x</i> Perovskite Solar Cells Stable under Simultaneous Damp Heat (85 °C/85%) and 1 Sun Light Soaking. Advanced Materials Technologies, 2019, 4, 1800390.	3.0	22
4814	A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. Journal of Power Sources, 2019, 412, 425-432.	4.0	55

#	Article	IF	CITATIONS
4815	High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochimica Acta, 2019, 293, 356-363.	2.6	38
4816	Employing tetraethyl orthosilicate additive to enhance trap passivation of planar perovskite solar cells. Electrochimica Acta, 2019, 293, 174-183.	2.6	18
4817	A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. Journal of Physics and Chemistry of Solids, 2019, 124, 205-211.	1.9	110
4818	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
4819	"Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803230.	11.1	345
4820	Elucidating the dynamics of solvent engineering for perovskite solar cells. Science China Materials, 2019, 62, 161-172.	3.5	57
4821	Effects of Mn, Cl co-doping on the structure and photoluminescence properties of novel walnut-shape MAPb0.95Mn0.05I3-xClx films. Ceramics International, 2019, 45, 468-473.	2.3	4
4822	Boosting the performance and stability of perovskite solar cells with phthalocyanine-based dopant-free hole transporting materials through core metal and peripheral groups engineering. Organic Electronics, 2019, 64, 71-78.	1.4	24
4823	Spin-orbit enhanced carrier lifetimes in noncentrosymmetric semiconductors. Journal of Physics and Chemistry of Solids, 2019, 128, 225-230.	1.9	1
4824	Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 2019, 14, 100125.	2.5	15
4825	THE ROLE OF Br AS DOPANT ON THE STRUCTURAL AND CHARGE TRANSPORT PROPERTIES IN CH ₃ NH ₃ PbI3â^'xâ^'yBr _{<i>x</i>} Cl _{<i>y</i>} MIXED-HALIDE PEROVSKITE FOR HYBRID SOLAR CELLS. Surface Review and Letters, 2019, 26, 1850137.	0.5	0
4826	Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites. Arabian Journal of Chemistry, 2020, 13, 988-997.	2.3	23
4827	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
4828	Mixed Halide Perovskite Solar Cells: Progress and Challenges. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 85-112.	6.8	51
4829	Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. Journal of Energy Chemistry, 2020, 41, 43-51.	7.1	37
4830	Hybrid perovskite single crystal with extended absorption edge and environmental stability: Towards a simple and easy synthesis procedure. Materials Chemistry and Physics, 2020, 239, 122084.	2.0	9
4831	Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield. Chemical Engineering Journal, 2020, 382, 122868.	6.6	43
4832	Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112141.	2.0	47

#	Article	IF	CITATIONS
4833	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	7.1	105
4834	Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review. Solar Energy Materials and Solar Cells, 2020, 204, 110212.	3.0	56
4835	A comparison between different structures of perovskite nanorod solar cells. Optik, 2020, 202, 163645.	1.4	8
4836	Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biology, 2020, 28, 101342.	3.9	68
4837	Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization. Journal of Energy Chemistry, 2020, 45, 103-109.	7.1	32
4838	Tin Halide Perovskite (ASnX ₃) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. Advanced Energy Materials, 2020, 10, 1902467.	10.2	114
4839	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
4840	Interfacial Bridge Using a <i>cis</i> â€Fulleropyrrolidine for Efficient Planar Perovskite Solar Cells with Enhanced Stability. Small Methods, 2020, 4, 1900476.	4.6	65
4841	Highly Efficient (110) Orientated FAâ€MA Mixed Cation Perovskite Solar Cells via Functionalized Carbon Nanotube and Methylammonium Chloride Additive. Small Methods, 2020, 4, 1900511.	4.6	25
4842	NH ₄ Clâ€Modified ZnO for Highâ€Performance CsPblBr ₂ Perovskite Solar Cells via Lowâ€Temperature Process. Solar Rrl, 2020, 4, 1900363.	3.1	186
4843	Tuning the structural, optical and photoluminescence properties of hybrid perovskite quantum dots by A-site doping. Applied Materials Today, 2020, 18, 100488.	2.3	6
4844	Improve the quality of HC(NH2)2PbIxBr3â~'x through iodine vacancy filling for stable mixed perovskite solar cells. Chemical Engineering Journal, 2020, 384, 123273.	6.6	25
4845	Synergistic interactions between N3 dye and perovskite CH3NH3PbI3 for aqueous-based photoresponsiveness under visible light. Dyes and Pigments, 2020, 173, 107925.	2.0	9
4846	Structural and electronic features of Si/CH3NH3PbI3 interfaces with optoelectronic applicability: Insights from first-principles. Nano Energy, 2020, 67, 104166.	8.2	6
4847	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	8.2	81
4848	Light induced degradation of the transport length of CH3NH3PbI3 studied by modulated surface photovoltage spectroscopy after Goodman. Organic Electronics, 2020, 77, 105503.	1.4	3
4849	Characterization of halide perovskite/titania interfaces as a function of the interlayer composition: A theoretical study. Journal of Physics and Chemistry of Solids, 2020, 138, 109243.	1.9	2
4850	Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy, 2020, 67, 104227.	8.2	19

#	Article	IF	CITATIONS
4851	Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.	1.4	7
4852	Hybrid halobismuthates as prospective light-harvesting materials: Synthesis, crystal, optical properties and electronic structure. Polyhedron, 2020, 175, 114180.	1.0	9
4853	Performance of perovskite and quantum dot sensitized solar cell based on ZnO photoanode structure. Materials Today: Proceedings, 2020, 22, 400-403.	0.9	4
4854	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
4855	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€ S olarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
4856	Preparation and Characterization of (C6H5C2H4NH3)2PbX4 Perovskite Materials. Lecture Notes in Electrical Engineering, 2020, , 208-215.	0.3	0
4857	Lightâ€Induced Defect Generation in CH 3 NH 3 PbI 3 Thin Films and Single Crystals. Solar Rrl, 2020, 4, 1900216.	3.1	11
4858	Perovskiteâ€Based Phototransistors and Hybrid Photodetectors. Advanced Functional Materials, 2020, 30, 1903907.	7.8	225
4859	Free Carrier, Exciton, and Phonon Dynamics in Leadâ€Halide Perovskites Studied with Ultrafast Terahertz Spectroscopy. Advanced Optical Materials, 2020, 8, 1900783.	3.6	39
4860	Initial Stages of Photodegradation of MAPbI ₃ Perovskite: Accelerated Aging with Concentrated Sunlight. Solar Rrl, 2020, 4, 1900270.	3.1	17
4861	Hydrophilic Fullerene Derivative Doping in Active Layer and Electron Transport Layer for Enhancing Oxygen Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900249.	3.1	11
4862	Interconnected SnO ₂ Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900229.	3.1	31
4863	Growth of Amorphous Passivation Layer Using Phenethylammonium Iodide for Highâ€Performance Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900243.	3.1	43
4864	A Short Review on Interface Engineering of Perovskite Solar Cells: A Selfâ€Assembled Monolayer and Its Roles. Solar Rrl, 2020, 4, 1900251.	3.1	75
4865	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
4867	The Role of Goldschmidt's Tolerance Factor in the Formation of A ₂ BX ₆ Double Halide Perovskites and its Optimal Range. Small Methods, 2020, 4, 1900426.	4.6	162
4868	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
4869	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9

~			-	
(``		ON	REPC	NDT
\sim	$\Pi \cap \Pi$		ILLI C	

#	Article	IF	CITATIONS
4870	The development of all-inorganic CsPbX3 perovskite solar cells. Journal of Materials Science, 2020, 55, 464-479.	1.7	52
4871	High-performance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique. Journal of Power Sources, 2020, 448, 227386.	4.0	24
4872	Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites. , 2020, 2, 20-27.		33
4873	Enhancement in structural and optical properties of Cd doped hybrid organic-inorganic halide perovskite CH3NH3Pb1-xCdxI3 photo-absorber. Materials Chemistry and Physics, 2020, 241, 122387.	2.0	12
4874	Stability of all-inorganic perovskite solar cells. Nano Energy, 2020, 67, 104249.	8.2	153
4875	Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67, 104267.	8.2	35
4876	Long noncoding RNA (MEC3) in urinal exosomes functions as a biomarker for the diagnosis of Hunnerâ€ŧype interstitial cystitis (HIC). Journal of Cellular Biochemistry, 2020, 121, 1227-1237.	1.2	12
4877	P-type doping of rGO/NiO composite for carbon based perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 107, 104798.	1.9	13
4878	Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelateâ€Assisted Defect Passivation Strategy. ChemSusChem, 2020, 13, 412-418.	3.6	4
4879	One-step P2 scribing of organometal halide perovskite solar cells by picosecond laser of visible wavelength. Applied Surface Science, 2020, 505, 144408.	3.1	8
4880	Highly efficient flexible perovskite solar cells and their photo-stability. Journal Physics D: Applied Physics, 2020, 53, 035101.	1.3	13
4881	Organic Lightâ€Emitting Transistors: Advances and Perspectives. Advanced Functional Materials, 2020, 30, 1905282.	7.8	61
4882	(CH3NH3)3Bi2I9 perovskite films fabricated via a two-stage electric-field-assisted reactive deposition method for solar cells application. Electrochimica Acta, 2020, 329, 135173.	2.6	8
4883	Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Solar Energy Materials and Solar Cells, 2020, 206, 110268.	3.0	66
4884	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	8.8	68
4885	Impact of Residual Lead Iodide on Photophysical Properties of Lead Triiodide Perovskite Solar Cells. Energy Technology, 2020, 8, 1900627.	1.8	10
4886	Vapor-assisted deposition of CsPbIBr2 films for highly efficient and stable carbon-based planar perovskite solar cells with superior Voc. Electrochimica Acta, 2020, 330, 135266.	2.6	36
4887	Preparation and Characterization of Mixed Halide MAPbl _{3â^'<i>x</i>} Cl _{<i>x</i>} Perovskite Thin Films by Threeâ€Source Vacuum Deposition. Energy Technology, 2020, 8, 1900784.	1.8	12

#	Article	IF	CITATIONS
4888	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
4889	Tumorâ€Derived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology, 2020, 71, 1626-1642.	3.6	20
4890	Reticulated Mesoporous TiO ₂ Scaffold, Fabricated by Spray Coating, for Largeâ€Area Perovskite Solar Cells. Energy Technology, 2020, 8, 1900922.	1.8	19
4891	Fluorineâ€Substituted Benzotriazole Core Building Blockâ€Based Highly Efficient Holeâ€Transporting Materials for Mesoporous Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900362.	3.1	16
4892	Doping and surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals for LEDs. Materials Letters, 2020, 259, 126857.	1.3	16
4893	Concave and Convex Bending Influenced Mechanical Stability in Flexible Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 2340-2345.	1.5	14
4894	Systematic optimization of perovskite solar cells via green solvent systems. Chemical Engineering Journal, 2020, 387, 123966.	6.6	21
4895	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24
4897	Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2167-2176.	1.1	11
4898	Effect of Precursor Solution Aging on the Thermoelectric Performance of CsSnI3 Thin Film. Journal of Electronic Materials, 2020, 49, 2698-2703.	1.0	15
4899	Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL. Solar Energy, 2020, 197, 50-57.	2.9	53
4900	Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. Journal of Physical Chemistry Letters, 2020, 11, 574-585.	2.1	84
4901	Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 2020, 49, 354-381.	18.7	125
4902	Advanced space- and time-resolved techniques for photocatalyst studies. Chemical Communications, 2020, 56, 1007-1021.	2.2	50
4903	Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite. Physical Chemistry Chemical Physics, 2020, 22, 97-106.	1.3	23
4904	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	15.6	114
4905	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	6.4	345
4906	Interface limited hole extraction from methylammonium lead iodide films. Materials Horizons, 2020, 7, 943-948.	6.4	9

#	Article	IF	CITATIONS
4907	Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustainable Energy and Fuels, 2020, 4, 528-537.	2.5	52
4908	Efficient inverted perovskite solar cells with preferential orientation and suppressed defects of methylammonium lead iodide by introduction of phenothiazine as additive. Journal of Alloys and Compounds, 2020, 823, 153717.	2.8	13
4909	Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. Journal of Chemical Physics, 2020, 152, 024703.	1.2	67
4910	Enhancing Perovskite Solar Cell Performance through Surface Engineering of Metal Oxide Electron-Transporting Layer. Coatings, 2020, 10, 46.	1.2	5
4911	The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway toward Highâ€Performance Optoelectronic Devices. Advanced Energy Materials, 2020, 10, 1902256.	10.2	34
4912	Edge functionalized graphene nanoribbons with tunable band edges for carrier transport interlayers in organic–inorganic perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 2955-2962.	1.3	4
4913	Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures. Advanced Functional Materials, 2020, 30, 1907481.	7.8	33
4914	Influence of morphology on photoluminescence properties of methylammonium lead tribromide films. Journal of Luminescence, 2020, 220, 117033.	1.5	8
4915	High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Solar Energy, 2020, 197, 78-83.	2.9	73
4916	Defects Healing in Two-Step Deposited Perovskite Solar Cells via Formamidinium Iodide Compensation. ACS Applied Energy Materials, 2020, 3, 3318-3327.	2.5	32
4917	Designing solar-cell absorber materials through computational high-throughput screening*. Chinese Physics B, 2020, 29, 028803.	0.7	6
4918	Effect of synthesis methods on photoluminescent properties for CsPbBr3 nanocrystals: Hot injection method. Journal of Luminescence, 2020, 220, 117023.	1.5	15
4919	Optical Properties of Lead-Free Double Perovskites by Ab Initio Excited-State Methods. ACS Energy Letters, 2020, 5, 457-463.	8.8	64
4920	Charge transfer between lead halide perovskite nanocrystals and single-walled carbon nanotubes. Nanoscale Advances, 2020, 2, 808-813.	2.2	15
4921	Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material. Dalton Transactions, 2020, 49, 395-403.	1.6	1
4922	The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Materials Horizons, 2020, 7, 934-942.	6.4	51
4923	Printable CsPbBr ₃ perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale, 2020, 12, 2569-2577.	2.8	73
4924	GeSe thin-film solar cells. Materials Chemistry Frontiers, 2020, 4, 775-787.	3.2	75

#	Article	IF	CITATIONS
4925	Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 503-512.	5.2	43
4926	Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. Journal of Materials Chemistry A, 2020, 8, 3145-3153.	5.2	17
4927	A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications. Journal of Materials Chemistry A, 2020, 8, 1457-1468.	5.2	39
4928	Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 2105-2113.	5.2	67
4929	A high performance UV–visible dual-band photodetector based on an inorganic Cs ₂ SnI ₆ perovskite/ZnO heterojunction structure. Journal of Materials Chemistry C, 2020, 8, 1819-1825.	2.7	29
4930	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
4931	Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 385, 123976.	6.6	48
4932	Air-processed carbon-based perovskite solar cells with enhanced efficiency and stability: Effect of temperature control and using CuSCN. Journal of Alloys and Compounds, 2020, 821, 153272.	2.8	29
4933	Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1Pbnl3n+1. Journal of Luminescence, 2020, 220, 116981.	1.5	6
4934	Photon recycling in perovskite CH3NH3PbX3 (X = I, Br, Cl) bulk single crystals and polycrystalline films. Journal of Luminescence, 2020, 220, 116987.	1.5	33
4935	Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics. Joule, 2020, 4, 222-234.	11.7	88
4936	Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. Journal of Power Sources, 2020, 450, 227623.	4.0	28
4937	Progress in CZTS as hole transport layer in perovskite solar cell. Solar Energy, 2020, 196, 399-408.	2.9	41
4938	Fully Inorganic Mixed Cation Lead Halide Perovskite Nanoparticles: A Study at the Atomic Level. Chemistry of Materials, 2020, 32, 1467-1474.	3.2	11
4939	Microtuning of the Wide-Bandgap Perovskite Lattice Plane for Efficient and Robust High-Voltage Planar Solar Cells Exceeding 1.5 V. ACS Applied Energy Materials, 2020, 3, 2331-2341.	2.5	12
4940	Photovoltaic Effect Related to Methylammonium Cation Orientation and Carrier Transport Properties in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 3563-3571.	4.0	9
4941	Light-Enhanced Spin Diffusion in Hybrid Perovskite Thin Films and Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 3205-3213.	4.0	17
4942	Strontium Chloride-Passivated Perovskite Thin Films for Efficient Solar Cells with Power Conversion Efficiency over 21% and Superior Stability. ACS Applied Materials & Interfaces, 2020, 12, 3661-3669.	4.0	19

#	ARTICLE Investigating the Growth of CH ₃ NH ₃ PbI ₃ Thin Films on DF6 CSouthered NiO via washe washes with for Invested Planer Demustries Salar Cally, Effect of	IF	CITATIONS
4943	RF‣puttered NiO <i>_x</i> for Inverted Planar Perovskite Solar Cells: Effect of CH ₃ NH ₃ ⁺ Halide Additives versus CH ₃ NH ₃ ⁺ Halide Vapor Annealing. Advanced Materials Interfaces, 2020, 7, 1901748.	1.9	48
4944	Determination of the complete set of optical parameters of micron-sized polycrystalline CH ₃ NH ₃ PbI _{3â^'x} Cl _x films from the oscillating transmittance and reflectance spectra. Materials Research Express, 2020, 7, 016408.	0.8	21
4945	Halogen bonding induced aqueously stable CsPbBr3@MOFs-Derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 265, 118583.	10.8	37
4946	Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 207, 110335.	3.0	23
4947	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	8.3	26
4948	Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy, 2020, 69, 104412.	8.2	54
4949	Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Applied Materials & Interfaces, 2020, 12, 2417-2423.	4.0	40
4951	A Review of Diverse Halide Perovskite Morphologies for Efficient Optoelectronic Applications. Small Methods, 2020, 4, 1900662.	4.6	69
4952	Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy, 2020, 68, 104289.	8.2	83
4953	Single Crystal Perovskite Solar Cells: Development and Perspectives. Advanced Functional Materials, 2020, 30, 1905021.	7.8	171
4954	The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901469.	1.9	239
4955	Comparative study of hybrid perovskite phototransistors based on CVD-grown and spin-coated MAPb13. Journal of Alloys and Compounds, 2020, 815, 152404.	2.8	11
4956	Supercritical fluid-assisted crystallization of CH3NH3PbI3 perovskite films. Journal of Supercritical Fluids, 2020, 156, 104684.	1.6	5
4957	Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy, 2020, 68, 104317.	8.2	83
4958	Spatially Resolved Photogenerated Exciton and Charge Transport in Emerging Semiconductors. Annual Review of Physical Chemistry, 2020, 71, 1-30.	4.8	95
4959	Addressing the Reliability and Electron Transport Kinetics in Halide Perovskite Film via Pulsed Laser Engineering. Advanced Functional Materials, 2020, 30, 1906781.	7.8	24
4960	The Impact of Stoichiometry on the Photophysical Properties of Ruddlesden–Popper Perovskites. Advanced Functional Materials, 2020, 30, 1907505.	7.8	21
4961	Enhancement of Openâ€Circuit Voltage of Perovskite Solar Cells by Interfacial Modification with <i>p</i> â€Aminobenzoic Acid. Advanced Materials Interfaces, 2020, 7, 1901584.	1.9	21

#	Article	IF	CITATIONS
4962	Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells. Journal of Power Sources, 2020, 448, 227405.	4.0	58
4963	Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach. Nano Energy, 2020, 69, 104441.	8.2	37
4964	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 889-899.	2.5	11
4965	Consistently High <i>V</i> _{oc} Values in p-i-n Type Perovskite Solar Cells Using Ni ³⁺ -Doped NiO Nanomesh as the Hole Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 11467-11478.	4.0	48
4966	Reconstructed transparent conductive layers of fluorine doped tin oxide for greatly weakened hysteresis and improved efficiency of perovskite solar cells. Chemical Communications, 2020, 56, 129-132.	2.2	5
4967	Enhanced <i>V</i> _{OC} of two-dimensional Ruddlesden–Popper perovskite solar cells using binary synergetic organic spacer cations. Physical Chemistry Chemical Physics, 2020, 22, 54-61.	1.3	15
4968	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	6.4	164
4969	Weak temperature-dependent hole injection and electron–hole recombination at the CH ₃ NH ₃ Pbl ₃ /NiO heterojunction: a time-domain <i>ab initio</i> study. Journal of Materials Chemistry A, 2020, 8, 607-615.	5.2	16
4970	Hysteresis effects on carrier transport and photoresponse characteristics in hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 1962-1971.	2.7	13
4971	Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale, 2020, 12, 3686-3691.	2.8	35
4972	Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr ₃ perovskites for applications in optical communication. Journal of Materials Chemistry C, 2020, 8, 3337-3350.	2.7	51
4973	Laminating Fabrication of Bifacial Organic-Inorganic Perovskite Solar Cells. International Journal of Photoenergy, 2020, 2020, 1-8.	1.4	6
4974	Characterization of Perovskite Solar Cell with Fe ³⁺ Doped TiO ₂ Layer. Journal of Nanoscience and Nanotechnology, 2020, 20, 552-556.	0.9	3
4975	Substantially Improving Device Performance of Allâ€Inorganic Perovskiteâ€Based Phototransistors via Indium Tin Óxide Nanowire Incorporation. Small, 2020, 16, e1905609.	5.2	33
4976	Origin of Openâ€Circuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020, 30, 1906763.	7.8	47
4977	Passivating Detrimental DX Centers in CH ₃ NH ₃ PbI ₃ for Reducing Nonradiative Recombination and Elongating Carrier Lifetime. Advanced Materials, 2020, 32, e1906115.	11.1	53
4978	Correlating Phase Behavior with Photophysical Properties in Mixedâ€Cation Mixedâ€Halide Perovskite Thin Films. Advanced Energy Materials, 2020, 10, 1901350.	10.2	17
4979	Effective Singlet Oxygen Generation in Silicaâ€Coated CsPbBr ₃ Quantum Dots through Energy Transfer for Photocatalysis. ChemSusChem, 2020, 13, 682-687.	3.6	24

#	Article	IF	CITATIONS
4980	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127
4981	In Situ Defect Passivation with Silica Oligomer for Enhanced Performance and Stability of Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901716.	1.9	15
4982	A review on spectral converting nanomaterials as a photoanode layer in dyeâ€sensitized solar cells with implementation in energy storage devices. Energy Storage, 2020, 2, e120.	2.3	14
4983	Electrical Methods to Elucidate Charge Transport in Hybrid Perovskites Thin Films and Devices. Chemical Record, 2020, 20, 452-465.	2.9	28
4984	Improvement of photovoltaic performance of perovskite solar cells by interface modification with CaTiO3. Journal of Power Sources, 2020, 449, 227504.	4.0	16
4985	Distinguish the Quenching and Degradation of CH ₃ NH ₃ Pbl ₃ Perovskite by Simultaneous Absorption and Photoluminescence Measurements. Journal of Physical Chemistry C, 2020, 124, 1207-1213.	1.5	6
4986	Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group. Organic Electronics, 2020, 78, 105583.	1.4	26
4987	Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials, 2020, 10, 1903184.	10.2	142
4988	Polaronic transport in CH3NH3PbI3 single crystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 1945-1950.	1.1	3
4989	Perovskite solar cells: The new epoch in photovoltaics. Solar Energy, 2020, 196, 295-309.	2.9	53
4990	Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr ₃ Surfaces. Journal of Physical Chemistry C, 2020, 124, 1484-1491.	1.5	15
4991	Dark Subgap States in Metal-Halide Perovskites Revealed by Coherent Multidimensional Spectroscopy. Journal of the American Chemical Society, 2020, 142, 777-782.	6.6	14
4992	Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nature Photonics, 2020, 14, 50-56.	15.6	72
4993	Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr ₃ Perovskite Nanocrystals. Chemistry of Materials, 2020, 32, 549-556.	3.2	39
4994	Creation and Annihilation of Nonradiative Recombination Centers in Polycrystalline Metal Halide Perovskites by Alternating Electric Field and Light. Advanced Optical Materials, 2020, 8, 1901642.	3.6	7
4995	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	10.2	84
4996	Facile donor (D)-ï€-D triphenylamine-based hole transporting materials with different Ï€-linker for perovskite solar cells. Solar Energy, 2020, 195, 618-625.	2.9	28
4997	Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 698-705.	4.0	36

ARTICLE IF CITATIONS Stable Efficient Methylammonium Lead Iodide Thin Film Photodetectors with Highly Oriented 4998 3.2 9 Millimeter-Sized Crystal Grains. ACS Photonics, 2020, 7, 57-67. Elucidating the Role of a Tetrafluoroborateâ€Based Ionic Liquid at the nâ€Type Oxide/Perovskite Interface. 4999 10.2 Advanced Energy Materials, 2020, 10, 1903231. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. 5000 6.5 94 Nature Physics, 2020, 16, 171-176. A Comparison Between Functions of Carbon Nanotube and Reduced Graphene Oxide and Respective 5001 Ameliorated Derivatives in Perovskite Solar Cells. Macromolecular Research, 2020, 28, 425-432. Tetrahydrofuran as an Oxygen Donor Additive to Enhance Stability and Reproducibility of Perovskite Solar Cells Fabricated in High Relative Humidity (50%) Atmosphere. Energy Technology, 2020, 8, 5002 1.8 6 1900990. Improving Photovoltaic Performance Using Perovskite/Surfaceâ€Modified Graphitic Carbon Nitride Heterojunction. Solar Rrl, 2020, 4, 1900413. 3.1 38 Functional metal oxide ceramics as electron transport medium in photovoltaics and 5004 4 photo-electrocatalysis., 2020, , 207-273. 5005 Optical absorption and photoluminescence spectroscopy., 2020, , 49-79. 9 Ï€-Conjugated small molecules enable efficient perovskite growth and charge-extraction for 5006 4.0 18 high-performance photovoltaic devices. Journal of Power Sources, 2020, 448, 227420. A Computational Approach toward the Enhanced Performance of Graphene–<u>Perovskite Schottky Solar</u> 1.8 Cells. Energy Technology, 2020, 8, 1901197. Individual Electron and Hole Mobilities in Lead-Halide Perovskites Revealed by Noncontact Methods. 5009 8.8 37 ACS Energy Letters, 2020, 5, 47-55. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001. 1.3 24 Structural Evolution During Perovskite Crystal Formation and Degradation: In Situ and Operando 5011 10.2 33 Xâ€Ray Diffraction Studies. Advanced Energy Materials, 2020, 10, 1903074. Organic–Inorganic Copper (II)â€Based Perovskites: A Benign Approach toward Lowâ€Toxicity and 1.8 Waterâ€Stable Light Absorbers for Photovoltaic Applications. Energy Technology, 2020, 8, 1901185. Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films 5013 10.2 50 to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762. Improving and Stabilizing Perovskite Solar Cells with Incorporation of Graphene in the Spiro-OMeTAD Layer: Suppressed Li Ions Migration and Improved Charge Extraction. ACS Applied Energy Materials, 5014 2020, 3, 970-976. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy and 5015 15.6 129 Environmental Science, 2020, 13, 1187-1196. Spinâ€Onâ€Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Activeâ€Matrix Nearâ€Infrared Imaging. Advanced Materials Technologies, 2020, 5, 1900752.

#	Article	IF	CITATIONS
5017	Light-emitting devices. , 2020, , 175-197.		0
5018	Improving the performance of perovskite solar cells by surface passivation. Journal of Energy Chemistry, 2020, 46, 202-207.	7.1	31
5019	Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: Defect passivation and moisture/oxygen blocking. Nano Energy, 2020, 68, 104313.	8.2	56
5020	Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy, 2020, 68, 104321.	8.2	70
5021	Visualizing Buried Local Carrier Diffusion in Halide Perovskite Crystals via Two-Photon Microscopy. ACS Energy Letters, 2020, 5, 117-123.	8.8	37
5022	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	4.6	127
5023	Laserâ€Processed Perovskite Solar Cells and Modules. Solar Rrl, 2020, 4, 1900432.	3.1	34
5024	Inhomogeneous Doping of Perovskite Materials by Dopants from Hole-Transport Layer. Matter, 2020, 2, 261-272.	5.0	38
5025	Photoluminescence kinetics for monitoring photoinduced processes in perovskite solar cells. Solar Energy, 2020, 195, 114-120.	2.9	17
5026	Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 206, 110318.	3.0	19
5027	Light-induced non-Arrhenian conductivity of the single crystal methylammonium lead bromide perovskites. Solid State Communications, 2020, 307, 113777.	0.9	1
5028	Room-Temperature-Processed Amorphous Sn-In-O Electron Transport Layer for Perovskite Solar Cells. Materials, 2020, 13, 32.	1.3	7
5029	Magnetite as Inorganic Hole Transport Material for Lead Halide Perovskite-Based Solar Cells with Enhanced Stability. Industrial & Engineering Chemistry Research, 2020, 59, 743-750.	1.8	25
5030	Precharging Photon Upconversion: Interfacial Interactions in Solution-Processed Perovskite Upconversion Devices. Journal of Physical Chemistry Letters, 2020, 11, 601-607.	2.1	36
5031	Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Letters, 2020, 5, 376-384.	8.8	211
5032	Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on <scp>d</scp> -Sorbitol Hexaacetate-Modified MAPbl ₃ . ACS Applied Materials & Interfaces, 2020, 12, 47677-47683.	4.0	7
5033	Novel cathode interfacial layer using creatine for enhancing the photovoltaic properties of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 21721-21728.	5.2	28
5034	Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	25

#	Article	IF	CITATIONS
5035	Unraveling Reversible Quenching Processes of O 2 , N 2 , Ar, and H 2 O in Metal Halide Perovskites at Moderate Photon Flux Densities. Advanced Optical Materials, 2020, 9, 2001317.	3.6	11
5036	Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Solar Energy Materials and Solar Cells, 2020, 218, 110761.	3.0	24
5037	Using Monovalent- to Trivalent-Cation Hybrid Perovskites for Producing High-Efficiency Solar Cells: Electrical Response, Impedance, and Stability. ACS Applied Energy Materials, 2020, 3, 10349-10361.	2.5	20
5038	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & amp; Interfaces, 2020, 12, 48845-48853.	4.0	37
5039	16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nature Communications, 2020, 11, 5254.	5.8	36
5040	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research, 2020, 1, 63-76.	5.9	57
5041	Radical Molecular Modulator for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2020, 8, 825.	1.8	9
5042	Thermally Stable Passivation toward High Efficiency Inverted Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3336-3343.	8.8	19
5043	High efficiency and stability of perovskite solar cells from π-conjugated 5-(Fmoc-amino) valeric acid modification. Organic Electronics, 2020, 87, 105982.	1.4	8
5044	A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nature Electronics, 2020, 3, 694-703.	13.1	99
5045	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	13.1	143
5046	Investigating the effect of electric fields on lead halide perovskites by scanning tunneling microscopy. Journal of Applied Physics, 2020, 128, .	1.1	13
5047	Low temperature preparation of all-inorganic CsPbI3 perovskite solar cells with ethanediamine as additive. Organic Electronics, 2020, 87, 105940.	1.4	12
5048	Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Applied Materials & Interfaces, 2020, 12, 49636-49647.	4.0	31
5049	Toward Stable Solution-Processed High-Mobility p <i>-</i> Type Thin Film Transistors Based on Halide Perovskites. ACS Nano, 2020, 14, 14790-14797.	7.3	42
5050	Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 49297-49322.	4.0	88
5051	Single Source, Surfactantâ€Free, and One‣tep Solvothermal Route Synthesized TiO ₂ Microspheres for Highly Efficient Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000519.	3.1	7
5052	Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites. Nature Communications, 2020, 11, 5103.	5.8	46

#	Article	IF	Citations
5053	Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cells. Inorganic Chemistry, 2020, 59, 15154-15166.	1.9	2
5054	Infrared Spectra of the CH ₃ NH ₃ PbI ₃ Hybrid Perovskite: Signatures of Phase Transitions and of Organic Cation Dynamics. Journal of Physical Chemistry C, 2020, 124, 23307-23316.	1.5	5
5055	Photoinduced ion-redistribution in CH ₃ NH ₃ PbI ₃ perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 25118-25125.	1.3	13
5056	Fabrication of Flexible Resistive Switching Devices Based on Leadâ€Free Allâ€Inorganic CsSnBr ₃ Perovskite Using a Oneâ€Step Chemical Vapor Deposition Method. Advanced Electronic Materials, 2020, 6, 2000799.	2.6	21
5057	Optoelectronic Modulation of Undoped NiO _{<i>x</i>} Films for Inverted Perovskite Solar Cells via Intrinsic Defect Regulation. ACS Applied Energy Materials, 2020, 3, 9732-9741.	2.5	20
5058	Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 2020, 11, 5146.	5.8	165
5059	Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy and Environmental Science, 2020, 13, 4666-4690.	15.6	79
5060	The dual interfacial modification of 2D g-C ₃ N ₄ for high-efficiency and stable planar perovskite solar cells. Nanoscale Advances, 2020, 2, 5396-5402.	2.2	19
5061	Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies, 2020, 13, 5092.	1.6	35
5062	Carbon Nanomaterials for Halide Perovskitesâ€Based Hybrid Photodetectors. Advanced Materials Technologies, 2020, 5, 2000643.	3.0	9
5063	A Quantitative Analysis of the Research Trends in Perovskite Solar Cells in 2009–2019. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000441.	0.8	5
5064	Study of the effect of temperature on light-induced degradation in methylammonium lead iodine perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 218, 110770.	3.0	11
5065	Bifunctional Chlorosilane Modification for Defect Passivation and Stability Enhancement of High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 22903-22913.	1.5	8
5066	Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chemical Society Reviews, 2020, 49, 7819-7844.	18.7	27
5067	Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors. Advanced Optical Materials, 2020, 8, 2001095.	3.6	46
5068	Air Stable Organic–Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. Small, 2020, 16, e2004409.	5.2	29
5069	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	3.1	14
5070	Effect of FA+ Fraction and Dipping Time on Performance of FAxMA1â^'xPbI3 Films and Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 7054-7064.	1.0	1

#	Article	IF	CITATIONS
5071	Boron nitride-incorporated NiOx as a hole transport material for high-performance p-i-n planar perovskite solar cells. Journal of Power Sources, 2020, 477, 228738.	4.0	27
5072	Two-Step Processed Efficient Potassium and Cesium-Alloyed Quaternary Cations Perovskite Solar Cells. Synthetic Metals, 2020, 269, 116564.	2.1	6
5073	Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy and Environmental Science, 2020, 13, 4057-4086.	15.6	241
5074	Molecularly engineered thienyl-triphenylamine substituted zinc phthalocyanine as dopant free hole transporting materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 6188-6195.	2.5	12
5075	Elucidating the functional form of the recombination losses in a planar perovskite solar cell: A scaling analysis. Journal of Applied Physics, 2020, 128, .	1.1	6
5076	Blue electroluminescent metal halide perovskites. Journal of Applied Physics, 2020, 128, 120901.	1.1	4
5077	Manganese Porphyrin Interface Engineering in Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 7353-7363.	2.5	17
5078	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwichâ€Type Structure for Highâ€Performance Photovoltaics. Advanced Materials, 2020, 32, e2002784.	11.1	52
5079	Light-induced improvement of dopant-free PTAA on performance of inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110606.	3.0	36
5080	Recent advances in interface engineering of all-inorganic perovskite solar cells. Nanoscale, 2020, 12, 17149-17164.	2.8	20
5081	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
5082	Understanding the effects of shape, material and location of incorporation of metal nanoparticles on the performance of plasmonic organic solar cells. RSC Advances, 2020, 10, 26126-26132.	1.7	2
5083	Ambient-Air-Processed Ambipolar Perovskite Phototransistor With High Photodetectivity. IEEE Transactions on Electron Devices, 2020, 67, 3215-3220.	1.6	7
5084	Halide Pb-Free Double–Perovskites: Ternary vs. Quaternary Stoichiometry. Energies, 2020, 13, 3516.	1.6	10
5085	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	7.8	78
5086	Fabrication of tin-based halide perovskites by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
5087	Postpassivation of Multication Perovskite with Rubidium Butyrate. ACS Photonics, 2020, 7, 2282-2291.	3.2	11
5088	An efficient phenylaminecarbazole-based three-dimensional hole-transporting materials for high-stability perovskite solar cells. Dyes and Pigments, 2020, 182, 108663.	2.0	6

#	Article	IF	CITATIONS
5089	Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy, 2020, 77, 105110.	8.2	31
5090	Crystalline Nature of Colloids in Methylammonium Lead Halide Perovskite Precursor Inks Revealed by Cryo-Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 5980-5986.	2.1	30
5091	Slow carrier cooling in methylammonium lead bromide quantum dots: Evidence of hot phonon bottleneck. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112761.	2.0	5
5092	A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal of Materials Chemistry A, 2020, 8, 16166-16188.	5.2	130
5093	A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbl ₃ and MAPbBr ₃ crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C, 2020, 8, 10290-10301.	2.7	25
5094	A monolithic artificial iconic memory based on highly stable perovskite-metal multilayers. Applied Physics Reviews, 2020, 7, .	5.5	46
5095	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	1.4	60
5096	Methodologies for structural investigations of organic lead halide perovskites. Materials Today, 2020, 38, 67-83.	8.3	7
5097	Phase Segregation and Photothermal Remixing of Mixed-Halide Lead Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 1802-1807.	2.1	27
5098	Investigation of hysteresis in hole transport layer free metal halide perovskites cells under dark conditions. Nanotechnology, 2020, 31, 445201.	1.3	17
5099	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Ove	lock 10 Tf	50,342 Td (a
5100	All-inorganic dual-phase halide perovskite nanorings. Nano Research, 2020, 13, 2994-3000.	5.8	18
5101	Pressureâ€Suppressed Carrier Trapping Leads to Enhanced Emission in Twoâ€Dimensional Perovskite (HA) ₂ (GA)Pb ₂ 1 ₇ . Angewandte Chemie, 2020, 132, 17686-17692.	1.6	26
5102	Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 20071-20079.	6.6	145
5103	Donor–Acceptor Type Polymers Containing Fused-Ring Units as Dopant-Free, Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 12475-12483.	2.5	15
5104	Stannite Quaternary Cu2M(M = Ni, Co)SnS4 as Low Cost Inorganic Hole Transport Materials in Perovskite Solar Cells. Energies, 2020, 13, 5938.	1.6	7
5105	Zero-Dimensional Perovskite Open Cavities for Low-Threshold Stimulated Emissions. Journal of Physical Chemistry C, 2020, 124, 25499-25508.	1.5	10
5106	Room-temperature random lasing of metal-halide perovskites <i>via</i> morphology-controlled synthesis. Nanoscale Advances, 2020, 2, 5833-5840.	2.2	13

#	Article	IF	CITATIONS
5107	Printable Free-Standing Hybrid Graphene/Dry-Spun Carbon Nanotube Films as Multifunctional Electrodes for Highly Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54806-54814.	4.0	18
5108	Static Rashba Effect by Surface Reconstruction and Photon Recycling in the Dynamic Indirect Gap of APbBr ₃ (A = Cs, CH ₃ NH ₃) Single Crystals. Journal of the American Chemical Society, 2020, 142, 21059-21067.	6.6	33
5109	Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 25831-25841.	5.2	59
5110	Recent developments in fabrication and performance of metal halide perovskite field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 16691-16715.	2.7	34
5111	The development of low toxic and high efficient solar cells. Journal of Physics: Conference Series, 2020, 1653, 012002.	0.3	3
5112	Green energy by recoverable triple-oxide mesostructured perovskite photovoltaics. Proceedings of the United States of America, 2020, 117, 31010-31017.	3.3	8
5113	Enhanced photovoltaic performance of perovskite solar cells based on sufficient pore-filling in the mesoporous TiO2 electron transport layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 22844-22855.	1.1	1
5114	Temperature-Dependent Electroabsorption Spectra and Exciton Binding Energy in a Perovskite CH ₃ NH ₃ Pbl ₃ Nanocrystalline Film. ACS Applied Energy Materials, 2020, 3, 11830-11840.	2.5	10
5115	Halide Perovskite Epitaxial Heterostructures. Accounts of Materials Research, 2020, 1, 213-224.	5.9	20
5116	Role of A-Site Cation and X-Site Halide Interactions in Mixed-Cation Mixed-Halide Perovskites for Determining Anomalously High Ideality Factor and the Super-linear Power Law in AC Ionic Conductivity at Operating Temperature. ACS Applied Electronic Materials, 2020, 2, 4087-4098.	2.0	27
5117	Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites. Journal of Materials Chemistry A, 2020, 8, 25402-25410.	5.2	25
5118	Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 17482-17490.	2.7	50
5119	Optoelectronic Properties of Mixed Sn/Pb Perovskite Solar Cells: The Study of Compressive Strain by Raman Modes. Journal of Physical Chemistry C, 2020, 124, 27136-27147.	1.5	21
5120	Orientation-Controlled (<i>h</i> 0 <i>l</i>) Pbl ₂ Crystallites Using a Novel Pb–Precursor for Facile and Quick Sequential MAPbl ₃ Perovskite Deposition. ACS Omega, 2020, 5, 31180-31191.	1.6	10
5121	First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Scientific Reports, 2020, 10, 19635.	1.6	19
5122	Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cells. Coatings, 2020, 10, 1163.	1.2	9
5123	External Field-Tunable Internal Orbit–Orbit Interaction in Flexible Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 10323-10328.	2.1	2
5124	Probing the ionic defect landscape in halide perovskite solar cells. Nature Communications, 2020, 11, 6098.	5.8	75

#	Article	IF	CITATIONS
5125	Porous perovskite films integrated with Au–Pt nanowire-based electrodes for highly flexible large-area photodetectors. Npj Flexible Electronics, 2020, 4, .	5.1	12
5126	Tuning cesium–guanidinium in formamidinium tin triiodide perovskites with an ethylenediammonium additive for efficient and stable lead-free perovskite solar cells. Materials Advances, 2020, 1, 3507-3517.	2.6	20
5127	Origin and Suppression of External Quantum Efficiency Roll-Off in Quasi-Two-Dimensional Metal Halide Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 27422-27428.	1.5	11
5128	Controlled Growth of Large Grains in CH ₃ NH ₃ PbI ₃ Perovskite Films Mediated by an Intermediate Liquid Phase without an Antisolvent for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12484-12493.	2.5	13
5129	Calculation and Fabrication of a CH3NH3Pb(SCN)xI3â^'x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells. Journal of the Korean Physical Society, 2020, 77, 1210-1217.	0.3	2
5130	Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies, 2020, 13, 6335.	1.6	7
5131	Influence of Dimethyl Sulfoxide on the Structural Topology during Crystallization of PbI ₂ . Inorganic Chemistry, 2020, 59, 16799-16803.	1.9	3
5132	Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. Journal of Physical Chemistry C, 2020, 124, 24608-24615.	1.5	13
5133	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	4.0	50
5134	High Current Density Sn-Based Perovskite Solar Cells via Enhanced Electron Extraction in Nanoporous Electron Transport Layers. ACS Applied Nano Materials, 2020, 3, 11650-11657.	2.4	18
5135	Observation of Charge Generation via Photoinduced Stark Effect in Mixed-Cation Lead Bromide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2020, 11, 10081-10087.	2.1	11
5136	Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3752-3772.	8.8	143
5137	Applications of Selfâ€Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Advanced Energy Materials, 2020, 10, 2002989.	10.2	117
5138	Chlorobenzene-Mediated Control of Crystallization in Perovskite Films for High-Performance Solar Cells. ACS Applied Energy Materials, 2020, 3, 12291-12297.	2.5	12
5139	Semiconducting metal oxides empowered by graphene and its derivatives: Progresses and critical perspective on selected functional applications. Journal of Applied Physics, 2020, 128, .	1.1	18
5140	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123
5141	Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule, 2020, 4, 1961-1976.	11.7	152
5142	Quantifying Photon Recycling in Solar Cells and Light-Emitting Diodes: Absorption and Emission Are Always Key. Physical Review Letters, 2020, 125, 067401.	2.9	30

#	Article	IF	CITATIONS
5143	<scp>Heterojunctionâ€Type</scp> Photocatalytic System Based on Inorganic Halide Perovskite <scp>CsPbBr₃</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1718-1722.	2.6	16
5144	Highly Flexible and Transparent Polylactic Acid Composite Electrode for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000320.	3.1	18
5145	Effect of indium ratio in CulnxGa1-xS2/carbon hole collecting electrode for perovskite solar cells. Journal of Power Sources, 2020, 475, 228658.	4.0	19
5146	Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film. Materials Today Physics, 2020, 15, 100259.	2.9	30
5147	A comprehensive review on synthesis and applications of single crystal perovskite halides. Progress in Solid State Chemistry, 2020, 60, 100286.	3.9	77
5148	Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding. Physical Chemistry Chemical Physics, 2020, 22, 19718-19724.	1.3	11
5149	Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. Nanoscale, 2020, 12, 17590-17648.	2.8	48
5150	Progress and perspective on CsPbX3 nanocrystals for light emitting diodes and solar cells. Journal of Applied Physics, 2020, 128, .	1.1	20
5151	Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells. Journal of Alloys and Compounds, 2020, 849, 156629.	2.8	25
5152	Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nature Communications, 2020, 11, 4023.	5.8	136
5153	i-Propylammonium Lead Chloride Based Perovskite Photocatalysts for Depolymerization of Lignin Under UV Light. Molecules, 2020, 25, 3520.	1.7	12
5154	A Leadâ€free Organicnorganic Halide Perovskite Absorber with Photoconductive Response. Chemistry - an Asian Journal, 2020, 15, 3350-3355.	1.7	5
5155	Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035.	2.7	22
5156	The Performance of High-efficiency Perovskite Solar Cell (PSC) by Using Capacitance Simulator. Journal of Physics: Conference Series, 2020, 1530, 012149.	0.3	1
5157	Cascade Typeâ€II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar Rrl, 2020, 4, 2000282.	3.1	18
5158	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
5159	Photoconduction in CuO. Materials Today: Proceedings, 2020, 28, 131-133.	0.9	1
5160	Inorganic perovskite solar cells based on carbon electrodes. Nano Energy, 2020, 77, 105160.	8.2	48

#	Article	IF	CITATIONS
5161	Ti-Alloying of BaZrS ₃ Chalcogenide Perovskite for Photovoltaics. ACS Omega, 2020, 5, 18579-18583.	1.6	54
5162	Multifunctional molecules of surfactant to support enhanced efficiency and stability for perovskite solar cells. Journal of Materials Science, 2020, 55, 14761-14772.	1.7	15
5163	Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 2020, 3, 7231-7238.	2.5	19
5164	First-Principles Calculations of Graphene-Coated CH ₃ NH ₃ PbI ₃ toward Stable Perovskite Solar Cells in Humid Environments. ACS Applied Nano Materials, 2020, 3, 7704-7712.	2.4	11
5165	Hydraulic shear-induced rapid mass production of CsPbBr ₃ /Cs ₄ PbBr ₆ perovskite composites. New Journal of Chemistry, 2020, 44, 13279-13284.	1.4	1
5166	High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918.	23.0	1,480
5167	Emerging piezochromism in transparent lead free perovskite Rb3X2I9 (X = Sb, Bi) under compression: A comparative theoretical insight. Journal of Applied Physics, 2020, 128, 045102.	1.1	5
5168	Perovskite Solar Cell with Added Gold/Silver Nanoparticles: Enhanced Optical and Electrical Characteristics. Energies, 2020, 13, 3854.	1.6	12
5169	Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7066-7082.	2.1	41
5170	Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 38376-38385.	4.0	27
5171	A lead-free Cs ₂ PdBr ₆ perovskite-based humidity sensor for artificial fruit waxing detection. Journal of Materials Chemistry A, 2020, 8, 17675-17682.	5.2	45
5172	Machine learning lattice constants for cubic perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi> compounds. Journal of Solid State Chemistry. 2020. 291, 121558.</mml:mi></mml:mrow></mml:math 	x ¹ ≀ ⁴ mml:n	ni∛∛mml:nis
5173	Rapid synthesis of chalcohalides by ball milling: Preparation and characterisation of BiSI and BiSeI. Journal of Solid State Chemistry, 2020, 291, 121625.	1.4	15
5174	In situ TEM observation of the heat–induced degradation of single– and triple–cation planar perovskite solar cells. Nano Energy, 2020, 77, 105164.	8.2	25
5175	Numerical Analysis of Pbâ€Free Perovskite Absorber Materials: Prospects and Challenges. Solar Rrl, 2020, 4, 2000299.	3.1	23
5176	Understanding the Degradation of Spiroâ€OMeTADâ€Based Perovskite Solar Cells at High Temperature. Solar Rrl, 2020, 4, 2000305.	3.1	53
5177	Efficient carrier utilization induced by conductive polypyrrole additives in organic-inorganic halide perovskite solar cells. Solar Energy, 2020, 207, 1300-1307.	2.9	15
5178	Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr ₃ Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.	4.5	145

#	Article	IF	CITATIONS
5179	Realization of Moisture-Resistive Perovskite Films for Highly Efficient Solar Cells Using Molecule Incorporation. ACS Applied Materials & Interfaces, 2020, 12, 39063-39073.	4.0	11
5180	Efficient Lone-Pair-Driven Luminescence: Structure–Property Relationships in Emissive 5s ² Metal Halides. , 2020, 2, 1218-1232.		220
5181	On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations. Journal of Physical Chemistry Letters, 2020, 11, 6946-6955.	2.1	100
5182	Exploring Light Polarization Effects of Photovoltaic Actions in Organic–Inorganic Hybrid Perovskites with Asymmetric and Symmetric Unit Structures. ACS Applied Materials & Interfaces, 2020, 12, 38054-38060.	4.0	2
5183	Trap-Enabled Long-Distance Carrier Transport in Perovskite Quantum Wells. Journal of the American Chemical Society, 2020, 142, 15091-15097.	6.6	66
5184	Passivation engineering for hysteresis-free mixed perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110648.	3.0	21
5185	Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8257-8265.	2.5	21
5186	A simple fabrication of high efficiency planar perovskite solar cells: controlled film growth with methylammonium iodide and green antisolvent sec-butyl alcohol. Journal of Materials Chemistry C, 2020, 8, 12560-12567.	2.7	15
5187	Graded heterojunction of perovskite/dopant-free polymeric hole-transport layer for efficient and stable metal halide perovskite devices. Nano Energy, 2020, 78, 105159.	8.2	36
5188	First-principles study on structural, mechanical and optoelectronic properties of lead-free mixed Ge–Sn hybrid organic-inorganic perovskites. Solid State Communications, 2020, 320, 114024.	0.9	17
5189	Novel mixed solution of ethanol/MACl for improving the crystallinity of air-processed triple cation perovskite solar cells. Solar Energy, 2020, 207, 1240-1246.	2.9	38
5190	Unique Behavior of Halide Double Perovskites with Mixed Halogens. ACS Applied Materials & Interfaces, 2020, 12, 37100-37107.	4.0	19
5191	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307
5192	Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells. Materials Advances, 2020, 1, 1866-1876.	2.6	20
5193	Defect passivation of grain surface toward perovskite solar cells with a high open-circuit voltage exceeding 1.16 V. Journal of Applied Physics, 2020, 128, 044504.	1.1	13
5194	Performance enhancement of low temperature processed tin oxide as an electron transport layer for perovskite solar cells under ambient conditions. International Journal of Energy Research, 2020, 44, 11361-11371.	2.2	7
5195	Building Blocks of Hybrid Perovskites: A Photoluminescence Study of Leadâ€iodide Solution Species. ChemPhysChem, 2020, 21, 2327-2333.	1.0	20
5196	Efficient Bifacial Passivation Enables Printable Mesoscopic Perovskite Solar Cells with Improved Photovoltage and Fill Factor. Solar Rrl, 2020, 4, 2000288.	3.1	10

#	Article	IF	CITATIONS
5197	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	1.9	25
5198	Pathway toward market entry of perovskite solar cells: A detailed study on the research trends and collaboration networks through bibliometrics. Energy Reports, 2020, 6, 2075-2085.	2.5	14
5199	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	1.7	18
5200	Large-grain and smooth cesium doped CH3NH3PbI3 perovskite films by cesium iodide post-treatment for improved solar cells. Thin Solid Films, 2020, 712, 138279.	0.8	12
5201	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	3.2	41
5202	Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale, 2020, 12, 17385-17398.	2.8	43
5203	Morphology Tuning and Its Role in Optimization of Perovskite Films Fabricated from A Novel Nonhalide Lead Source. Advanced Science, 2020, 7, 2002296.	5.6	14
5204	Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1431-1449.	1.2	33
5205	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	3.2	10
5206	9.05% HTM free perovskite solar cell with negligible hysteresis by introducing silver nanoparticles encapsulated with P4VP polymer. SN Applied Sciences, 2020, 2, 1.	1.5	8
5207	Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2002422.	10.2	20
5208	Defects and Their Passivation in Hybrid Halide Perovskites toward Solar Cell Applications. Solar Rrl, 2020, 4, 2000505.	3.1	47
5209	Perovskiteâ€Derivative Valleytronics. Advanced Materials, 2020, 32, e2004111.	11.1	19
5210	CNTs/Cf based counter electrode for highly efficient hole-transport-material-free perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112843.	2.0	15
5211	Manipulating Photon Propagation via a Perovskite Microwire Array. Journal of Physical Chemistry C, 2020, 124, 24315-24321.	1.5	4
5212	Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS ₃ (A =) Tj ETQq1 1	0.784314 2.7	rgðt /Over
5213	Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10282-10302.	2.5	50
5214	Thiophene-Fused Butterfly-Shaped Polycyclic Arenes with a Diphenanthro[9,10- <i>b</i> :9′,10′- <i>d</i>]thiophene Core for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 50495-50504.	4.0	11

#	Article	IF	CITATIONS
5215	Methylammonium chloride as an interface modificator for planar-structure perovskite solar cells with a high open circuit voltage of 1.19V. Journal of Power Sources, 2020, 480, 229073.	4.0	41
5216	CIGS and perovskite solar cells – an overview. Emerging Materials Research, 2020, 9, 812-824.	0.4	9
5217	Light-Driven Piezo- and Triboelectricity in Organic–Inorganic Metal Trihalide Perovskite toward Mechanical Energy Harvesting and Self-powered Sensor Application. ACS Applied Materials & Interfaces, 2020, 12, 50472-50483.	4.0	46
5218	Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional organic-inorganic perovskites. Nature Communications, 2020, 11, 5481.	5.8	55
5219	Perovskites for printed flexible electronics. IOP Conference Series: Materials Science and Engineering, 2020, 892, 012011.	0.3	1
5220	Electrochemical Deposition of CsPbBr ₃ Perovskite for Photovoltaic Devices with Robust Ambient Stability. ACS Applied Materials & Interfaces, 2020, 12, 50455-50463.	4.0	24
5221	Structural phase transitions and photoluminescence mechanism in a layer of 3D hybrid perovskite nanocrystals. AIP Advances, 2020, 10, .	0.6	14
5222	CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1669.	1.9	33
5223	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
5224	Suppressing the Excessive Solvated Phase for Dion–Jacobson Perovskites with Improved Crystallinity and Vertical Orientation. Solar Rrl, 2020, 4, 2000371.	3.1	36
5225	An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl) Tj ETQq0 0 0 rgB	T /Overloc 14.4	k 10 Tf 50 34
5226	Incorporated Guanidinium Expands the CH ₃ NH ₃ PbI ₃ Lattice and Enhances Photovoltaic Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 43885-43891.	4.0	31
5227	Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. Journal of the American Chemical Society, 2020, 142, 16569-16578.	6.6	30
5228	Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite \$\$A_{2}XY_{6}\$\$ compounds. Physics and Chemistry of Minerals, 2020, 47, 1.	0.3	27
5229	Local Disorder at the Phase Transition Interrupts Ambipolar Charge Carrier Transport in Large Crystal Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2020, 124, 20757-20764.	1.5	0
5230	Highâ€Efficiency Solutionâ€Processed Twoâ€Terminal Hybrid Tandem Solar Cells Using Spectrally Matched Inorganic and Organic Photoactive Materials. Advanced Energy Materials, 2020, 10, 2001188.	10.2	37
5231	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	7.8	17
5232	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002176.	11.1	55

#	Article	IF	CITATIONS
5233	Low-Temperature Processed TiOx Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Nanomaterials, 2020, 10, 1676.	1.9	13
5234	Solution-Phase Halide Exchange and Targeted Annealing Kinetics in Lead Chloride Derived Hybrid Perovskites. Inorganic Chemistry, 2020, 59, 13364-13370.	1.9	5
5235	Interface engineering for gain perovskite photodetectors with extremely high external quantum efficiency. RSC Advances, 2020, 10, 32976-32983.	1.7	9
5236	Effect of CH3NH3I Concentration on Performances of the Perovskite Solar Cells. , 2020, , .		0
5237	Impact of Tin Fluoride Additive on the Properties of Mixed Tin‣ead Iodide Perovskite Semiconductors. Advanced Functional Materials, 2020, 30, 2005594.	7.8	48
5238	Ultrastable Lead-Free Double Perovskite Warm-White Light-Emitting Devices with a Lifetime above 1000 Hours. ACS Applied Materials & Interfaces, 2020, 12, 46330-46339.	4.0	61
5239	TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18549-18557.	1.8	25
5240	Development of Spray-Coated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48237-48245.	4.0	88
5241	Interfacial Dipole in Organic and Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 18281-18292.	6.6	182
5242	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	6.0	1,122
5243	Comparative Study on Methods for the Synthesis of CsPbBr3 Perovskite Nanoparticles at Room Temperature. High Energy Chemistry, 2020, 54, 328-335.	0.2	2
5244	Surfactant Sodium Dodecyl Benzene Sulfonate Improves the Efficiency and Stability of Airâ€Processed Perovskite Solar Cells with Negligible Hysteresis. Solar Rrl, 2020, 4, 2000376.	3.1	30
5245	Tailoring the Grain Boundaries of Wideâ€Bandgap Perovskite Solar Cells by Molecular Engineering. Solar Rrl, 2020, 4, 2000384.	3.1	15
5246	Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency. Solar Energy, 2020, 209, 79-84.	2.9	33
5247	Atomistic Structures and Energetics of Perovskite Nucleation Pathway During Sequential Deposition Process. Multiscale Science and Engineering, 2020, 2, 227-234.	0.9	1
5248	Cd-Doped Triple-Cation Perovskite Thin Films with a 20 μs Carrier Lifetime. Journal of Physical Chemistry C, 2020, 124, 22011-22018.	1.5	10
5249	Realizing CsPbBr ₃ Light-Emitting Diode Arrays Based on PDMS Template Confined Solution Growth of Single-Crystalline Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 8275-8282.	2.1	21
5250	Manipulation of PEDOT:PSS with Polar and Nonpolar Solvent Post-treatment for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9656-9666.	2.5	16

#	Article	IF	Citations
5251	Contrasting Electron and Hole Transfer Dynamics from CH(NH2)2PbI3 Perovskite Quantum Dots to Charge Transport Layers. Applied Sciences (Switzerland), 2020, 10, 5553.	1.3	5
5252	High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 11570-11580.	2.5	14
5253	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. Advanced Materials, 2020, 32, e2002585.	11.1	151
5254	Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Advanced Materials Interfaces, 2020, 7, 2000950.	1.9	94
5255	Machine Learning Lattice Constants for Cubic Perovskite Compounds. ChemistrySelect, 2020, 5, 9999-10009.	0.7	39
5256	Intense Dark Exciton Emission from Strongly Quantum-Confined CsPbBr ₃ Nanocrystals. Nano Letters, 2020, 20, 7321-7326.	4.5	53
5257	Solution-Processed Epitaxial Growth of Arbitrary Surface Nanopatterns on Hybrid Perovskite Monocrystalline Thin Films. ACS Nano, 2020, 14, 11029-11039.	7.3	25
5258	A multifunctional additive of scandium trifluoromethanesulfonate to achieve efficient inverted perovskite solar cells with a high fill factor of 83.80%. Journal of Materials Chemistry A, 2020, 8, 19555-19560.	5.2	23
5259	Improvement of Characteristics of Metal Doped TiO2 Thin Film and Application to Perovskite Solar Cell. Journal of Nanoscience and Nanotechnology, 2020, 20, 7130-7134.	0.9	2
5260	An Efficient Approach to Fabricate Airâ€Stable Perovskite Solar Cells via Addition of a Selfâ€Polymerizing Ionic Liquid. Advanced Materials, 2020, 32, e2003801.	11.1	84
5261	Examining the Interfacial Defect Passivation with Chlorinated Organic Salt for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000358.	3.1	19
5262	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.4	4
5263	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
5264	Flexible Perovskite Solar Modules with Functional Layers Fully Vacuum Deposited. Solar Rrl, 2020, 4, 2000292.	3.1	29
5266	Defect Tolerance and Intolerance in Metalâ€Halide Perovskites. Advanced Energy Materials, 2020, 10, 2001959.	10.2	85
5267	Ultrasensitive UV Photodetector Based on Interfacial Charge-Controlled Inorganic Perovskite–Polymer Hybrid Structure. ACS Applied Materials & Interfaces, 2020, 12, 43106-43114.	4.0	23
5268	Impact of Mesoporous Silicon Template Pore Dimension and Surface Chemistry on Methylammonium Lead Trihalide Perovskite Photophysics. Advanced Materials Interfaces, 2020, 7, 2001138.	1.9	1
5269	Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 17681-17692.	6.6	83

#	Article	IF	CITATIONS
5270	How Humidity and Light Exposure Change the Photophysics of Metal Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000382.	3.1	23
5271	Efficiency progress of inverted perovskite solar cells. Energy and Environmental Science, 2020, 13, 3823-3847.	15.6	210
5272	[(C 8 H 17) 4 N] 4 [SiW 12 O 40] (TASiWâ€12)â€Modified SnO 2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000406.	3.1	10
5273	Synergistic Effect of Additive and Solvent Vapor Annealing on the Enhancement of MAPbI ₃ Perovskite Solar Cells Fabricated in Ambient Air. ACS Applied Materials & Interfaces, 2020, 12, 46837-46845.	4.0	23
5274	Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects. Materials Horizons, 2020, 7, 2791-2809.	6.4	65
5275	Rapid synthesis of cesium lead halide perovskite nanocrystals by <scp>l</scp> -lysine assisted solid-phase reaction at room temperature. RSC Advances, 2020, 10, 34215-34224.	1.7	9
5276	Phenomenological mechanisms of hybrid organic–inorganic perovskite thin film deposition by RIR-MAPLE. Journal of Applied Physics, 2020, 128, 105303.	1.1	3
5277	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	2.8	45
5278	Nearâ€Infrared Lightâ€Responsive Cuâ€Doped Cs ₂ AgBiBr ₆ . Advanced Functional Materials, 2020, 30, 2005521.	7.8	56
5279	Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency. Journal of Physical Chemistry Letters, 2020, 11, 8189-8194.	2.1	68
5280	Why choosing the right partner is important: stabilization of ternary CsyGUAxFA(1â^'yâ^'x)PbI3 perovskites. Physical Chemistry Chemical Physics, 2020, 22, 20880-20890.	1.3	2
5281	3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance. Materials, 2020, 13, 3868.	1.3	25
5282	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228.	11.1	39
5283	Lateral Artificial Synapses on Hybrid Perovskite Platelets with Modulated Neuroplasticity. Advanced Functional Materials, 2020, 30, 2005413.	7.8	71
5284	Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001121.	1.9	13
5285	Airâ€Processed Perovskite Films with Innerâ€toâ€Outside Passivation for Highâ€Efficiency Solar Cells. Solar Rrl, 2020, 4, 2000410.	3.1	5
5286	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	4.0	24
5287	Thermal properties of metal-halide perovskites. Journal of Materials Chemistry C, 2020, 8, 14289-14311.	2.7	74

#	Article	IF	CITATIONS
5288	Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45073-45082.	4.0	12
5289	A solution-processed ternary copper halide thin films for air-stable and deep-ultraviolet-sensitive photodetector. Nanoscale, 2020, 12, 17213-17221.	2.8	55
5290	Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers. Advanced Science, 2020, 7, 2001014.	5.6	43
5291	Interpreting Ideality Factors for Planar Perovskite Solar Cells: Ectypal Diode Theory for Steady-State Operation. Physical Review Applied, 2020, 14, .	1.5	42
5292	lsothermally crystallized perovskites at room-temperature. Energy and Environmental Science, 2020, 13, 3412-3422.	15.6	153
5293	Impacts of carrier trapping and ion migration on charge transport of perovskite solar cells with TiO _x electron transport layer. RSC Advances, 2020, 10, 28083-28089.	1.7	4
5294	Regulated Crystallization of FASnI ₃ Films through Seeded Growth Process for Efficient Tin Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41454-41463.	4.0	28
5295	Octahedron rotation evolution in 2D perovskites and its impact on optoelectronic properties: the case of Ba–Zr–S chalcogenides. Materials Horizons, 2020, 7, 2985-2993.	6.4	11
5296	Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical Society, 2020, 142, 21595-21614.	6.6	32
5297	Ultrathin polymeric films for interfacial passivation in wide band-gap perovskite solar cells. Scientific Reports, 2020, 10, 22260.	1.6	31
5298	Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Materials, 2020, 12, .	3.8	88
5299	Carrier recombination of organic-inorganic 3D halide perovskite single crystals. Chinese Journal of Chemical Physics, 2020, 33, 252-257.	0.6	2
5300	Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain. Journal of Physical Chemistry C, 2020, 124, 27287-27299.	1.5	7
5301	TDMA Based Numerical Approach on Modeling of Charge Carrier Transport and Ion Vacancy Motion in Perovskite Solar Cells. , 2020, , .		2
5302	Effect of defect densities and absorber thickness on carrier collection in Perovskite solar cells. , 2020, , .		1
5303	Influence of Ag@SiO2 with Different Shell Thickness on Photoelectric Properties of Hole-Conductor-Free Perovskite Solar Cells. Nanomaterials, 2020, 10, 2364.	1.9	10
5304	Effect of humidity on the orientational ordering of CH3NH+3 in methylammonium lead iodide. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
5305	Deep Mining Stable and Nontoxic Hybrid Organic–Inorganic Perovskites for Photovoltaics via Progressive Machine Learning. ACS Applied Materials & Interfaces, 2020, 12, 57821-57831.	4.0	20

#	Article	IF	CITATIONS
5306	The Bright Side and Dark Side of Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2020, 124, 27340-27355.	1.5	3
5307	Deterioration mechanism of perovskite solar cells by operando observation of spin states. Communications Materials, 2020, 1, .	2.9	21
5308	Surface and grain boundary carbon heterogeneity in CH3NH3PbI3 perovskites and its impact on optoelectronic properties. Applied Physics Reviews, 2020, 7, .	5.5	9
5309	Polymer modification of perovskite solar cells to increase open-circuit voltage. AIP Conference Proceedings, 2020, , .	0.3	0
5310	Impact of Cation Multiplicity on Halide Perovskite Defect Densities and Solar Cell Voltages. Journal of Physical Chemistry C, 2020, 124, 27333-27339.	1.5	18
5311	Room-temperature Magnetoresistance in Hybrid Halide Perovskites: Effect of Spin-Orbit Coupling. Physical Review Applied, 2020, 14, .	1.5	3
5312	Unraveling the antisolvent dripping delay effect on the Stranski–Krastanov growth of CH3NH3PbBr3 thin films: a facile route for preparing a textured morphology with improved optoelectronic properties. Physical Chemistry Chemical Physics, 2020, 22, 26592-26604.	1.3	16
5313	The King of the New Generation Photovoltaic Technologies——Perovskite Solar Cells & the Opportunities and Challenges. IOP Conference Series: Materials Science and Engineering, 2020, 926, 012010.	0.3	5
5314	Perovskite quantum dot solar cells: Mapping interfacial energetics for improving charge separation. Nano Energy, 2020, 78, 105319.	8.2	31
5315	Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm, 2020, 22, 8063-8071.	1.3	4
5316	Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies, 2020, 13, 5572.	1.6	66
5317	A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials, 2020, 13, 4851.	1.3	38
5318	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	11.1	39
5319	Halide Perovskites: A Progress Report on Photon Interconversion. Advanced Optical Materials, 2021, 9, 2001470.	3.6	20
5320	Effects of Oxygen and Water on the Formation and Degradation Processes of (CH ₃ NH ₃)PbI ₃ Thin Films. ACS Applied Energy Materials, 2020, 3, 11269-11274.	2.5	4
5321	Recent Advances in Plasmonic Perovskite Solar Cells. Advanced Science, 2020, 7, 1902448.	5.6	78
5322	Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nature Communications, 2020, 11, 2215.	5.8	47
5323	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	5.2	56

#	Article	IF	CITATIONS
5324	Roll-to-roll slot-die coated P–l–N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustainable Energy and Fuels, 2020, 4, 3340-3351.	2.5	53
5325	Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Double‧ided Surface Passivation for Infrared Upconversion Detection. Small, 2020, 16, e2001534.	5.2	76
5326	Tailoring the orientation of perovskite crystals via adding two-dimensional polymorphs for perovskite solar cells. JPhys Energy, 2020, 2, 034005.	2.3	16
5327	Robust and Transient Writeâ€Onceâ€Readâ€Manyâ€Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent. Advanced Electronic Materials, 2020, 6, 2000109.	2.6	22
5328	Optical <i>in situ</i> monitoring during the synthesis of halide perovskite solar cells reveals formation kinetics and evolution of optoelectronic properties. Journal of Materials Chemistry A, 2020, 8, 10439-10449.	5.2	43
5329	Elucidating the role of TiCl ₄ post-treatment on percolation of TiO ₂ electron transport layer in perovskite solar cells. Journal Physics D: Applied Physics, 2020, 53, 385501.	1.3	6
5330	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 26050-26059.	4.0	26
5331	A favored crystal orientation for efficient printable mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11148-11154.	5.2	42
5332	Changes in the Electrical Characteristics of Perovskite Solar Cells with Aging Time. Molecules, 2020, 25, 2299.	1.7	31
5333	Efficient Trap Passivation of MAPbI ₃ via Multifunctional Anchoring for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2020, 4, 2000078.	2.7	42
5334	Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Applied Materials & Interfaces, 2020, 12, 26776-26811.	4.0	89
5335	Stable green and red dual-color emission in all-inorganic halide-mixed perovskite single microsheets. RSC Advances, 2020, 10, 18368-18376.	1.7	2
5336	Perovskite solar cells prepared under infrared irradiation during fabrication process in air ambience. Journal of Materials Science: Materials in Electronics, 2020, 31, 9535-9542.	1.1	3
5337	Photocurrent transient measurements in MAPbI3 thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 10047-10054.	1.1	26
5338	Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1923-1929.	8.8	116
5339	Photoluminescenceâ€Based Characterization of Halide Perovskites for Photovoltaics. Advanced Energy Materials, 2020, 10, 1904134.	10.2	299
5340	Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 24737-24746.	4.0	65
5341	Emergence of Ferroelectricity in Halide Perovskites. Small Methods, 2020, 4, 2000149.	4.6	95

#	Article	IF	CITATIONS
5342	Pressure Effects on Optoelectronic Properties of CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 11239-11247.	1.5	18
5343	Improved Interface Contact for Highly Stable All-Inorganic CsPbI ₂ Br Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5173-5181.	2.5	16
5344	Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 2020, 1, 292-309.	2.6	35
5345	Effects of annealing temperature on photovoltaic properties of lead-free (CH ₃ NH ₃) ₃ Bi ₂ I ₉ solar cells. Journal of the Ceramic Society of Japan, 2020, 128, 298-303.	0.5	5
5347	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
5348	Solution processed perovskite incorporated tandem photovoltaics: developments, manufacturing, and challenges. Journal of Materials Chemistry C, 2020, 8, 10641-10675.	2.7	11
5349	Optical and electrical optimization of all-perovskite pin type junction tandem solar cells. Journal Physics D: Applied Physics, 2020, 53, 315104.	1.3	8
5350	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003295.	7.8	100
5351	Whether Addition of Phenethylammonium Ion is Always Beneficial to Stability Enhancement of MAPbI 3 Perovskite Film?. Advanced Materials Interfaces, 2020, 7, 2000197.	1.9	6
5352	lon Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.	10.2	103
5353	Boosting the power conversion efficiency of perovskite solar cells based on Sn doped TiO2 electron extraction layer via modification the TiO2 phase junction. Solar Energy, 2020, 205, 390-398.	2.9	13
5354	Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. Energy and Environmental Science, 2020, 13, 4168-4177.	15.6	27
5355	Role of additives SnX2 (XÂ=ÂF, Cl) and anti-solvents on the microstructure of PV absorber FASnI3 films. Materials Letters, 2020, 275, 128071.	1.3	2
5356	Perovskite Flash Memory with a Single-Layer Nanofloating Gate. Nano Letters, 2020, 20, 5081-5089.	4.5	15
5357	Residual PbI ₂ Beneficial in the Bulk or at the Interface? An Investigation Study in Sputtered NiO <i>_x</i> Hole-Transport-Layer-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6215-6221.	2.5	24
5358	Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy and Environmental Science, 2020, 13, 2363-2385.	15.6	109
5359	Perovskite nanomaterials as optical and electrochemical sensors. Inorganic Chemistry Frontiers, 2020, 7, 2702-2725.	3.0	91
5360	A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability. Journal of Semiconductors, 2020, 41, 041603.	2.0	20

#	Article	IF	CITATIONS
5361	Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Small, 2020, 16, e2001417.	5.2	21
5362	Correlation between efficiency and device characterization in MAPbI3-xClx standard perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 10251-10259.	1.1	9
5363	Unraveling the roles of mesoporous TiO2 framework in CH3NH3PbI3 perovskite solar cells. Science China Materials, 2020, 63, 1151-1162.	3.5	24
5364	Progress toward Applications of Perovskite Solar Cells. Energy & amp; Fuels, 2020, 34, 6624-6633.	2.5	31
5365	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. Journal of Physical Chemistry C, 2020, 124, 12249-12258.	1.5	23
5366	High-Quality Concentrated Precursor Solution in <i>N</i> , <i>N</i> Dimethylformamide for Thick Methylammonium Triiodoplumbate Layer in Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25972-25979.	4.0	5
5367	The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell. Coatings, 2020, 10, 354.	1.2	5
5368	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie - International Edition, 2020, 59, 15191-15194.	7.2	80
5369	Electron Transport Materials: Evolution and Case Study for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	3.1	32
5370	Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects. Joule, 2020, 4, 1160-1185.	11.7	211
5371	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & Interfaces, 2020, 12, 26384-26390.	4.0	20
5372	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie, 2020, 132, 15303-15306.	1.6	34
5373	In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2020, 2, e12025.	6.8	123
5374	A Highly Sensitive Single Crystal Perovskite–Graphene Hybrid Vertical Photodetector. Small, 2020, 16, e2000733.	5.2	55
5375	One‣tep Fabrication of Perovskiteâ€Based Upconversion Devices. ChemPhotoChem, 2020, 4, 704-712.	1.5	17
5376	Metal – organic hybrids of tin(IV) with tuneable band gap: Synthesis, spectral, single crystal X-ray structural, BVS and CSM analysis of morpholinium hexahalostannate(IV). Journal of Molecular Structure, 2020, 1218, 128489.	1.8	5
5377	Spin Polarization Dynamics of Free Charge Carriers in CsPbl ₃ Nanocrystals. Nano Letters, 2020, 20, 4724-4730.	4.5	32
5378	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	2.2	28

		CITATION R	EPORT	
#	Article		IF	Citations
5379	Optical design of hole transmission nanostructured layers for inverted planar perovskite heterostructure solar cells. Semiconductor Science and Technology, 2020, 35, 095018.		1.0	3
5380	Vapor-Phase Photocatalytic Overall Water Splitting Using Hybrid Methylammonium Copp Perovskites. Nanomaterials, 2020, 10, 960.	er and Lead	1.9	11
5381	Novel transportation layers of NiO and ZnO for the fabrication of perovskite solar cell for e-monitoring of healthcare. Journal of Sol-Gel Science and Technology, 2020, 95, 300-307	7.	1.1	2
5382	High performance perovskite solar cell based on efficient materials for electron and hole layers. Optik, 2020, 218, 164787.	transport	1.4	21
5383	Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Advanced Functional Materials, 2020, 30, 2000228.	Perovskites.	7.8	12
5384	Gradient 2D/3D Perovskite Films Prepared by Hotâ€Casting for Sensitive Photodetectors. Science, 2020, 7, 2000776.	Advanced	5.6	56
5385	Interface Modulator of Ultrathin Magnesium Oxide for Lowâ€Temperatureâ€Processed Ir CsPbIBr ₂ Perovskite Solar Cells with Efficiency Over 11%. Solar Rrl, 2020, 4,	organic 2000226.	3.1	98
5386	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chi Letters, 2020, 31, 3055-3064.	nese Chemical	4.8	52
5387	Strong bandÂfilling induced significant excited state absorption in MAPbI3 under high pu Materials Today Physics, 2020, 14, 100228.	mp power.	2.9	16
5388	Finally, inkjet-printed metal halide perovskite LEDs – utilizing seed crystal templating o PEDOT:PSS. Materials Horizons, 2020, 7, 1773-1781.	Fsalty	6.4	33
5389	Self-Powered and Broadband Lead-Free Inorganic Perovskite Photodetector with High Sta Applied Materials & Interfaces, 2020, 12, 30530-30537.	bility. ACS	4.0	101
5390	Singlet relaxation dynamics and long triplet lifetimes of thiophene-coupled perylene diimi New insights for high efficiency organic solar cells. Chinese Chemical Letters, 2020, 31, 2	des dyads: 965-2969.	4.8	12
5391	Lanthanum-Doped Strontium Stannate for Efficient Electron-Transport Layers in Planar Pe Solar Cells. ACS Applied Energy Materials, 2020, 3, 6889-6896.	rovskite	2.5	11
5392	Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale, 2020, 12, 14369-14404.		2.8	99
5393	The use of nickel oxide as a hole transport material in perovskite solar cell configuration: high performance and stable device. International Journal of Energy Research, 2020, 44, 9		2.2	28
5394	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical S Reviews, 2020, 49, 4953-5007.	ociety	18.7	269
5395	Influence of precursor concentration on printable mesoscopic perovskite solar cells. Fron Optoelectronics, 2020, 13, 256-264.	tiers of	1.9	11
5396	Self-trapped-induced energy funneling and broadband emission in the Mn2+ doped two-operovskite. Journal of Luminescence, 2020, 226, 117457.	limensional	1.5	7

#	Article	IF	CITATIONS
5397	Effects of inorganic surface blocking layer of SnS on the performance and stability of perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 119, 105224.	1.9	5
5398	Two-Dimensional Perovskite Capping Layer Simultaneously Improves the Charge Carriers' Lifetime and Stability of MAPbl ₃ Perovskite: A Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2020, 11, 5100-5107.	2.1	9
5399	Perovskite Crystallization Dynamics during Spin-Casting: An <i>In Situ</i> Wide-Angle X-ray Scattering Study. ACS Applied Energy Materials, 2020, 3, 6155-6164.	2.5	16
5400	Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002333.	11.1	48
5401	Size control of single-crystal perovskite nanoplatelets based on vapor deposition. Optical Materials, 2020, 107, 110120.	1.7	3
5402	Rapid Vapor-Phase Deposition of High-Mobility <i>p</i> -Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters, 2020, 5, 2456-2465.	8.8	32
5403	Polaron transport in hybrid CH ₃ NH ₃ PbI ₃ perovskite thin films. Nanoscale, 2020, 12, 14112-14119.	2.8	13
5404	High-performance Photodetector Based on <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>In</mml:mi><mml:mi>Se</mml:mi></mml:mrow><mml:mo>/<td>o><mml:m< td=""><td>sub><mml:m< td=""></mml:m<></td></mml:m<></td></mml:mo></mmi:math 	o> <mml:m< td=""><td>sub><mml:m< td=""></mml:m<></td></mml:m<>	sub> <mml:m< td=""></mml:m<>

mathvariant="normal">I</mml:mi></mml:mrow></mml:mrow></mml:mn>2</mml:mn></mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:

#	Article	IF	CITATIONS
5415	Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy, 2020, 75, 105038.	8.2	77
5416	Theoretical Design for the Non-Toxic and Earth-Abundant Perovskite Solar Cell Absorber Materials. Frontiers in Materials, 2020, 7, .	1.2	3
5417	Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr ₃ Nanocrystals Encapsulated by Siliceous Nanosphere. Journal of Physical Chemistry C, 2020, 124, 14390-14399.	1.5	9
5418	Photoinduced phase separation in the lead halides is a polaronic effect. Journal of Chemical Physics, 2020, 152, 230901.	1.2	41
5419	Defects in halide perovskites: The lattice as a boojum?. MRS Bulletin, 2020, 45, 478-484.	1.7	20
5420	Secondary Ion Mass Spectrometry (SIMS) for Chemical Characterization of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 2002201.	7.8	29
5421	Tuning the crystallization process of perovskite active layer using a functionalized graphene oxide for enhanced photovoltaic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 12257-12268.	1.1	8
5422	Enhanced Ballistic Transport of Charge Carriers in Alloyed and K-Passivated Alloyed Perovskite Thin Films. Journal of Physical Chemistry Letters, 2020, 11, 5402-5406.	2.1	8
5423	Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl ₃ Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 5482-5489.	2.1	25
5424	Boosting perovskite nanomorphology and charge transport properties <i>via</i> a functional D–Ĩ€-A organic layer at the absorber/hole transporter interface. Nanoscale, 2020, 12, 15137-15149.	2.8	21
5425	Perovskite Materials: Recent Advancements and Challenges. , 2020, , .		3
5426	Enhancing the interfacial carrier dynamic in perovskite solar cells with an ultra-thin single-crystalline nanograss-like TiO ₂ electron transport layer. Journal of Materials Chemistry A, 2020, 8, 13820-13831.	5.2	12
5427	Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites. Journal of Materials Chemistry C, 2020, 8, 9714-9723.	2.7	13
5428	Structural, opto-electronic characteristics and second harmonic generation of solution processed CH3NH3Pbl3-xClx thin film prepared by spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 259, 114599.	1.7	6
5429	Understanding the Essential Role of PbI ₂ Films in a High-Performance Lead Halide Perovskite Photodetector. Journal of Physical Chemistry C, 2020, 124, 15107-15114.	1.5	17
5430	Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 57-64.	0.4	3
5431	Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustainable Energy and Fuels, 2020, 4, 4257-4263.	2.5	13
5432	Carbon-based HTL-free modular perovskite solar cells with improved contact at perovskite/carbon interfaces. Journal of Materials Chemistry C, 2020, 8, 9262-9270.	2.7	38

#	Article	IF	CITATIONS
5433	Nanocarbon. , 2020, , 131-155.		0
5434	Pin-Hole-Free, Homogeneous, Pure CsPbBr3 Films on Flat Substrates by Simple Spin-Coating Modification. Frontiers in Energy Research, 2020, 8, .	1.2	5
5435	Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929.	8.2	47
5436	Significantly Enhanced <i>V</i> -oc and Efficiency in Perovskite Solar Cells through Composition Adjustment of SnS ₂ Electron Transport Layers. ACS Sustainable Chemistry and Engineering, 2020, 8, 9250-9256.	3.2	18
5437	Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy, 2020, 76, 104999.	8.2	20
5438	Noncontact evaluation of full elastic constants of perovskite MAPbBr3 via Photoacoustic eigen-spectrum analysis in one test. Scientific Reports, 2020, 10, 9994.	1.6	4
5439	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	3.2	58
5440	Improving the crystal growth of a Cs0.24FA0.76PbI3ⰒxBrx perovskite in a vapor–solid reaction process using strontium iodide. Sustainable Energy and Fuels, 2020, 4, 2491-2496.	2.5	12
5441	Unveiling Predominant Air-Stable Organotin Bromide Perovskite toward Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 16469-16480.	4.0	45
5442	Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 2020, 116, 101901.	1.5	12
5443	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
5444	A General Wet Transferring Approach for Diffusion-Facilitated Space-Confined Grown Perovskite Single-Crystalline Optoelectronic Thin Films. Nano Letters, 2020, 20, 2747-2755.	4.5	34
5445	Ammonium acetate passivated CsPbI ₃ perovskite nanocrystals for efficient red light-emitting diodes. Nanoscale, 2020, 12, 7712-7719.	2.8	30
5446	Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. Journal of Materials Chemistry A, 2020, 8, 6882-6892.	5.2	49
5447	First-principles study on photovoltaic properties of 2D Cs ₂ PbI ₄ -black phosphorus heterojunctions. Journal of Physics Condensed Matter, 2020, 32, 195501.	0.7	10
5448	Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells. Nanomaterials, 2020, 10, 521.	1.9	13
5449	Fabrication of nickel oxide composites with carbon nanotubes for enhanced charge transport in planar perovskite solar cells. Applied Surface Science, 2020, 516, 146116.	3.1	22
5450	Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Materials Today Physics, 2020, 13, 100204.	2.9	35

#	Article	IF	CITATIONS
5451	Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synthetic Metals, 2020, 262, 116286.	2.1	23
5452	Tuning ferromagnetism at room temperature by visible light. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6417-6423.	3.3	15
5453	Exciton Character and Highâ€Performance Stimulated Emission of Hybrid Lead Bromide Perovskite Polycrystalline Film. Advanced Optical Materials, 2020, 8, 1902026.	3.6	22
5454	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
5455	Solution Deposition of a Bournonite CuPbSbS ₃ Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture. Journal of the American Chemical Society, 2020, 142, 6173-6179.	6.6	22
5456	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	23.3	445
5457	A Leadâ€Free Allâ€Inorganic Metal Halide with Nearâ€Unity Green Luminescence. Laser and Photonics Reviews, 2020, 14, 2000027.	4.4	66
5458	Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 3533-3539.	1.0	36
5459	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 18431-18436.	4.0	12
5460	Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1198-1205.	8.8	33
5461	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
5462	A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 6349-6359.	5.2	28
5463	Comparing the excited-state properties of a mixed-cation–mixed-halide perovskite to methylammonium lead iodide. Journal of Chemical Physics, 2020, 152, 104703.	1.2	18
5464	Long Carrier Diffusion Length and Slow Hot Carrier Cooling in Thin Film Mixed Halide Perovskite. IEEE Journal of Photovoltaics, 2020, 10, 803-810.	1.5	16
5465	The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy and Environmental Science, 2020, 13, 1377-1407.	15.6	149
5467	A Polymerizationâ€Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907769.	11.1	161
5468	Photoinduced Anion Segregation in Mixed Halide Perovskites. Trends in Chemistry, 2020, 2, 282-301.	4.4	141
5469	Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A, 2020, 8, 6546-6554.	5.2	30

#	Article	IF	CITATIONS
5470	Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics, 2020, 3, 156-164.	13.1	126
5471	Optimization of efficient monolithic perovskite/silicon tandem solar cell. Optik, 2020, 208, 164573.	1.4	13
5472	On the Question of the Need for a Builtâ€In Potential in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000041.	1.9	79
5473	A Facile Airâ€Retreatment Strategy for Efficient Inverted Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000069.	1.2	4
5474	Large and Dense Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Wafer Fabricated by One-Step Reactive Direct Wafer Production with High X-ray Sensitivity. ACS Applied Materials & Interfaces, 2020, 12, 16592-16600.	4.0	94
5475	Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals. Nanoscale, 2020, 12, 8425-8431.	2.8	27
5476	In Situ Growth of MAPbBr ₃ Nanocrystals on Few‣ayer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	5.2	38
5477	Parallel Evaluation of the Bil ₃ , BiOI, and Ag ₃ Bil ₆ Layered Photoabsorbers. Chemistry of Materials, 2020, 32, 3385-3395.	3.2	48
5478	Hybrid Lead-Halide Polyelectrolytes as Interfacial Electron Extraction Layers in Inverted Organic Solar Cells. Polymers, 2020, 12, 743.	2.0	11
5479	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 3358-3368.	2.5	11
5480	lodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbl ₃ /MoS ₂ Interface. ACS Energy Letters, 2020, 5, 1346-1354.	8.8	53
5481	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. Nano Letters, 2020, 20, 3718-3727.	4.5	65
5482	Local Structure and Dynamics in Methylammonium, Formamidinium, and Cesium Tin(II) Mixed-Halide Perovskites from ¹¹⁹ Sn Solid-State NMR. Journal of the American Chemical Society, 2020, 142, 7813-7826.	6.6	66
5483	Mechanism of Crystal Formation in Ruddlesden–Popper Snâ€Based Perovskites. Advanced Functional Materials, 2020, 30, 2001294.	7.8	91
5484	Semitransparent Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1519-1531.	8.8	118
5485	Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy, 2020, 72, 104673.	8.2	78
5486	Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells. ACS Omega, 2020, 5, 6082-6089.	1.6	17
5487	Electrodeposition of CuI Thin Film for Perovskite Solar Cells. Materials Science Forum, 0, 979, 180-184.	0.3	1

#	Article	IF	CITATIONS
5488	A study of perovskite solar cell with a Fe ³⁺ /Ga ³⁺ doped TiO ₂ layer. Japanese Journal of Applied Physics, 2020, 59, SGGF05.	0.8	2
5489	Vacancy defect modulation in hot-casted NiO film for efficient inverted planar perovskite solar cells. Journal of Energy Chemistry, 2020, 48, 426-434.	7.1	44
5490	Optical design and optimization for back-contact perovskite solar cells. Solar Energy, 2020, 201, 84-91.	2.9	29
5491	A Selfâ€Assembled Smallâ€Moleculeâ€Based Holeâ€Transporting Material for Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 10276-10282.	1.7	19
5492	Reverse Manufacturing Enables Perovskite Photovoltaics to Reach the Carbon Footprint Limit of a Glass Substrate. Joule, 2020, 4, 882-901.	11.7	23
5493	Solution preparation of molybdenum oxide on graphene: a hole transport layer for efficient perovskite solar cells with a 1.12ÂV high open-circuit voltage. Journal of Materials Science: Materials in Electronics, 2020, 31, 6248-6254.	1.1	10
5494	Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4–decorated ZnO@ZnS core-shell structures. Chemical Engineering Journal, 2020, 393, 124681.	6.6	67
5495	Dopant-free X-shaped D-A type hole-transporting materials for p-i-n perovskite solar cells. Dyes and Pigments, 2020, 178, 108334.	2.0	16
5496	Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nature Communications, 2020, 11, 1245.	5.8	408
5497	Back-interface regulation for carbon-based perovskite solar cells. Carbon, 2020, 168, 372-391.	5.4	33
5498	Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells. ACS Photonics, 2020, 7, 1893-1907.	3.2	34
5499	Compositional study of mixed halide perovskite films CH3NH3Pb(I1-Br)3 and CH3NH3Pb(I1-Cl)3 prepared by close space sublimation. Materials Today Communications, 2020, 25, 101384.	0.9	6
5500	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	2.1	17
5501	The Characteristics of Perovskite Solar Cells Fabricated Using DMF and DMSO/GBL Solvents. Journal of Electronic Materials, 2020, 49, 6823-6828.	1.0	13
5502	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
5503	Impacts of the Hole Transport Layer Deposition Process on Buried Interfaces in Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100103.	2.8	17
5504	Metal-Free Hybrid Organic–Inorganic Perovskites for Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 5938-5947.	2.1	12
5505	Aryl Diammonium Iodide Passivation for Efficient and Stable Hybrid Organâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002366.	7.8	52

#	Article	IF	CITATIONS
5506	2D Perovskite Seeding Layer for Efficient Airâ€Processable and Stable Planar Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2003081.	7.8	48
5507	Enhanced performance of perovskite solar cells via laser-induced heat treatment on perovskite film. Solar Energy, 2020, 206, 301-307.	2.9	6
5508	The role of hafnium acetylacetonate buffer layer on the performance of lead halide perovskite solar cells derived from dehydrated lead acetate as Pb source. AIP Advances, 2020, 10, .	0.6	1
5509	Passivating Charged Defects with 1,6-Hexamethylenediamine To Realize Efficient and Stable Tin-Based Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 16289-16299.	1.5	29
5510	A hybrid structure light-emitting device based on a CsPbBr3 nanoplate and two-dimensional materials. Applied Physics Letters, 2020, 116, .	1.5	14
5511	Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 35740-35747.	4.0	31
5512	The correlation between phase transition and photoluminescence properties of CsPbX ₃ (X) Tj ETQq	0 0 0 rgBT 2.2	/Qyerlock 10
5513	Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861.	7.8	87
5514	Revealing the Aâ€5ite Effect of Leadâ€Free A ₃ Sb ₂ Br ₉ Perovskite in Photocatalytic C(sp ³)â^'H Bond Activation. Angewandte Chemie, 2020, 132, 18293-18296.	1.6	21
5515	Revealing the Aâ€6ite Effect of Leadâ€Free A ₃ Sb ₂ Br ₉ Perovskite in Photocatalytic C(sp ³)â^'H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 18136-18139.	7.2	56
5516	Lowâ€Temperature Crystallization of CsPblBr ₂ Perovskite for High Performance Solar Cells. Solar Rrl, 2020, 4, 2000254.	3.1	31
5517	A pressure process for efficient and stable perovskite solar cells. Nano Energy, 2020, 77, 105063.	8.2	35
5518	2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration. Solar Energy, 2020, 207, 270-288.	2.9	44
5519	Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials, 2020, 8, .	2.2	57
5520	Tunable electronic properties of TiO2 nanocrystals by in situ dopamine functionalization for planar perovskite solar cells. Electrochimica Acta, 2020, 354, 136720.	2.6	12
5521	Determination of albedo parameters of the organometallic halide perovskite films. Radiation Physics and Chemistry, 2020, 177, 109091.	1.4	3
5522	TiO2@PbTiO3 core-shell nanoparticles as mesoporous layer to improve electron transport performance in carbon-based perovskite solar cells. Materials Chemistry and Physics, 2020, 254, 123436.	2.0	8
5523	How Chloride Suppresses Photoinduced Phase Segregation in Mixed Halide Perovskites. Chemistry of Materials, 2020, 32, 6206-6212.	3.2	58

#	Article	IF	CITATIONS
5524	Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2498-2504.	8.8	90
5525	Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 13754-13762.	5.2	28
5526	Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 17068-17074.	1.3	20
5527	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	1.3	10
5528	Easy Strategy to Enhance Thermal Stability of Planar PSCs by Perovskite Defect Passivation and Low-Temperature Carbon-Based Electrode. ACS Applied Materials & Interfaces, 2020, 12, 32536-32547.	4.0	28
5529	Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Solar Energy, 2020, 206, 816-825.	2.9	86
5530	Comprehensive insights into defect passivation and charge dynamics for FA0.8MA0.15Cs0.05Pbl2.8Br0.2 perovskite solar cells. Applied Physics Letters, 2020, 117, .	1.5	7
5531	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	1.9	105
5532	Tetra and octa substituted Zn(II) and Cu(II) phthalocyanines: Synthesis, characterization and investigation as hole-transporting materials for inverted type-perovskite solar cells. Journal of Organometallic Chemistry, 2020, 922, 121419.	0.8	18
5533	Pressureâ€Suppressed Carrier Trapping Leads to Enhanced Emission in Twoâ€Dimensional Perovskite (HA) ₂ (GA)Pb ₂ 1 ₇ . Angewandte Chemie - International Edition, 2020, 59, 17533-17539.	7.2	71
5534	Hydrogen halide-free synthesis of organohalides for organometal trihalide perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2020, 89, 375-382.	2.9	5
5535	Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nature Chemistry, 2020, 12, 672-682.	6.6	120
5536	Cost-effective thiophene-assisted novel dopant-free hole transport materials for efficient perovskite solar cell performance. Sustainable Energy and Fuels, 2020, 4, 4754-4767.	2.5	15
5537	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie - International Edition, 2020, 59, 6909-6914.	7.2	123
5538	Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices. Nano Energy, 2020, 71, 104556.	8.2	51
5539	Improving electron extraction ability and suppressing recombination of planar perovskite solar cells with the triple cascade electron transporting layer. Solar Energy Materials and Solar Cells, 2020, 208, 110419.	3.0	5
5540	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie, 2020, 132, 6976-6981.	1.6	26
5541	Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy. Applied Surface Science, 2020, 513, 145596.	3.1	13

#	Article	IF	Citations
5542	Exploiting Electrical Transients to Quantify Charge Loss in Solar Cells. Joule, 2020, 4, 472-489.	11.7	53
5543	A Nonionic and Low-Entropic MA(MMA)nPbI3-Ink for Fast Crystallization of Perovskite Thin Films. Joule, 2020, 4, 615-630.	11.7	46
5544	Effect of annealing treatment on the properties of inverted solar cells based on mixed halide perovskite. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114000.	1.3	10
5545	First-Principles Study of Zinc Phthalocyanine Molecules Adsorbed on Methylammonium Lead Iodide Surfaces. Journal of Physical Chemistry C, 2020, 124, 5167-5173.	1.5	8
5546	Correlation between Charge Transport Length Scales and Dielectric Relaxation Time Constant in Hybrid Halide Perovskite Semiconductors. ACS Energy Letters, 2020, 5, 728-735.	8.8	17
5547	Verification of Type-A and Type-B-HC Blinking Mechanisms of Organic–Inorganic Formamidinium Lead Halide Perovskite Quantum Dots by FLID Measurements. Scientific Reports, 2020, 10, 2172.	1.6	12
5548	Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer. Journal of Materials Science, 2020, 55, 5681-5689.	1.7	16
5549	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	13.3	100
5550	Excitation wavelength dependence of photoluminescence flickering in degraded MAPbI3 perovskite and its connection to lead iodide formation. Journal of Luminescence, 2020, 222, 117129.	1.5	6
5551	Highly Efficient and Stable GABrâ€Modified Idealâ€Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small <i>V</i> _{oc} Deficit of 0.33 V. Advanced Materials, 2020, 32, e1908107.	11.1	101
5552	Two-dimensional organic–inorganic hybrid Ruddlesden–Popper perovskite materials: preparation, enhanced stability, and applications in photodetection. Sustainable Energy and Fuels, 2020, 4, 2087-2113.	2.5	36
5553	Liquid-like dielectric response is an origin of long polaron lifetime exceeding 10 μs in lead bromide perovskites. Journal of Chemical Physics, 2020, 152, 084704.	1.2	14
5554	Nested Inverse Opal Perovskite toward Superior Flexible and Selfâ€Powered Photodetection Performance. Advanced Materials, 2020, 32, e1906974.	11.1	56
5555	A Review and Perspective on Cathodoluminescence Analysis of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903840.	10.2	26
5556	Revealing the Role of Interfaces in Photocarrier Dynamics of Perovskite Films by Alternating Front/Back Side Excitation Time-Resolved Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 6290-6296.	1.5	25
5557	Enhanced photocurrent in heterostructures formed between CH ₃ NH ₃ PbI ₃ perovskite films and graphdiyne. Physical Chemistry Chemical Physics, 2020, 22, 6239-6246.	1.3	10
5558	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	2.8	40
5559	Over 1Âμm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells. Journal of Power Sources, 2020, 454, 227913.	4.0	31

ARTICLE IF CITATIONS High performance perovskite solar cells using multiple hole transport layer and modulated 5560 3 1.1 FAxMA1â[°]xPbI3 active layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 4135-4141. The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 19 perovskite. Communications Physics, 2020, 3, . A pressure-assisted annealing method for high quality CsPbBr₃ film deposited by 5562 1.7 20 sequential thermal evaporation. RSC Advances, 2020, 10, 8905-8909. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward 5563 182 electron-hole recombination. Science Advances, 2020, 6, eaaw7453. Airâ€Stable Highly Crystalline Formamidinium Perovskite 1D Structures for Ultrasensitive 5564 7.8 27 Photodetectors. Advanced Functional Materials, 2020, 30, 1908894. Radiation effects on the performance of flexible perovskite solar cells for space applications. 3.2 Emergent Materials, 2020, 3, 9-14. Constructing binary electron transport layer with cascade energy level alignment for efficient 5566 8.2 56 CsPbI2Br solar cells. Nano Energy, 2020, 71, 104604. Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface 15.6 44 re-crystallization. Energy and Environmental Science, 2020, 13, 840-847. Charge transfer dynamics in a singlet fission organic molecule and organometal perovskite bilayer 5568 5.2 16 structure. Journal of Materials Chemistry A, 2020, 8, 5572-5579. Vacuum-Induced Degradation of 2D Perovskites. Frontiers in Chemistry, 2020, 8, 66. 1.8 Imaging Carrier Dynamics and Transport in Hybrid Perovskites with Transient Absorption Microscopy. 5570 10.2 16 Advanced Energy Materials, 2020, 10, 1903781. Inverted pyramid Er3+ and Yb3+ Co-doped TiO2 nanorod arrays based perovskite solar cell: Infrared 2.3 24 response and improved current density. Ceramics International, 2020, 46, 12073-12079. Influence of substrate temperature on the chemical, microstructural and optical properties of spray deposited CH3NH3PbI3 perovskite thin films. Journal of Materials Research and Technology, 2020, 9, 5572 2.6 5 3411-3417. Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Amp; Interfaces, 2020, 12, 13941-13949. 4.0 Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. Nanoscale 5574 4.1 28 Horizons, 2020, 5, 847-856. Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 2020, 8, 5467-5475. Highâ€Performance CsPbl<i>_x</i>Br_{3â€}<i>_x</i>Allâ€Inorganic 5576 Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced 7.8 118 Functional Materials, 2020, 30, 2000457. Interfacing Lowâ€Temperature Atomic Layer Deposited TiO₂ Electron Transport Layers with 5577 Metal Electrodes. Advanced Materials Interfaces, 2020, 7, 1902054.

#	Article	IF	CITATIONS
5578	Two-dimensional cyclohexane methylamine based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201, 13-20.	2.9	7
5579	Effect of lithium bis(trifluoromethane)sulfonimide treatment on titanium dioxide-based electron transporting layer of perovskite solar cells. Thin Solid Films, 2020, 700, 137888.	0.8	2
5580	Is Formamidinium Always More Stable than Methylammonium?. Chemistry of Materials, 2020, 32, 2501-2507.	3.2	34
5581	Stable CsPbBr ₃ :Sn@SiO ₂ and Cs ₄ PbBr ₆ :Sn@SiO ₂ Core–Shell Quantum Dots with Tunable Color Emission for Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 3019-3027.	2.4	35
5582	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.	7.3	30
5584	EnhancingÂelectronÂtransportÂinÂperovskiteÂsolarÂcellsÂby incorporatingÂGOÂtoÂtheÂmeso-structuredÂTiO2Âlayer. Journal of Materials Science: Materials in Electronics, 2020, 31, 3603-3612.	1.1	7
5585	Comparative studies of optoelectrical properties of prominent PV materials: Halide perovskite, CdTe, and GaAs. Materials Today, 2020, 36, 18-29.	8.3	33
5586	Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry. Communications Chemistry, 2020, 3, .	2.0	26
5587	Excitons in Metalâ€Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903659.	10.2	240
5588	Microwave-Assisted Preparation of Organo-Lead Halide Perovskite Single Crystals. Crystal Growth and Design, 2020, 20, 1388-1393.	1.4	20
5589	Enhancing Device Performance in Quasi-2D Perovskite ((BA) ₂ (MA) ₃ Pb ₄ I ₁₃) Solar Cells Using PbCl ₂ Additives. ACS Applied Materials & Interfaces, 2020, 12, 11190-11196.	4.0	35
5590	Enhanced moisture stability of cesium lead iodide perovskite solar cells – a first-principles molecular dynamics study. Physical Chemistry Chemical Physics, 2020, 22, 5693-5701.	1.3	29
5591	First principles insight into the structural, electronic, optical and thermodynamic properties of CsPb2Br5 compound. Chemical Physics, 2020, 533, 110704.	0.9	7
5592	Interfacial and structural modifications in perovskite solar cells. Nanoscale, 2020, 12, 5719-5745.	2.8	39
5593	Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of Chemical Physics, 2020, 152, 064707.	1.2	12
5594	Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study. Solar Energy, 2020, 199, 198-205.	2.9	109
5595	Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials, 2020, 32, 1854-1863.	3.2	46
5596	A highly stable hole-conductor-free Cs MA1-PbI3 perovskite solar cell based on carbon counter electrode. Electrochimica Acta, 2020, 335, 135686.	2.6	16

#	Article	IF	CITATIONS
5597	An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115.	1.9	20
5598	Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Progress in Materials Science, 2020, 110, 100639.	16.0	38
5599	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
5600	Nanochemical Investigation of Degradation in Organic–Inorganic Hybrid Perovskite Films Using Infrared Nanoscopy. Journal of Physical Chemistry C, 2020, 124, 3915-3922.	1.5	12
5601	High-Efficiency Flexible Perovskite Solar Cells Enabled by an Ultrafast Room-Temperature Reactive Ion Etching Process. ACS Applied Materials & Interfaces, 2020, 12, 7125-7134.	4.0	8
5602	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	5.6	85
5603	Highly (100)-oriented CH3NH3PbI3 thin film fabricated by bar-coating method and its additive effect of ammonium chloride. Solar Energy Materials and Solar Cells, 2020, 208, 110409.	3.0	12
5604	Light-Induced Defect Healing and Strong Many-Body Interactions in Formamidinium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1239-1246.	2.1	18
5605	Effective Management of Nucleation and Crystallization Processes in Perovskite Formation via Facile Control of Antisolvent Temperature. ACS Applied Energy Materials, 2020, 3, 1506-1514.	2.5	34
5606	Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires. Nature Communications, 2020, 11, 489.	5.8	70
5607	Single crystals of mixed Br/Cl and Sn-doped formamidinium lead halide perovskites <i>via</i> inverse temperature crystallization. RSC Advances, 2020, 10, 3832-3836.	1.7	18
5608	Stable and Highâ€Efficiency Methylammoniumâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905502.	11.1	131
5609	Precise control of Pbl2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochimica Acta, 2020, 338, 135697.	2.6	25
5610	Microfluidic solution-processed organic and perovskite nanowires fabricated for field-effect transistors and photodetectors. Journal of Materials Chemistry C, 2020, 8, 2353-2362.	2.7	17
5611	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasiâ€Core–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
5612	Solventâ€Free Mechanochemical Synthesis of a Systematic Series of Pureâ€Phase Mixedâ€Halide Perovskites MAPb(I _{<i>x</i>} Br _{1â[°]<i>x</i>}) ₃ and MAPb(Br _{<i>x</i>} Cl _{1â[°]<i>x</i>}) ₃ for Continuous Composition and Bandâ€Gap Tuning, ChemPlusChem, 2020, 85, 240-246.	1.3	15
5613	Large-area, green solvent spray deposited nickel oxide films for scalable fabrication of triple-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 3357-3368.	5.2	52
5614	Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. Journal of Energy Chemistry, 2020, 48, 217-225.	7.1	45

#	Article	IF	CITATIONS
5615	Recent advances in defect passivation of perovskite active layer via additive engineering: a review. Journal Physics D: Applied Physics, 2020, 53, 183002.	1.3	15
5616	26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE Journal of Photovoltaics, 2020, 10, 417-422.	1.5	40
5617	1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation. Advanced Energy Materials, 2020, 10, 1902472.	10.2	98
5618	Xâ€Ray Microscopy of Halide Perovskites: Techniques, Applications, and Prospects. Advanced Energy Materials, 2020, 10, 1903170.	10.2	49
5619	Engineering Multiphase Metal Halide Perovskites Thin Films for Stable and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 1903221.	10.2	16
5620	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	10.2	202
5622	Recycled Utilization of a Nanoporous Au Electrode for Reduced Fabrication Cost of Perovskite Solar Cells. Advanced Science, 2020, 7, 1902474.	5.6	26
5623	Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future. Advanced Energy Materials, 2020, 10, 1903403.	10.2	192
5624	Relationship between the Nature of Monovalent Cations and Charge Recombination in Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 1298-1304.	2.5	11
5625	Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite. ACS Energy Letters, 2020, 5, 785-792.	8.8	20
5626	The role of photon recycling in perovskite light-emitting diodes. Nature Communications, 2020, 11, 611.	5.8	121
5627	Soft Lattice and Defect Covalency Rationalize Tolerance of β sPbI ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie - International Edition, 2020, 59, 6435-6441.	7.2	147
5628	Highâ€Performance Perovskite Solar Cells Using Iodine as Effective Dopant for Spiroâ€OMeTAD. Energy Technology, 2020, 8, 1901171.	1.8	14
5629	Two-Dimensional BAs/InTe: A Promising Tandem Solar Cell with High Power Conversion Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 6074-6081.	4.0	32
5630	Temperature and Gate Dependence of Carrier Diffusion in Single Crystal Methylammonium Lead Iodide Perovskite Microstructures. Journal of Physical Chemistry Letters, 2020, 11, 1000-1006.	2.1	12
5631	Anti-solvent free fabrication of FA-Based perovskite at low temperature towards to high performance flexible perovskite solar cells. Nano Energy, 2020, 70, 104505.	8.2	35
5632	Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells. Nano Energy, 2020, 70, 104509.	8.2	67
5633	Nonaromatic Greenâ€Solventâ€Processable, Dopantâ€Free, and Leadâ€Capturable Hole Transport Polymers in Perovskite Solar Cells with High Efficiency. Advanced Energy Materials, 2020, 10, 1902662.	10.2	141

#	Article	IF	CITATIONS
5634	p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 1393-1401.	2.5	60
5635	Effect of bromine deficiency on large elastic moduli of alpha-phase diisopropyl ammonium bromide (α-DIPAB) molecular crystals. European Physical Journal B, 2020, 93, 1.	0.6	4
5636	Bias voltage-dependent photoinduced current and photoluminescence in organometal perovskite layers on silicon substrates. Physica B: Condensed Matter, 2020, 582, 412025.	1.3	2
5637	Boosting Photovoltaic Performance and Stability of Super-Halogen-Substituted Perovskite Solar Cells by Simultaneous Methylammonium Immobilization and Vacancy Compensation. ACS Applied Materials & Interfaces, 2020, 12, 8249-8259.	4.0	19
5638	Introduction of Multifunctional Triphenylamino Derivatives at the Perovskite/HTL Interface To Promote Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9300-9306.	4.0	53
5639	Impact of Diethyl Ether Dripping Delay Time on the Electronic Structure of Methylammonium Lead Triiodide Perovskite Film. Journal of the Korean Physical Society, 2020, 76, 162-166.	0.3	2
5640	Enhancing the stability of perovskites by constructing heterojunctions of graphene/MASnI ₃ . Physical Chemistry Chemical Physics, 2020, 22, 3724-3733.	1.3	6
5641	Quantifying Chargeâ€Carrier Mobilities and Recombination Rates in Metal Halide Perovskites from Timeâ€Resolved Microwave Photoconductivity Measurements. Advanced Energy Materials, 2020, 10, 1903788.	10.2	43
5642	Balanced strain-dependent carrier dynamics in flexible organic–inorganic hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 3374-3379.	2.7	20
5643	High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings, 2020, 10, 127.	1.2	9
5644	Soft Lattice and Defect Covalency Rationalize Tolerance of β sPbl ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie, 2020, 132, 6497-6503.	1.6	8
5645	Interdigitated Hierarchical Integration of an Efficient Lateral Perovskite Singleâ€Crystal Solar Cell. ChemSusChem, 2020, 13, 1882-1889.	3.6	10
5646	Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films. Journal of Luminescence, 2020, 221, 117092.	1.5	30
5647	The nature of the methylamine–MAPbI ₃ complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 2020, 8, 9788-9796.	5.2	28
5648	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	5.2	159
5649	Influence of Chloride/Iodide Ratio in MAPbI3-xClx Perovskite Solar Devices: Case of Low Temperature Processable AZO Sub-Layer. Energies, 2020, 13, 1927.	1.6	11
5650	Fluoroaromatic Cationâ€Assisted Planar Junction Perovskite Solar Cells with Improved <i>V</i> _{OC} and Stability: The Role of Fluorination Position. Solar Rrl, 2020, 4, 2000107.	3.1	68
5651	Organic-inorganic hybrid halide perovskites impregnated with Group 1 and 15 elements for solar cell application. Journal of Physics and Chemistry of Solids, 2020, 144, 109518.	1.9	10

#	Article	IF	CITATIONS
5652	Promoting Thermodynamic and Kinetic Stabilities of FA-based Perovskite by an in Situ Bilayer Structure. Nano Letters, 2020, 20, 3864-3871.	4.5	49
5653	Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7, 1901-1911.	6.4	68
5654	First-principles mechanism study on distinct optoelectronic properties of Cl-doped 2D hybrid tin iodide perovskite. Journal of Materials Chemistry C, 2020, 8, 9540-9548.	2.7	21
5655	Nanoscale spatial mapping of charge carrier dynamics in perovskite solar cells. Nano Today, 2020, 33, 100874.	6.2	21
5656	Visualizing the role of photoinduced ion migration on photoluminescence in halide perovskite grains. Journal of Materials Chemistry C, 2020, 8, 7509-7518.	2.7	14
5657	Ultrafast Responsive Nonâ€Volatile Flash Photomemory via Spatially Addressable Perovskite/Block Copolymer Composite Film. Advanced Functional Materials, 2020, 30, 2000764.	7.8	61
5658	Beyond Perovskite Solar Cells: Tellurium Iodide as a Promising Lightâ€Absorbing Material for Solutionâ€Processed Photovoltaic Application. Chemistry - an Asian Journal, 2020, 15, 1505-1509.	1.7	3
5659	A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000033.	3.1	22
5660	Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13, 1156-1161.	5.8	17
5661	å¡«è¡¥ç¢~空ä¼2抑å^¶Î-HC(NH2)2Pbl3ç›,以å^¶åÞé«~æ•^å¤é~³ç"µæ±. Science China Materials, 2020, 63, 1015-1	0235	20
5662	Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.	9.5	21
5663	Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chemical Engineering Journal, 2020, 394, 124959.	6.6	33
5664	Solution-processed p-type nanocrystalline CoO films for inverted mixed perovskite solar cells. Journal of Colloid and Interface Science, 2020, 573, 78-86.	5.0	19
5665	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
5666	Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy, 2020, 73, 104752.	8.2	58
5667	Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics, 2020, 83, 105729.	1.4	7
5668	Enhanced stability and performance of poly(4-vinylpyridine) modified perovskite solar cell with quaternary semiconductor Cu2MSnS4 (M= Co2+, Ni2+, Zn2+) as hole transport materials. Solar Energy Materials and Solar Cells, 2020, 211, 110538.	3.0	16
5669	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	3.0	36

#	Article	IF	CITATIONS
5670	Perovskite hybrid evaporation/ spin coating method: From band gap tuning to thin film deposition on textures. Thin Solid Films, 2020, 704, 137970.	0.8	22
5671	Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 9611-9621.	1.5	21
5672	Transferable High-Quality Inorganic Perovskites for Optoelectronic Devices by Weak Interaction Heteroepitaxy. ACS Applied Materials & Interfaces, 2020, 12, 19674-19681.	4.0	12
5673	Carrier Diffusion Lengths Exceeding 1 μm Despite Trap-Limited Transport in Halide Double Perovskites. ACS Energy Letters, 2020, 5, 1337-1345.	8.8	58
5674	Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nature Communications, 2020, 11, 1672.	5.8	191
5675	High-performance blue perovskite light-emitting diodes based on the "far-field plasmonic effect―of gold nanoparticles. Journal of Materials Chemistry C, 2020, 8, 6615-6622.	2.7	11
5676	Two-dimensional Ruddlesden–Popper layered perovskite for light-emitting diodes. APL Materials, 2020, 8, 040901.	2.2	16
5677	A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 2020, 6, eaaz4948.	4.7	129
5678	Influence of Film Thickness on the Electronic Band Structure and Optical Properties of P–I–N CH ₃ NH ₃ PbI _{3â^'<i>x</i>} Cl _{<i>x</i>} Perovskite Solar Cells. Advanced Engineering Materials, 2020, 22, 2000185.	1.6	10
5679	Raman Scattering Studies of the Structural Phase Transitions in Single-Crystalline CH ₃ NH ₃ PbCl ₃ . Journal of Physical Chemistry Letters, 2020, 11, 3773-3781.	2.1	18
5680	Effect of A-Site Cation on Photoluminescence Spectra of Single Lead Bromide Perovskite Nanocrystals. Nano Letters, 2020, 20, 4022-4028.	4.5	29
5681	Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Advances, 2020, 10, 14856-14866.	1.7	18
5682	Coexistence of light-induced photoluminescence enhancement and quenching in CH ₃ NH ₃ PbBr ₃ perovskite films. RSC Advances, 2020, 10, 11054-11059.	1.7	5
5683	Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000183.	10.2	231
5684	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	1.9	34
5685	Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Optical Materials, 2020, 105, 109897.	1.7	74
5686	Opportunity of the Lead-Free All-Inorganic Cs ₃ Cu ₂ I ₅ Perovskite Film for Memristor and Neuromorphic Computing Applications. ACS Applied Materials & Interfaces, 2020, 12, 23094-23101.	4.0	132
5687	Exciton diffusion in two-dimensional metal-halide perovskites. Nature Communications, 2020, 11, 2035.	5.8	113

#	Article	IF	CITATIONS
5688	Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 2020, 49, 2869-2885.	18.7	282
5689	The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. Journal of Power Sources, 2020, 463, 228210.	4.0	19
5690	Coreâ€Twisted Tetrachloroperylenediimides: Low ost and Efficient Nonâ€Fullerene Organic Electronâ€Transporting Materials for Inverted Planar Perovskite Solar Cells. ChemSusChem, 2020, 13, 3686-3695.	3.6	7
5691	Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 3546-3556.	2.1	132
5692	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	6.6	26
5693	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
5694	Morphology Control of Doped Spiroâ€MeOTAD Films for Air Stable Perovskite Solar Cells. Small, 2020, 16, e1907513.	5.2	16
5695	The influence of fullerene on hysteresis mechanism in planar perovskite solar cells. Chemical Physics Letters, 2020, 750, 137443.	1.2	5
5696	Connecting Femtosecond Transient Absorption Microscopy with Spatially Coregistered Time Averaged Optical Imaging Modalities. Journal of Physical Chemistry A, 2020, 124, 3915-3923.	1.1	4
5697	Ultrafast Carrier Dynamics in 2D CdSe Nanoplatelets–CsPbX ₃ Composites: Influence of the Halide Composition. Journal of Physical Chemistry C, 2020, 124, 10252-10260.	1.5	30
5698	17% efficient perovskite solar mini-module <i>via</i> hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating. Journal of Materials Chemistry A, 2020, 8, 9345-9354.	5.2	44
5699	High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116, .	1.5	102
5700	Vaporâ€Đeposited Cs ₂ AgBiCl ₆ Double Perovskite Films toward Highly Selective and Stable Ultraviolet Photodetector. Advanced Science, 2020, 7, 1903662.	5.6	64
5701	The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903735.	10.2	117
5702	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX 3 Perovskite Nanoplates. Angewandte Chemie, 2020, 132, 11598-11606.	1.6	3
5703	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX ₃ Perovskite Nanoplates. Angewandte Chemie - International Edition, 2020, 59, 11501-11509.	7.2	22
5704	Recent Advances and Optoelectronic Applications of Leadâ€Free Halide Double Perovskites. Chemistry - A European Journal, 2020, 26, 16975-16984.	1.7	38
5705	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43

		CITATION REPORT		
#	Article		IF	Citations
5706	Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technol	ology, 2020, , .	0.4	5
5707	Dielectric relaxation and charge conduction mechanism in mechanochemically synthes methylammonium bismuth iodide. Journal of Materials Science: Materials in Electronic 8670-8679.	sized s, 2020, 31,	1.1	16
5708	Highly stable and efficient perovskite solar cells produced via high-boiling point solven engineering synergistically. Science China Chemistry, 2020, 63, 818-826.	ts and additive.	4.2	11
5709	Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interfac coupling. Journal of Alloys and Compounds, 2020, 831, 154717.	ce electronic	2.8	28
5710	Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1Snnl insight by first principles. Journal of Physics and Chemistry of Solids, 2020, 144, 1095		1.9	3
5711	The diverse passivation effects of fullerene derivative on hysteresis behavior for norma perovskite solar cells. Journal of Power Sources, 2020, 461, 228156.	l and inverted	4.0	4
5712	Embedding of WO3 nanocrystals with rich oxygen-vacancies in solution processed per improved photovoltaic performance. Journal of Power Sources, 2020, 461, 228175.	rovskite film for	4.0	17
5713	In situ observation of \hat{l}' phase suppression by lattice strain in all-inorganic perovskite se Energy, 2020, 73, 104803.	olar cells. Nano	8.2	32
5714	Enhanced photovoltaic performance and stability of perovskite solar cells by interface with poly(4-vinylpyridine) and Cu2ZnSnS4&CNT. Solar Energy, 2020, 201, 908-92		2.9	16
5715	Combustion-processed NiO/ALD TiO2 bilayer as a novel low-temperature electron tran material for efficient all-inorganic CsPbIBr2 solar cell. Solar Energy, 2020, 203, 10-18.	sporting	2.9	12
5716	Designing the Perovskite Structural Landscape for Efficient Blue Emission. ACS Energy 1593-1600.	[,] Letters, 2020, 5,	8.8	71
5717	Stacking Effects on Electron–Phonon Coupling in Layered Hybrid Perovskites <i>via Manipulation. ACS Nano, 2020, 14, 5806-5817.</i>	Microstrain	7.3	50
5718	Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Am Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7132-7138.	bient	3.2	11
5719	Machine-learning structural and electronic properties of metal halide perovskites using hierarchical convolutional neural network. Npj Computational Materials, 2020, 6, .	g a	3.5	93
5720	Interfacing green synthesized flake like-ZnO with TiO ₂ for bilayer electron perovskite solar cells. New Journal of Chemistry, 2020, 44, 8422-8433.	n extraction in	1.4	22
5721	Synchronous surface and bulk composition management for red-shifted light absorption suppressed interfacial recombination in perovskite solar cells. Journal of Materials Che 8, 9743-9752.		5.2	22
5722	Self-driven all-inorganic perovskite microplatelet vertical Schottky junction photodetec tunable spectral response. Journal of Materials Chemistry C, 2020, 8, 6804-6812.	ctors with a	2.7	29
5723	Improvement of the stability of perovskite solar cells in terms of humidity/heat via con engineering. Journal Physics D: Applied Physics, 2020, 53, 285501.	npositional	1.3	12

#	Article	IF	CITATIONS
5724	Ligandâ€Modulated Excess PbI ₂ Nanosheets for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000865.	11.1	136
5725	A timeâ€dependent density functional study on optical response in allâ€inorganic leadâ€halide perovskite nanostructures. International Journal of Quantum Chemistry, 2020, 120, e26232.	1.0	6
5726	Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211, 110532.	3.0	11
5727	α-DTC ₇₀ fullerene performs significantly better than β-DTC70 as electron transporting material in perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 6813-6819.	2.7	5
5728	Fabrication of perovskite solar cells in ambient conditions. Materials Today: Proceedings, 2021, 34, 654-657.	0.9	3
5729	Lowâ€Temperature Processed Carbon Electrodeâ€Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energy and Environmental Materials, 2021, 4, 95-102.	7.3	23
5730	Groups-dependent phosphines as the organic redox for point defects elimination in hybrid perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 23-29.	7.1	18
5731	Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12746-12757.	1.1	59
5732	Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 84-91.	7.1	95
5733	Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54, 770-785.	7.1	75
5734	All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Science China Materials, 2021, 64, 198-208.	3.5	37
5735	Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. Journal of Energy Chemistry, 2021, 55, 265-271.	7.1	50
5736	Numerical modeling and simulation for augmenting the photovoltaic response of HTL free perovskite solar cells. Materials Today: Proceedings, 2021, 46, 6367-6373.	0.9	10
5737	Effect of temperature on the performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12784-12792.	1.1	44
5738	Molecular‣evel Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity. Small Methods, 2021, 5, e2000834.	4.6	30
5739	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2005776.	7.8	273
5740	Synergistic effect of MACI and DMF towards efficient perovskite solar cells. Organic Electronics, 2021, 88, 106005.	1.4	7
5741	Sodium Benzenesulfonate Modified Poly (3,4â€Ethylenedioxythiophene):Polystyrene Sulfonate with Improved Wettability and Work Function for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, .	3.1	51

#	Article	IF	CITATIONS
5742	Sequential Formation of Tunableâ€Bandgap Mixedâ€Halide Leadâ€Based Perovskites: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, .	3.1	15
5743	Evaluation of the optical properties of the lead-free mixed-halide iron perovskite CH3NH3FeI2Br for application in solar cells: A computational study. Materials Today Communications, 2021, 26, 101847.	0.9	2
5744	Developing D–π–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance. Materials Chemistry Frontiers, 2021, 5, 876-884.	3.2	33
5745	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	7.8	43
5746	Perovskite Passivation Strategies for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, .	3.1	23
5747	Thin films for planar solar cells of organic-inorganic perovskite composites. , 2021, , 95-115.		1
5748	Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. Chemical Engineering Journal, 2021, 420, 127579.	6.6	14
5749	Fabrication of perovskite solar cells using novel <scp>2D</scp> / <scp>3D</scp> â€blended perovskite single crystals. International Journal of Energy Research, 2021, 45, 5555-5566.	2.2	11
5750	Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%. Journal of Power Sources, 2021, 481, 229160.	4.0	43
5751	Simple hole-transporting materials containing twin-carbazole moiety and unconjugated flexible linker for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 405, 126434.	6.6	21
5752	Advanced Characterization Techniques for Overcoming Challenges of Perovskite Solar Cell Materials. Advanced Energy Materials, 2021, 11, 2001753.	10.2	29
5753	Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 2021, 31, 2006243.	7.8	71
5754	Highly Thermostable and Efficient Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 856-864.	7.2	75
5755	<scp>Firstâ€principles</scp> spectroscopic screening of hybrid perovskite (<scp> CH ₃ CH) Tj ETQ potential photovoltaic absorber. International Journal of Energy Research, 2021, 45, 908-919.</scp>	q1 1 0.78 2.2	4314 rgBT / 12
5756	Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer. Journal of Alloys and Compounds, 2021, 851, 156785.	2.8	21
5757	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.	6.9	43
5758	Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds. Science Bulletin, 2021, 66, 339-346.	4.3	23
5759	Compositional effect on water adsorption on metal halide perovskites. Applied Surface Science, 2021, 538, 148058.	3.1	30

#	Article	IF	CITATIONS
5760	Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion. Journal of Materials Science and Technology, 2021, 73, 9-22.	5.6	13
5761	Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer. Chemical Engineering Journal, 2021, 405, 126712.	6.6	42
5762	Perovskite – A wonder catalyst for solar hydrogen production. Journal of Energy Chemistry, 2021, 57, 325-340.	7.1	39
5763	Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 219, 110776.	3.0	29
5764	Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells. Rare Metals, 2021, 40, 1698-1707.	3.6	21
5765	A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability. Organic Electronics, 2021, 88, 105987.	1.4	5
5766	Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells. Solar Energy Materials and Solar Cells, 2021, 220, 110843.	3.0	24
5767	Effects of guanidinium cations on structural, optoelectronic and photovoltaic properties of perovskites. Journal of Energy Chemistry, 2021, 58, 48-54.	7.1	21
5768	Hybrid organolead halide perovskite microwire arrays/single CdSe nanobelt for a high-performance photodetector. Chemical Engineering Journal, 2021, 406, 126779.	6.6	18
5769	Composition optimization of lead-free double perovskite Cs2AgIn1-xBixCl6 for efficient and stable photoluminescence. Journal of Alloys and Compounds, 2021, 854, 156930.	2.8	15
5770	Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation. Journal of Energy Chemistry, 2021, 56, 455-462.	7.1	31
5771	A charge-separated interfacial hole transport semiconductor for efficient and stable perovskite solar cells. Organic Electronics, 2021, 88, 105988.	1.4	4
5772	Highly Thermostable and Efficient Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 869-877.	1.6	12
5773	Recent advances in semitransparent perovskite solar cells. InformaÄnÃ-Materiály, 2021, 3, 101-124.	8.5	55
5774	Surface structures and equilibrium shapes of layered 2D Ruddlesden-Popper perovskite crystals from density functional theory calculations. Materials Today Communications, 2021, 26, 101745.	0.9	5
5775	A 2D Model for Interfacial Recombination in Mesoscopic Perovskite Solar Cells with Printed Back Contact. Solar Rrl, 2021, 5, 2000595.	3.1	19
5776	Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy and Environmental Science, 2021, 14, 224-261.	15.6	94
5777	Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. ChemSusChem, 2021, 14, 512-538.	3.6	38

#	Article	IF	CITATIONS
5778	Novel thieno-imidazole salt-based hole transport material for dopant-free, efficient inverted perovskite solar cell applications. Journal of Power Sources, 2021, 483, 229177.	4.0	9
5779	High-performance and stable inverted perovskite solar cells using low-temperature solution-processed CuNbOx hole transport layer. Journal of Power Sources, 2021, 483, 229194.	4.0	12
5780	Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 866, 158079.	2.8	9
5781	Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Materials Today Energy, 2021, 19, 100590.	2.5	14
5782	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics. Nano Energy, 2021, 81, 105634.	8.2	48
5783	Distinctive Bulk- and Surface-Specific Photoluminescence and Photocarrier Dynamics in CH ₃ NH ₃ Pbl ₃ Perovskite. Crystal Growth and Design, 2021, 21, 45-51.	1.4	9
5784	Structural, electronic and optical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi (AA= K, Cs, and Rb) for photovoltaic applications: First-principles calculation. Computational</mml:mi </mml:mrow></mml:math 	i> Sa./mml: :	mi s <mml:mi></mml:mi>
5785	Condensed Matter, 2021, 26, e00520. Morphology and Crystallinity Amelioration of MAPbI 3 Perovskite in Virtue of PbI 2 Thermal Absorption Drifted Performance Enhancement in Planer n–i–p Solar Cells. Advanced Engineering Materials, 2021, 23, 2000990.	1.6	7
5786	Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical Materials, 2021, 9, 2001637.	3.6	40
5787	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> â€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 2000650.	3.1	7
5788	Compositionally Designed 2D Ruddlesden–Popper Perovskites for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2000661.	3.1	8
5789	Recent advances in resistive random access memory based on lead halide perovskite. InformaÄnÃ- Materiály, 2021, 3, 293-315.	8.5	70
5790	A spiro-OMeTAD based semiconductor composite with over 100°C glass transition temperature for durable perovskite solar cells. Nano Energy, 2021, 81, 105655.	8.2	41
5791	In CH ₃ NH ₃ PbI ₃ Perovskite Film, the Surface Termination Layer Dominates the Moisture Degradation Pathway. Chemistry - A European Journal, 2021, 27, 3729-3736.	1.7	10
5792	High Efficiency Perovskite Solar Cells Exceeding 22% via a Photoâ€Assisted Two‧tep Sequential Deposition. Advanced Functional Materials, 2021, 31, 2006718.	7.8	33
5793	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
5794	Investigation of bulk carrier diffusion dynamics using β-Mn2V2â^'xMoxO7 photoanodes in solar water splitting. Applied Surface Science, 2021, 540, 148376.	3.1	6
5795	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	3.1	34

#	Article	IF	Citations
5796	Preparation and properties of optoelectronic conversion films of perovskite modified by octadecyl-trichloro silane. Organic Electronics, 2021, 88, 106028.	1.4	1
5797	Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells. Annual Review of Condensed Matter Physics, 2021, 12, 95-109.	5.2	25
5798	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
5799	Lack of Photon Antibunching Supports Supertrap Model of Photoluminescence Blinking in Perovskite Subâ€Micrometer Crystals. Advanced Optical Materials, 2021, 9, 2001596.	3.6	17
5800	Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Applied Catalysis B: Environmental, 2021, 284, 119751.	10.8	46
5801	Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021, 9, 1372-1394.	5.2	43
5802	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .	1.0	15
5803	Effect of organic cation composition and halogen atom type on 2D-layered organic–inorganic hybrids for luminescent solar concentrator. Journal of Materials Science: Materials in Electronics, 2021, 32, 12939-12950.	1.1	7
5804	Alternative approach for efficient hole transporting electrode by depositing MWCNT layer on CZTS-MWCNT material for perovskite solar cell application. Optical Materials, 2021, 111, 110612.	1.7	5
5805	Morphology control of perovskite film for efficient CsPbIBr2 based inorganic perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110878.	3.0	24
5806	One-step method for the fabrication of high-quality perovskite thin-films under ambient conditions: Stability, morphological, optical, and electrical evaluation. Thin Solid Films, 2021, 717, 138438.	0.8	2
5807	Roles of Organic Molecules in Inorganic CsPbX ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, .	10.2	63
5808	Improving photovoltaic effect of inorganic perovskite by resistive switching using various electrode materials. Journal of Alloys and Compounds, 2021, 859, 157767.	2.8	0
5809	Highly efficient and stable perovskite solar cells produced by maximizing additive engineering. Sustainable Energy and Fuels, 2021, 5, 469-477.	2.5	8
5810	Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110870.	3.0	12
5811	Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule, 2021, 5, 467-480.	11.7	245
5812	Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. Journal of Power Sources, 2021, 485, 229313.	4.0	82
5813	Anti-solvent mixture-mediated reduction of photocurrent hysteresis in high-impurity perovskite precursor based MAPbI3 solar cells. Solar Energy, 2021, 214, 86-92.	2.9	19

#	Article	IF	CITATIONS
5814	The atomic-level structure of bandgap engineered double perovskite alloys Cs ₂ AgIn _{1â^'<i>x</i>} Fe _{<i>x</i>} Cl ₆ . Chemical Science, 2021, 12, 1730-1735.	3.7	34
5815	Optoelectronic and <scp>photoâ€charging</scp> properties of <scp> CH ₃ NH ₃ Pbl ₃ 3 3 </scp>	2.2	4
5816	Photovoltaic Performance Enhancement of Allâ€Inorganic CsPbBr 3 Perovskite Solar Cells Using In 2 S 3 as Electron Transport Layer via Facile Refluxâ€Condensation Process. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000665.	0.8	4
5817	Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. Journal of Materials Chemistry A, 2021, 9, 2612-2627.	5.2	17
5818	Synergistically Enhanced Amplified Spontaneous Emission by Cd Doping and Clâ€Assisted Crystallization. Advanced Optical Materials, 2021, 9, 2001825.	3.6	2
5819	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 2021, 1, 100001.	1.7	54
5820	Bifunctional Interfacial Modification Engineering with Biomimetic Perfluoro-Copolymer-Enabled High-Efficiency and Moisture-Resistant Perovskite Solar Cells. ACS Applied Electronic Materials, 2021, 3, 238-247.	2.0	6
5821	Lowâ€Dimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	11.1	319
5822	Carrier diffusion coefficient is independent of defects in CH3NH3PbBr3 single crystals: Direct evidence. Journal of Energy Chemistry, 2021, 58, 441-445.	7.1	2
5823	Discrete composition control of two-dimensional morphologic all-inorganic metal halide perovskite nanocrystals. Journal of Energy Chemistry, 2021, 59, 257-275.	7.1	15
5824	Fabrication of lead iodide perovskite solar cells by incorporating zirconium, indium and zinc metal-organic frameworks. Solar Energy, 2021, 214, 138-148.	2.9	14
5825	All-inorganic CsPbBr ₃ perovskite: a promising choice for photovoltaics. Materials Advances, 2021, 2, 646-683.	2.6	100
5826	Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 67-76.	2.7	171
5827	Evidence of improved power conversion efficiency in lead-free CsGel3 based perovskite solar cell heterostructure via <scp>scaps</scp> simulation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	75
5828	Enhanced efficiency and stability of planar perovskite solar cells using SnO2:InCl3 electron transport layer through synergetic doping and passivation approaches. Chemical Engineering Journal, 2021, 407, 127997.	6.6	65
5829	Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 2021, 6, 232-248.	8.8	89
5830	Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000652.	3.1	4
5831	Large-area perovskite films for PV applications: A perspective from nucleation and crystallization. Journal of Energy Chemistry, 2021, 59, 626-641.	7.1	11

#	Article	IF	CITATIONS
5832	Ampholytic interface induced <i>in situ</i> growth of CsPbBr ₃ for highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 1025-1033.	2.7	10
5833	Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). Materials Science in Semiconductor Processing, 2021, 122, 105484.	1.9	67
5834	Layer Edge States Stabilized by Internal Electric Fields in Two-Dimensional Hybrid Perovskites. Nano Letters, 2021, 21, 182-188.	4.5	14
5835	Efficient, Hysteresisâ€Free, and Flexible Inverted Perovskite Solar Cells Using Allâ€Vacuum Processing. Solar Rrl, 2021, 5, .	3.1	33
5836	Photo-degradation organic dyes by Sb-based organic-inorganic hybrid ferroelectrics. Journal of Environmental Sciences, 2021, 101, 145-155.	3.2	8
5837	Urea-complexed tin oxide as an electron transporting layer for stable and efficient planar perovskite solar cells. Materials Science in Semiconductor Processing, 2021, 123, 105511.	1.9	3
5838	CsPbBrl2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics. Science Bulletin, 2021, 66, 347-353.	4.3	38
5839	Study of antimony selenide hole-transport material for Mo/Sb2Se3/MAPbI3/C60/GZO/Ag heterojunction planar solar cells. Surface and Coatings Technology, 2021, 405, 126550.	2.2	5
5840	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	7.8	37
5841	Electronic, optical, and thermoelectric properties of perovskite variants <scp> A ₂ BX ₆ </scp> : Insight and design via firstâ€principles calculations. International Journal of Energy Research, 2021, 45, 4495-4507.	2.2	35
5842	Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Materials Science in Semiconductor Processing, 2021, 123, 105541.	1.9	27
5843	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	4.6	63
5844	Low-temperature processed, stable n-i-p perovskite solar cells with indene-C60-bisadduct as electron transport material. Journal of Materials Science: Materials in Electronics, 2021, 32, 12872-12880.	1.1	1
5845	An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices. International Journal of Energy Research, 2021, 45, 1496-1516.	2.2	14
5846	Reduced graphene oxide in perovskite solar cells: the influence on film formation, photophysics, performance, and stability. Journal of Materials Chemistry C, 2021, 9, 14648-14658.	2.7	9
5847	KF-Doped SnO ₂ as an electron transport layer for efficient inorganic CsPbl ₂ Br perovskite solar cells with enhanced open-circuit voltages. Journal of Materials Chemistry C, 2021, 9, 4240-4247.	2.7	28
5848	Elucidation of Quantum-Well-Specific Carrier Mobilities in Layered Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 1116-1123.	2.1	9
5849	Nanometer-thick [(FPEA) ₂ PbX ₄ ; X = I and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Materials Advances, 2021, 2, 5712-5722.	2.6	5

#	Article	IF	Citations
5850	Improving the Efficiency and Stability of Organic-Inorganic Hybrid Perovskite Solar Cells by Absorption Layer Ion Doping. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0
5851	Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 087303.	0.2	2
5852	Hybrid Lead Halide Perovskite Films with Large Grain Size Via Spinâ€Coating Free Fabrication. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000650.	0.8	1
5853	A perovskite single crystal with one-dimensional structure enables photodetection with negligible hysteresis. Journal of Materials Chemistry C, 2021, 9, 3470-3476.	2.7	6
5854	The effect of bromide precursor on the properties of organolead halide perovskite for solar cell fabricated under ambient condition. Journal of Materials Science: Materials in Electronics, 2021, 32, 3797-3808.	1.1	0
5855	Structural Phase Transitions of Hybrid Perovskites CH3NH3PbX3 (XÂ=ÂBr, Cl) from Synchrotron and Neutron Diffraction Data. , 0, , .		1
5856	The Role of Electrospun Nanomaterials in the Future of Energy and Environment. Materials, 2021, 14, 558.	1.3	21
5859	Stability of the CsPbI ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	5.2	78
5860	The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. Journal of Materials Chemistry C, 2021, 9, 12037-12045.	2.7	7
5861	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11
5862	Toward highly efficient and stable Sn ²⁺ and mixed Pb ²⁺ /Sn ²⁺ based halide perovskite solar cells through device engineering. Energy and Environmental Science, 2021, 14, 3256-3300.	15.6	49
5863	Mechanical ductile detwinning in CH ₃ NH ₃ PbI ₃ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 21863-21873.	1.3	0
5864	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
5865	Enhancing the performance and stability of MAPbI3 perovskite solar cells by inserting the ITO layer before the Ag electrode. AIP Conference Proceedings, 2021, , .	0.3	1
5866	Dynamic structural property of organic-inorganic metal halide perovskite. IScience, 2021, 24, 101959.	1.9	29
5867	Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. Chemical Communications, 2021, 57, 994-997.	2.2	24
5868	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
5869	Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Research, 2021, 9, 151.	3.4	52

ARTICLE IF CITATIONS Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient 5870 15.6 24 Ruddlesdenâ€"Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925. Enhanced photovoltage and stability of perovskite photovoltaics enabled by a cyclohexylmethylammonium iodide-based 2D perovskite passivation layer. Nanoscale, 2021, 13, 5871 2.8 14915-14924. All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted 5872 2.7 13 method. Journal of Materials Chemistry C, 2021, 9, 15056-15064. A polymer-coated template-confinement CsPbBr₃ perovskite quantum dot composite. 34 Nanoscale, 2021, 13, 6586-6591. <i>Ab initio</i> nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. 5874 2.8 70 Nanoscale, 2021, 13, 10239-10265. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chemical Society Reviews, 2021, 50, 2696-2736. 18.7 Perovskite photodetectors and their application in artificial photonic synapses. Chemical 5876 2.2 27 Communications, 2021, 57, 11429-11442. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and 5877 6.4 device structure. Opto-Electronic Advances, 2021, 4, 20001901-20001915. Surface energy transfer in hybrid halide perovskite/plasmonic Au nanoparticle composites. Nanoscale, 5878 2.8 1 2021, 13, 14221-14227. Synergistic improvements in the performance and stability of inverted planar 5879 MAPbI₃-based perovskite solar cells incorporating benzylammonium halide salt additives. 3.2 Materials Chemistry Frontiers, 2021, 5, 3378-3387. Polycrystalline silicon solar cells., 2021, , 271-285. 5880 0 Efficient and Stable Perovskiteâ€Based Photocathode for Photoelectrochemical Hydrogen Production. 36 Advanced Functional Materials, 2021, 31, 2008277. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental 5882 15.6 255 Science, 2021, 14, 5161-5190. Dual-Band Plasmonic Perfect Absorber Based on the Hybrid Halide Perovskite in the Communication 5883 1.2 14 Regime. Coatings, 2021, 11, 67. 5885 Influence of Nanostructures in Perovskite Solar Cells., 2022, , 646-660. 1 Rapid growth of the CH₃NH₃PbCl₃ single crystal by microwave 5886 irradiation. RSC Advances, 2021, 11, 1360-1366. Self-passivation of low-dimensional hybrid halide perovskites guided by structural characteristics 5887 15.6 12 and degradation kinetics. Energy and Environmental Science, 2021, 14, 2357-2368. Block copolymer micelles enable facile synthesis of organicâ€^einorganic perovskite nanostructures 5888 2.2 with tailored architecture. Chemical Communications, 2021, 57, 1879-1882.

#	Article	IF	Citations
5889	Sustainable fabrication of ultralong Pb(OH)Br nanowires and their conversion to luminescent CH ₃ NH ₃ PbBr ₃ nanowires. Green Chemistry, 2021, 23, 7956-7962.	4.6	3
5890	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
5891	Ambient processed (110) preferred MAPbI ₃ thin films for highly efficient perovskite solar cells. Nanoscale Advances, 2021, 3, 2056-2064.	2.2	15
5892	Structural and optoelectronic behavior of the copper-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Cs</mml:mi>double perovskite: A density functional theory investigation. Physical Review B, 2021, 103, .</mml:mrow></mml:msub></mml:math 	mrøᢧ> <m< td=""><td>ml1111n>2</td></m<>	ml 11 11n>2
5893	Emerging Energy Harvesting Technology for Electro/Photo-Catalytic Water Splitting Application. Catalysts, 2021, 11, 142.	1.6	24
5894	The regulatory effect of triphenylphosphine oxide on perovskites for morphological and radiative improvement. Journal of Materials Chemistry C, 2021, 9, 6399-6403.	2.7	2
5895	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
5896	Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells. Nano Research, 2021, 14, 2294-2300.	5.8	15
5897	Suppressed Degradation and Enhanced Performance of CsPbI ₃ Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers. ACS Applied Materials & Interfaces, 2021, 13, 6119-6129.	4.0	31
5898	Pyridyl-functionalized spiro[fluorene–xanthene] as a dopant-free hole-transport material for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7276-7285.	3.2	15
5899	Lead-free Mn ^{II} -based red-emitting hybrid halide (CH ₆ N ₃) ₂ MnCl ₄ toward high performance warm WLEDs. Journal of Materials Chemistry C, 2021, 9, 4895-4902.	2.7	63
5900	Real-Time Blinking Suppression of Perovskite Quantum Dots by Halide Vacancy Filling. ACS Nano, 2021, 15, 2831-2838.	7.3	41
5901	Tin halide perovskites for efficient lead-free solar cells. , 2021, , 259-285.		0
5902	NiCo ₂ O ₄ arrays with a tailored morphology as hole transport layers of perovskite solar cells. Dalton Transactions, 2021, 50, 5845-5852.	1.6	9
5903	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
5904	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
5905	Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5% efficiency. Journal of Materials Chemistry A, 2021, 9, 14877-14887.	5.2	8
5906	Realization and Characterization of CH ₃ NH ₃ PbI ₃ /c-Si Heterojunction. Defect and Diffusion Forum, 0, 406, 364-374.	0.4	0

#	Article	IF	CITATIONS
5907	Morphology and surface analyses for CH ₃ NH ₃ PbI ₃ perovskite thin films treated with versatile solvent–antisolvent vapors. RSC Advances, 2021, 11, 17789-17799.	1.7	10
5908	Eco-friendly antisolvent enabled inverted MAPbI ₃ perovskite solar cells with fill factors over 84%. Green Chemistry, 2021, 23, 3633-3641.	4.6	22
5909	Highly efficient and blue-emitting CsPbBr ₃ quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 2021, 32, 145712.	1.3	9
5910	Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement. Journal of Materials Chemistry A, 2021, 9, 15522-15541.	5.2	8
5911	A first-principles study of the stability, electronic structure, and optical properties of halide double perovskite Rb ₂ Sn _{1â°'x} Te _x 1 ₆ for solar cell applications. Physical Chemistry Chemical Physics, 2021, 23, 4646-4657.	1.3	19
5912	Cesium Doping for Performance Improvement of Lead(II)-acetate-Based Perovskite Solar Cells. Materials, 2021, 14, 363.	1.3	5
5913	The roles of fused-ring organic semiconductor treatment on SnO ₂ in enhancing perovskite solar cell performance. RSC Advances, 2021, 11, 3792-3800.	1.7	8
5914	Scalable Fabrication of >90 cm ² Perovskite Solar Modules with >1000 h Operational Stability Based on the Intermediate Phase Strategy. Advanced Energy Materials, 2021, 11, 2003712.	10.2	76
5915	Perovskite solar cells as modern nano tools and devices in solar power energy. , 2021, , 377-427.		5
5916	Beneficial effects of cesium acetate in the sequential deposition method for perovskite solar cells. Nanoscale, 2021, 13, 11478-11487.	2.8	20
5917	Enhanced photocurrent of perovskite solar cells by dual-sensitized β-NaYF4:Nd3+/Yb3+/Er3+ up-conversion nanoparticles. Chemical Physics Letters, 2021, 763, 138253.	1.2	23
5918	Interference effects in high-order harmonics from colloidal perovskite nanocrystals excited by an elliptically polarized laser. Physical Review Materials, 2021, 5, .	0.9	11
5919	Influence of Deposition and Annealing Parameters on the Degradation of Spray-Deposited Perovskite Films. Materials Research, 2021, 24, .	0.6	1
5920	Nanoscale properties of lead halide perovskites by scanning tunneling microscopy. EcoMat, 2021, 3, e12081.	6.8	6
5921	Two-step MAPbI ₃ deposition by low-vacuum proximity-space-effusion for high-efficiency inverted semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16456-16469.	5.2	25
5922	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	2.7	2
5923	Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology, 2021, 32, 132004.	1.3	106
5924	Inorganic hole transport layers in inverted perovskite solar cells: A review. Nano Select, 2021, 2, 1081-1116.	1.9	65

#	Article	IF	CITATIONS
5925	Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Letters, 2021, 6, 739-768.		403
5926	High-Performance Perovskite Solar Cells Based on NaCsWO ₃ @ NaYF ₄ @NaYF ₄ :Yb,Er Upconversion Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 2674-2684.	4.0	60
5927	Passiviation of <i>L</i> -3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 629.	0.6	6
5928	Calculation of electronic and optical properties of methylammonium lead iodide perovskite for application in solar cell. Environmental Science and Pollution Research, 2021, 28, 25382-25389.	2.7	2
5929	Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50, 10087-10115.	18.7	135
5930	Compositional engineering solutions for decreasing trap state density and improving thermal stability in perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 14047-14064.	2.7	11
5931	Recovery of FTO coated glass substrate <i>via</i> environment-friendly facile recycling perovskite solar cells. RSC Advances, 2021, 11, 14534-14541.	1.7	27
5932	Electron-deficient 4-nitrophthalonitrile passivated efficient perovskite solar cells with efficiency exceeding 22%. Sustainable Energy and Fuels, 2021, 5, 2347-2353.	2.5	18
5933	Low photoactive phase temperature all-inorganic, tin–lead mixed perovskite solar cell. RSC Advances, 2021, 11, 3264-3271.	1.7	6
5934	Interfacial engineering for high performance perovskite solar cells. Materials Today: Proceedings, 2021, , .	0.9	0
5935	Leadâ€free metal halide perovskites for lightâ€emitting diodes. EcoMat, 2021, 3, e12082.	6.8	18
5936	Mechanochemical synthesis of pure phase mixed-cation/anion (FAPbl ₃) _x (MAPbBr ₃) _{1â^'x} hybrid perovskite materials: compositional engineering and photovoltaic performance. RSC Advances, 2021, 11, 5874-5884.	1.7	8
5937	Photon-induced deactivations of multiple traps in CH ₃ NH ₃ PbI ₃ perovskite films by different photon energies. Physical Chemistry Chemical Physics, 2021, 23, 10919-10925.	1.3	3
5938	Comparison of surface-passivation ability of the BAI salt and its induced 2D perovskite for high-performance inverted perovskite solar cells. RSC Advances, 2021, 11, 23249-23258.	1.7	11
5939	Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells. Nanoscale, 2021, 13, 5652-5659.	2.8	7
5941	Lead-free perovskite compounds CsSn _{1â^'x} Ge _x I _{3â^'y} Br _y explored for superior visible-light absorption. Physical Chemistry Chemical Physics, 2021, 23, 14449-14456.	1.3	10
5942	Perovskite solar cells. , 2021, , 249-281.		5
5944	All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. Journal of Materials Chemistry A, 2021, 9, 18947-18973.	5.2	19

#	Article	IF	CITATIONS
5945	Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. Nature Communications, 2021, 12, 673.	5.8	13
5946	Mechanistic studies of CsPbBr ₃ superstructure formation. Journal of Materials Chemistry C, 2021, 9, 14699-14708.	2.7	7
5947	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021, 49, 123-144.	8.3	57
5948	Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6688-6698.	4.0	26
5949	The effect of dimensionality on the charge carrier mobility of halide perovskites. Journal of Materials Chemistry A, 2021, 9, 21551-21575.	5.2	49
5950	Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping. Light: Science and Applications, 2021, 10, 2.	7.7	66
5951	Halide-driven formation of lead halide perovskites: insight from <i>ab initio</i> molecular dynamics simulations. Materials Advances, 2021, 2, 3915-3926.	2.6	18
5952	Manipulating the Crystallization Kinetics by Additive Engineering toward Highâ€Efficient Photovoltaic Performance. Advanced Functional Materials, 2021, 31, 2009103.	7.8	20
5953	Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: from aging to degradation. Journal of Materials Chemistry A, 2021, 9, 6732-6748.	5.2	26
5954	Facile Fabrication of Selfâ€Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. Advanced Science, 2021, 8, 2002718.	5.6	46
5955	Constructing an n/n ⁺ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 4048-4058.	15.6	87
5956	First-principles analysis of the optical properties of lead halide perovskite solution precursors. Physical Chemistry Chemical Physics, 2021, 23, 21087-21096.	1.3	3
5957	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
5958	Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization. Journal of Physical Chemistry Letters, 2021, 12, 997-1004.	2.1	69
5959	Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	10
5960	Tris(4-(1-phenyl-1 <i>H</i> -benzo[<i>d</i>]imidazole)phenyl)phosphine oxide for enhanced mobility and restricted traps in photovoltaic interlayers. Journal of Materials Chemistry C, 2021, 9, 3642-3651.	2.7	2
5961	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
5962	Optimizing kesterite solar cells from Cu ₂ ZnSnS ₄ to Cu ₂ CdGe(S,Se) ₄ . Journal of Materials Chemistry A, 2021, 9, 9882-9897.	5.2	18

#	Article	IF	CITATIONS
5963	Efficiency improvement of perovskite solar cell by modifying structural parameters and using Ag nanoparticles. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
5964	Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303.	2.7	10
5965	Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale, 2021, 13, 746-752.	2.8	12
5966	Stable deep blue emission with unity quantum yield in organic–inorganic halide perovskite 2D nanosheets doped with cerium and terbium at high concentrations. Journal of Materials Chemistry C, 2021, 9, 2437-2454.	2.7	15
5967	Domainâ€Sizeâ€Dependent Residual Stress Governs the Phaseâ€Transition and Photoluminescence Behavior of Methylammonium Lead Iodide. Advanced Functional Materials, 2021, 31, 2008088.	7.8	8
5968	Perovskite/Siliconâ€Nanowireâ€Based Hybrid Heterojunctions for Fast and Broadband Photodetectors. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000537.	1.2	9
5969	Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti3C2Tx MXene as Nano-Dopants. Nano-Micro Letters, 2021, 13, 68.	14.4	44
5970	Correlations between Electrochemical Ion Migration and Anomalous Device Behaviors in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1003-1014.	8.8	39
5971	Interfacial Electronic Properties and Adjustable Schottky Barrier at Graphene/CsPbI ₃ van der Waals Heterostructures. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000555.	1.2	2
5972	In-Situ Nano-Auger Probe of Chloride-Ions during CH3NH3PbI3â^'xClx Perovskite Formation. Materials, 2021, 14, 1102.	1.3	5
5973	Improving the stability of perovskite by covering graphene on <scp> FAPbI ₃ </scp> surface. International Journal of Energy Research, 2021, 45, 10808-10820.	2.2	7
5974	Texture Formation in Polycrystalline Thin Films of Allâ€Inorganic Lead Halide Perovskite. Advanced Materials, 2021, 33, e2007224.	11.1	18
5975	Influence of Dynamic Disorder and Charge–Lattice Interactions on Optoelectronic Properties of Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 5427-5435.	1.5	9
5976	Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy, 2021, 80, 105552.	8.2	91
5977	Photonic Structuration of Hybrid Inverse-Opal TiO ₂ —Perovskite Layers for Enhanced Light Absorption in Solar Cells. ACS Applied Energy Materials, 2021, 4, 1108-1119.	2.5	17
5978	Independent Luminescent Lifetime and Intensity Tuning of Upconversion Nanoparticles by Gradient Doping for Multiplexed Encoding. Angewandte Chemie - International Edition, 2021, 60, 7041-7045.	7.2	64
5979	Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific Reports, 2021, 11, 3082.	1.6	121
5980	Enhanced Spatial Photoluminescence Homogeneity and Fluorescence Density in MAPbI ₃ Films via Tailoring the Pb-Precursor Composition and Surface Morphology. ACS Applied Electronic Materials, 2021, 3, 1058-1070.	2.0	1

#	Article	IF	CITATIONS
5981	Solution-Processed Perovskite/Perovskite Heterostructure Via a Grafting-Assisted Transfer Technique. ACS Applied Energy Materials, 2021, 4, 1962-1971.	2.5	9
5982	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
5983	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	8.2	26
5984	Effect of film structure on CH3NH3PbI3 perovskite thin films' degradation. AIP Advances, 2021, 11, .	0.6	4
5985	Interface Engineering of Perovskite/Hole Transport Layer Using Nanoâ€Network Formation in Small Molecule–Polymer Blend for Efficient Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001891.	1.9	4
5986	An investigation of physical properties and photovoltaic performance of methylammonium lead-tin iodide (CH ₃ NH ₃ Sn ₁ -xPbxI ₃) solar cells. Microelectronics International, 2021, 38, 23-32.	0.4	0
5987	Polarization‣ensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. Advanced Materials, 2021, 33, e2003615.	11.1	89
5988	Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability. Small, 2021, 17, e2004081.	5.2	29
5989	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	4.7	81
5990	Polarization improvement of CsPbClBr ₂ quantum dot film by laser direct writing technology. Optics Letters, 2021, 46, 777.	1.7	3
5991	Influence of Transition Metal Doping on the Structural and Electronic Behaviour of Quaternary Double Perovskite, Cs ₂ AgInCl ₆ , using First-Principles Calculations. IOP Conference Series: Earth and Environmental Science, 2021, 655, 012046.	0.2	2
5992	Spectral characterization of the Rashba spin-split band in a lead halide perovskite single crystal by photocurrent heterodyne interference spectroscopy. Physical Review B, 2021, 103, .	1.1	8
5993	The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied Sciences (Switzerland), 2021, 11, 1453.	1.3	11
5994	Composition-Dependent Struggle between lodine and Tin Chemistry at the Surface of Mixed Tin/Lead Perovskites. ACS Energy Letters, 2021, 6, 969-976.	8.8	27
5995	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
5996	A Triple Axial Chirality, Racemic Molecular Semiconductor Based on Thiahelicene and Ethylenedioxythiophene for Perovskite Solar Cells: Microscopic Insights on Performance Enhancement. Advanced Functional Materials, 2021, 31, 2009854.	7.8	23
5997	Using In Situ Optical Spectroscopy to Elucidate Film Formation of Metal Halide Perovskites. Journal of Physical Chemistry A, 2021, 125, 2209-2225.	1.1	10
5998	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	6.6	79

#	Article	IF	CITATIONS
5999	Mechanically robust and self-healable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100320.	2.8	29
6000	Solution-processed flexible MAPbI ₃ photodetectors with ZnO Schottky contacts. Optics Express, 2021, 29, 7833.	1.7	12
6001	Introducing an Organic Hole Transporting Material as a Bilayer to Improve the Efficiency and Stability of Perovskite Solar Cells. Macromolecular Research, 2021, 29, 149-156.	1.0	8
6002	Comparison of spectral responses of Cs ₂ Til ₆₋ _X Br _X based Perovskite device with CdS and TiO ₂ Electron transport layer. IOP Conference Series: Materials Science and Engineering, 2021, 1080, 012007.	0.3	3
6003	Crystallization Features of MAPbI3 Hybrid Perovskite during the Reaction of PbI2 with Reactive Polyiodide Melts. Russian Journal of Inorganic Chemistry, 2021, 66, 153-162.	0.3	8
6004	First demonstration of lithium, cobalt and magnesium introduced nickel oxide hole transporters for inverted methylammonium lead triiodide based perovskite solar cells. Solar Energy, 2021, 215, 434-442.	2.9	12
6005	Advances to Highâ€Performance Blackâ€Phase FAPbl ₃ Perovskite for Efficient and Stable Photovoltaics. Small Structures, 2021, 2, 2000130.	6.9	81
6006	Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Reports Physical Science, 2021, 2, 100346.	2.8	21
6007	Impact of a Spun-Cast MoO _{<i>x</i>} Layer on the Enhanced Moisture Stability and Performance-Limiting Behaviors of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3169-3181.	2.5	4
6008	Advances and Prospective in Metal Halide Ruddlesen–Popper Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003907.	10.2	13
6009	Two-dimensional halide perovskite single crystals: principles and promises. Emergent Materials, 2021, 4, 865-880.	3.2	14
6010	Metal Halide Perovskites for Energy Storage Applications. European Journal of Inorganic Chemistry, 2021, 2021, 1201-1212.	1.0	29
6011	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	8.8	81
6012	Passivation Properties and Formation Mechanism of Amorphous Halide Perovskite Thin Films. Advanced Functional Materials, 2021, 31, 2010330.	7.8	17
6013	Independent Luminescent Lifetime and Intensity Tuning of Upconversion Nanoparticles by Gradient Doping for Multiplexed Encoding. Angewandte Chemie, 2021, 133, 7117-7121.	1.6	50
6014	Broadband optical absorption enhancement in hybrid organic–inorganic perovskite metasurfaces. AlP Advances, 2021, 11, .	0.6	9
6015	Relationship between perovsktie solar cell efficiency and lattice disordering. Japanese Journal of Applied Physics, 2021, 60, 035001.	0.8	0
6016	Atomic and electronic structure of cesium lead triiodide surfaces. Journal of Chemical Physics, 2021, 154, 074712.	1.2	2

#	Article	IF	CITATIONS
6017	Perovskite Solar CellDevice Modeling and Performance Based on Resemblancewith Thin Film Inorganic Solar Cells Structure. IOP Conference Series: Materials Science and Engineering, 2021, 1057, 012049.	0.3	4
6018	A Rapid and Robust Light-and-Solution-Triggered In Situ Crafting of Organic Passivating Membrane over Metal Halide Perovskites for Markedly Improved Stability and Photocatalysis. Nano Letters, 2021, 21, 1643-1650.	4.5	40
6019	Insights on Desired Fabrication Factors from Modeling Sandwich and Quasi-Interdigitated Back-Contact Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1093-1107.	2.5	19
6020	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	7.8	180
6021	Europium Addition Reduces Local Structural Disorder and Enhances Photoluminescent Yield in Perovskite CsPbBr 3. Advanced Optical Materials, 2021, 9, 2002221.	3.6	5
6022	Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions. Matter, 2021, 4, 709-721.	5.0	159
6023	Distributed feedback laser with methylammonium lead bromide embedded in channel-type waveguides. Japanese Journal of Applied Physics, 2021, 60, SBBH11.	0.8	2
6024	Synthesis of Lead-Free Cs ₂ AgBiX ₆ (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO ₂ Photocatalytic Reduction. Nano Letters, 2021, 21, 1620-1627.	4.5	140
6025	Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication. Nano-Micro Letters, 2021, 13, 70.	14.4	56
6026	Impact of Dimensionality on Optoelectronic Properties of Hybrid Perovskites. International Journal of Photoenergy, 2021, 2021, 1-7.	1.4	0
6027	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. Small, 2021, 17, e2005640.	5.2	20
6028	Coordination Strategy Driving the Formation of Compact CuSCN Holeâ€Transporting Layers for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000777.	3.1	11
6029	Adjusting energy level alignment between HTL and CsPbI ₂ Br to improve solar cell efficiency. Journal of Semiconductors, 2021, 42, 030501.	2.0	21
6030	Highâ€Performance Rb–Cs _{0.14} FA _{0.86} Pb(Br _{<i>x</i>} I _{1â[^]<i>x</i>}) ₃ Perovskite Solar Cells Achieved by Regulating the Halogen Exchange in Vapor–Solid Reaction Process. Solar Rrl, 2021, 5, 2100102.	3.1	13
6031	Quantum Dotes of Perovskites Solar Cells based on ZnSe as ETM. Journal of Physics: Conference Series, 2021, 1818, 012120.	0.3	1
6032	A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C3N4 Nanostructures. Materials, 2021, 14, 1679.	1.3	16
6033	Impact of Anion Impurities in Commercial PbI ₂ on Lead Halide Perovskite Films and Solar Cells. , 2021, 3, 351-355.		6
6034	Complementary interface formation toward high-efficiency all-back-contact perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100363.	2.8	17

#	Article	IF	CITATIONS
6035	Formation of 1-D/3-D Fused Perovskite for Efficient and Moisture Stable Solar Cells. ACS Applied Energy Materials, 2021, 4, 2751-2760.	2.5	21
6036	Deconvoluting Energy Transport Mechanisms in Metal Halide Perovskites Using CsPbBr 3 Nanowires as a Model System. Advanced Functional Materials, 2021, 31, 2010704.	7.8	12
6037	DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chemical Physics Letters, 2021, 766, 138347.	1.2	68
6038	Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors. ACS Applied Materials & Interfaces, 2021, 13, 16485-16497.	4.0	30
6039	2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 68.	7.7	59
6040	How Deep Hole Traps Affect the Charge Dynamics and Collection in Bare and Bilayers of Methylammonium Lead Bromide. ACS Applied Materials & Interfaces, 2021, 13, 16309-16316.	4.0	11
6041	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	3.2	28
6042	Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 5525-5533.	1.5	7
6043	Hot Hole Cooling and Transfer Dynamics from Lead Halide Perovskite Nanocrystals Using Porphyrin Molecules. Journal of Physical Chemistry C, 2021, 125, 5859-5869.	1.5	37
6044	SnO ₂ /TiO ₂ Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3424-3430.	2.5	32
6045	Improving the phase stability of CsPbI ₃ nanocrystalline films via polyvinylpyrrolidone additive engineering for photodetector application. Journal Physics D: Applied Physics, 2021, 54, 205501.	1.3	4
6046	Leadâ€Free Cs ₂ SnI ₆ Perovskites for Optoelectronic Applications: Recent Developments and Perspectives. Solar Rrl, 2021, 5, 2000830.	3.1	25
6048	Effects of Fe doping on the visible light absorption and bandgap tuning of lead-free (CsSnCl3) and lead halide (CsPbCl3) perovskites for optoelectronic applications. AIP Advances, 2021, 11, .	0.6	20
6049	Mapping Trap Dynamics in a CsPbBr ₃ Single-Crystal Microplate by Ultrafast Photoemission Electron Microscopy. Nano Letters, 2021, 21, 2932-2938.	4.5	19
6050	Multifunctional molecular incorporation boosting the efficiency and stability of the inverted perovskite solar cells. Journal of Power Sources, 2021, 488, 229449.	4.0	10
6051	A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 2021, 12, 1878.	5.8	209
6052	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	11.1	119
6053	Systematic approach to the study of the photoluminescence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MAPb</mml:mi><mml:msub><mm mathvariant="normal">I<mml:mn>3</mml:mn></mm </mml:msub></mml:mrow>. Physical Review Materials. 2021. 5</mml:math 	il:mi 0.9	5

#	Article		CITATIONS
6054	Predicting efficiencies >25% A3MX3 photovoltaic materials and Cu ion implantation modification. Applied Physics Letters, 2021, 118, .	1.5	22
6055	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie, 2021, 133, 10041-10046.	1.6	3
6056	Comparative study on the effect of annealing temperature on sol–gel-derived nickel oxide thin film as hole transport layers for inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 8157-8166.	1.1	5
6057	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	3.1	11
6058	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	5.5	34
6059	Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2100438.	7.8	67
6060	Solvent Engineering of the Precursor Solution toward Largeâ€Area Production of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005410.	11.1	182
6061	Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering. Journal of Physical Chemistry C, 2021, 125, 5475-5484.	1.5	15
6062	The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical Materials, 2021, 9, 2100133.	3.6	7
6063	Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance. Advanced Science, 2021, 8, 2004593.	5.6	57
6064	Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2100396.	7.8	66
6065	Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371, 1129-1133.	6.0	340
6066	Reduced extrinsic recombination process in anatase and rutile TiO2 epitaxial thin films for efficient electron transport layers. Scientific Reports, 2021, 11, 6810.	1.6	6
6068	Conjugated Polyelectrolyte Combined with Ionic Liquid as the Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. Journal of the Electrochemical Society, 2021, 168, 036503.	1.3	2
6069	Highly Efficient Halide Perovskite Light‣mitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	1.6	9
6070	A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 834-843.	4.2	21
6071	Ambient Inkjetâ€Printed Highâ€Efficiency Perovskite Solar Cells: Manipulating the Spreading and Crystallization Behaviors of Picoliter Perovskite Droplets. Solar Rrl, 2021, 5, 2100106.	3.1	24
6072	Understanding and modulating exciton dynamics of organic and low-dimensional inorganic materials in photo(electro)catalysis. Journal of Catalysis, 2021, 395, 91-104.	3.1	5

#	Article	IF	CITATIONS
6073	High elasticity of CsPbBr3 perovskite nanowires for flexible electronics. Nano Research, 2021, 14, 4033-4037.	5.8	20
6074	Study of Physical, Optical, and Electrical Properties of Cesium Titanium (IV)-Based Single Halide Perovskite Solar Cell. IEEE Journal of Photovoltaics, 2021, 11, 386-390.	1.5	21
6075	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	7.2	47
6076	Suppressing the Î ⁻ Phase and Photoinstability through a Hypophosphorous Acid Additive in Carbon-Based Mixed-Cation Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6585-6592.	1.5	9
6077	Ligand assisted growth of perovskite single crystals with low defect density. Nature Communications, 2021, 12, 1686.	5.8	110
6078	Interâ€Sample and Intraâ€Sample Variability in Electronic Properties of Methylammonium Lead Iodide. Advanced Functional Materials, 2021, 31, 2101843.	7.8	4
6079	Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B =â€%	Sn. Pd, P 1.6	t;) ₇₈ ETQq0
6080	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	7.8	96
6081	A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021, 216, 26-47.	2.9	67
6082	GABr Post-Treatment for High-Performance MAPbI3 Solar Cells on Rigid Glass and Flexible Substrate. Nanomaterials, 2021, 11, 750.	1.9	7
6083	Elucidating the Role of Ion Migration and Band Bending in Perovskite Solar Cell Function at Grain Boundaries via Multimodal Nanoscale Mapping. Advanced Materials Interfaces, 2021, 8, 2001992.	1.9	13
6084	pâ€₹ype Dopants As Dual Function Interfacial Layer for Efficient and Stable Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100068.	3.1	16
6085	Effect of lattice polarisability in optical properties of methylammonium lead iodide by modified Becke-Johnson functionals and Bethe-Salpeter equation. Computational Materials Science, 2021, 189, 110245.	1.4	0
6086	Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics. Npj 2D Materials and Applications, 2021, 5, .	3.9	22
6087	Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1539-1572.	1.4	18
6088	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9953-9958.	7.2	26
6089	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	1.5	16
6090	Revealing Nanomechanical Domains and Their Transient Behavior in Mixedâ€Halide Perovskite Films. Advanced Functional Materials, 2021, 31, 2100293.	7.8	23

		CITATION RE	PORT	
#	Article		IF	CITATIONS
6091	Solid-State Solar Cells Based on TiO2 Nanowires and CH3NH3PbI3 Perovskite. Coatings,	2021, 11, 404.	1.2	5
6092	Accurate calculation of excitonic signatures in the absorption spectrum of BiSBr using semiconductor Bloch equations. Physical Review B, 2021, 103, .		1.1	3
6093	Efficient Perovskite Solar Cells Achieved using the 2-Methoxyethanol Additive: Morpholo Composition Control of Intermediate Film. ACS Applied Energy Materials, 2021, 4, 2681	gy and -2689.	2.5	10
6094	Photovoltaic Recovery of All Printable Mesoporousâ€Carbonâ€based Perovskite Solar Ce 2021, 5, 2100028.	ills. Solar Rrl,	3.1	11
6095	The investigation of CsPb(I1â^'xBrx)3/crystalline silicon two- and four-terminal tandem so Solar Energy, 2021, 216, 145-150.	olar cells.	2.9	16
6096	Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cell 5, 659-672.	s. Joule, 2021,	11.7	127
6097	Green Solvent-Based Perovskite Precursor Development for Ink-Jet Printed Flexible Solar Sustainable Chemistry and Engineering, 2021, 9, 3920-3930.	Cells. ACS	3.2	23
6098	Cooperative Nature of Ferroelectricity in Two-Dimensional Hybrid Organic–Inorganic P Nano Letters, 2021, 21, 3170-3176.	erovskites.	4.5	20
6099	Surface Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Subs Transport Material for Efficient Perovskite Solar Cells. ACS Applied Materials & amp; Inter 13, 13470-13477.		4.0	26
6100	Highly Absorbing Lead-Free Semiconductor Cu ₂ AgBil ₆ for Pho Applications from the Quaternary Cul–Agl–Bil ₃ Phase Space. Journal of Chemical Society, 2021, 143, 3983-3992.		6.6	59
6101	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021	, 17, e2005495.	5.2	61
6102	Orientationâ€Engineered Smallâ€Molecule Semiconductors as Dopantâ€Free Hole Trans for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31,	porting Materials 2011270.	7.8	41
6103	Controlling the Microstructure and Porosity of Perovskite Films by Additive Engineering. Energy Materials, 2021, 4, 2990-2998.	ACS Applied	2.5	13
6104	The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inve perovskite solar cells with efficiency exceeding 22%. Nano Energy, 2021, 82, 105731.	rted	8.2	79
6105	Amplification of strong coupling in the simulation system of perovskite nanowire coated film. Modern Physics Letters B, 2021, 35, 2150246.	by the metal	1.0	0
6106	Emerging potential photovoltaic absorber hybrid halide perovskites (<scp> CH _{3< International Journal of Energy Research, 2021, 45, 15231-15244.}</scp>	/sub> CH) Tj ETQq1 1 0.7	/84314 rgE 2.2	3T /Overloc 10
6107	Quasi-two-dimensional perovskite light emitting diodes for bright future. Light: Science a Applications, 2021, 10, 86.	and	7.7	17
6108	Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites. ACS Energy Let 1869-1878.	ters, 2021, 6,	8.8	36

#	Article	IF	CITATIONS
6109	Efficient and Stable Perovskite Solar Cells with a Superhydrophobic Two-Dimensional Capping Layer. Journal of Physical Chemistry Letters, 2021, 12, 4052-4058.	2.1	16
6110	Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 3286-3296.	3.2	25
6111	Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. IScience, 2021, 24, 102276.	1.9	30
6112	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48
6113	Molecularly Engineered Cyclopenta[2,1- <i>b</i> ;3,4- <i>b</i> ′]dithiophene-Based Hole-Transporting Materials for High-Performance Perovskite Solar Cells with Efficiency over 19%. ACS Applied Energy Materials, 2021, 4, 4719-4728.	2.5	21
6114	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	13.7	2,095
6115	Highly Enhanced Efficiency of Planar Perovskite Solar Cells by an Electron Transport Layer Using Phytic Acid–Complexed SnO ₂ Colloids. Solar Rrl, 2021, 5, 2100067.	3.1	16
6116	Thymine as a Biocompatible Surface Passivator for a Highly Efficient and Stable Planar Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 3310-3316.	2.5	6
6117	One-pot synthesis of tetraarylpyrrolo[3,2-b]pyrrole dopant-free hole-transport materials for inverted perovskite solar cells. Chinese Journal of Chemical Physics, 2021, 34, 217-226.	0.6	3
6119	Polyaniline/Reduced Graphene Oxide Composites for Hole Transporting Layer of High-Performance Inverted Perovskite Solar Cells. Polymers, 2021, 13, 1281.	2.0	23
6120	Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model. Journal of Physical Chemistry Letters, 2021, 12, 3591-3599.	2.1	16
6121	Passive frequency conversion of ultraviolet images into the visible using perovskite nanocrystals. Journal of Optics (United Kingdom), 2021, 23, 054001.	1.0	4
6122	Inâ€Ðepth Comparative Study of Cathode Interfacial Layer for Stable Inverted Perovskite Solar Cell. ChemSusChem, 2021, 14, 2393-2400.	3.6	3
6123	Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 1821-1830.	8.8	23
6124	Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules. Applied Surface Science, 2021, 545, 149012.	3.1	22
6125	Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer. Journal of Electronic Materials, 2021, 50, 3962-3971.	1.0	11
6126	Characterization on Highly Efficient Perovskite Solar Cells Made from Oneâ€6tep and Twoâ€6tep Solution Processes. Solar Rrl, 2021, 5, 2100109.	3.1	3
6127	Interfacial Engineering via Selfâ€Assembled Thiol Silane for High Efficiency and Stability Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100128.	3.1	24

#	Article	IF	Citations
6128	Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021, 143, 7069-7080.	6.6	37
6129	Structural and optoelectronic properties of hybrid halide perovskites for solar cells. Organic Electronics, 2021, 91, 106077.	1.4	27
6130	Ionic Liquid-Assisted MAPbI ₃ Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 21194-21206.	4.0	47
6131	Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 82, 105712.	8.2	64
6132	Millimeterâ€Size Allâ€inorganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2021, 31, 2101058.	7.8	19
6133	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity. Advanced Materials, 2021, 33, e2005760.	11.1	107
6134	Emerging Organic/Hybrid Photovoltaic Cells for Indoor Applications: Recent Advances and Perspectives. Solar Rrl, 2021, 5, 2100042.	3.1	20
6135	Efficient Stabilization and Passivation for Low-Temperature-Processed Î ³ -CsPbI3 Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 18784-18791.	4.0	11
6136	Oriented inorganic perovskite absorbers processed by colloidal-phase fumigation. Science China Materials, 2021, 64, 2421-2429.	3.5	7
6137	Design of two-dimensional perovskite solar cells with superior efficiency and stability. Revista Facultad De IngenierÃa, 0, , .	0.5	0
6138	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	8.8	17
6139	Highâ€Resolution, Flexible, and Fullâ€Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionicâ€Liquidâ€Based Ink. Advanced Functional Materials, 2021, 31, 2100857.	7.8	61
6140	Molecular Engineering of Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3526-3534.	2.5	5
6141	Passivation of Bulk and Interface Defects in Sputtered-NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts. ACS Applied Energy Materials, 2021, 4, 4530-4540.	2.5	25
6142	In Situ Interface Engineering with a Spiroâ€OMeTAD/CoO Hierarchical Structure via Oneâ€5tep Spinâ€Coating for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2002041.	1.9	2
6143	Charge-Carrier Mobility and Localization in Semiconducting Cu ₂ AgBil ₆ for Photovoltaic Applications. ACS Energy Letters, 2021, 6, 1729-1739.	8.8	41
6144	Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Frontiers of Optoelectronics, 2021, 14, 252-259.	1.9	66
6145	Structural, electronic, and charge transfer features for two kinds of MoS2/Cs2PbI4 interfaces with optoelectronic applicability: Insights from first-principles. Applied Physics Letters, 2021, 118, .	1.5	4

#	Article	IF	CITATIONS
6146	Molecular weight effect of poly-TPD hole-transporting layer on the performance of inverted perovskite solar cells. Solar Energy, 2021, 218, 368-374.	2.9	9
6147	Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS Nano, 2021, 15, 7860-7878.	7.3	40
6148	Effect of Ag nanoparticles on performance of CH3NH3PbI3 perovskite photodetectors. Journal of Alloys and Compounds, 2021, 861, 158608.	2.8	12
6149	Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals. Energies, 2021, 14, 2005.	1.6	3
6150	Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application. Science China Materials, 2021, 64, 2497-2506.	3.5	21
6151	Elpasolite structures based on A2AgBiX6 (A: MA, Cs, X: I, Br): Application in double perovskite solar cells. Materials Science in Semiconductor Processing, 2021, 125, 105639.	1.9	22
6152	Cuprous iodide dose dependent passivation of MAPbI3 perovskite solar cells. Organic Electronics, 2021, 91, 106080.	1.4	2
6153	Giant improvement of performances of perovskite solar cells via component engineering. Journal of Colloid and Interface Science, 2021, 588, 393-400.	5.0	14
6154	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	26
6155	Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 3607-3617.	2.1	45
6156	Functionalized Ionic Liquid-Crystal Additive for Perovskite Solar Cells with High Efficiency and Excellent Moisture Stability. ACS Applied Materials & Interfaces, 2021, 13, 17677-17689.	4.0	26
6157	Study of perovskite CH3NH3PbI3 thin films under thermal exposure. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
6158	[2.2]Paracyclophane-based hole-transporting materials for perovskite solar cells. Journal of Power Sources, 2021, 491, 229543.	4.0	7
6159	Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive. ACS Applied Electronic Materials, 2021, 3, 1813-1825.	2.0	22
6160	Perovskite Solar Cells for Space Applications: Progress and Challenges. Advanced Materials, 2021, 33, e2006545.	11.1	184
6161	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
6162	Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light: Science and Applications, 2021, 10, 84.	7.7	34
6163	Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chemical Engineering Journal, 2021, 410, 128328.	6.6	83

		CITATION REPORT		
#	Article		IF	Citations
6164	An efficient and hydrophobic molecular doping in perovskite solar cells. Nano Energy, 202	1, 82, 105751.	8.2	35
6165	Phase transition pathway of hybrid halide perovskites under compression: Insights from first-principles calculations. Physical Review Materials, 2021, 5, .		0.9	6
6166	Fabricating Efficient and Stable Quasi-3D and 3D/2D Perovskite Solar Cells with 2D-Sheets by Inorganic Type Ionic-Bond. Nanotechnology, 2021, 32, .	; Connected	1.3	3
6167	Preparation of Low Grain Boundary Perovskite Crystals with Excellent Performance: The Inl Ammonium Iodide. ACS Omega, 2021, 6, 12858-12865.	hibition of	1.6	5
6168	Extracting <i>in Situ</i> Charge Carrier Diffusion Parameters in Perovskite Solar Cells with Modulated Techniques. ACS Energy Letters, 2021, 6, 2248-2255.	Light	8.8	28
6169	Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Cells. ACS Omega, 2021, 6, 13766-13773.	Solar	1.6	3
6170	One-Step Solvent-Free Mechanochemical Incorporation of Insoluble Cesium Salt into Pero Wide Band-Gap Solar Cells. Chemistry of Materials, 2021, 33, 3971-3979.	vskites for	3.2	7
6171	Efficient perovskite solar cells processed in supercritical carbon dioxide. Journal of Supercr Fluids, 2021, 171, 105203.	itical	1.6	5
6172	Defect-passivation of organometal trihalide perovskite with functionalized organic small m for enhanced device performance and stability. Dyes and Pigments, 2021, 189, 109255.	ıolecule	2.0	10
6173	Ambient Air Bladeâ€Coating Fabrication of Stable Tripleâ€Cation Perovskite Solar Module: Solvent Quenching. Solar Rrl, 2021, 5, 2100073.	s by Green	3.1	34
6174	Distinguishing Models for Mixed Halide Lead Perovskite Photosegregation via Terminal Hal Stoichiometry. ACS Energy Letters, 2021, 6, 2064-2071.	lide	8.8	22
6175	Switchedâ€On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transis Advanced Functional Materials, 2021, 31, 2101029.	itors.	7.8	57
6176	High-Light-Tolerance PbI ₂ Boosting the Stability and Efficiency of Perovskite ACS Applied Materials & amp; Interfaces, 2021, 13, 24692-24701.	Solar Cells.	4.0	21
6177	Ferroelectric and Charge Transport Properties in Strain-Engineered Two-Dimensional Lead Perovskites. Chemistry of Materials, 2021, 33, 4077-4088.	lodide	3.2	10
6178	An accurate numerical approach for studying perovskite solar cells. International Journal or Research, 2021, 45, 16456-16477.	f Energy	2.2	8
6179	Tailoring quasi-2D perovskite thin films via nanocrystals mediation for enhanced electroluminescence. Chemical Engineering Journal, 2021, 411, 128511.		6.6	12
6180	Impact of precursor concentration on the properties of perovskite solar cells obtained fror dehydrated lead acetate precursors. Journal of Vacuum Science and Technology A: Vacuun and Films, 2021, 39, .		0.9	5
6181	Interfacial Trapâ€Assisted Triplet Generation in Lead Halide Perovskite Sensitized Solidâ€S Upconversion. Advanced Materials, 2021, 33, e2100854.	tate	11.1	18

#	Article	IF	CITATIONS
6182	Crystal structure of the high-temperature polymorph of C(NH2)3PbI3 and its thermal decomposition. Journal of Alloys and Compounds, 2021, 864, 158104.	2.8	3
6184	Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate. ACS Applied Energy Materials, 2021, 4, 4910-4918.	2.5	14
6185	Charge Traps in Allâ€Inorganic CsPbBr ₃ Perovskite Nanowire Fieldâ€Effect Phototransistors. Advanced Electronic Materials, 2021, 7, 2100105.	2.6	12
6186	Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547, 149117.	3.1	19
6187	Narrowband Nearâ€Infrared Photodetector Enabled by Dual Functional Internalâ€Filterâ€Induced Selective Charge Collection. Advanced Optical Materials, 2021, 9, 2100288.	3.6	26
6188	Exploring inorganic and nontoxic double perovskites Cs2AgInBr6(1â^'x)Cl6x from material selection to device design in material genome approach. Journal of Alloys and Compounds, 2021, 862, 158575.	2.8	7
6189	Allâ€Inorganic Halide Perovskite Nanocrystals: Future Prospects and Challenges to Go Lead Free. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100185.	0.8	1
6190	Fusible Low Work Function Top Electrode for Vacuum-Free Perovskite Light-Emitting Diode Application: Role of OH-Terminated Sn Atoms at the Alloy Surface. ACS Applied Electronic Materials, 2021, 3, 2757-2765.	2.0	9
6191	Impact of A-Site Cations on Fluorescence Quenching in Organic–Inorganic Hybrid Perovskite Materials. Journal of Physical Chemistry C, 2021, 125, 11524-11531.	1.5	3
6192	Evaporation Deposition Strategies for Allâ€Inorganic CsPb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Perovskite Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2021, 5, 2100172.	3.1	24
6193	Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule, 2021, 5, 1246-1266.	11.7	91
6194	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
6195	Understanding the Effects of Fluorine Substitution in Lithium Salt on Photovoltaic Properties and Stability of Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2218-2228.	8.8	51
6196	Mobile Media Promotes Orientation of 2D/3D Hybrid Lead Halide Perovskite for Efficient Solar Cells. ACS Nano, 2021, 15, 8350-8362.	7.3	20
6197	Photonic crystals for perovskiteâ€based optoelectronic applications. Nano Select, 2022, 3, 39-50.	1.9	4
6198	Progress of Perovskite Solar Modules. Advanced Energy and Sustainability Research, 2021, 2, 2000051.	2.8	19
6199	Exploration of structural, thermal stability and band-gap tunability of organic and inorganic mixed cation (MA)1â^'x Cs x PbBr3 perovskite harvester via ultrasonication synthesis route. Journal of Physics Condensed Matter, 2021, 33, 245705.	0.7	1
6200	Surfactantâ€Free, Oneâ€Step Synthesis of Leadâ€Free Perovskite Hollow Nanospheres for Trace CO Detection. Advanced Materials, 2021, 33, e2100674.	11.1	18

#	Article	IF	CITATIONS
6201	Mechanism and Timescales of Reversible pâ€Đoping of Methylammonium Lead Triiodide by Oxygen. Advanced Materials, 2021, 33, e2100211.	11.1	17
6202	Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films. Chemical Engineering Journal, 2021, 411, 128460.	6.6	15
6203	A combined chrome oxide and titanium oxide based electron-transport layer for high-performance perovskite solar cells. Chemical Physics Letters, 2021, 771, 138496.	1.2	6
6204	Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim \ Teknoloji Dergisi, 0, , 158-171.	lе 0.2	0
6205	Low-Temperature Blade-Coated Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2021, 60, 7145-7154.	1.8	17
6206	Large Cation Engineering in Two-Dimensional Silver–Bismuth Bromide Double Perovskites. Chemistry of Materials, 2021, 33, 4688-4700.	3.2	25
6207	The effects of crystal structure on the photovoltaic performance of perovskite solar cells under ambient indoor illumination. Solar Energy, 2021, 220, 43-50.	2.9	33
6208	Defect passivation in CH3NH3PbI3 films using alkali metal fluoride additives for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 315504.	1.3	10
6209	Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e48.	5.2	81
6210	An Exploration of Allâ€Inorganic Perovskite/Gallium Arsenide Tandem Solar Cells. Solar Rrl, 2021, 5, 2100121.	3.1	19
6211	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	10.2	21
6212	Luminescence Change from Orange to Blue for Zeroâ€Dimensional Cs ₂ InCl ₅ (H ₂ O) Metal Halides in Water and a New Postâ€doping Method. Chemistry - an Asian Journal, 2021, 16, 1619-1625.	1.7	14
6213	The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives. Advanced Energy Materials, 2022, 12, 2100499.	10.2	66
6214	Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabrication. Small, 2021, 17, e2008145.	5.2	53
6215	Effective Phaseâ€Alignment for 2D Halide Perovskites Incorporating Symmetric Diammonium Ion for Photovoltaics. Advanced Science, 2021, 8, e2001433.	5.6	32
6216	Temperature dependency of excitonic effective mass and charge carrier conduction mechanism in CH3NH3PbI3â^'xClx thin films. Scientific Reports, 2021, 11, 10772.	1.6	8
6217	Comparative Study on TiO2 and C60 Electron Transport Layers for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5543-5553.	2.5	4
6218	Micro structurally engineered hysteresis-free high efficiency perovskite solar cell using Zr-doped TiO2 electron transport layer. Ceramics International, 2021, 47, 14665-14672.	2.3	14

#	Article	IF	CITATIONS
6219	Leadâ€Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2006691.	11.1	138
6220	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	2.0	24
6221	Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells. Polyhedron, 2021, 199, 115089.	1.0	4
6222	Enhanced efficiency and stability of perovskite solar cell by adding polymer mixture in perovskite photoactive layer. Journal of Alloys and Compounds, 2021, 864, 158793.	2.8	33
6223	Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901.	2.1	21
6224	Alternative Loneâ€Pair ns ² ationâ€Based Semiconductors beyond Lead Halide Perovskites for Optoelectronic Applications. Advanced Materials, 2021, 33, e2008574.	11.1	34
6225	N-doped anatase TiO2 as an efficient electron-transporting layer for mesoporous perovskite solar cells. Applied Physics Express, 0, , .	1.1	3
6226	Band-Gap Engineering of Lead-Free Iron-Based Halide Double-Perovskite Single Crystals and Nanocrystals by an Alloying or Doping Strategy. Journal of Physical Chemistry C, 2021, 125, 11743-11749.	1.5	24
6227	Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells. Coatings, 2021, 11, 627.	1.2	10
6228	Review-Emerging Applications of g-C3N4 Films in Perovskite-Based Solar Cells. ECS Journal of Solid State Science and Technology, 0, , .	0.9	10
6229	Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 12355-12365.	1.5	3
6230	An Effective Strategy of Combining Surface Passivation and Secondary Grain Growth for Highly Efficient and Stable Perovskite Solar Cells. Small, 2021, 17, e2100678.	5.2	23
6231	Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks!. Molecules, 2021, 26, 2823.	1.7	35
6232	Refractive index of different perovskite materials. Journal of Materials Research, 2021, 36, 1773-1793.	1.2	12
6233	An Overview for Zeroâ€Ðimensional Broadband Emissive Metalâ€Halide Single Crystals. Advanced Optical Materials, 2021, 9, 2100544.	3.6	114
6234	Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nature Communications, 2021, 12, 2853.	5.8	236
6235	A conjugated ligand interfacial modifier for enhancing efficiency and operational stability of planar perovskite solar cells. Chemical Engineering Journal, 2021, 412, 128680.	6.6	17
6236	Ultrafast carrier response of CH ₃ NH ₃ PbI ₃ /MoO ₃ /graphene heterostructure for terahertz waves. Journal Physics D: Applied Physics, 2021, 54, 325102.	1.3	4

ARTICLE IF CITATIONS Dimethyl Sulfoxide Vapor-Assisted Cs₂AgBiBr₆ Homogenous Film Deposition 6237 2.5 20 for Solar Cell Application. ACS Applied Energy Materials, 2021, 4, 6797-6805. Charge Carrier Inhomogeneity of MAPbI3 Clarified by the Clustering of the Time-Resolved Microscopic Image Sequence. ACS Applied Energy Materials, 2021, 4, 6430-6435. 6238 2.5 Phenyl Ethylammonium lodide introduction into inverted triple cation perovskite solar cells for 6239 1.4 3 improved VOC and stability. Organic Electronics, 2021, 93, 106121. Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy. 6240 Scientific Reports, 2021, 11, 12847. Identifying recombination pathways in perovskite solar cells by simulating temperature-dependent 6241 0.5 1 light ideality factor. MRS Advances, 2021, 6, 334-341. 6242 Optoelectronic Properties of Tinâ€"Lead Halide Perovskites. ACS Energy Letters, 2021, 6, 2413-2426. 8.8 Perovskite single crystals: Synthesis, properties, and applications. Journal of Electronic Science and 6243 2.0 41 Technology, 2021, 19, 100081. Kalium persulfate as a low-cost and effective dopant for spiro-OMeTAD in high performance and stable 6244 2.6 24 planar perovskite solar cells. Electrochimica Acta, 2021, 380, 138233. Halide Engineering for Mitigating Ion Migration and Defect States in Hot-Cast Perovskite Solar Cells. 6245 3.2 21 ACS Sustainable Chemistry and Engineering, 2021, 9, 7993-8001. Moth eyeâ€inspired highly efficient, robust, and neutralâ€colored semitransparent perovskite solar cells 6246 6.8 for buildingâ€integrated photovoltaics. EcoMat, 2021, 3, e12117. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic 6247 6.0 351 modules. Science, 2021, 372, 1327-1332. Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency. Polymers, 2021, 13, 6248 2.0 26 211Ŏ Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion 6249 1.6 17 Efficiency. Energies, 2021, 14, 3383. Contact Engineering of Inkjet-printed Organometallic Halide Perovskites for Photodetectors and Solar Cells. , 2021, , . Performance Comparison between the Nanoporous NiO_{<i>x</i>/i>} Layer and NiO<sub><i>x</i>/i>/sub> Thin Film for Inverted Perovskite Solar Cells with Long-Term Stability. ACS 6251 1.6 6 Omega, 2021, 6, 15855-15866. Observation of large Rashba spin–orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. Materials Today, 2021, 46, 18-27. Additiveâ€Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient 6253 10.2 36 Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101394. Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 6254 3.1 2100191.

CITATION REPORT

#	Article	IF	CITATIONS
6255	Mid-Infrared Luminescence of the High Stability Perovskite CsPb _{1–<i>x</i>} Er <i>_x</i> Br ₃ -ZrF ₄ -BaF ₂ -LaF< Fluoride Glass. ACS Applied Materials & Interfaces, 2021, 13, 30008-30019.	suabor3 <td>ולאססAlF<sub< td=""></sub<></td>	ולאססAlF <sub< td=""></sub<>
6256	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	0.7	7
6257	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	10.2	51
6258	Unintentional passivation of 4-tertbutyl pyridine for improved efficiency and decreased operational stability of perovskite solar cells. Applied Physics Letters, 2021, 118, .	1.5	10
6259	Metasurface-assisted broadband optical absorption in ultrathin perovskite films. Optics Express, 2021, 29, 19170.	1.7	5
6260	Creation and investigation of electronic defects on methylammonium lead iodide (CH\$\$_3\$\$NH\$\$_3\$\$PbI\$\$_3\$\$) films depending on atmospheric conditions. European Physical Journal D, 2021, 75, 1.	0.6	3
6261	Preparation and Characterization of Thin-Film Solar Cells with Ag/C60/MAPbI3/CZTSe/Mo/FTO Multilayered Structures. Molecules, 2021, 26, 3516.	1.7	2
6262	Effective Piezoâ€Phototronic Enhancement of Flexible Photodetectors Based on 2D Hybrid Perovskite Ferroelectric Singleâ€Crystalline Thinâ€Films. Advanced Materials, 2021, 33, e2101263.	11.1	53
6263	Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Reports Physical Science, 2021, 2, 100450.	2.8	6
6264	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	11.7	119
6265	The Effects of Temperature on the Growth of a Lead-Free Perovskite-Like (CH3NH3)3Sb2Br9 Single Crystal for An MSM Photodetector Application. Sensors, 2021, 21, 4475.	2.1	4
6266	Assessing the Impact of Ambient Fabrication Temperature on the Performance of Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 2533-2538.	1.0	3
6267	Advances in Lead-Free Perovskite Single Crystals: Fundamentals and Applications. , 2021, 3, 1025-1080.		70
6268	Impact of Orientational Class Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 15025-15034.	1.5	8
6269	The Influence of the Thickness of Compact TiO2 Electron Transport Layer on the Performance of Planar CH3NH3PbI3 Perovskite Solar Cells. Materials, 2021, 14, 3295.	1.3	15
6270	Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103870.	7.8	72
6271	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
6272	Discrete interfacial effects of organic lead halide perovskite coating on magnetic underlayer: MAPbBr <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> /FePd heterostructure. Surfaces and Interfaces. 2021. 24. 101133.	1.5	3

ARTICLE IF CITATIONS Universal Bottom Contact Modification with Diverse 2D Spacers for Highâ€Performance Inverted 6273 7.8 29 Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2104036. Observation of Net Stimulated Emission in CsPbBr₃ Thin Films Prepared by Pulsed Laser 6274 3.6 9 Deposition. Advanced Optical Materials, 2021, 9, 2100564. Evaluation of the Thermoelectric Properties and Thermal Conductivity of CH₃NH₃PbI_{3â€"<i>x</i>}Cl<i>_x</i> Thin Films Prepared 6275 1.6 6 by Chemical Routes. ACS Omega, 2021, 6, 16775-16782. Structural Analysis and Carrier Relaxation Dynamics of 2D CsPbBr₃ Nanoplatelets. 1.5 Journal of Physical Chemistry C, 2021, 125, 12214-12223. Stability of Perovskite Thin Films under Working Condition: Biasâ€Dependent Degradation and Grain 6277 7.8 28 Boundary Effects. Advanced Functional Materials, 2021, 31, 2103894. Achieving 256 \tilde{A} — 256 \hat{a} \in Pixel Color Images by Perovskite \hat{a} \in Based Photodetectors Coupled with Algorithms. Advanced Functional Materials, 2021, 31, 2104320. 7.8 Copolymerâ€Templated Nickel Oxide for Highâ€Efficiency Mesoscopic Perovskite Solar Cells in Inverted 6279 7.8 51 Architecture. Advanced Functional Materials, 2021, 31, 2102237. Cyclopentadieneâ€Based Holeâ€Transport Material for Costâ€Reduced Stabilized Perovskite Solar Cells with 6280 10.2 24 Power Conversion Efficiencies Over 23%. Advanced Energy Materials, 2021, 11, 2003953. Ultrafast Pumpâ€Probe Spectroscopyâ€"A Powerful Tool for Tracking Spinâ€Quantum Dynamics in Metal 6281 1.8 12 Halide Perovskites. Advanced Quantum Technologies, 2021, 4, 2100052. Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature 5.8 Communications, 2021, 12, 3472. Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals. 6283 6.6 33 Journal of the American Chemical Society, 2021, 143, 9048-9059. 6284 Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances, 2021, 11, . 0.6 Guanidinium cation doped (Gua)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e565" altimg="si46.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:math>(MA)<mml:math 6285 0.7 5 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e573' altimg="si47.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:math>PbI3 Exciton linewidth broadening induced by exciton–phonon interactions in CsPbBr3 nanocrystals. Journal of Chemical Physics, 2021, 154, 214502. 14 Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of 6287 23 5.6 Environmentalâ€Dependent Impédance Spectroscopy. Advanced Science, 2021, 8, e2002510. Low non-radiative recombination loss in CsPbI₂Br perovskite solar cells., 2021, , . 6288 Synthetic approaches for thin-film halide double perovskites. Matter, 2021, 4, 1801-1831. 6289 5.011 Zn-Doped SnO2 Compact Layer for Enhancing Performance of Perovskite Solar Cells. International 6290 1.4 Journal of Photoenergy, 2021, 2021, 1-10.

CITATION REPORT

#	Article	IF	CITATIONS
6291	Ambient fabrication of perovskite solar cells through delay-deposition technique. Materials for Renewable and Sustainable Energy, 2021, 10, 1.	1.5	1
6292	Characterizations and Understanding of Additives Induced Passivation Effects in Narrow-Bandgap Sn–Pb Alloyed Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 12560-12567.	1.5	6
6293	Electron-Beam Irradiation Induced Regulation of Surface Defects in Lead Halide Perovskite Thin Films. Research, 2021, 2021, 9797058.	2.8	9
6294	Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Solar Energy, 2021, 221, 99-108.	2.9	68
6295	Reversible Rectification of Microscale Ferroelectric Junctions Employing Liquid Metal Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 29885-29893.	4.0	6
6296	Material Requirements for CdSe Wide Bandgap Solar Cells. , 2021, , .		3
6297	Evaluation of Damage Coefficient for Minority-Carrier Diffusion Length of Triple-Cation Perovskite Solar Cells under 1 MeV Electron Irradiation for Space Applications. Journal of Physical Chemistry C, 2021, 125, 13131-13137.	1.5	12
6298	Perovskite Solar Cells with Polyaniline Hole Transport Layers Surpassing a 20% Power Conversion Efficiency. Chemistry of Materials, 2021, 33, 4679-4687.	3.2	34
6299	A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells. Solar Energy Materials and Solar Cells, 2021, 225, 111073.	3.0	27
6300	Understanding the synergistic effect of mixed solvent annealing on perovskite film formation*. Chinese Physics B, 2021, 30, 068103.	0.7	0
6301	A New Type of Hybrid Copper lodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Letters, 2021, 6, 2565-2574.	8.8	46
6302	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
6303	Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. Journal of the American Chemical Society, 2021, 143, 9982-9990.	6.6	52
6304	Roomâ€Temperatureâ€Processed, Carbonâ€Based Fully Printed Mesoscopic Perovskite Solar Cells with 15% Efficiency. Solar Rrl, 2021, 5, 2100274.	3.1	11
6305	Antisolvent-assisted one-step solution synthesis of defect-less 1D MAPbI3 nanowire networks with improved charge transport dynamics. Journal of Materials Research and Technology, 2021, 13, 162-172.	2.6	4
6306	Single-crystal halide perovskites: Opportunities and challenges. Matter, 2021, 4, 2266-2308.	5.0	35
6307	High-Performance and Stable Perovskite-Based Photoanode Encapsulated by Blanket-Cover Method. ACS Applied Energy Materials, 2021, 4, 7526-7534.	2.5	11
6308	Unveiling Crystal Orientation in Quasiâ€2D Perovskite Films by In Situ GIWAXS for Highâ€Performance Photovoltaics. Small, 2021, 17, e2100972.	5.2	23

#	Article	IF	CITATIONS
6309	Synthesis, Thermal Analysis, Optical, Electric Properties and Conduction Mechanism of Hybrid Halogenometallates: [N(C ₂ H ₅) ₄] ₂ CoCl ₄ . Journal of the Physical Society of Japan, 2021, 90, 074709.	0.7	2
6310	Embedding of Ti ₃ C ₂ T <i>_x</i> Nanocrystals in MAPbI ₃ Microwires for Improved Responsivity and Detectivity of Photodetector. Small, 2021, 17, e2101954.	5.2	14
6311	Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell by Using SCAPS-1D. Journal of Renewable Energy, 2021, 2021, 1-12.	2.1	46
6312	Doping Electron Transporting Layer: An Effective Method to Enhance <i>J</i> _{SC} of Allâ€Inorganic Perovskite Solar Cells. Energy and Environmental Materials, 2021, 4, 500-501.	7.3	17
6313	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
6314	Optically Clear Films of Formamidinium Lead Bromide Perovskite for Wide-Band-Gap, Solution-Processed, Semitransparent Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 37223-37230.	4.0	10
6315	Graded interface engineering of 3D/2D halide perovskite solar cells through ultrathin (PEA)2PbI4 nanosheets. Chinese Chemical Letters, 2021, 32, 2259-2262.	4.8	23
6316	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.	10.2	21
6317	A novel dopant for spiro-OMeTAD towards efficient and stable perovskite solar cells. Science China Materials, 2021, 64, 2915-2925.	3.5	7
6318	8â€Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100506.	1.9	2
6319	Pathways toward 30% Efficient Singleâ€Junction Perovskite Solar Cells and the Role of Mobile Ions. Solar Rrl, 2021, 5, 2100219.	3.1	48
6320	Solvent Engineering for Controlled Crystallization and Growth of All-Inorganic Pb-Free Rudorffite Absorbers of Perovskite Solar Cells. Inorganic Chemistry, 2021, 60, 11110-11119.	1.9	6
6321	Study of hybrid organic–inorganic halide perovskite solar cells based on MAI[(PbI2)1â^'x(CuI)x] absorber layers and their long-term stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 20684-20697.	1.1	2
6322	Impact of Humidity and Temperature on the Stability of the Optical Properties and Structure of MAPb13, MA0.7FA0.3Pb13 and (FAPb13)0.95(MAPbBr3)0.05 Perovskite Thin Films. Materials, 2021, 14, 4054.	1.3	10
6323	2D or not 2D: Eliminating interfacial losses in perovskite solar cells. CheM, 2021, 7, 1694-1696.	5.8	1
6324	Designing conductive fullerenes ionene polymers as efficient cathode interlayer to improve inverted perovskite solar cells efficiency and stability. Chemical Engineering Journal, 2021, 415, 128816.	6.6	15
6325	Performance enhancement of all-inorganic carbon-based CsPbI2Br solar cells by using silane modification. Journal of Materials Science: Materials in Electronics, 2021, 32, 20936-20945.	1.1	6
6326	Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stability of CH ₃ NH ₃ PbBr ₃ â€Based Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100277.	3.1	11

#	Article	IF	CITATIONS
6327	The Vibrational and Thermodynamic Properties of CsPbl ₃ Polymorphs: An Improved Description Based on the SCAN meta-GGA Functional. Journal of Physical Chemistry Letters, 2021, 12, 6613-6621.	2.1	24
6328	Predicting Perovskite Performance with Multiple Machine-Learning Algorithms. Crystals, 2021, 11, 818.	1.0	9
6329	Coâ€Evaporated MAPbI ₃ with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible pâ€iâ€n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103252.	7.8	40
6330	Sprayâ€Coated Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells with High Openâ€Circuit Voltage. Solar Rrl, 2021, 5, 2100422.	3.1	40
6331	Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter, 2021, 4, 2490-2507.	5.0	47
6332	Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere. Journal of Power Sources, 2021, 500, 229985.	4.0	8
6333	Phase Diagram and Cation Dynamics of Mixed MA _{1–<i>x</i>} FA <i>_x</i> PbBr ₃ Hybrid Perovskites. Chemistry of Materials, 2021, 33, 5926-5934.	3.2	16
6334	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	3.2	7
6335	Influence of Atmospheric Constituents on Spectral Instability and Defect-Mediated Carrier Recombination in Hybrid Perovskite Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 17133-17143.	1.5	10
6336	Band Matching Strategy for All-Inorganic Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells with High Photovoltage. ACS Applied Materials & Interfaces, 2021, 13, 37027-37034.	4.0	36
6337	Enhancing Thermoelectric Power Factor of 2D Organometal Halide Perovskites by Suppressing 2D/3D Phase Separation. Advanced Materials, 2021, 33, e2102797.	11.1	19
6338	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
6339	Conjugated Polyelectrolyte-Passivated Stable Perovskite Solar Cells for Efficiency Beyond 20%. Chemistry of Materials, 2021, 33, 5709-5717.	3.2	33
6340	Single-atom Pt-13 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12, 4412.	5.8	128
6341	Tetrafluoroborateâ€induced Reduction in Defect Density in Hybrid Perovskites through Halide Management. Advanced Materials, 2021, 33, e2102462.	11.1	24
6342	Effects of Structural Phase Transitions on Hysteresis in Airâ€Processed Organic–Inorganic Halide Perovskite Thinâ€Film Transistors. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100211.	1.2	3
6343	Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells. Solar Energy, 2021, 223, 106-112.	2.9	17
6344	One-step preparation of blue-emitting CsPbBr3 quantum dots loaded on natural mineral halloysite nanotube. Applied Clay Science, 2021, 208, 106110.	2.6	7

#	Article	IF	CITATIONS
6345	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
6346	Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310.	0.8	12
6347	From Groundwork to Efficient Solar Cells: On the Importance of the Substrate Material in Coâ€Evaporated Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2104482.	7.8	51
6348	Formation Mechanisms and Phase Stability of Solid-State Grown CsPbI3 Perovskites. Nanomaterials, 2021, 11, 1823.	1.9	6
6350	A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations. Journal of Materials Science: Materials in Electronics, 2021, 32, 18466-18511.	1.1	8
6351	Grain Size and Interface Modification via Cesium Carbonate Post-Treatment for Efficient SnO ₂ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7002-7011.	2.5	32
6352	An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Science Bulletin, 2021, 66, 1419-1428.	4.3	29
6353	Phase Evolution in Lead-Free Cs-Doped FASnl ₃ Hybrid Perovskites and Optical Properties. Journal of Physical Chemistry C, 2021, 125, 16903-16912.	1.5	11
6354	Probing the Origin of Light-Enhanced Ion Diffusion in Halide Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 33609-33617.	4.0	8
6355	DFT Study of Lead-Free Mixed-Halide Materials Cs2X2Y2 (X, Y = F, Cl, Br, I) for Optoelectronic Applications. Journal of Electronic Materials, 2021, 50, 5647-5655.	1.0	0
6356	Reducing the Energy Loss to Achieve High Openâ€circuit Voltage and Efficiency by Coordinating Energyâ€Level Matching in Sn–Pb Binary Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100287.	3.1	19
6357	One-Step Synthesis of Snl ₂ ·(DMSO) _{<i>x</i>} Adducts for High-Performance Tin Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 10970-10976.	6.6	280
6358	A mini review: Constructing perovskite p-n homojunction solar cells. Chinese Chemical Letters, 2022, 33, 1772-1778.	4.8	13
6359	Improvement of fill factor by the utilization of Zn-doped PEDOT:PSS hole-transport layers for p-i-n planar type of perovskite solar cells. Electrochimica Acta, 2021, 388, 138658.	2.6	11
6360	Strong Electron Acceptor of a Fluorine-Containing Group Leads to High Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 41149-41158.	4.0	24
6361	A first principle investigation of the non-synthesized cubic perovskite LiGeX3 (X=I, Br, and Cl). Materials Science in Semiconductor Processing, 2021, 131, 105858.	1.9	18
6362	Charge Carrier Dynamics of Multiple-Cation Mixed-Halide Perovskite Thin Films. Journal of Physical Chemistry C, 2021, 125, 17411-17417.	1.5	0
6363	Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations. Multiscale Science and Engineering, 2021, 3, 205.	0.9	0

#	Article	IF	CITATIONS
6364	Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. Journal of the American Chemical Society, 2021, 143, 12369-12379.	6.6	24
6365	Efficient and stable planar MAPbI3 perovskite solar cells based on a small molecule passivator. Surfaces and Interfaces, 2021, 25, 101213.	1.5	3
6366	Optoelectronic Properties of Lowâ€Bandgap Halide Perovskites for Solar Cell Applications. Advanced Materials, 2021, 33, e2102300.	11.1	36
6367	Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Advanced Materials, 2021, 33, e2103394.	11.1	99
6368	Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy, 2021, 224, 1369-1395.	2.9	43
6369	Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8, 4396-4411.	1.7	4
6371	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	5.8	10
6372	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	5.6	16
6373	Uniaxially Oriented Monolithically Grained Perovskite Films for Enhanced Performance of Solar Cells. Journal of Physical Chemistry C, 2021, 125, 19131-19141.	1.5	4
6374	Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surfaces and Interfaces, 2021, 25, 101287.	1.5	15
6375	37.3: Invited Paper: Quantum dot LEDâ€based display technology. Digest of Technical Papers SID International Symposium, 2021, 52, 479-479.	0.1	0
6376	Synergistic passivation of MAPbI3 perovskite solar cells by compositional engineering using acetamidinium bromide additives. Journal of Energy Chemistry, 2021, 59, 755-762.	7.1	21
6377	<i>m</i> -Phenylenediammonium as a New Spacer for Dion–Jacobson Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 12063-12073.	6.6	71
6378	Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie - International Edition, 2021, 60, 21434-21440.	7.2	72
6379	Solid-state reaction process for high-quality organometallic halide perovskite thin film. Solar Energy Materials and Solar Cells, 2021, 227, 111014.	3.0	3
6380	Thickness control and photovoltaic properties of CH ₃ NH ₃ PbI ₃ bar-coated thin film. Japanese Journal of Applied Physics, 2022, 61, SB1032.	0.8	7
6381	Dual Blue Emission in Ruddlesden–Popper Lead-Bromide Perovskites Induced by Photon Recycling. Journal of Physical Chemistry C, 2021, 125, 18308-18316.	1.5	10
6382	Lead-Free Perovskite-Based Bifunctional Device for Both Photoelectric Conversion and Energy Storage. ACS Applied Energy Materials, 2021, 4, 7952-7958.	2.5	8

#	Article	IF	CITATIONS
6383	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, 0, 1, 98.	2.0	2
6384	From Frequency Domain to Time Transient Methods for Halide Perovskite Solar Cells: The Connections of IMPS, IMVS, TPC, and TPV. Journal of Physical Chemistry Letters, 2021, 12, 7964-7971.	2.1	34
6385	A scientometric review of trends in solar photovoltaic waste management research. Solar Energy, 2021, 224, 545-562.	2.9	28
6386	Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability. , 2021, 3, 1402-1416.		21
6387	Thermal fluctuations and carrier localization induced by dynamic disorder in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>MAPbI </mml:mi> described by first-principles based tight-binding model. Physical Review Materials, 2021, 5, .</mml:mrow></mml:msub></mml:math 	m bn9 row>	<n₂ml:mn>3∘</n₂ml:mn>
6388	Revealing Ultrafast Charge-Carrier Thermalization in Tin-Iodide Perovskites through Novel Pump–Push–Probe Terahertz Spectroscopy. ACS Photonics, 2021, 8, 2509-2518.	3.2	14
6389	Unusual defect properties in multivalent perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cs</mml:mi><mml:m mathvariant="normal">I<mml:mn>6</mml:mn></mml:m </mml:msub></mml:mrow> : A first-principles study. Physical Review Materials, 2021, 5, .</mml:math 	in>20.9	l:ŋn>
6390	Ferroic alternation in methylammonium lead triiodide perovskite. EcoMat, 2021, 3, e12131.	6.8	13
6391	Stiffening the Pb-X Framework through a π-Conjugated Small-Molecule Cross-Linker for High-Performance Inorganic CsPbI ₂ Br Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 40489-40501.	4.0	33
6392	Reducing the interfacial energy loss via oxide/perovskite heterojunction engineering for high efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 417, 129184.	6.6	27
6393	Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions. Angewandte Chemie, 2021, 133, 21604-21610.	1.6	13
6394	Role of Alkali Cations in Stabilizing Mixed-Cation Perovskites to Thermal Stress and Moisture Conditions. ACS Applied Materials & amp; Interfaces, 2021, 13, 43573-43586.	4.0	16
6395	Mesoporous TiO2 electron transport layer engineering for efficient inorganic-organic hybrid perovskite solar cells using hydrochloric acid treatment. Thin Solid Films, 2021, 732, 138768.	0.8	10
6396	Dopant-free hole transporting polymeric materials based on pyrroloindacenodithiophene donor unit for efficient perovskite solar cells. Dyes and Pigments, 2021, 192, 109432.	2.0	8
6397	Utilization of coordinating green solvents for high quality methylammonium bismuth iodide thin films for photovoltaic applications. Organic Electronics, 2021, 95, 106191.	1.4	3
6398	First-principles investigation of CO2, CO, and O2 adsorptions on the (001)-reconstructed surfaces of CsPbX3 (X = Cl, Br, and I) perovskites. Surfaces and Interfaces, 2021, 25, 101264.	1.5	2
6399	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. Cell Reports Physical Science, 2021, 2, 100511.	2.8	21
6400	2D/3D Halide Perovskites for Optoelectronic Devices. Frontiers in Chemistry, 2021, 9, 715157.	1.8	8

#	Article	IF	CITATIONS
6401	Hysteresis-free perovskite solar cells with compact and nanoparticle NiO for indoor application. Solar Energy Materials and Solar Cells, 2021, 227, 111095.	3.0	35
6402	Low-threshold and narrow-linewidth perovskite microlasers pumped by a localized waveguide source. Nanophotonics, 2021, 10, 3477-3485.	2.9	3
6403	Formulation of conductive nanocomposites by incorporating silverâ€doped carbon quantum dots for efficient charge extraction. International Journal of Energy Research, 2021, 45, 21324-21339.	2.2	5
6404	Grain Boundaries in Methylammonium Lead Halide Perovskites Facilitate Water Diffusion. Advanced Energy and Sustainability Research, 2021, 2, 2100087.	2.8	9
6405	Enhancing air-stability and reproducibility of lead-free formamidinium-based tin perovskite solar cell by chlorine doping. Solar Energy Materials and Solar Cells, 2021, 227, 111072.	3.0	15
6406	A Review on Gasâ€Quenching Technique for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100386.	3.1	28
6407	UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors. Science China Materials, 2022, 65, 442-450.	3.5	7
6408	Near-Unity-Efficiency Energy Transfer from Perovskite to Monolayer Semiconductor through Long-Range Migration and Asymmetric Interfacial Transfer. ACS Applied Materials & Interfaces, 2021, 13, 41895-41903.	4.0	10
6409	Toward Allâ€Vacuumâ€Processable Perovskite Solar Cells with High Efficiency, Stability, and Scalability Enabled by Fluorinated Spiroâ€OMeTAD through Thermal Evaporation. Solar Rrl, 2021, 5, 2100415.	3.1	10
6410	Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	3.6	14
6411	Fabrications of Halide Perovskite Single-Crystal Slices and Their Applications in Solar Cells, Photodetectors, and LEDs. Crystal Growth and Design, 2021, 21, 5983-5997.	1.4	9
6412	Lithium Polystyrene Sulfonate as a Hole Transport Material in Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2021, 16, 3151-3161.	1.7	4
6413	A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Optical and Quantum Electronics, 2021, 53, 1.	1.5	25
6414	Dopant Engineering for Spiroâ€OMeTAD Holeâ€Transporting Materials towards Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102124.	7.8	67
6415	High efficiency of 19% for stable perovskite solar cells fabrication under ambient environment using "conductive polymer adhesive― Journal of Power Sources, 2021, 507, 230302.	4.0	6
6416	Copper nanoparticle-decorated RCO electrodes as hole transport layer of perovskite solar cells enhancing efficiency and shelf stability. Journal of Materials Research and Technology, 2021, 14, 631-638.	2.6	8
6417	Lowâ€Cost and Largeâ€Area Hybrid Xâ€Ray Detectors Combining Direct Perovskite Semiconductor and Indirect Scintillator. Advanced Functional Materials, 2021, 31, 2107843.	7.8	25
6418	Hole-Transport-Underlayer-Induced Crystallization Management of Two-Dimensional Perovskites for High-Performance Inverted Solar Cells. ACS Applied Energy Materials, 2021, 4, 10574-10583.	2.5	9

#	Article	IF	CITATIONS
6419	Cesium Iodide Incorporation in Tin Oxide Electron Transport Layer for Defect Passivation and Efficiency Enhancement in Double Cation Absorberâ€Based Planar Perovskite Solar Cells. Energy Technology, 2021, 9, 2100492.	1.8	5
6420	Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology. Solar Energy Materials and Solar Cells, 2021, 230, 111206.	3.0	9
6421	Long-Range Interfacial Charge Carrier Trapping in Halide Perovskite-C ₆₀ and Halide Perovskite-TiO ₂ Donor–Acceptor Films. Journal of Physical Chemistry Letters, 2021, 12, 8644-8651.	2.1	18
6422	Grain Boundary Defects Passivated with <i>tert</i> Butyl Methacrylate for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11298-11305.	2.5	8
6423	Heterostructural perovskite solar cell constructed with Li-doped p-MAPbI3/n-TiO2 PN junction. Solar Energy, 2021, 226, 446-454.	2.9	7
6424	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	1.7	19
6425	Additive Engineering for Efficient and Stable MAPbI ₃ -Perovskite Solar Cells with an Efficiency of over 21%. ACS Applied Materials & Interfaces, 2021, 13, 44451-44459.	4.0	18
6426	Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Solar Energy, 2021, 225, 842-850.	2.9	25
6427	Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D. Nanomaterials, 2021, 11, 2321.	1.9	37
6428	Improving the Photovoltage of Blade-Coated MAPbl ₃ Perovskite Solar Cells via Surface and Grain Boundary Passivation with π-Conjugated Phenyl Boronic Acids. ACS Applied Materials & Interfaces, 2021, 13, 46566-46576.	4.0	15
6429	Numerical Study of Plasmonic Effects of Ag Nanoparticles Embedded in the Active Layer on Performance Polymer Organic Solar Cells. Plasmonics, 2022, 17, 491-504.	1.8	12
6430	Carboxyl functional group-assisted defects passivation strategy for efficient air-processed perovskite solar cells with excellent ambient stability. Solar Energy Materials and Solar Cells, 2021, 230, 111242.	3.0	23
6431	Molecular passivation of MAPbI3 perovskite films follows the Langmuir adsorption rule. Applied Physics Letters, 2021, 119, .	1.5	8
6432	Toward high-performance semitransparent perovskite solar cells: interfacial modification and charge extraction perspectives. Materials Today Energy, 2021, 21, 100833.	2.5	8
6433	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
6434	NH3+-Functionalized PAMAM Dendrimers Enhancing Power Conversion Efficiency and Stability of Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6414-6425.	1.0	2
6435	The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107125.	7.8	47
6436	Low-field onset of Wannier-Stark localization in a polycrystalline hybrid organic inorganic perovskite. Nature Communications, 2021, 12, 5719.	5.8	6

#	Article	IF	CITATIONS
6437	Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Solar Energy, 2021, 225, 1001-1008.	2.9	13
6438	Advances in Flexible Memristors with Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8798-8825.	2.1	36
6439	Tailored conductive fullerenes-based passivator for efficient and stable inverted perovskite solar cells. Journal of Colloid and Interface Science, 2021, 598, 229-237.	5.0	13
6440	Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells. Chemical Engineering Journal, 2021, 420, 129579.	6.6	44
6441	TADF Molecule as an Interfacial Layer with Cascade Energy Alignment Enabling High Open-Circuit Voltage for 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11112-11120.	2.5	4
6442	A Fully Printable Holeâ€Transporterâ€Free Semiâ€Transparent Perovskite Solar Cell. European Journal of Inorganic Chemistry, 2021, 2021, 3752-3760.	1.0	6
6443	Asymmetrically Substituted Phthalocyanines as Dopant-Free Hole Selective Layers for Reliability in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10124-10135.	2.5	16
6444	Illumination Intensity Dependence of the Recombination Mechanism in Mixed Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1347-1356.	1.3	15
6445	Hybridization of SnO ₂ and an In-Situ-Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene Electron Transport Bilayer for High-Performance Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 13672-13680.	3.2	13
6446	Robust, High-Performing Maize–Perovskite-Based Solar Cells with Improved Stability. ACS Applied Energy Materials, 2021, 4, 11194-11203.	2.5	11
6447	Enhancement of the performance of planar perovskite solar cells by active-layer surface/interface modification with optimal mixed solvent-antisolvent post-treatment. Organic Electronics, 2022, 100, 106349.	1.4	4
6448	Application of upconversion photoluminescent materials in perovskite solar cells: opportunities and challenges. Materials Today Energy, 2021, 21, 100740.	2.5	5
6449	Enhancement in charge extraction and moisture stability of perovskite solar cell via infiltration of charge transport material in grain boundaries. Journal of Power Sources, 2021, 506, 230212.	4.0	6
6450	Enhanced thermal and moisture stability via dual additives approach in methylammonium lead iodide based planar perovskite solar cells. Solar Energy, 2021, 225, 200-210.	2.9	9
6451	A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100405.	5.6	77
6452	Strategies and methods for fabricating high quality metal halide perovskite thin films for solar cells. Journal of Energy Chemistry, 2021, 60, 300-333.	7.1	31
6453	Structural, electronic, and optical properties of Pt-based vacancy-ordered double perovskites A2PtX6 (A = K, Rb, Cs; X = Cl, Br, I) in tetragonal P4/mnc polymorph. Optical Materials, 2021, 119, 111323.	1.7	6
6454	Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donorâ^'ï€â€"Acceptor Dipoles. ACS Applied Materials & Interfaces, 2021, 13, 44321-44328.	4.0	30

#	Article	IF	CITATIONS
6455	Optimization of optoelectrical properties during synthesizing methylammonium lead iodide perovskites via a two-step dry process. Journal of Materials Research and Technology, 2021, 14, 1-9.	2.6	4
6456	A review of primary technologies of thin-film solar cells. Engineering Research Express, 2021, 3, 032001.	0.8	42
6457	Common Defects Accelerate Charge Carrier Recombination in CsSnl ₃ without Creating Mid-Gap States. Journal of Physical Chemistry Letters, 2021, 12, 8699-8705.	2.1	31
6458	Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy & Fuels, 2021, 35, 18915-18927.	2.5	45
6459	Dual-Passivation Strategy for Improved Ambient Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10025-10032.	2.5	13
6460	Tuning Alkyl Chain Lengths of Oxasmaragdyrins-B(OR)2 for Optimizing Hole-Transport and Efficiency in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 9090-9098.	2.5	2
6461	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	2.5	8
6462	Bulk Metal Halide Perovskites as Triplet Sensitizers: Taking Charge of Upconversion. ACS Energy Letters, 2021, 6, 3686-3694.	8.8	33
6463	Slot-die coated methylammonium-free perovskite solar cells with 18% efficiency. Solar Energy Materials and Solar Cells, 2021, 230, 111189.	3.0	28
6464	Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100598.	2.8	29
6465	Controlling the Crystallization Kinetics of Leadâ€Free Tin Halide Perovskites for High Performance Green Photovoltaics. Advanced Energy Materials, 2021, 11, 2102131.	10.2	47
6466	Recent Advances and Prospects in Colloidal Nanomaterials. Jacs Au, 2021, 1, 1849-1859.	3.6	20
6467	Toward Commercialization of Efficient and Stable Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100600.	3.1	16
6468	Mixed 2D-3D Halide Perovskite Solar Cells. , 0, , .		0
6469	Role of defects in organic–inorganic metal halide perovskite: detection and remediation for solar cell applications. Emergent Materials, 2022, 5, 987-1020.	3.2	10
6470	Direct Deposition of Nonaqueous SnO2 Dispersion by Blade Coating on Perovskites for the Scalable Fabrication of p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	12
6471	MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069.	1.9	27
6472	Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry, 2022, 67, 1-7.	7.1	33

#	Article	IF	CITATIONS
6473	Additive-Assisted Defect Passivation for Minimization of Open-Circuit Voltage Loss and Improved Perovskite Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 10468-10476.	2.5	21
6474	On the Origin of Room-Temperature Amplified Spontaneous Emission in CsPbBr ₃ Single Crystals. Chemistry of Materials, 2021, 33, 7185-7193.	3.2	9
6475	Multipulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8732-8739.	2.1	8
6476	Conjugated molecule doping of triphenylamine-based hole-transport layer for high-performance perovskite solar cells. Journal of Power Sources, 2021, 506, 230120.	4.0	14
6477	Interfacial engineering designed on CuSCN for highly efficient and stable carbon-based perovskite solar cells. Materials Today Energy, 2021, 21, 100801.	2.5	5
6478	Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells. Journal of Materiomics, 2021, 7, 1039-1048.	2.8	17
6479	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
6480	Sensitive, stable, and biocompatible photodetector based on a poly(vinyl alcohol)-starch/magnetite nanocomposite. Optik, 2021, 242, 167247.	1.4	1
6481	Deactivating grain boundary defect by bifunctional polymer additive for humid air-synthesized stable halide perovskite solar cells. Solar Energy, 2021, 225, 211-220.	2.9	5
6482	Sensitive, Highâ€Speed, and Broadband Perovskite Photodetectors with Builtâ€In TiO ₂ Metalenses. Small, 2021, 17, e2102694.	5.2	4
6483	Simultaneous Passivation of the SnO ₂ /Perovskite Interface and Perovskite Absorber Layer in Perovskite Solar Cells Using KF Surface Treatment. ACS Applied Energy Materials, 2021, 4, 10921-10930.	2.5	35
6484	Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication. ACS Energy Letters, 2021, 6, 3511-3521.	8.8	56
6485	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	8.2	28
6486	Marked Near-Infrared Response of 2D Ca ₃ Sn ₂ S ₇ Chalcogenide Perovskite via Solid and Electronic Structure Engineering. Journal of Physical Chemistry C, 2021, 125, 20241-20248.	1.5	6
6487	Effect of chlorobenzene on the optical and structural properties of CH3NH3PbI3:DMF perovskite films. Journal of Materials Research and Technology, 2021, 14, 287-297.	2.6	5
6488	Charge Carrier Diffusion Dynamics in Multisized Quaternary Alkylammonium-Capped CsPbBr ₃ Perovskite Nanocrystal Solids. ACS Applied Materials & Interfaces, 2021, 13, 44742-44750.	4.0	11
6489	Selfâ€Assembled Perovskite Nanoislands on CH ₃ NH ₃ PbI ₃ Cuboid Single Crystals by Energetic Surface Engineering. Advanced Functional Materials, 2021, 31, 2105542.	7.8	9
6490	Functionalized SnO2 films by using EDTA-2ÂM for high efficiency perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 430, 132683.	6.6	38

#	Article	IF	CITATIONS
6491	Recent progress on all-inorganic metal halide perovskite solar cells. Materials Today Nano, 2021, 16, 100143.	2.3	13
6492	Iodide <i>vs</i> Chloride: The Impact of Different Lead Halides on the Solution Chemistry of Perovskite Precursors. ACS Applied Energy Materials, 2021, 4, 9827-9835.	2.5	11
6493	Strain engineering in metal halide perovskite materials and devices: Influence on stability and optoelectronic properties. Chemical Physics Reviews, 2021, 2, .	2.6	23
6494	Effect of isomeric hole-transporting materials on perovskite solar cell performance. Materials Today Energy, 2021, 21, 100780.	2.5	13
6495	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	2.8	111
6496	Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6512-6517.	1.0	5
6497	Evaporation of Methylammonium Iodide in Thermal Deposition of MAPbI3. Nanomaterials, 2021, 11, 2532.	1.9	6
6498	Enhanced performance of p-i-n perovskite solar cell via defect passivation of nickel oxide/perovskite interface with self-assembled monolayer. Applied Surface Science, 2021, 560, 149973.	3.1	36
6499	Allâ€Inorganic CsPbBr 3 /Cs 4 PbBr 6 Perovskite/ZnO for Detection of NO with Enhanced Response and Lowâ€Work Temperature. ChemistrySelect, 2021, 6, 9657-9662.	0.7	0
6500	Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium. Journal of Materials Science: Materials in Electronics, 2021, 32, 24825-24833.	1.1	7
6501	Temperatureâ€dependent structural fluctuation and its effect on the electronic structure and charge transport in hybrid perovskite <scp>CH₃NH₃PbI₃</scp> . Journal of Computational Chemistry, 2021, 42, 2213-2220.	1.5	12
6502	Chiral Hybrid Perovskite Singleâ€Crystal Nanowire Arrays for Highâ€Performance Circularly Polarized Light Detection. Advanced Science, 2021, 8, e2102065.	5.6	34
6503	Solving the equivalent circuit of a planar heterojunction perovskite solar cell using Lambert W-function. Solid State Communications, 2021, 337, 114439.	0.9	4
6504	Impermeable inorganic "walls―sandwiching perovskite layer toward inverted and indoor photovoltaic devices. Nano Energy, 2021, 88, 106286.	8.2	19
6505	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
6506	Chromium trioxide modified spiro-OMeTAD for highly efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 386-394.	7.1	17
6507	Residual solvent extraction via chemical displacement for efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 8-14.	7.1	19
6508	Advances in surface passivation of perovskites using organic halide salts for efficient and stable solar cells. Surfaces and Interfaces, 2021, 26, 101420.	1.5	10

#	Article	IF	CITATIONS
6509	Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production, 2021, 317, 128368.	4.6	10
6510	Fluorinated Cross-linkable and Dopant-free hole transporting materials for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 422, 130124.	6.6	26
6511	Solution-processable infrared photodetectors: Materials, device physics, and applications. Materials Science and Engineering Reports, 2021, 146, 100643.	14.8	49
6512	Polyvinylpyrrolidone/polyvinyl alcohol blends modification on light absorbing layer to improve the efficiency and stability of perovskite solar cells. Materials Science in Semiconductor Processing, 2021, 133, 105941.	1.9	10
6513	Enhanced performance of CH3NH3PbI3 perovskite solar cells by excess halide modification. Applied Surface Science, 2021, 564, 150464.	3.1	18
6514	Efficiency Improvement of Perovskite Solar Cells by Utilizing CuInSâ,, Thin Layer: Modeling and Numerical Study. IEEE Transactions on Electron Devices, 2021, 68, 4997-5002.	1.6	10
6515	Ultrafast photo-induced carrier dynamics of FAPbI3-MAPbBr3 perovskite films fabricated with additives and a hole transport material. Chemical Physics Letters, 2021, 784, 139100.	1.2	4
6516	Influence of spin-coating methods on the properties of planar solar cells based on ambient-air-processed triple-cation mixed-halide perovskites. Journal of Alloys and Compounds, 2021, 879, 160373.	2.8	6
6517	W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells. Applied Surface Science, 2021, 563, 150298.	3.1	15
6518	Interface Engineering for Allâ€Inorganic CsPblBr ₂ Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.	1.8	18
6519	Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy, 2021, 89, 106384.	8.2	28
6520	Enhancing the performance of CsPbIBr2 solar cells through zinc halides doping. Synthetic Metals, 2021, 281, 116918.	2.1	5
6521	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	2.9	17
6522	Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells. Solar Energy, 2021, 228, 253-262.	2.9	21
6523	Emergence of bulk photovoltaic effect in anion-ordered perovskite sulfur diiodide MASbSI2 with spontaneous out-of-plane ferroelectricity. Materials Today Physics, 2021, 21, 100459.	2.9	4
6524	Ambient-air fabrication of stable mixed cation perovskite planar solar cells with efficiencies exceeding 22% using a synergistic mixed antisolvent with complementary properties. Nano Energy, 2021, 89, 106387.	8.2	14
6525	Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renewable and Sustainable Energy Reviews, 2021, 151, 111608.	8.2	45
6526	First-principle calculations to investigate structural, electronic and optical properties of MgHfS3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115405.	1.7	4

#	Article	IF	CITATIONS
6527	New lead-free double perovskites A2NaInI6 (AÂ=ÂCs, Rb) for solar cells and renewable energy; first principles analysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115420.	1.7	15
6528	Interface modification by ethanolamine interfacial layer for efficient planar structure perovskite solar cells. Journal of Power Sources, 2021, 513, 230549.	4.0	11
6529	A promising all-inorganic double perovskite Rb2TiBr6 for photovoltaic applications: Insight from first-principles calculations. Journal of Solid State Chemistry, 2021, 303, 122473.	1.4	10
6530	New strategy for improving the perovskite solar cells' open-circuit voltage: Cation substitution of hole transport layer. Optical Materials, 2021, 121, 111262.	1.7	2
6531	Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chemical Engineering Journal, 2021, 424, 130508.	6.6	5
6532	Binary antisolvent bathing enabled highly efficient and uniform large-area perovskite solar cells. Chemical Engineering Journal, 2021, 423, 130078.	6.6	8
6533	Fine-control-valve of halide perovskite single crystal quality for high performance X-ray detection. Science Bulletin, 2021, 66, 2199-2206.	4.3	29
6534	NaCl-passivated and Na+-doped tin oxide electron transport layers enable highly efficient planar perovskite solar cells. Journal of Physics and Chemistry of Solids, 2021, 158, 110250.	1.9	8
6535	Optical management of spacer layer of high-performance four-terminal perovskite/silicon tandem solar cells. Solar Energy, 2021, 228, 226-234.	2.9	6
6536	Temperature dependence of MAPbI3 films by quasi-vapor deposition technique and impact on photovoltaic performance and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 888, 161448.	2.8	5
6537	Analysis of electronic structure and properties of Ga2O3/CuAlO2 heterojunction. Applied Surface Science, 2021, 568, 150826.	3.1	16
6538	Design of (C3N2H5)(1-)Cs PbI3 as a novel hybrid perovskite with strong stability and excellent photoelectric performance: A theoretical prediction. Solar Energy Materials and Solar Cells, 2021, 233, 111401.	3.0	7
6539	Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Computational Materials Science, 2021, 200, 110823.	1.4	10
6540	Suppression of Sn2+/Sn4+ oxidation in tin-based perovskite solar cells with graphene-tin quantum dots composites in active layer. Nano Energy, 2021, 90, 106495.	8.2	48
6541	In situ nanocrystal seeding perovskite crystallization towardÂhigh-performance solar cells. Materials Today Energy, 2021, 22, 100855.	2.5	9
6542	Bifunctional green cellulose derivatives employed for high efficiency and stable perovskite solar cells under ambient environment. Journal of Alloys and Compounds, 2021, 886, 161247.	2.8	11
6543	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	6.6	22
6544	High-performance and stability bifacial flexible self-powered perovskite photodetector by surface plasmon resonance and hydrophobic treatments. Organic Electronics, 2021, 99, 106330.	1.4	5

#	Article	IF	CITATIONS
6545	Construction of efficient perovskite solar cell through small-molecule synergistically assisted surface defect passivation and fluorescence resonance energy transfer. Chemical Engineering Journal, 2021, 426, 131358.	6.6	22
6546	Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131499.	6.6	17
6547	Light-induced nonvolatile resistive switching in Cs0.15FA0.85PbI3-XBrX perovskite-based memristors. Solid-State Electronics, 2021, 186, 108166.	0.8	5
6548	Benzotriazole derivative inhibits nonradiative recombination and improves the UV-stability of inverted MAPbI3 perovskite solar cells. Journal of Energy Chemistry, 2022, 65, 592-599.	7.1	18
6549	Multifunctional fluorinated ammonium salt for high-performance all-inorganic CsPbl2Br perovskite solar cells with efficiency of 16.29%. Journal of Alloys and Compounds, 2022, 891, 161971.	2.8	6
6550	Perovskite light-emitting diodes with low roll-off efficiency via interfacial ionic immobilization. Chemical Engineering Journal, 2022, 429, 132347.	6.6	10
6551	Self-woven monolayer polyionic mesh to achieve highly efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 428, 132074.	6.6	19
6552	A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 538-560.	7.1	33
6553	Incorporation of γ-aminobutyric acid and cesium cations to formamidinium lead halide perovskites for highly efficient solar cells. Journal of Energy Chemistry, 2022, 64, 561-567.	7.1	19
6554	Fluorene-terminated hole transporting materials with a spiro[fluorene-9,9′-xanthene] core for perovskite solar cells. New Journal of Chemistry, 2021, 45, 5497-5502.	1.4	7
6555	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	4.6	24
6557	Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select, 2021, 2, 1055-1080.	1.9	32
6558	Spectroscopic investigations of electron and hole dynamics in MAPbBr ₃ perovskite film and carrier extraction to PEDOT hole transport layer. Physical Chemistry Chemical Physics, 2021, 23, 13011-13022.	1.3	6
6559	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	5.2	21
6560	Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: a comparative study on the choice of carbon sources. Journal of Materials Chemistry C, 2021, 9, 3546-3554.	2.7	16
6562	Interfacial engineering of CuSCN-based perovskite solar cells <i>via</i> PMMA interlayer toward enhanced efficiency and stability. New Journal of Chemistry, 2021, 45, 13168-13174.	1.4	20
6563	Enantiomeric perovskite with a dual phase transition at high temperature. Journal of Materials Chemistry C, 2021, 9, 1918-1922.	2.7	16
6564	Formamide iodide: a new cation additive for inhibiting l´-phase formation of formamidinium lead iodide perovskite. Materials Advances, 2021, 2, 2272-2277.	2.6	2

#	Article	IF	CITATIONS
6565	Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. Advanced Science, 2021, 8, 2001843.	5.6	59
6566	A Highâ€Performance Flexible Broadband Photodetector Based on Graphene–PTAA–Perovskite Heterojunctions. Advanced Electronic Materials, 2021, 7, 2000522.	2.6	24
6567	Leadâ€Less Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000616.	3.1	25
6568	Photodetectors Based on Perovskite Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2021, , 75-117.	0.4	0
6569	Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 4138-4149.	5.2	80
6570	Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. Journal of Materials Chemistry A, 2021, 9, 11778-11786.	5.2	27
6571	Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy and Environmental Science, 2021, 14, 2419-2428.	15.6	152
6572	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ PbI ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	1.3	12
6573	High-throughput computational search for high carrier lifetime, defect-tolerant solar absorbers. Energy and Environmental Science, 2021, 14, 5057-5073.	15.6	23
6574	Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuOx as an efficient hole transporting layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 2312-2325.	1.1	7
6575	Energetic and electronic properties of CsPbBr ₃ surfaces: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 7145-7152.	1.3	22
6576	Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. Energies, 2021, 14, 708.	1.6	8
6577	Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. Journal of Materials Chemistry A, 2021, 9, 16178-16186.	5.2	21
6578	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	5.2	77
6579	Future perspectives of perovskite solar cells: Metal oxide-based inorganic hole-transporting materials. , 2021, , 181-219.		5
6580	Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy and Environmental Science, 2021, 14, 2009-2035.	15.6	46
6581	Influence of precursor solution temperature on the crystalline nature of mixed halide perovskite thin films grown by one-step deposition method. Journal of Materials Science: Materials in Electronics, 2021, 32, 2459-2470.	1.1	2
6582	Theoretical insight into the CdS/FAPbI ₃ heterostructure: a promising visible-light absorber. New Journal of Chemistry, 2021, 45, 4393-4400.	1.4	10

#	Article	IF	CITATIONS
6583	Data-driven analysis of the rotational energy landscapes of an organic cation in a substituted alloy perovskite. Materials Advances, 2021, 2, 2366-2372.	2.6	0
6584	Nanocarbons for emerging photovoltaic applications. , 2021, , 49-80.		0
6585	Progress in blade-coating method for perovskite solar cells toward commercialization. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	17
6586	Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9347-9353.	5.2	6
6587	Electron-transport-layer-free two-dimensional perovskite solar cells based on a flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) cathode. Sustainable Energy and Fuels, 2021, 5, 2595-2601.	2.5	2
6588	Inner Strain Regulation in Perovskite Single Crystals through Fine-Tuned Halide Composition. Crystal Growth and Design, 2021, 21, 1741-1750.	1.4	14
6589	Lead-free zero dimensional tellurium(<scp>iv</scp>) chloride-organic hybrid with strong room temperature emission as a luminescent material. Journal of Materials Chemistry C, 2021, 9, 4351-4358.	2.7	25
6590	Perovskite CH ₃ NH ₃ Pbl _{3–X} Cl _x Solar Cells and their Degradation (Part 1: A Short Review). Latvian Journal of Physics and Technical Sciences, 2021, 58, 44-52.	0.4	1
6591	Optimization of the perovskite solar cell design to achieve a highly improved efficiency. Optical Materials, 2021, 111, 110661.	1.7	34
6592	Fundamentals of tin iodide perovskites: a promising route to highly efficient, lead-free solar cells. Journal of Materials Chemistry A, 2021, 9, 11812-11826.	5.2	32
6593	Lead-Free Perovskite Materials for Solar Cells. Nano-Micro Letters, 2021, 13, 62.	14.4	175
6594	Two-dimensional or passivation treatment: the effect of hexylammonium post deposition treatment on 3D halide perovskite-based solar cells. Materials Advances, 2021, 2, 2617-2625.	2.6	14
6595	Chlorine management of a carbon counter electrode for high performance printable perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 8615-8622.	2.7	8
6596	Impact of spin-orbit splitting on two-photon absorption spectra in a halide perovskite single crystal. Physical Review B, 2021, 103, .	1.1	14
6597	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
6598	Hybrid Perovskite Terahertz Photoconductive Antenna. Nanomaterials, 2021, 11, 313.	1.9	11
6599	Discovery of Lead-Free Hybrid Organic/Inorganic Perovskites Using Metaheuristic-Driven DFT Calculations. Chemistry of Materials, 2021, 33, 782-798.	3.2	23
6600	Highly Mobile Large Polarons in Black Phase CsPbl ₃ . ACS Energy Letters, 2021, 6, 568-573.	8.8	40

#	Article	IF	CITATIONS
6601	Lead-Free Alloyed Double-Perovskite Nanocrystals of Cs ₂ (Na _{<i>x</i>} Ag _{1–<i>x</i>})BiBr ₆ with Tunable Band Gap. Journal of Physical Chemistry C, 2021, 125, 1954-1962.	1.5	36
6602	Graphene, an epoch-making material in RFID technology: a detailed overview. New Journal of Chemistry, 2021, 45, 18700-18721.	1.4	8
6604	Photonâ€Induced Reversible Phase Transition in CsPbBr ₃ Perovskite. Advanced Functional Materials, 2019, 29, 1807922.	7.8	56
6605	Stable α sPbl ₃ Perovskite Nanowire Arrays with Preferential Crystallographic Orientation for Highly Sensitive Photodetectors. Advanced Functional Materials, 2019, 29, 1808741.	7.8	78
6606	Towards Simplifying the Device Structure of Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000863.	7.8	67
6607	Metal Halide Perovskite Arrays: From Construction to Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2005230.	7.8	40
6608	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
6609	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	11.1	132
6610	Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000617.	11.1	118
6611	Highâ€Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability. Advanced Energy Materials, 2018, 8, 1800438.	10.2	118
6612	Rationally Induced Interfacial Dipole in Planar Heterojunction Perovskite Solar Cells for Reduced <i>J</i> – <i>V</i> Hysteresis. Advanced Energy Materials, 2018, 8, 1800568.	10.2	32
6613	Photophysics of Methylammonium Lead Tribromide Perovskite: Free Carriers, Excitons, and Subâ€Bandgap States. Advanced Energy Materials, 2020, 10, 1903258.	10.2	20
6614	Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. Advanced Energy Materials, 2020, 10, 1903653.	10.2	28
6615	lmaging Carrier Transport Properties in Halide Perovskites using Timeâ€Resolved Optical Microscopy. Advanced Energy Materials, 2020, 10, 1903814.	10.2	21
6616	Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098.	5.2	33
6617	Simultaneously Passivating Cation and Anion Defects in Metal Halide Perovskite Solar Cells Using a Zwitterionic Amino Acid Additive. Small, 2021, 17, e2005608.	5.2	51
6618	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	3.1	32
6619	Synergistic Benefits of Cesiumâ€Doped Aqueous Precursor in Airâ€Processed Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900406.	3.1	10

#	Article	IF	CITATIONS
6620	Image and Signal Sensors for Computing and Machine Vision: Developments to Meet Future Needs. , 2020, , 3-32.		7
6621	Cesium Lead Halide Perovskite Quantum Dots in the Limelight: Dynamics and Applications. Lecture Notes in Nanoscale Science and Technology, 2020, , 175-205.	0.4	5
6622	Magnetic, Electronic, and Optical Properties of Perovskite Materials. Materials Horizons, 2020, , 43-59.	0.3	6
6623	Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Research, 2020, 13, 1962-1969.	5.8	27
6624	Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik, 2020, 217, 164805.	1.4	27
6625	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	8.2	15
6626	Excitonic optical properties of cesium trifluoroacetate induced CsPbBr3 thin film with anti-solvent treatment. Optical Materials, 2020, 106, 110005.	1.7	8
6627	Quantum confinement and strain effects on the low-dimensional all-inorganic halide Cs2XI2Cl2 (X=) Tj ETQq1 1 C E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114226.).784314 ı 1.3	rgBT /Over o 12
6628	An unusual charge transfer accelerator of monomolecular Cb-OMe		

#	Article	IF	CITATIONS
6638	Nonlinear Optics in Lead Halide Perovskites: Mechanisms and Applications. ACS Photonics, 2021, 8, 113-124.	3.2	80
6639	Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nature Energy, 2019, 4, 150-159.	19.8	383
6640	Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 2020, 5, 333-350.	23.3	568
6641	Chapter 1. High Efficiency Mesoscopic Organometal Halide Perovskite Solar Cells. RSC Energy and Environment Series, 2016, , 1-31.	0.2	3
6642	Characterization of Capacitance, Transport and Recombination Parameters in Hybrid Perovskite and Organic Solar Cells. RSC Energy and Environment Series, 2016, , 57-106.	0.2	9
6643	Photophysics of Hybrid Perovskites. RSC Energy and Environment Series, 2016, , 107-140.	0.2	3
6644	Chapter 8. First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. RSC Energy and Environment Series, 2016, , 234-296.	0.2	2
6645	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6
6646	Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. Journal of Materials Chemistry A, 2017, 5, 12158-12167.	5.2	54
6647	Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7, 4872-4880.	5.2	45
6648	Modifying perovskite solar cells with l(+)-cysteine at the interface between mesoporous TiO2 and perovskite. Sustainable Energy and Fuels, 2020, 4, 878-883.	2.5	8
6649	Microstructural and photoconversion efficiency enhancement of compact films of lead-free perovskite derivative Rb ₃ Sb ₂ I ₉ . Journal of Materials Chemistry A, 2020, 8, 4396-4406.	5.2	32
6650	Tailoring interfacial carrier dynamics <i>via</i> rationally designed uniform CsPbBr _x l _{3â^'x} quantum dots for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 26098-26108.	5.2	15
6651	Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Advances, 2016, 6, 015001.	0.6	32
6652	Cryogenic spatial–temporal imaging of surface photocarrier dynamics in MAPbI3 films at the single grain level. AIP Advances, 2020, 10, .	0.6	2
6653	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
6654	Origin of Hysteresis in Perovskite Solar Cells. , 2020, , 1-1-1-42.		19
6655	Investigation of p-type SnO films served as a potential hole-transporting material for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2020, 53, 485103.	1.3	5

#	Article	IF	CITATIONS
6656	Basis and effects of ion migration on photovoltaic performance of perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 063001.	1.3	20
6657	Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B, 2020, 29, 108401.	0.7	15
6658	HI hydrolysis-derived intermediate as booster for CsPbI ₃ perovskite: from crystal structure, film fabrication to device performance. Journal of Semiconductors, 2020, 41, 051202.	2.0	19
6659	Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr ₃ /MoSe ₂ . Journal of Semiconductors, 2020, 41, 052206.	2.0	11
6660	Low-Temperature synthesis of FeOOH Quantum Dots as Promising Electron-Transporting Layers for High-Performance Planar Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science, 0, 585, 012010.	0.2	2
6661	MAPbBr ₃ single crystal based metal-semiconductor-metal photodetector enhanced by localized surface plasmon. Materials Research Express, 2020, 7, 125902.	0.8	5
6662	Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a symmetry perspective. JPhys Materials, 2020, 3, 042001.	1.8	29
6663	Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility. Physical Review B, 2020, 102, .	1.1	15
6664	Octahedral tilting instabilities in inorganic halide perovskites. Physical Review Materials, 2018, 2, .	0.9	73
6665	First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions. Physical Review Materials, 2018, 2, .	0.9	27
6666	Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites. Physical Review Materials, 2018, 2, .	0.9	20
6667	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">C <mml:msub> <mml:mi mathvariant="normal">H <mml:mn> 3</mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">N <mml:msub> <mml:mi< td=""><td>0.9</td><td>40</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	0.9	40
6668	mathvariant="normal">He/mmlimi>commlime>3e/mmlime>c/mmlimsub>commlimi>Sne/mmlimi>commlimsub>com Observation of positive and negative trions in organic-inorganic hybrid perovskite nanocrystals. Physical Review Materials, 2018, 2, .	nl:mi 0.9	35
6669	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">C < mml:msub> < mml:mi mathvariant="normal">H < mml:mn> 3 < /mml:mn> < /mml:msub> < mml:mi mathvariant="normal">N < mml:mi> < mml:mi	0.9	32
6670	mathvariant="normal">N <mml:msub><mml:mi impact of metal <mml:math xmins:mml="nttp://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">n<mml:msup><mml:mrow><mml:mi mathvariant="normal">s</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mi </mml:mrow>lone pair on luminescence quantum efficiency in low-dimensional halide perovskites. Physical Review</mml:math></mml:mi </mml:msub>	ml:mi > 0.9	60
6671	Materials 2019 3 Towards predictive band gaps for halide perovskites: Lessons from one-shot and eigenvalue self-consistent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>W</mml:mi> Physical Review Materials, 2019, 3.</mml:mrow></mml:math 	mml:mi</td <td>ro∛> < /mml:ı</td>	ro∛> < /mml:ı
6672	Excitonic enhancement of optical nonlinearities in perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:m single crystals. Physical Review Materials, 2019, 3, .</mml:m </mml:msub></mml:mrow></mml:math 	n o.3 <td>l:ชทา></td>	l :ชท า>
6673	Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3, .	0.9	20

#	Article	IF	CITATIONS
6674	Time-resolved imaging of carrier transport in halide perovskite thin films and evidence for nondiffusive transport. Physical Review Materials, 2019, 3, .	0.9	10
6675	Decoupled molecular and inorganic framework dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:m Physical Review Materials, 2019, 3 Large thermal expansion leads to negative thermo-optic coefficient of halide perovskite <mml:math< td=""><td>no3<td>l:ຂັດ)></td></td></mml:math<></mml:m </mml:msub></mml:mrow></mml:math 	n o3 <td>l:ຂັດ)></td>	l:ຂ ັດ)>
6676	mathvariant="normal">C <mml:msub><mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">H<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">N<mml:msub><mml:mi< td=""><td>0.9</td><td>12</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:msub>	0.9	12
6677	mathvariant="normal">H <mml:mn>3</mml:mn> <mml:mi>PbC</mml:mi> <mml:msub><n Phase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study. Physical Review Materials, 2020, 4, .</n </mml:msub>	0.9	17
6678	Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Advanced Photonics, 2020, 2, .	6.2	30
6679	Numerical analysis of inverted-structure perovskite solar cell based on all-inorganic charge transport layers. Journal of Photonics for Energy, 2019, 9, 1.	0.8	6
6680	Novel hybrid organic-inorganic perovskite detector designs based on multilayered device architectures: simulation and design. , 2019, , .		4
6682	A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar Cells. Proceedings of the Nature Research Society, 0, 2, .	0.0	70
6683	Stable High-Efficiency Two-Dimensional Perovskite Solar Cells Via Bromine Incorporation. Nanoscale Research Letters, 2020, 15, 194.	3.1	12
6685	Diagnosis of electrically active defects in CH3NH3PbI3 perovskite solar cells via admittance spectroscopy measurements. Applied Optics, 2020, 59, 552.	0.9	2
6686	Ultrafast carrier dynamics in all-inorganic CsPbBr ₃ perovskite across the pressure-induced phase transition. Optics Express, 2019, 27, A995.	1.7	29
6687	Double-side operable perovskite photodetector using Cu/Cu ₂ O as a hole transport layer. Optics Express, 2019, 27, 24900.	1.7	9
6688	Study on organic-inorganic hybrid perovskite nanocrystals with regular morphologies and their effect on photoluminescence properties. Optics Express, 2020, 28, 10714.	1.7	7
6689	Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28, 8878.	1.7	8
6690	Complete optical absorption in hybrid halide perovskites based on critical coupling in the communication band. Optics Express, 2020, 28, 14151.	1.7	12
6691	Investigation on binding energy and reduced effective mass of exciton in organic–inorganic hybrid lead perovskite films by a pure optical method. Optics Letters, 2019, 44, 3474.	1.7	13
6692	TiO ₂ /Mg-SnO ₂ nanoparticle composite compact layer for enhancing the performance of perovskite solar cells. Optical Materials Express, 2020, 10, 157.	1.6	14
6693	Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Optical Materials Express, 2020, 10, 1801.	1.6	19

#	Article	IF	CITATIONS
6694	Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Research, 2020, 8, A56.	3.4	45
6695	High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photonics Research, 2020, 8, 1862.	3.4	23
6697	Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion. Nanophotonics, 2020, 9, 3323-3333.	2.9	19
6698	Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles. Nanophotonics, 2020, 9, 3111-3133.	2.9	52
6699	Lead-free metal-halide double perovskites: from optoelectronic properties to applications. Nanophotonics, 2021, 10, 2181-2219.	2.9	33
6700	Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. Nanophotonics, 2021, 10, 1943-1965.	2.9	16
6701	Crystal structures of perovskite halide compounds used for solar cells. Reviews on Advanced Materials Science, 2020, 59, 264-305.	1.4	80
6702	Growth of single crystals of methylammonium lead mixedhalide perovskites. Communications in Physics, 2018, 28, 237.	0.0	2
6703	Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. Journal of the Ceramic Society of Japan, 2020, 128, 805-811.	0.5	27
6704	Progress and Prospect on Stability of Perovskite Photovoltaics. Journal of Modern Materials, 2017, 4, 16-30.	0.8	9
6705	Preparation of PbI2 Microflakes by pH-Controlled Double-Jet Precipitation. Open Chemistry Journal, 2019, 6, 52-65.	4.3	6
6706	Optical Analysis of Ag-NPs Containing Methyl Ammonium Lead Tri-Iodide Thin Films. Traektoriâ Nauki, 2017, 3, 2007-2015.	0.1	1
6707	Nano-mesoporous TiO2 Vacancies Modification for Halide Perovskite Solar Cells. Engineered Science, 2018, , .	1.2	20
6708	The Path to Perovskite on Silicon PV. , 2018, 1, 1-8.		16
6709	Back-Contact Perovskite Solar Cells. , 2019, 1, 1-10.		4
6711	Terahertz Switch Utilizing Inorganic Perovskite-Embedded Metasurface. Frontiers in Physics, 2020, 8, .	1.0	10
6712	Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications. Crystals, 2021, 11, 39.	1.0	17
6713	Effect of Passivation Layer on the Thin Film Perovskite Random Lasers. Materials, 2020, 13, 2322.	1.3	5

#	Article	IF	CITATIONS
6714	Enhanced Photovoltaic Properties of Perovskite Solar Cells by Employing Bathocuproine/Hydrophobic Polymer Films as Hole-Blocking/Electron-Transporting Interfacial Layers. Polymers, 2021, 13, 42.	2.0	10
6715	Direction-selective electron beam damage to CH ₃ NH ₃ PbI ₃ based on crystallographic anisotropy. Applied Physics Express, 2020, 13, 091001.	1.1	7
6716	The effect of divalent europium doping on stability and electronic properties of CH ₃ NH ₃ Pbl ₃ : a theoretical investigation. Applied Physics Express, 2020, 13, 101001.	1.1	2
6717	Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications. AIMS Materials Science, 2016, 3, 149-159.	0.7	19
6718	Inorganic alkali lead iodide semiconducting APbI ₃ (A = Li, Na, K, Cs) and NH ₄ PbI ₃ films prepared from solution: Structure, morphology, and electronic structure. AIMS Materials Science, 2016, 3, 737-755.	0.7	39
6719	Conjugated polymers as functional hole selective layers in efficient metal halide perovskite solar cells. AIMS Materials Science, 2017, 4, 956-969.	0.7	3
6720	On the origin of spatially dependent electronic excited-state dynamics in mixed hybrid perovskite thin films. Lithuanian Journal of Physics, 2019, 58, .	0.1	2
6721	Arsenic and Chlorine Co-Doping to CH ₃ NH ₃ PbI <sub&a Perovskite Solar Cells. Advances in Materials Physics and Chemistry, 2017, 07, 1-10.</sub&a 	anop;gt;38	.amp;lt;/sub8
6722	Orbital Approach to High Temperature Superconductivity. Natural Science, 2019, 11, 1-7.	0.2	3
6724	Energy Transfer between Perovskites and CdSe/ZnS Core–shell Quantum Dots. Applied Science and Convergence Technology, 2020, 29, 28-30.	0.3	2
6725	Perovskite solar cell. Vacuum Magazine, 2014, 1, 10-13.	0.0	3
6726	Progress of research on new hole transporting materials used in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 033301.	0.2	5
6727	Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038401.	0.2	16
6728	Key issues in highly efficient perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038404.	0.2	12
6729	Recent progress in research on solid organic-inorganic hybrid solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038405.	0.2	6
6730	Recent progress in material study and photovoltaic device of Sb2Se3. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038406.	0.2	15
6731	progress in electron-transport materials in application of perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038802.	0.2	12
6732	Factors influencing the stability of perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038803.	0.2	7

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
6733	A review of the perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 0388	305.	0.2	26
6734	An in-situ real time study of the perovskite film micro-structural evolution in a humid en using synchrotron based characterization technique. Wuli Xuebao/Acta Physica Sinica, 018401.	nvironment by 2017, 66,	0.2	3
6735	Preparation and performance of high-efficient hole-transport-material-free carbon base solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 228801.	d perovskite	0.2	3
6736	Applications of organic additives in metal halide perovskite light-emitting diodes. Wuli Physica Sinica, 2019, 68, 158505.	Xuebao/Acta	0.2	5
6737	High efficiency green perovskite light-emitting diodes based on exciton blocking layer. Xuebao/Acta Physica Sinica, 2020, 69, 038501.	Wuli	0.2	2
6738	Progress in perovskite solar cells based on different buffer layer materials. Wuli Xuebac Sinica, 2020, 69, 138401.	b/Acta Physica	0.2	5
6739	D–A–π–A organic sensitizer surface passivation for efficient and stable perovsk Journal of Materials Chemistry A, 2021, 9, 25086-25093.	ite solar cells.	5.2	28
6740	Strong Fermi-level pinning at metal contacts to halide perovskites. Journal of Materials 2021, 9, 15212-15220.	Chemistry C,	2.7	12
6741	A perylene diimide dimer-based electron transporting material with an A–D–A stru inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2544-2550.	cture for efficient	2.7	12
6742	Thiosemicarbazide-complexed SnO ₂ electron transport layers for high-eff MAPbI ₃ perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 605		2.5	10
6743	Design of a Horizontally Aligned Perovskite Nanowire LED With Improved Light Extract Journal of the Electron Devices Society, 2021, 9, 1215-1221.	ion. IEEE	1.2	2
6744	Emerging electronic applications of fullerene derivatives: an era beyond OPV. Journal o Chemistry C, 2021, 9, 16143-16163.	f Materials	2.7	21
6745	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Che Reviews, 2021, 50, 12915-12984.	mical Society	18.7	15
6746	Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Pe Cells. Acta Chimica Sinica, 2021, 79, 1181.	rovskite Solar	0.5	5
6747	Halide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Advanced Functional Materials, 2022, 32, 2110166.	Mechanism.	7.8	35
6748	Quinoxalineâ€Based D–A Copolymers for the Applications as Polymer Donor and Ho Material in Polymer/Perovskite Solar Cells. Advanced Materials, 2022, 34, e2104161.	le Transport	11.1	35
6749	Strong Rashbaâ€Dresselhaus Effect in Nonchiral 2D Ruddlesdenâ€Popper Perovskites. Materials, 2022, 10, 2101232.	Advanced Optical	3.6	14
6750	Organic additives in all-inorganic perovskite solar cells and modules: from moisture end enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 3	durance to 61-390.	7.1	21

#	Article	IF	Citations
6751	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	1.3	9
6752	Antisolvent-Processed One-Dimensional Ternary Rubidium Copper Bromine Microwires for Sensitive and Flexible Ultraviolet Photodetectors. ACS Applied Materials & amp; Interfaces, 2021, 13, 49007-49016.	4.0	12
6753	Ultrafast Response (<1 µs) Perovskite Ultraviolet Photodetector via Ballâ€Milling Pretreated Singleâ€Source Vapor Deposition. Advanced Materials Technologies, 2022, 7, 2100392.	3.0	9
6754	Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics. Journal Physics D: Applied Physics, 2022, 55, 113002.	1.3	17
6755	Printable Solar Cells from Solution Processable Materials. Springer Series in Materials Science, 2022, , 401-432.	0.4	1
6756	Orders of Recombination in Complete Perovskite Solar Cells – Linking Timeâ€Resolved and Steadyâ€&tate Measurements. Advanced Energy Materials, 2021, 11, 2101823.	10.2	31
6757	ITO/SnO ₂ Interface Defect Passivation via Atomic Layer Deposited Al ₂ O ₃ for High‣fficiency Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100406.	0.8	3
6758	Insight into the Role of Guanidinium and Cesium in Triple Cation Lead Halide Perovskites. Solar Rrl, 2021, 5, 2100586.	3.1	6
6759	A Peryleneâ€Based Conjugated Polymer Endows Perovskite Solar Cells with 85°C Durability: The Control of Gas Permeation. Advanced Functional Materials, 2022, 32, 2108855.	7.8	19
6760	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
6761	Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell. Materials, 2021, 14, 6341.	1.3	19
6762	Metal Halide Semiconductors beyond Lead-Based Perovskites for Promising Optoelectronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 10532-10550.	2.1	20
6763	Light absorption enhancement in ultrathin perovskite solar cells using light scattering of high-index dielectric nanospheres. Optics Express, 2021, 29, 35366.	1.7	6
6764	A Highâ€Performance Photodetector Based on 1D Perovskite Radial Heterostructure. Advanced Optical Materials, 2021, 9, 2101504.	3.6	8
6765	Ambient-environment processed perovskite solar cells: A review. Materials Today Physics, 2021, 21, 100557.	2.9	12
6766	Electronic and optical properties of bulk and surface of CsPbBr3 inorganic halide perovskite a first principles DFT 1/2 approach. Scientific Reports, 2021, 11, 20622.	1.6	35
6767	Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges. Solar Rrl, 2021, 5, 2100702.	3.1	31
6768	Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells: Recent Developments and Challenges. Energy Technology, 2021, 9, 2100691.	1.8	11

#	Article	IF	CITATIONS
6769	Efficient Skyâ€Blue Lightâ€Emitting Diodes Based on Oriented Perovskite Nanoplates. Advanced Optical Materials, 2022, 10, 2101525.	3.6	12
6770	Structureâ€Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Israel Journal of Chemistry, 0, , .	1.0	9
6771	UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics. Journal of Energy Chemistry, 2022, 67, 138-146.	7.1	19
6772	Use of n-type amorphous silicon films as an electron transport layer in the perovskite solar cells. Japanese Journal of Applied Physics, 2022, 61, SB1012.	0.8	0
6773	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
6774	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials, 2022, 34, e2104661.	11.1	37
6775	Humidityâ€Induced Defectâ€Healing of Formamidiniumâ€Based Perovskite Films. Small, 2021, 17, e2104165.	5.2	10
6776	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
6777	An Embedding 2D/3D Heterostructure Enables Highâ€Performance FAâ€Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%. Advanced Science, 2021, 8, e2101856.	5.6	57
6778	Improving the Longâ€Term Stability of Doped Spiroâ€Type Holeâ€Transporting Materials in Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100650.	3.1	6
6779	Enhancing the stability and crystallinity of CsPbIBr2 through antisolvent engineering. Journal of Materials Science, 2021, 56, 20071-20086.	1.7	9
6780	Enhancing the photo-luminescence stability of CH ₃ NH ₃ PbI ₃ film with ionic liquids. Chinese Physics B, 2022, 31, 037802.	0.7	5
6781	Highly Stable Thin Films Based on Novel Hybrid 1D (PRSH)PbX3 Pseudo-Perovskites. Nanomaterials, 2021, 11, 2765.	1.9	0
6782	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	4.2	28
6783	Enhanced Performance and Stability of Carbon Counter Electrode-Based MAPbI ₃ Perovskite Solar Cells with <i>p</i> -Methylphenylamine Iodate Additives. ACS Applied Energy Materials, 2021, 4, 11314-11324.	2.5	4
6784	Dopant-Free Hole Transporting Material Based on Nonconjugated Adamantane for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2021, 9, 746365.	1.8	3
6785	Over 21% Efficiency Stable 2D Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107211.	11.1	160
6786	Design and simulation of 3D perovskite solar cells based on titanium dioxide nanowires to achieve high-efficiency. Solar Energy, 2021, 228, 550-561.	2.9	7

#	Article	IF	CITATIONS
6787	Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. Solar Energy, 2021, 228, 689-699.	2.9	23
6788	High-performance CsPbI3 perovskite solar cells without additives in air condition. Solar Energy, 2021, 228, 405-412.	2.9	9
6789	Inverted perovskite solar cells based on inorganic hole transport material of CuInS2 with high efficiency and stability. Solar Energy, 2021, 230, 485-491.	2.9	6
6790	The roles of surface defects in MAPbBr3 and multi-structures in MAPbI3. Optical Materials, 2021, 122, 111600.	1.7	6
6791	Engineering Crystalline Grain of Hybrid Perovskites for High Efficiency Solar Cells and Beyond. , 2015, ,		1
6792	S-shaped current-voltage characteristics in perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038402.	0.2	8
6793	Effect of solvent on the perovskite thin film morphology and crystallinity. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038403.	0.2	6
6794	Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038104.	0.2	0
6795	Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 186102.	0.2	3
6796	Robust interface engineering for High-performance and Stable inverted planar perovskite solar cells via both poly(2-ethyl-2-oxazoline) nanodots. , 2016, , .		0
6797	Progress on nanopatterned front electrodes for perovskite thin-film solar cells. , 2016, , .		0
6798	Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 188801.	0.2	2
6799	l.ãfšãfãf−ã,¹ã,«ã,╋f^夀™½é›»æ±ã®ç"ç©¶é−‹ç™ºå‹•å'. Electrochemistry, 2016, 84, 439-444.	0.6	0
6800	Ultrafast Electrochemical Fabrication of Multicomponent Photovoltaic Materials. , 2016, , .		0
6801	Novel Insight into the Function of PC61BM in Efficient Planar Perovskite Solar Cells. , 2016, , .		1
6802	Chapter 6. Structural, Electronic, and Optical Properties of Lead Halide Perovskites. RSC Energy and Environment Series, 2016, , 177-201.	0.2	0
6804	Organometal Halide Perovskite CH3NH3PbI3 as an Effective Photosensitizer for p-Type Solar Cells. International Journal of Electrochemical Science, 0, , 10320-10328.	0.5	1
6805	Chapter 7. Controlling the Photoanode Mesostructure for Dye-sensitized and Perovskite-sensitized Solar Cells. , 2016, , 292-323.		0

CITATION REPORT ARTICLE IF CITATIONS Photocatalytic Hydrogen Evolution., 2017, , 1-41. 0 The Influence of Pbl<sub>2</sub> on Characteristic of Organic-Inorganic Hybrid Perovskite Thin Films. Modeling and Numerical Simulation of Material Science, 2017, 07, 47-57. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an 0 organometal halide perovskite CH3NH3PbI3., 2017, , . Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2017. 20. 153-193. 0.1 Stable and Efficient Perovskite Solar Cells Fabricated Using Aqueous Lead Nitrate Precursor: Interpretation of the Conversion Mechanism and Renovation of the Sequential Deposition. SSRN 0.4 0 Electronic Journal, 0, , . Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 098801. 0.2 Hot Electron Injection into Semiconducting Polymers in Polymer Based-Perovskite Solar Cells and 0.4 0 Their Fate. SSRN Electronic Journal, 0, , . Novel growth techniques for the deposition of high-quality perovskite thin films., 2018,,. Determination of transport properties in optoelectronic devices by time-resolved fluorescence 1 imaging., 2018,,. Photophysics of organic-inorganic hybrid perovskite solar cells., 2018,,. $D\tilde{A}_{2}$ zlemsel ve mesoyapä±lä± perovskit g \tilde{A}_{1} neÅ pillerinin performans a \tilde{A} ä±sä±ndan karÅ yä±laÅ ytä±rä±lmasät. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, . All dielectric and plasmonic cross-grating metasurface for efficient perovskite solar cells., 2018,,. Photoelectronic properties of lead-free CH3NH3SnI3 perovskite solar cell materials and devices., 2018, 0 Application of Reduced Graphene Oxide (rGO) for Stability of Perovskite Solar Cells. Carbon 0.1

0019	Nanostructures, 2019, , 203-229.	0.1	U
6820	Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI ₂ Br perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158805.	0.2	2
6821	Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 128103.	0.2	0
6822	Research progress of interface passivation of n-i-p perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158803.	0.2	1
6823	Constraints and Opportunities for Co2-Neutral Photovoltaics: In-Situ Perovskite Solar Cell Manufacturing Enables Reaching the Ultimate Carbon Footprint Limit of the Glass Substrate. SSRN Electronic Journal, 0, , .	0.4	1

6806

6808

6810

6812

6814

6816

6818

ARTICLE IF CITATIONS # Recent advances in photo-stability of lead halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 6824 0.2 4 157102. Trap States Impact Photon Upconversion in Rubrene Sensitized by Lead Halide Perovskite Thin Films. 0.4 SSRN Electronic Journal, 0, , . Intrinsic stability of organic-inorganic hybrid perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 6826 0.2 8 158804. Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells., 2019, , 165-225. 6827 Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers. Eurasian 6828 0.3 0 Chemico-Technological Journal, 2019, , 83. Efficient perovskite solar cells by using combustion SnO2 as electron transporting layer in low 6829 temperature., 2019,,. 6830 Efficient perovskite solar cells by doping poly-TPD into PTAA as hole transporting layer., 2019,,. 0 Rutile TiO2 nanorod arrays grown by solution-processed for high efficiency solid-state perovskite 6831 Recent Development in Perovskite Solar Cell Based on Planar Structures. Lecture Notes in Electrical 6832 0.3 2 Engineering, 2020, , 1039-1046. Influence of Electron Transport Layer on the Performance of Perovskite Solar Cell., 2019, , . PEROVSKITE PHOTOELECTRIC CONVERTERS WITHOUT HOLE-CONDUCTING BUFFER LAYERS. Vestnik 6834 0.0 0 Meždunarodnogo Universiteta Prirody, ObÅestva I Äeloveka Dubna, 2019, , 23-29. Solar elements based on organic and organo-inorganic materials. Surface, 2019, 11(26), 270-343. 6835 0.4 Characterization of Lead Halide Perovskites Using Synchrotron X-ray Techniques. Springer Series in 6836 0.4 1 Materials Science, 2020, , 157-179. Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207. 0.3 Comparing the backfilling of mesoporous titania thin films with hole conductors of different sizes 6838 2 1.0 sharing the same mass density. IUCrJ, 2020, 7, 268-275. Open-Air Plasma-Deposited Multilayer Thin Film Moisture Barriers for Perovskite Solar Cells., 2020,,. Dead-bolt type design for efficient and stable perovskite solar cells., 2020, , . 6840 0 Efficient lead-free perovskite solar cells enabled by polymer induced trap passivation for FASnI3 layer. 6841 ,2020,,.

CITATION REPORT

	CHATION RE	PORT	
#	Article	IF	CITATIONS
6842	Material selection method for a perovskite solar cell design based on the genetic algorithm. , 2020, , .		5
6843	Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions. Nanophotonics, 2021, 10, 2043-2057.	2.9	12
6844	Impact of trap filling on carrier diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MAPb</mml:mi><mml:msub><mm single crystals. Physical Review Materials, 2020, 4, .</mm </mml:msub></mml:mrow></mml:math 	l:monie>Br <td>nsal:mi><mr< td=""></mr<></td>	n s al:mi> <mr< td=""></mr<>
6845	Quantum transport simulations of a monolayer all-inorganic perovskite transistor. Journal Physics D: Applied Physics, 2020, 53, 455104.	1.3	3
6847	Interlayer Triplet-Sensitized Luminescence in Layered Two-Dimensional Hybrid Metal-Halide Perovskites. ACS Energy Letters, 2021, 6, 4079-4096.	8.8	22
6848	Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells. Nanomaterials, 2021, 11, 2909.	1.9	6
6849	Methylammonium Governs Structural and Optical Properties of Hybrid Lead Halide Perovskites through Dynamic Hydrogen Bonding. Chemistry of Materials, 2021, 33, 8524-8533.	3.2	14
6851	Deciphering the Carrier Transport Properties in Twoâ€Dimensional Perovskites via Surfaceâ€Enhanced Raman Scattering. Small, 2021, 17, e2103756.	5.2	4
6852	In Situ Electron Transport Layers by a Carboxyl Ionic Liquid-Assisted Microwave Technique for a 20.1% Perovskite Solar Cell. ACS Applied Energy Materials, 0, , .	2.5	5
6853	High-performance perovskite solar cell based on mesoporous TiO2 electron transport layer enabled by composite treatment strategy. Journal of Materials Science: Materials in Electronics, 2021, 32, 28417-28425.	1.1	4
6854	Effects of Crystallinity on the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over CsPbBr3 Inverse Opals. Catalysts, 2021, 11, 1331.	1.6	4
6855	Laserâ€Assisted Synthesis of Ag ₂ Sâ€Quantumâ€Dotâ€inâ€Perovskite Matrix and Its Application in Broadband Photodetectors. Advanced Optical Materials, 2022, 10, 2101535.	3.6	10
6856	Environmental Assessment of Perovskite Solar Cells. Green Energy and Technology, 2022, , 279-289.	0.4	1
6857	Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells. Materials Today Physics, 2021, 21, 100565.	2.9	9
6858	A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nature Electronics, 2021, 4, 818-826.	13.1	61
6859	Progress in Perovskite Solar Cells towards Commercialization—A Review. Materials, 2021, 14, 6569.	1.3	10
6860	Defect Passivation through Cyclohexylethylamine Post-treatment for High-Performance and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12848-12857.	2.5	6
6861	Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Solar Energy, 2021, 230, 598-604.	2.9	21

#	Article	IF	CITATIONS
6862	Optical and Elecrtical Simulation of CH3NH3PbI3-based Perovskite Solar Cells. International Journal of Optics and Photonics, 2020, 14, 57-66.	0.2	0
6863	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. , 2020, , 259-281.		1
6864	Lévy distributions and disorder in excitonic spectra. Physical Chemistry Chemical Physics, 2020, 22, 24462-24470.	1.3	5
6865	Review: Perovskite Photovoltaics. Springer Theses, 2020, , 53-63.	0.0	0
6866	Electron–phonon coupling in CsPbBr3. AIP Advances, 2020, 10, .	0.6	11
6867	Silver nanowires network-based electrode for metal–semiconductor-metal perovskite solar devices. Materials Today: Proceedings, 2020, , .	0.9	0
6868	The Status Quo of Rashba Phenomena in Organic–Inorganic Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 361-367.	2.1	7
6869	Improved reproducibility of carbon-based cesium/formamidinium perovskite solar cells via double antisolvent drippings in adduct approach. Organic Electronics, 2022, 100, 106362.	1.4	9
6870	1T-2H MoSe2 modified MAPbI3 for effective photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 893, 162329.	2.8	5
6871	Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 430, 133065.	6.6	15
6872	Methylhydrazinium lead iodide – one dimensional chain phase with excitonic absorption and large energy band gap. Journal of Molecular Structure, 2022, 1249, 131660.	1.8	8
6873	A DFT study of the stability and optoelectronic properties of all-inorganic lead-free halide perovskites. Journal of Physics and Chemistry of Solids, 2022, 161, 110413.	1.9	11
6874	Ultrasensitive organic-inorganic nanotube thin films of halogenated perovskites as room temperature ammonia sensors. Journal of Alloys and Compounds, 2022, 894, 162388.	2.8	12
6875	Probing electron-phonon couplings in halide perovskites crystals by temperature-dependent ultrafast two-dimensional electronic spectroscopy. , 2020, , .		0
6876	Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbI ₃ film. Journal of Materials Chemistry A, 2021, 9, 26086-26094.	5.2	12
6877	A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 26829-26838.	5.2	10
6878	Numerical Analysis and Optimization of CH3NH3PbI3-xClx Based Perovskite Solar Cells. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 2021, 9, 28-39.	0.2	2
6879	Structural, morphological and optical properties of P3HT/MAPbI2Cl/ZnO:GO thin films for perovskite solar cells. AIP Conference Proceedings, 2020, , .	0.3	1

#	Article	IF	CITATIONS
6880	Two-dimensional nanomaterials and their derivatives for laser protection. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184201.	0.2	4
6881	Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 127706.	0.2	5
6882	Planar Perovskite Solar Cells Using Fullerene C70 as Electron Selective Transport Layer. International Journal of Optics and Photonics, 2020, 14, 15-24.	0.2	0
6884	Efficient and stable blue perovskite light emitting diodes based on defect passivation. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 138502.	0.2	1
6886	Perovskite Materials in Biomedical Applications. Materials Horizons, 2020, , 95-116.	0.3	5
6887	Review of the research on nano-structure used as light harvesting in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 077101.	0.2	1
6891	Fast-response, high-stability, and high-efficiency full-color quantum dot light-emitting diodes with charge storage layer. Science China Materials, 2022, 65, 1012-1019.	3.5	8
6893	Interface and Grain Boundary Passivation by PEA-SCN Double Ions via One-Step Crystal Engineering for All Air-Processed, Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12290-12297.	2.5	6
6895	Tailoring Interlayer Spacers for Efficient and Stable Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106380.	11.1	42
6896	MXene-Based Tailoring of Carrier Dynamics, Defect Passivation, and Interfacial Band Alignment for Efficient Planar p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12137-12148.	2.5	23
6898	Qualitative and quantitative approach to particle disorder. AIP Advances, 2021, 11, .	0.6	4
6899	Comparison of Alkali Metal Cation (Rb/K) Doping Effect on the Structural, Optical and Photovoltaic Behavior of Methylammonium Lead Triiodide Perovskite Thin Films. Optik, 2021, , 168294.	1.4	0
6903	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	3.0	26
6904	Applications and functions of rare-earth ions in perovskite solar cells. Chinese Physics B, 2022, 31, 038402.	0.7	8
6905	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
6906	Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions. Journal of Physical Chemistry C, 2021, 125, 25316-25326.	1.5	6
6907	Using commercially available cost-effective Zn(II) phthalocyanine as hole-transporting material for inverted type perovskite solar cells and investigation of dopant effect. Synthetic Metals, 2021, 282, 116961.	2.1	1
6908	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:msub><mml:mi>CH</mml:mi><mml:mn>3</mml:mn></mml:msub> <mml:msub><mml:m mathvariant="normal">x</mml:m </mml:msub> <mml:msub><mml:mi>Br</mml:mi><mml:mi mathvariant="normal">x</mml:mi </mml:msub> peroyskite solar cell for high	ni>NH1.7	nl:mi> <mnl:< td=""></mnl:<>

#	Article	IF	CITATIONS
6910	Degradation behaviors of photoelectrical properties of mixed cation perovskite solar cells under equivalent 1 MeV electron irradiation. Journal Physics D: Applied Physics, 2021, 54, 065103.	1.3	0
6911	Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles. Korean Journal of Materials Research, 2020, 30, 515-521.	0.1	0
6913	Metal halide perovskites for photocatalysis applications. Journal of Materials Chemistry A, 2022, 10, 407-429.	5.2	61
6914	A review on the emerging applications of 4-cyano-4′-alkylbiphenyl (nCB) liquid crystals beyond display. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115522.	1.7	9
6915	Interfacial fracture of hybrid organic–inorganic perovskite solar cells. Extreme Mechanics Letters, 2022, 50, 101515.	2.0	7
6916	Spin-coating thermal-pressed strategy for the preparation of inorganic perovskite quasi-single-crystal thin films with giant single-/two-photon responses. Nano Energy, 2022, 92, 106719.	8.2	7
6917	Cs incorporation via sequential deposition for stable and scalable organometal halide perovskite solar cells. Journal of Power Sources, 2022, 520, 230783.	4.0	6
6918	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Science Advances, 2021, 7, eabj6627.	4.7	47
6919	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	1.3	11
6921	High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering. Journal of Colloid and Interface Science, 2022, 608, 3151-3158.	5.0	34
6922	Halide perovskite-based indoor photovoltaics: recent development and challenges. Materials Today Energy, 2022, 23, 100907.	2.5	27
6923	Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits. Chemical Reviews, 2021, 121, 14430-14484.	23.0	121
6924	Allâ€Slotâ€Dieâ€Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives. Solar Rrl, 2022, 6, 2100807.	3.1	19
6925	Traversing Excitonic and Ionic Landscapes: Reduced-Dimensionality-Inspired Design of Organometal Halide Semiconductors for Energy Applications. Accounts of Chemical Research, 2021, 54, 4371-4382.	7.6	7
6926	Tuning Spin-Polarized Lifetime in Two-Dimensional Metal–Halide Perovskite through Exciton Binding Energy. Journal of the American Chemical Society, 2021, 143, 19438-19445.	6.6	42
6927	Tailoring molecular termination for thermally stable perovskite solar cells. Journal of Semiconductors, 2021, 42, 112201.	2.0	3
6928	Structural modulation and assembling of metal halide perovskites for solar cells and lightâ€emitting diodes. InformaÄnÃ-Materiály, 2021, 3, 1218-1250.	8.5	7
6929	Novel Phenothiazineâ€Based Selfâ€Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	77

#	Article	IF	CITATIONS
6930	Role of Phase Nanosegregation in the Photoluminescence Spectra of Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 11659-11665.	2.1	1
6931	Enhanced Memristive Performance of Double Perovskite Cs ₂ AgBiBr _{6â€<i>x</i>} Cl _{<i>x</i>} Devices by Chloride Doping. ChemPlusChem, 2021, 86, 1530-1536.	1.3	6
6932	Photophysical properties of zero-dimensional perovskites studied by PBEO and GW+BSE methods. Journal of Applied Physics, 2021, 130, 203106.	1.1	4
6933	Auger Electron Spectroscopy Analysis of the Thermally Induced Degradation of MAPbI ₃ Perovskite Films. ACS Omega, 2021, 6, 34606-34614.	1.6	5
6934	A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms. Sustainability, 2021, 13, 12969.	1.6	6
6935	Recent Advances in Tin-based Hybrid Organic-Inorganic PSCs: Additives for Improved Stability and Performance. Journal of Physics: Conference Series, 2021, 2070, 012019.	0.3	0
6936	Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode. Nature Communications, 2021, 12, 6644.	5.8	23
6937	Highly efficient (200) oriented MAPbI3 perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133845.	6.6	21
6938	Analysis of performance parameters during degradation of triple-cation-based organic–inorganic hybrid perovskite solar cells. Inorganic Chemistry Communication, 2022, 135, 109094.	1.8	5
6939	Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 222-246.	7.1	29
6940	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 2022, 34, e2101833.	11.1	55
6941	Hybrid Perovskite/Polymer Materials: Preparation and Physicochemical Properties. Journal of Composites Science, 2021, 5, 304.	1.4	3
6942	β-Alanine-Anchored SnO ₂ Inducing Facet Orientation for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 57163-57170.	4.0	18
6943	Insight into the Interface Engineering of a SnO ₂ /FAPbI ₃ Perovskite Using Lead Halide as an Interlayer: A First-Principles Study. Journal of Physical Chemistry Letters, 2021, 12, 11330-11338.	2.1	8
6944	On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties. Nanomaterials, 2021, 11, 3057.	1.9	3
6945	Electrochemical 3D micro―and nanoprinting: Current state and future perspective. Electrochemical Science Advances, 2022, 2, .	1.2	10
6946	Effect of Pristine Graphene on Methylammonium Lead Iodide Films and Implications on Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 13943-13951.	2.5	7
6947	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	3.1	11

#	Article	IF	CITATIONS
6948	The Role of Ending Groups in Nonâ€Fullerene Acceptors for Interfacial Modification in Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	1
6949	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	7.1	6
6950	Halogen-Manipulated Interfacial Charge Transport of π-Conjugated Molecule-Lead Halide Hybrids. ACS Applied Energy Materials, 0, , .	2.5	4
6951	Insights into the Adsorption of Water and Oxygen on the Cubic CsPbBr3 Surfaces: A First-Principle Study. Chinese Physics B, 0, , .	0.7	1
6953	Triphenylamineâ€Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells. Small, 2022, 18, e2104933.	5.2	6
6954	Nanoporous anodic alumina with ohmic contact between substrate and infill: Application to perovskite solar cells. Energy Science and Engineering, 2022, 10, 30-42.	1.9	3
6955	Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase. APL Materials, 2021, 9, 111105.	2.2	2
6956	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. Journal of Physical Chemistry Letters, 2021, 12, 11636-11644.	2.1	13
6957	Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods. Computational Condensed Matter, 2022, 33, e00617.	0.9	15
6958	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	1.9	20
6959	Recent Advances in Halide Perovskite-Based Nonvolatile Resistive Random-Access Memory. Journal of Electronic Materials, 2022, 51, 434-446.	1.0	5
6960	Hydrothermally fabricated TiO2 heterostructure boosts efficiency of MAPbI3 perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2021, 106, 382-382.	2.9	10
6961	Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement. Matter, 2021, 4, 4042-4050.	5.0	13
6962	Interfacial engineering of mp-TiO2/CH3NH3PbI3 with Al2O3: Effect of different phases of alumina on performance and stability of perovskite solar cells. Journal of Materials Research, 2021, 36, 4938-4950.	1.2	3
6963	Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Optical Materials, 2022, 123, 111839.	1.7	70
6964	Fieldâ€Effect Control in Hole Transport Layer Composed of Li:NiO/NiO for Highly Efficient Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, 2101562.	1.9	12
6965	Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots. Nanotechnology, 2022, 33, 085706.	1.3	1
6966	Highly Tunable Enhancement and Switching of Nonlinear Emission from All-Inorganic Lead Halide Perovskites via Electric Field. Nano Letters, 2021, 21, 10230-10237.	4.5	12

#	Article	IF	CITATIONS
6967	Halide Perovskites for Photonics: Recent History and Perspectives. , 2021, , 1-28.		1
6968	Silk Fibroin Induced Homeotropic Alignment of Perovskite Crystals Toward High Efficiency and Stability. SSRN Electronic Journal, 0, , .	0.4	0
6969	Charge Transport Layers in Halide Perovskite Photonic Devices. , 2021, , 1-32.		0
6970	Studying the influence of heat treatment on structural and morphological properties of thin CH3NH3PbI3-xClx films prepared by spin coating method. AIP Conference Proceedings, 2021, , .	0.3	1
6971	Exploring the Ruddlesden–Popper layered organic–inorganic hybrid semiconducting perovskite for visible-blind ultraviolet photodetection. CrystEngComm, 2022, 24, 2258-2263.	1.3	2
6972	Cooperative Effects of Dopant-Free Hole-Transporting Materials and Polycarbonate Film for Sustainable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
6973	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews, 2021, 50, 13372-13409.	18.7	10
6974	Defects in Solution-Processed Perovskite Semiconductors: Photophysics and Impact on Solar Cell Performance. , 2021, , 1-34.		1
6975	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
6976	High-Performance and Selective Semi-Transparent Perovskite Solar Cells Using 3S-Structured FTO. SSRN Electronic Journal, 0, , .	0.4	0
6977	Excited-State Dynamics in Metal Halide Perovskites: A Theoretical Perspective. , 2021, , 1-54.		0
6979	Design of dopant-free small molecular hole transport materials for perovskite solar cells: a viewpoint from defect passivation. Journal of Materials Chemistry A, 2022, 10, 1150-1178.	5.2	44
6980	Modeling of Perovskite solar cells containing hexagonal-shaped nanorods. Optical and Quantum Electronics, 2022, 54, 1.	1.5	0
6981	A Solutionâ€Processed Allâ€Perovskite Memory with Dualâ€Band Light Response and Triâ€Mode Operation. Advanced Functional Materials, 2022, 32, 2110975.	7.8	30
6982	Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap. Nanoscale, 2022, 14, 1954-1961.	2.8	9
6983	Interface modification by formamidine acetate for efficient perovskite solar cells. Solar Energy, 2022, 232, 304-311.	2.9	9
6984	The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study. Crystals, 2022, 12, 68.	1.0	13
6985	Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy and Environmental Science, 2022, 15, 714-726.	15.6	68

щ		IE	CITATIONS
#	ARTICLE	IF	CITATIONS
6986	The Density Functional Theory Investigation. Journal of Materials Research and Technology, 2022, 17, 425-425.	2.6	5
6987	Size-tunable MoS ₂ nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. Journal of Materials Chemistry A, 2022, 10, 3605-3617.	5.2	15
6988	Atomistic origin of lattice softness and its impact on structural and carrier dynamics in three dimensional perovskites. Energy and Environmental Science, 2022, 15, 660-671.	15.6	24
6989	Electric-field regulated crystallization process for enhanced performance of perovskite solar cells. Sustainable Energy and Fuels, 0, , .	2.5	0
6990	Physical properties of double perovskites Rb2XCl6 (X= Sn, Te, Zr): Competitive candidates for renewable energy devices. Solid State Communications, 2022, 342, 114633.	0.9	6
6991	Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93, 106846.	8.2	29
6992	Self-aligned CH3NH3PbBr3 perovskite nanowires via dielectrophoresis for gas sensing applications. Applied Materials Today, 2022, 26, 101307.	2.3	9
6993	Donor-acceptor-donor type organic spacer for regulating the quantum wells of Dion-Jacobson 2D perovskites. Nano Energy, 2022, 93, 106800.	8.2	20
6994	DFT study on the crystal structure, optoelectronic, and thermoelectric properties of lead-free inorganic A2PdBr6 (A = K, Rb, and Cs) perovskites. Materials Today Communications, 2022, 30, 103061.	0.9	11
6995	Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chemical Engineering Journal, 2022, 431, 134235.	6.6	28
6996	First-principles study of double perovskites Cs2Sn(Br1â^l)6 for the design of high-efficiency thin-film photovoltaics. Computational Condensed Matter, 2022, 30, e00634.	0.9	4
6997	Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy, 2022, 94, 106919.	8.2	29
6998	A short review on progress in perovskite solar cells. Materials Research Bulletin, 2022, 149, 111700.	2.7	48
6999	Impedance spectroscopy study of defect/ion mediated electric field and its effect on the photovoltaic performance of perovskite solar cells based on different active layers. Solar Energy Materials and Solar Cells, 2022, 237, 111548.	3.0	13
7000	Extracting ammonium halides by solvent from the hybrid perovskites with various dimensions to promote the crystallization of CsPbI3 perovskite. Nano Energy, 2022, 94, 106925.	8.2	35
7001	Hydrogen-Iodide Bonding between Glycine and Perovskite Greatly Improve Moisture Stability for Binary PSCs. SSRN Electronic Journal, 0, , .	0.4	0
7002	Stability of Low-index Surfaces of Cs ₂ Snl ₆ Studied by First-principles Calculations. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 691.	0.6	2
7003	Improving Device Performance of MaPbI ₃ Photovoltaic Cells by Manipulating the Crystal Orientation of Tetragonal Perovskites. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE Analysis of the specific heat and the free energy and calculation of the entropy and the internal	IF	CITATIONS
7004 7005	energy of [N(CH3)4]2MnBr4 close to the phase transition. Ferroelectrics, 2021, 583, 1-11. Stable Leadâ€Free Blueâ€Emitting Cs ₃ Cu ₂ Br ₅ Single Crystal with Selfâ€Trap Exciton Emission for Optoelectronics. Advanced Photonics Research, 2022, 3, .	0.3	0
7006	Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
7007	Perovskite Quantum Dots in Solar Cells. Advanced Science, 2022, 9, e2104577.	5.6	49
7008	Scalable Flexible Perovskite Solar Cells Based on a Crystalline and Printable Template with Intelligent Temperature Sensitivity. Solar Rrl, 2022, 6, .	3.1	9
7009	A step beyond in steady-state and time-resolved electro-optical spectroscopy: Demonstration of a customized simple, compact, low-cost, fiber-based interferometer system. Structural Dynamics, 2022, 9, 011101.	0.9	5
7010	Role of electrochemical reactions in the degradation of formamidinium lead halide hybrid perovskite quantum dots. Analyst, The, 2022, 147, 841-850.	1.7	2
7011	Tailoring Anchoring Groups in Lowâ€Đimensional Organic Semiconductorâ€Incorporated Perovskites. Small Structures, 2022, 3, .	6.9	9
7012	Nonlinear absorption of CsPbBr3/antimonene blend materials prepared by laser ablation in liquid. Optical Materials, 2022, 123, 111901.	1.7	1
7013	Formamidinium-based Ruddlesden–Popper perovskite films fabricated <i>via</i> two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy and Environmental Science, 2022, 15, 1144-1155.	15.6	27
7014	Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Science Advances, 2022, 8, eabk2722.	4.7	53
7015	Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 283-291.	2.4	16
7016	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
7017	Diaminobenzene Dihydroiodideâ€MA _{0.6} FA _{0.4} PbI _{3â[^]} <i>_x</i> Cl <i>_{xUnsymmetrical Perovskites with over 22% Efficiency for High Stability Solar Cells. Advanced Functional Materials, 2022, 32, .}</i>	9≥	16
7018	The study of electronic and optical properties of perovskites CH ₃ NH ₃ PbCl ₃ and CH ₃ NH ₃ PbBr ₃ using first-principle. E3S Web of Conferences, 2022, 336, 00015.	0.2	6
7019	Solvent-Additive Coordination Effect on Lead-Iodide Precursor for Enlarging Grain Size of Perovskite Film. ACS Applied Energy Materials, 2022, 5, 27-34.	2.5	4
7020	Effect of Iodine Octahedral Rotations on Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. Journal of Physical Chemistry C, 2022, 126, 779-785.	1.5	2
7021	Dynamics of Strong Coupling Between Free Charge Carriers in Organometal Halide Perovskites and Aluminum Plasmonic States. Frontiers in Chemistry, 2021, 9, 818459.	1.8	0

		CITATION REPORT		
#	Article		IF	CITATIONS
7022	Retinomorphic optoelectronic devices for intelligent machine vision. IScience, 2022, 2	5, 103729.	1.9	16
7023	Ab initio study of structural, electronic, mechanical and optical properties of the tetrag Cs2AgBiBr6 halide double perovskite. Applied Physics A: Materials Science and Process	onal ing, 2022, 128, 1.	1.1	8
7024	Methylthiophene terminated D–π–D molecular semiconductors as multifunctiona materials for high performance perovskite solar cells. Journal of Materials Chemistry C, 1862-1869.		2.7	4
7025	Effect of Perovskite CsPbBr ₃ Concentration and Coating Method on Thin Morphology and its Photovoltaic Performance. Materials Science Forum, 0, 1051, 31-3		0.3	0
7026	Titaniumâ€Based Vacancyâ€Ordered Double Halide Family in Perovskite Solar Cells. Ph (A) Applications and Materials Science, 2022, 219, .	ysica Status Solidi	0.8	8
7027	Facet Orientation and Intermediate Phase Regulation via a Green Antisolvent for Highâ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	€Performance	3.1	12
7028	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Transparency Window. Angewandte Chemie, 0, , .	Broadband	1.6	7
7029	Fabrication and characterization of CH ₃ NH ₃ PbI _{3added guanidinium and inserted with decaphenylpentasilane. Japanese Journal of Appli 61, SB1024.}		0.8	23
7030	Surface Passivation of MAPbBr ₃ Perovskite Single Crystals to Suppress Io Enhance Photoelectronic Performance. ACS Applied Materials & Interfaces, 2022,	n Migration and 14, 10917-10926.	4.0	39
7031	An Acetylene-Linked 9,9′-Bicarbazole-Based Hole-Transporting Material for Efficient Cells. Energy & Fuels, 2022, 36, 2086-2094.	Perovskite Solar	2.5	10
7032	Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl ₂ Qua Efficient and Stable MAPbI ₃ Perovskite Solar Cells. Advanced Functional N 32, .	ntum Dots for Materials, 2022,	7.8	53
7033	Microspacing In-Air Sublimation Growth of Thickness-Controllable Lead Halide Crystal a Morphology Evolution in Conversion to Perovskite. ACS Applied Energy Materials, 0, , .	and the	2.5	3
7034	A highâ€efficiency and stable perovskite solar cell fabricated in ambient air using a poly passivation layer. Scientific Reports, 2022, 12, 697.	yaniline	1.6	26
7035	Ultrafast Triplet Generation at the Lead Halide Perovskite/Rubrene Interface. ACS Energ 7, 617-623.	gy Letters, 2022,	8.8	24
7036	Unveiling the effect of amino acids on the crystallization pathways of methylammoniu perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	m lead iodide	7.1	10
7037	Rubidium chloride doping TiO2 for efficient and hysteresis-free perovskite solar cells w traps. Solar Energy, 2022, 231, 440-446.	ith decreasing	2.9	10
7038	Interface Engineering of Pb–Sn Lowâ€Bandgap Perovskite Solar Cells for Improved E Stability. Solar Rrl, 2022, 6, .	fficiency and	3.1	8
7039	4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells Materials, 2022, 123, 111876.	. Optical	1.7	12

#	Article	IF	CITATIONS
7040	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	4.0	8
7041	Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231, 1048-1060.	2.9	9
7042	Quantifying Efficiency Limitations in Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, e2108132.	11.1	44
7043	Study of MAPb(I1â^xBrx)3 thin film and perovskite solar cells based on hole transport material-free and carbon electrode. Journal of Materials Science: Materials in Electronics, 2022, 33, 2654.	1.1	0
7044	Organometal halide perovskite photovoltaics. , 2022, , 273-317.		1
7045	Several Triazine-Based Small Molecules Assisted in the Preparation of High-Performance and Stable Perovskite Solar Cells by Trap Passivation and Heterojunction Engineering. ACS Applied Materials & Interfaces, 2022, 14, 6625-6637.	4.0	32
7046	Molecular interactions and functionalities of an organic additive in a perovskite semiconducting device: a case study towards high performance solar cells. Journal of Materials Chemistry A, 2022, 10, 2876-2887.	5.2	14
7047	Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA ₂ PbI ₄ interfacial layer. Physical Chemistry Chemical Physics, 2022, 24, 1675-1684.	1.3	5
7048	Rare earth–based compounds for solar cells. , 2022, , 365-393.		1
7049	Three-Dimensional Methylhydrazinium Lead Halide Perovskites: Structural Changes and Effects on Dielectric, Linear, and Nonlinear Optical Properties Entailed by the Halide Tuning. Journal of Physical Chemistry C, 2022, 126, 1600-1610.	1.5	34
7050	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
7051	In Situ Low-Temperature Growth and Superior Luminescent Property of Well-Aligned, High-Quality Cubic CsPbBr ₃ Micrometer-Scale Single Crystal Arrays on Transparent Conductive Substrates. Journal of Physical Chemistry Letters, 2022, 13, 1114-1122.	2.1	2
7052	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
7053	Methylammonium Compensation Effects in MAPbl ₃ Perovskite Solar Cells for High-Quality Inorganic CuSCN Hole Transport Layers. ACS Applied Materials & Interfaces, 2022, 14, 5203-5210.	4.0	24
7054	Investigation of emission behaviour of perovskite nanocrystals using nano to microspheres of TiO ₂ . New Journal of Chemistry, 2022, 46, 844-850.	1.4	9
7055	All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. Nanoscale Advances, 2022, 4, 680-696.	2.2	43
7056	Switchable photovoltaic effect in solar cells: Architecture, features, and future scope. , 2022, , 161-184.		0
7057	Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors. , 2022, , 35-58.		1

#	Article	IF	CITATIONS
7058	A comprehensive analysis of PV cell parameters with varying halides stoichiometry in mixed halide perovskite solar cells. Optical Materials, 2022, 123, 111905.	1.7	6
7059	Electronic and optical properties of inorganic lead-free perovskite Cs ₃ Bi ₂ I ₉ . Wuli Xuebao/Acta Physica Sinica, 2022, 71, 017101.	0.2	1
7060	Potassium Iodide Doping Strategy for High-Efficiency Perovskite Solar Cells Revealed by Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 711-717.	2.1	3
7061	Highly Visibleâ€Transparent and Colorâ€Neutral Perovskite Solar Cells for Selfâ€Powered Smart Windows. Solar Rrl, 2022, 6, .	3.1	8
7062	Inspired from Spiro-OMeTAD: developing ambipolar spirobifluorene derivatives as effective passivation molecules for perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 1357-1364.	2.7	10
7063	Unusual luminescence and its decay behavior of CH3NH3PbBr3 single crystals at orthorhombic phase. Materials Today Physics, 2022, 22, 100621.	2.9	3
7064	Carrier recombination in CH ₃ NH ₃ PbI ₃ : why is it a slow process?. Reports on Progress in Physics, 2022, 85, 024501.	8.1	17
7065	Efficient Slot-Die-Processed Perovskite Solar Cells With 3-Allyloxy-1, 2-Propanediol Additive. IEEE Journal of Photovoltaics, 2022, 12, 634-638.	1.5	3
7066	Understanding the crystallization of triple-cation perovskites assisted by mixed antisolvents for improved solar cell device performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 4415-4425.	1.1	2
7067	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€⊉D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	3.6	15
7068	A GGAÂ+ÂvdW study on electronic properties and optoelectronic functionality of Cd-doped tetragonal CH3NH3PbI3 for photovoltaics. Chemical Physics, 2022, 556, 111461.	0.9	1
7069	Uncovering the Influence of Ni ²⁺ Doping in Lead-Halide Perovskite Nanocrystals Using Optically Detected Magnetic Resonance Spectroscopy. Chemistry of Materials, 2022, 34, 1686-1698.	3.2	8
7070	Halide Ions Distribution and Charge Dynamics in Mixedâ€Halide Perovskites. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	3
7071	Stable and efficient Ti3C2 MXene/MAPbI3-HI system for visible-light-driven photocatalytic HI splitting. Journal of Power Sources, 2022, 522, 231006.	4.0	13
7072	FAPbI ₃ Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications. ACS Applied Energy Materials, 2022, 5, 1487-1495.	2.5	18
7073	Synthesis of Stable Leadâ€Free Cs ₃ Sb ₂ (Br <i>_x</i> (i>I _{1â^'} <i>_x</i>) ₉ (0 ≤i>xÂ≤) Perovskite Nanoplatelets and Their Application in CO ₂ Photocatalytic Reduction. Small. 2022. 18. e2106001.	5.2	28
7074	In Situ Methylammonium Chloride-Assisted Perovskite Crystallization Strategy for High-Performance Solar Cells. , 2022, 4, 448-456.		13
7075	A cascade bilayer electron transport layer toward efficient and stable <scp>Ruddlesdenâ€Popper</scp> perovskite solar cells. International Journal of Energy Research, 2022, 46, 8229-8239.	2.2	9

#	Article	IF	CITATIONS
7076	Growing MASnI ₃ perovskite single-crystal films by inverse temperature crystallization. Journal of Physics Condensed Matter, 2022, 34, 144009.	0.7	4
7077	Ab-initio method to investigate organic halide based double perovskites (CH3NH3)2AgMBr6 (MÂ=ÂSb, Bi) for opto-electronic applications. Journal of Materials Research and Technology, 2022, 17, 649-657.	2.6	6
7078	Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 2022, 94, 106936.	8.2	25
7079	Hybrid density functional theory calculation of orthorhombic CsPbI3â^'3Br3 and CsPbBr3â^'3Cl3. Current Applied Physics, 2022, 36, 93-96.	1.1	2
7080	Emission properties of sequentially deposited ultrathin CH3NH3PbI3/MoS2 heterostructures. Current Applied Physics, 2022, 36, 27-33.	1.1	8
7081	Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 158, 112146.	8.2	23
7082	Polarity regulation for stable 2D-perovskite-encapsulated high-efficiency 3D-perovskite solar cells. Nano Energy, 2022, 95, 106965.	8.2	27
7083	Substrate depended chemical composition segregation and electrical property of perovskite films. Journal of Alloys and Compounds, 2022, 902, 163797.	2.8	1
7084	Improving water-resistance of inverted flexible perovskite solar cells via tailoring the top electron-selective layers. Solar Energy Materials and Solar Cells, 2022, 238, 111609.	3.0	19
7085	Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells. Applied Surface Science, 2022, 584, 152651.	3.1	15
7086	Capacitance spectroscopy of thin-film formamidinium lead iodide based perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 238, 111618.	3.0	4
7087	Improving the properties of MA-based wide-bandgap perovskite by simple precursor salts engineering for efficiency and ambient stability improvement in solar cells. Solar Energy Materials and Solar Cells, 2022, 238, 111617.	3.0	7
7089	High-Performance Planar Perovskite Solar Cells with a Reduced Energy Barrier and Enhanced Charge Extraction via a Na ₂ WO ₄ -Modified SnO ₂ Electron Transport Layer. ACS Applied Materials & Interfaces, 2022, 14, 7962-7971.	4.0	17
7090	Photoluminescence and Photoconductivity of Lead Halide Perovskite Films Modified with Mixed Cellulose Esters. Technical Physics, 2021, 66, 827-834.	0.2	1
7091	Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)nâ^'1Pbnl3n+1 (n = 1–4) fe optoelectronic applications. Scientific Reports, 2022, 12, 2176.	^{or} 1.6	30
7092	Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbl ₃ Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 1390-1396.	2.5	5
7093	Spacer Engineering of Thiophene-Based Two-Dimensional/Three-Dimensional Hybrid Perovskites for Stable and Efficient Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3351-3358.	1.5	9
7094	Collaborative strengthening by multi-functional molecule 3-thiophenboric acid for efficient and stable planar perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135134.	6.6	13

#	Article	IF	CITATIONS
7095	Lewis Base Plays a Double-Edged-Sword Role in Trap State Engineering of Perovskite Polycrystals. Journal of Physical Chemistry Letters, 2022, 13, 1571-1577.	2.1	11
7096	Ambient Stable Perovskite Solar Cells through Trifluoro Acetic Acid-Mediated Multifunctional Anchoring. ACS Applied Energy Materials, 2022, 5, 1571-1579.	2.5	9
7097	Two-dimensional material-based printed photonics: a review. 2D Materials, 2022, 9, 042003.	2.0	5
7098	Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7796-7804.	4.0	53
7099	Bandgap engineering and optoelectronic properties of all-inorganic lead-free Pd-based double perovskites. Arabian Journal of Chemistry, 2022, 15, 103785.	2.3	5
7100	In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. , 2022, 4, 464-471.		63
7101	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	4.7	26
7102	Cooperative effects of Dopant-Free Hole-Transporting materials and polycarbonate film for sustainable perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135197.	6.6	13
7103	Review of Two‣tep Method for Lead Halide Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	44
7104	Improving the Performance and Stability of Perovskite Solar Cells through Buried Interface Passivation Using Potassium Hydroxide. ACS Applied Energy Materials, 2022, 5, 1914-1921.	2.5	11
7105	Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10, .	1.8	11
7106	Polarization-Induced Trap States in Perovskite Solar Cells Revealed by Circuit-Switched Transient Photoelectric Technique. Journal of Physical Chemistry C, 2022, 126, 3696-3704.	1.5	7
7107	Efficient Energy Level Modulation <i>via</i> Electrophilic KBF ₄ for High-Performance Inverted Planar Perovskite Solar Cells with Superior Stability. Journal of Physical Chemistry C, 2022, 126, 3375-3384.	1.5	5
7108	Numerical modeling and performance optimization of carbon-based hole transport layer free perovskite solar cells. Optical Materials, 2022, 125, 112075.	1.7	9
7109	Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: Theoretical insights. Optical Materials, 2022, 125, 112057.	1.7	18
7110	Synergistic effect of surface active agent in defect passivation by for ambient air-synthesized halide perovskite solar cells. Journal of Power Sources, 2022, 524, 231038.	4.0	5
7111	Inclusion of triphenylamine unit in dopant-free hole transport material for enhanced interfacial interaction in perovskite photovoltaics. Dyes and Pigments, 2022, 200, 110162.	2.0	10
7112	Effect of chlorine and bromine on the perovskite crystal growth in mesoscopic heterojunction photovoltaic device. Materials Science in Semiconductor Processing, 2022, 143, 106558.	1.9	4

#	Article	IF	CITATIONS
7113	First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. Journal of Physical Chemistry Letters, 2021, 12, 11886-11893.	2.1	13
7114	Temperature-Controlled Slot-Die Coating for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7115	Surface Engineering Enabled by Bifunctional Guanidinium Tetrafluoroborate Achieving High-Performance Inverted Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7116	Copper coordination polymers with selective hole conductivity. Journal of Materials Chemistry A, 2022, 10, 9582-9591.	5.2	9
7117	Phase transition model of FA cation ordering in FAPbX ₃ (X = Br, I) hybrid perovskites. Journal of Materials Chemistry C, 2022, 10, 5210-5217.	2.7	3
7118	Metal Halide-Based Adsorption and Substitution at Halide Perovskite Surfaces: Study of CuBr2/CH3NH3PbI3. Russian Journal of Physical Chemistry A, 2022, 96, 190-197.	0.1	1
7119	First-principles study of the defect-activity and optical properties of FAPbCl ₃ . Materials Advances, 0, , .	2.6	4
7120	å≇Œ–物é'™é'›çŸ¿è–"膜çš"宿,©ç»"æ™¶ä,Žç¨³å®šæ€§ç"ç©¶. Scientia Sinica: Physica, Mechanica Et Astr	on ou2 nica,	20022,,.
7121	Au/Ag Bilayer Electrode for Perovskite Solar Cells. Korean Journal of Materials Research, 2022, 32, 51-55.	0.1	1
7122	Theoretical investigation of FAPbSnGeX ₃ efficiency. RSC Advances, 2022, 12, 8945-8952.	1.7	2
7123	Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response. Nanoscale, 2022, 14, 6402-6416.	2.8	8
7124	Enhanced crystal quality of perovskite via protonated graphitic carbon nitride added in carbon-based perovskite solar cells. Chinese Journal of Chemical Physics, 2022, 35, 390-398.	0.6	2
7125	A small-molecule-templated nanostructure back electrode for enhanced light absorption and photocurrent in perovskite quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 8966-8974.	5.2	3
7126	<i>In situ</i> growth of a 2D assisted passivation layer enabling high-performance and stable 2D/3D stacked perovskite photodetectors for visible light communication applications. Journal of Materials Chemistry C, 2022, 10, 6846-6856.	2.7	9
7127	High thermoelectric performance based on CsSnl ₃ thin films with improved stability. Journal of Materials Chemistry A, 2022, 10, 7020-7028.	5.2	10
7128	Supramolecular Bridging Strategy Enables High Performance and Stable Organic-Inorganic Halide Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7129	Molecular Dopant Induced Growth of Black Phase Cs _x FA _(1-x) PbI ₃ for Highly Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7130	In Situ Growth of Bifunctional Modification Material for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
7131	Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nature Communications, 2022, 13, 1083.	5.8	14
7132	Effect of Chlorine Addition on the Performance and Stability of Electrodeposited Mixed Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 2218-2230.	3.2	10
7133	Evaluating the Capacitive Response in Metal Halide Perovskite Solar Cells. Chemical Record, 2022, 22, e202100330.	2.9	13
7134	Unveiling Charge Carrier Recombination, Extraction, and Hot arrier Dynamics in Indium Incorporated Highly Efficient and Stable Perovskite Solar Cells. Advanced Science, 2022, 9, e2103491.	5.6	15
7135	Micro-to-Nanometer Scale Patterning of Perovskite Inks via Controlled Self-Assemblies. Materials, 2022, 15, 1521.	1.3	2
7136	Short Photoluminescence Lifetimes Linked to Crystallite Dimensions, Connectivity, and Perovskite Crystal Phases. Journal of Physical Chemistry C, 2022, 126, 3466-3474.	1.5	4
7137	Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 10508-10516.	4.0	10
7138	Dissipation of Charge Accumulation and Suppression of Phase Segregation in Mixed Halide Perovskite Solar Cells via Nanoribbons. ACS Applied Energy Materials, 2022, 5, 2727-2737.	2.5	3
7139	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	20
7140	Revealing the quasiparticle electronic and excitonic nature in cubic, tetragonal, and hexagonal phases of FAPbI ₃ . AIP Advances, 2022, 12, 025330.	0.6	2
7141	Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Science Bulletin, 2022, 67, 794-802.	4.3	13
7142	Uncovering the Mechanism of Poly(ionicâ€liquid)s Multiple Inhibition of Ion Migration for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	36
7143	Using ZnCo2O4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells. Scientific Reports, 2022, 12, 2921.	1.6	14
7144	Microstructure of Methylammonium Lead iodide Perovskite Thin Films: A Comprehensive Study of the Strain and Texture. Advanced Energy Materials, 0, , 2103627.	10.2	7
7145	Visualization of Carrier Transport in Lateral Metal-Perovskite-Metal Structures and its Influence on Device Operation. Physical Review Applied, 2022, 17, .	1.5	3
7146	Internal Interactions between Mixed Bulky Organic Cations on Passivating Defects in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 11200-11210.	4.0	14
7147	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	8.8	43
7148	Ab Initio Thermodynamic Study of PbI ₂ and CH ₃ NH ₃ PbI ₃ Surfaces in Reaction with CH ₃ NH ₂ Gas for Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3671-3680.	1.5	1

		CITATION REPORT		
#	Article		IF	CITATIONS
7149	Highâ€Performance Perovskite Solar Cells via Simulation Interactive Technology. Solar Rrl,	2022, 6, .	3.1	4
7150	Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite. Nanomaterials, 2	2022, 12, 1002.	1.9	1
7151	Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanc 2022, 9, e2200308.	ed Science,	5.6	40
7152	Impacts of CsPbBr ₃ /PbSe Heterostructures on Carrier Cooling Dynamics at Lo Density. Advanced Optical Materials, 2022, 10, .	bw Carrier	3.6	16
7153	Neutral-Colored Semitransparent Perovskite Solar Cells with Aperture Ratios Controlled via Patterning. ACS Applied Energy Materials, 2022, 5, 3660-3667.	a Laser	2.5	7
7154	Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination Perovskite Solar Cells. Solar Rrl, 2022, 6, .	on in	3.1	8
7155	Reaction Mechanism of Photocatalytic Hydrogen Production at Water/Tin Halide Perovskit Interfaces. ACS Energy Letters, 2022, 7, 1308-1315.	e	8.8	26
7156	Understanding Instability in Formamidinium Lead Halide Perovskites: Kinetics of Transform Reactions at Grain and Subgrain Boundaries. ACS Energy Letters, 2022, 7, 1534-1543.	lative	8.8	45
7157	Importance and Advancement of Modification Engineering in Perovskite Solar Cells. Solar	Rrl, 2022, 6,	3.1	8
7158	Atomic substitution effects of inorganic perovskites for optoelectronic properties modulat EcoMat, 2022, 4, .	tions.	6.8	6
7159	Acetylammonium chloride as an additive for crystallization control and defect passivation MAPbI ₃ based perovskite solar cells. Journal Physics D: Applied Physics, 2022	in , 55, 265501.	1.3	7
7160	Pattern-Selective Molecular Epitaxial Growth of Single-Crystalline Perovskite Arrays towarc Ultrasensitive and Ultrafast Photodetector. Nano Letters, 2022, 22, 2948-2955.		4.5	8
7161	Hybrid Halide Perovskiteâ€Based Nearâ€Infrared Photodetectors and Imaging Arrays. Adva Materials, 2022, 10, .	inced Optical	3.6	35
7162	Embedding laser generated GaAs nanocrystals in perovskite wires for enhanced charge tra photodetection. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	nsport and	2.0	1
7163	Multifunctional <i>ï€</i> onjugated Additives for Halide Perovskite. Advanced Science, e2105307.	2022, 9,	5.6	33
7164	In Situ Growth Mechanism for Highâ€Quality Hybrid Perovskite Singleâ€Crystal Thin Films to Thickness Ratio: Looking for the Sweet Spot. Advanced Science, 2022, 9, e2104788.	with High Area	5.6	16
7165	Van der Waals Epitaxial Deposition of CsPbBr ₃ Films for Flexible Optoelectro Applications. ACS Applied Electronic Materials, 2022, 4, 1351-1358.	nic	2.0	4
7166	Nanoscale Photoexcited Carrier Dynamics in Perovskites. Journal of Physical Chemistry Let 13, 2388-2395.	ters, 2022,	2.1	3

#	Article	IF	CITATIONS
7167	Detailed Structural Features of the Perovskite-Related Halide RbPbI ₃ for Solar Cell Applications. Inorganic Chemistry, 2022, 61, 5502-5511.	1.9	7
7168	The effect of solvent on preparation of CH ₃ NH ₃ PbI ₃ photodetectors via an antisolventâ€free method. Luminescence, 2022, , .	1.5	0
7169	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	0.7	8
7170	Methylammonium thiocyanate seeds assisted heterogeneous nucleation for achieving high-performance perovskite solar cells. Applied Surface Science, 2022, 592, 153206.	3.1	8
7171	Poly(<i>N</i> , <i>N</i> ′â€bisâ€4â€butylphenylâ€ <i>N</i> , <i>N</i> ′â€biphenyl)benzidine as Interfacial Pass Dopantâ€Free P3HT Hole Transport Layerâ€Based Perovskite Solar Cell in Regular Mesoscopic Architecture. Energy Technology, 2022, 10, .	ivator for 1.8	2
7172	Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. ACS Omega, 2022, 7, 10365-10371.	1.6	10
7173	Wideâ€Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells. Advanced Science, 2022, 9, e2105085.	5.6	60
7174	Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 2321-2329.	2.1	29
7175	Molecular Design and Cost-Effective Synthesis of Tetraphenylethene-Based Hole-Transporting Materials for Hybrid Solar Cell Application. Energy & Fuels, 2022, 36, 3909-3919.	2.5	5
7176	High-Detectivity UV–Vis–NIR Broadband Perovskite Photodetector Using a Mixed Pb–Sn Narrow-Band-Gap Absorber and a NiO <i>_x</i> Electron Blocker. ACS Applied Electronic Materials, 2022, 4, 1206-1213.	2.0	6
7177	Nonlocal Screening Dictates the Radiative Lifetimes of Excitations in Lead Halide Perovskites. Nano Letters, 2022, 22, 2398-2404.	4.5	11
7178	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition. ACS Energy Letters, 2022, 7, 1355-1363.	8.8	24
7179	Theoretical modelling of high-efficiency perovskite solar cells and reduction of internal heat generation using hot-electron extraction. Optical and Quantum Electronics, 2022, 54, 1.	1.5	0
7180	Spatial Separation of Cocatalysts on Zâ€Scheme Organic/Inorganic Heterostructure Hollow Spheres for Enhanced Photocatalytic H ₂ Evolution and Inâ€Depth Analysis of the Chargeâ€Transfer Mechanism. Advanced Materials, 2023, 35, e2200172.	11.1	104
7181	Enhanced Performance of Carbonâ€Based, Fully Printed Mesoscopic Perovskite Solar Cells through Defects Passivation. Advanced Materials Interfaces, 2022, 9, .	1.9	3
7182	Impact of Cesium Concentration on Optoelectronic Properties of Metal Halide Perovskites. Materials, 2022, 15, 1936.	1.3	10
7183	Perovskite metasurfaces with large superstructural chirality. Nature Communications, 2022, 13, 1551.	5.8	51
7184	Soft X-ray characterization of halide perovskite film by scanning transmission X-ray microscopy. Scientific Reports, 2022, 12, 4520.	1.6	6

#	Article	IF	Citations
7185	Interfacial Defect Passivation Effect of <i>N</i> -Methyl- <i>N</i> -(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4270-4278.	2.5	2
7186	Hierarchically Ordered Perovskites with High Photoâ€Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	1.9	11
7187	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics. ACS Energy Letters, 2022, 7, 1246-1254.	8.8	12
7188	Highly Efficient and Ultrafast Terahertz Modulation in Perovskite Hybrid Structure. ACS Applied Electronic Materials, 2022, 4, 1832-1840.	2.0	2
7189	Robust Design of High-Performance Optoelectronic Chalcogenide Crystals from High-Throughput Computation. Journal of the American Chemical Society, 2022, 144, 5878-5886.	6.6	21
7190	A study on numerical simulation optimization of perovskite solar cell based on CuI and C60. Materials Research Express, 2022, 9, 036401.	0.8	9
7191	Efficient pâ€Type Doping of Tin Halide Perovskite via Sequential Diffusion for Thermoelectrics. Small Science, 2022, 2, .	5.8	5
7192	Improving the performance of organic lead–tin laminated perovskite solar cells from the perspective of device simulation. Optical and Quantum Electronics, 2022, 54, 1.	1.5	6
7193	Spacer Organic Cation Engineering for Quasiâ€⊋D Metal Halide Perovskites and the Optoelectronic Application. Small Structures, 2022, 3, .	6.9	26
7194	Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 3188-3196.	2.1	17
7195	Lead-Free Solid-State Organic–Inorganic Halide Perovskite Electrolyte for Lithium-Ion Conduction. ACS Applied Materials & Interfaces, 2022, 14, 17479-17485.	4.0	5
7196	Understanding of Layer-Dependent Stability and Rashba Spin Splitting of Two-Dimensional Organic–Inorganic Halide Perovskites α-FABX ₃ (B = Ge, Sn, and Pb; X = Cl, Br, and I). Journal of Physical Chemistry C, 2022, 126, 6448-6455.	1.5	1
7197	Phaseâ€Pure Engineering for Efficient and Stable Formamidiniumâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	16
7198	Preâ€Buried Additive for Cross‣ayer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Materials, 2022, 34, e2109879.	11.1	128
7199	Highly efficient and stable perovskite solar cells induced by novel bulk organosulfur ammonium. Materials Today Energy, 2022, 26, 101004.	2.5	7
7200	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
7201	Role of Terminal Group Position in Triphenylamine-Based Self-Assembled Hole-Selective Molecules in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17461-17469.	4.0	15
7202	New insights in construction of three-dimensional donor/acceptor interface for high performance perovskite solar cells the preparation of wolf tooth stick-like TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 128958.	2.3	4

#	Article	IF	CITATIONS
7203	Investigation of the role of back contact work function for hole transporting layer free perovskite solar cells applications. Optik, 2022, 256, 168749.	1.4	19
7204	Reducing the Trap Density in MAPbI ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021.	1.3	6
7205	Preparation of MAPbI3 perovskite film by pulsed laser deposition for high-performance silicon-based heterojunction photodetector. Optical Materials, 2022, 126, 112147.	1.7	5
7206	Surface modification of CsPbl2Br for improved performance of inorganic perovskite solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115265.	1.3	6
7207	Optical, morphological and electrical studies of fully doctor bladed CsPbBr2Cl-based perovskite thin films. Microelectronic Engineering, 2022, 258, 111757.	1.1	1
7208	Firstâ€principles investigation of <scp>Rb₂Ag</scp> (Ga/In)Br ₆ for thermoelectric and photovoltaic applications. International Journal of Quantum Chemistry, 2022, 122, .	1.0	3
7209	Multifunctional zwitterion modified SnO2 nanoparticles for efficient and stable planar perovskite solar cells. Organic Electronics, 2022, 106, 106519.	1.4	5
7210	Ultrafast Thermalization Pathways of Excited Bulk and Surface States in the Ferroelectric Rashba Semiconductor GeTe. Advanced Materials, 2022, 34, e2200323.	11.1	3
7211	Defect Healing in FAPb(I _{1â€} <i>_x</i> Br <i>_x</i>) ₃ Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21%ÂModules with Improved Operation Stability. Advanced Energy Materials, 2022, 12, .	10.2	32
7212	Fabrication, characterization and simulation analysis of perovskite solar cells with dopant-free solution-processible C6PcH2 hole transporting material. Optical and Quantum Electronics, 2022, 54, 1.	1.5	0
7213	Structural, electronic and optoelectronic properties of asymmetric organic ligands in Dion-Jacobson phase perovskites. Solid State Communications, 2022, 350, 114761.	0.9	4
7214	Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Advanced Materials, 2022, 34, e2200720.	11.1	50
7215	Electronic and optical properties of lead halide perovskite (MAPbX ₃) (XÂ=Âl, Br, and Cl) by first principles calculations. Physica Scripta, 2022, 97, 055818.	1.2	3
7216	Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells. Solar Energy, 2022, 236, 576-585.	2.9	13
7217	Reversible degradation-assisted interface engineering via Cs4PbBr6 nanocrystals to boost the performance of CsPbI2Br perovskite solar cells. Journal of Power Sources, 2022, 530, 231294.	4.0	5
7218	Influence of applied bias for A-site and X-site ion exchange reaction dynamics in perovskite quantum dots. Journal of Luminescence, 2022, 245, 118776.	1.5	2
7219	First principles study of the structural, optoelectronic and mechanical properties of XLaS2 (X Cu, Zn) for optoelectronic applications. Optik, 2022, 258, 168940.	1.4	1
7220	TiO2–rGO nanocomposites with high rGO content and luminescence quenching through green redox synthesis. Surfaces and Interfaces, 2022, 30, 101812.	1.5	4

#ARTICLEIFCITATIONS7221Surface treatment enabled by functional guanidinium tetrafluoroborate achieving high-performance
inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 240, 111682.3.0127222Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient
and stable perovskite solar cells. Nano Energy, 2022, 96, 107072.8.229

CITATION REPORT

5223 Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A= Rb) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7224	Leadâ€Free Cs ₂ AgSbCl ₆ Double Perovskite Nanocrystals for Effective Visibleâ€Light Photocatalytic Câ^'C Coupling Reactions. ChemSusChem, 2022, 15, e202102334.	3.6	23
7225	Impact of Photon Recycling, Grain Boundaries, and Nonlinear Recombination on Energy Transport in Semiconductors. ACS Photonics, 2022, 9, 110-122.	3.2	13
7226	Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. Nano Research, 2022, 15, 4765-4772.	5.8	12
7227	<i>Sacrificial Agent Gone Rogue</i> : Electron-Acceptor-Induced Degradation of CsPbBr ₃ Photocathodes. ACS Energy Letters, 2022, 7, 417-424.	8.8	7
7228	Correlating carrier lifetime with device design and photovoltaic performance of perovskite solar cells. Applied Physics Letters, 2021, 119, .	1.5	1
7229	Novel Anthracene HTM Containing TIPs for Perovskite Solar Cells. Processes, 2021, 9, 2249.	1.3	3
7230	Methylammonium Lead Tri-Iodide Perovskite Solar Cells with Varying Equimolar Concentrations of Perovskite Precursors. Applied Sciences (Switzerland), 2021, 11, 11689.	1.3	6
7231	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. Journal of the American Chemical Society, 2021, 143, 21549-21559.	6.6	44
7232	Multiâ€Level Passivation of MAPbI ₃ Perovskite for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	36
7233	A quick peek at solar cells and a closer insight at perovskite solar cells. Egyptian Journal of Petroleum, 2021, 30, 53-63.	1.2	4
7234	Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials, 2021, 4, 13696-13705.	2.5	24
7235	Highly Foldable Perovskite Solar Cells Using Embedded Polyimide/Silver Nanowires Conductive Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	12
7236	Millimeterâ€6ized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€ŧoâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	36
7238	Efficient and Stable Wideâ€Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phaseâ€Pure Intermediate. Solar Rrl, 2022, 6, .	3.1	11
7239	Efficient Photoluminescence of Manganese-Doped Two-Dimensional Chiral Alloyed Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 12129-12134.	2.1	31

#	Article	IF	CITATIONS
7240	Carbon Quantum Dot-Passivated Perovskite/Carbon Electrodes for Stable Solar Cells. ACS Applied Nano Materials, 2021, 4, 13339-13351.	2.4	13
7241	Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide. Molecules, 2021, 26, 7570.	1.7	2
7242	Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells. Journal of Central South University, 2021, 28, 3714-3727.	1.2	3
7243	A Review on the Development of Metal Grids for the Upscaling of Perovskite Solar Cells and Modules. Solar Rrl, 2022, 6, .	3.1	8
7244	Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nature Communications, 2021, 12, 7277.	5.8	60
7245	Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 14590-14598.	2.5	4
7246	Halide Mixing Inhibits Exciton Transport in Two-dimensional Perovskites Despite Phase Purity. ACS Energy Letters, 2022, 7, 358-365.	8.8	12
7247	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	11.1	31
7248	Excellent Carrier Transport Property of Hybrid Perovskites Sustained under High Pressures. ACS Energy Letters, 2022, 7, 154-161.	8.8	17
7249	3D Interaction of Zwitterions for Highly Stable and Efficient Inorganic CsPbI ₃ Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	24
7250	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	1.3	3
7251	Singleâ€Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector. Advanced Functional Materials, 2022, 32, .	7.8	21
7252	Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. ACS Applied Electronic Materials, 2021, 3, 5211-5218.	2.0	3
7253	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & amp; Interfaces, 2021, 13, 58640-58651.	4.0	2
7254	Decreased surface defects and non-radiative recombination <i>via</i> the passivation of the halide perovskite film by 2-thiophenecarboxylic acid in triple-cation perovskite solar cells. Physical Chemistry Chemical Physics, 2022, 24, 10384-10393.	1.3	13
7255	Efficient bandgap widening in co-evaporated MAPbI ₃ perovskite. Sustainable Energy and Fuels, 2022, 6, 2428-2438.	2.5	8
7256	Mode-locking operation of an Er-doped fiber laser with (PEA) ₂ (CsPbBr ₃) _{<i>n</i>a^^1} PbBr ₄ perovskite saturable absorbers. Journal of Materials Chemistry C, 2022, 10, 7504-7510.	2.7	6
7257	Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability. Sustainable Energy and Fuels, 2022, 6, 2471-2477.	2.5	9

#	Article	IF	Citations
" 7258	Interface compatibility: how to outperform classical spiro-OMeTAD in perovskite solar cells with carbazole derivatives. Journal of Materials Chemistry C, 2022, 10, 7680-7689.	2.7	9
7259	Perovskite fiber-shaped optoelectronic devices for wearable applications. Journal of Materials Chemistry C, 2022, 10, 6957-6991.	2.7	18
7260	Charge carrier dynamics in different crystal phases of CH ₃ NH ₃ PbI ₃ perovskite. , 2022, 1, 210005-210005.		6
7261	Solvent-assisted preparation of low-temperature SnO ₂ electron transport layers for efficient and stable perovskite solar cells made in ambient conditions. New Journal of Chemistry, 2022, 46, 9841-9850.	1.4	5
7262	Investigation of Anomalous Photon Management in Organic Nano Particles-coating Photovoltaic Solar Cells. Silicon, 0, , 1.	1.8	0
7263	Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in leadâ€free <scp> MASnI ₃ </scp> perovskite solar cell device. International Journal of Energy Research, 2022, 46, 11456-11469.	2.2	18
7264	All-Vacuum-Deposited Perovskite X-ray Detector with a Record-High Self-Powered Sensitivity of 1.2 C Gy ^{–1} cm ^{–3} . ACS Applied Materials & Interfaces, 2022, 14, 19795-19805.	4.0	17
7265	Homogenization of Optical Field in Nanocrystal-Embedded Perovskite Composites. ACS Energy Letters, 2022, 7, 1657-1671.	8.8	4
7266	Highly effective surface defect passivation of perovskite quantum dots for excellent optoelectronic properties. Journal of Materials Research and Technology, 2022, 18, 4145-4155.	2.6	10
7267	Correlated Dynamics of Free and Selfâ€Trapped Excitons and Broadband Photodetection in BEA ₂ PbBr ₄ Layered Crystals. Advanced Optical Materials, 2022, 10, .	3.6	5
7268	Low-Temperature Solution-Processed Cu ₂ AgBil ₆ Films for High Performance Photovoltaics and Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 18498-18505.	4.0	17
7269	Highly Orientational Order Perovskite Induced by In situâ€generated 1D Perovskitoid for Efficient and Stable Printable Photovoltaics. Small, 2022, 18, e2200130.	5.2	10
7270	Search for New Anode Materials for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 20326-20348.	4.0	40
7271	Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. ACS Applied Materials & Interfaces, 2022, 14, 18744-18750.	4.0	17
7272	Extracting Decay-Rate Ratios From Photoluminescence Quantum Efficiency Measurements in Optoelectronic Semiconductors. Physical Review Applied, 2022, 17, .	1.5	5
7273	Managing interfacial properties of planar perovskite solar cells using Y3N@C80 endohedral metallofullerene. Science China Materials, 2022, 65, 2325-2334.	3.5	5
7274	Improved Stability and Efficiency of Inverted Perovskite Solar Cell by Employing Nickel Oxide Hole Transporting Material Containing Ammonium Salt Stabilizer. Advanced Functional Materials, 2022, 32, .	7.8	16
7275	Amplified Spontaneous Emission of Perovskite in Water: Towards Under-water Lasing. Materials Today Physics, 2022, , 100686.	2.9	0

#	Article	IF	CITATIONS
7276	Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 108.	14.4	34
7277	Optical simulation and investigation of different coating methods CdS&TiO2 for buffer layer in CIGS solar cell efficiency. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
7278	Optical absorption and stability enhancement in mixed lead, tin, and germanium hybrid halide perovskites for photovoltaic applications. Vacuum, 2022, 201, 111106.	1.6	8
7279	Identifying the potentials for charge transport layers free n-p homojunction-based perovskite solar cells. Solar Energy, 2022, 238, 69-77.	2.9	12
7280	Hot-substrate assisted deposition for Cs-rich α-Cs1-xFAxPbI2Br (0Ââ‰ÂxÂâ‰Â0.4) films. Solar Energy, 2022, 23 126-131.	38 _{2.9}	1
7281	Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chemical Engineering Journal, 2022, 443, 136405.	6.6	15
7282	Potassium chloride templated α-FAPbI3 perovskite crystal growth for efficient planar perovskite solar cells. Organic Electronics, 2022, 106, 106527.	1.4	5
7283	CHAPTER 9. Hybrid Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 298-340.	0.2	0
7292	Selfâ€Powered Active Sensing Based on Triboelectric Generators. Advanced Materials, 2022, 34, e2200724.	11.1	72
7293	Modeling and Balancing the Solvent Evaporation of Thermal Annealing Process for Metal Halide Perovskites and Solar Cells. Small Methods, 2022, 6, e2200161.	4.6	2
7294	Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light: Science and Applications, 2022, 11, 69.	7.7	60
7295	Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nature Communications, 2022, 13, 2230.	5.8	117
7296	A nanofibrillar conjugated polymer film as an interface layer for high-performance CsPbIBr ₂ solar cells with efficiency exceeding 11%. Sustainable Energy and Fuels, 2022, 6, 2692-2699.	2.5	4
7297	CH ₃ NH ₃ ⁺ and Pb Immobilization Through PbI ₂ Binding by Organic Molecule Doping for Homogeneous Organometal Halide Perovskite Films. Journal of Materials Chemistry A, 0, , .	5.2	1
7298	A dopant-free donor–acceptor type semi-crystalline polymeric hole transporting material for superdurable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 12187-12195.	5.2	10
7299	Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy and Environmental Science, 2022, 15, 2499-2507.	15.6	18
7300	Defect passivation in perovskite solar cells using an amino-functionalized BODIPY fluorophore. Sustainable Energy and Fuels, 2022, 6, 2570-2580.	2.5	7
7301	NiCo ₂ O ₄ thin film prepared by electrochemical deposition as a hole-transport layer for efficient inverted perovskite solar cells. RSC Advances, 2022, 12, 12544-12551.	1.7	3

IF

ARTICLE #

CITATIONS

Effects of guanidinium addition to CH<sub&gt;3&lt;/sub&gt;NH&lt;sub&gt;3&lt;/sub&gt;PbI&lt;sub&gt;3&lt;/sub& perovskite solar cells inserted with decaphenylpentasilane. , 0, , . 7302

7303	High-performance perovskite solar cells resulting from large perovskite grain size enabled by the urea additive. Sustainable Energy and Fuels, 2022, 6, 2955-2961.	2.5	5
7304	Role of metal and anions in organo-metal halide perovskites CH ₃ NH ₃ MX ₃ (M: Cu, Zn, Ga, Ge, Sn, Pb; X: Cl, Br, I) on structural and optoelectronic properties for photovoltaic applications. RSC Advances, 2022, 12, 13281-13294.	1.7	15
7305	An ultrastable perovskite–polymer exciplex through self energy-level adaption for under-water light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8609-8616.	2.7	4
7306	Progress of defect and defect passivation in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 166801.	0.2	1
7307	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
7308	Elimination of Interfacial Lattice Mismatch and Detrimental Reaction by Selfâ€Assembled Layer Dualâ€Passivation for Efficient and Stable Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	75
7309	ç;基-钙钛矿åå±,头³èf½ç"µæ±çš"å‰ç®;ç†ç−ç•¥. Chinese Science Bulletin, 2022, , .	0.4	1
7310	Determination of dominant recombination site in perovskite solar cells through illuminationâ€sideâ€dependent impedance spectroscopy. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	4
7311	Development of <scp>MXene</scp> / <scp> WO ₃ </scp> embedded <scp>PEDOT</scp> : <scp>PSS</scp> hole transport layers for highly efficient perovskite solar cells and Xâ€ray detectors. International Journal of Energy Research, 2022, 46, 12485-12497.	2.2	13
7312	Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics. Chinese Physics B, 2022, 31, 117803.	0.7	0
7313	Effect of vertical strain and in-plane biaxial strain on type-II MoSi2N4/Cs3Bi2I9 van der Waals heterostructure. Journal of Applied Physics, 2022, 131, .	1.1	11
7314	Controllable Acceleration and Deceleration of Charge Carrier Transport in Metalâ€Halide Perovskite Singleâ€Crystal by Csâ€Cation Induced Bandgap Engineering. Small, 2022, 18, e2107680.	5.2	3
7315	Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, .	7.3	11
7316	Electrically Conductive Photoluminescent Porphyrin Phosphonate Metal–Organic Frameworks. Advanced Optical Materials, 2022, 10, .	3.6	8
7317	Microscopic Interfacial Charge Transfer at Perovskite/Hole Transport Layer Interfaces Clarified Using Pattern-Illumination Time-Resolved Phase Microscopy. Journal of Physical Chemistry C, 2022, 126, 7548-7555.	1.5	1
7318	Novel Agâ€Mesh Transparent Hybrid Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	5
7319	Entropy Stabilization Effects and Ion Migration in 3D "Hollow―Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 8223-8230.	6.6	18

#	Article	IF	CITATIONS
7320	Fast Exciton Diffusion in Monolayer PtSe2. Laser and Photonics Reviews, 2022, 16, .	4.4	3
7321	Perovskite Singleâ€Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	3.1	19
7322	Rear Electrode Materials for Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	49
7323	Synthesis and spectroscopic study of two-dimensional CsPbBr3 perovskite nanosheets. , 2022, , .		0
7324	Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells. Nanomaterials, 2022, 12, 1467.	1.9	4
7325	Advances in Photoelectric Detection Units for Imaging Based on Perovskite Materials. Laser and Photonics Reviews, 2022, 16, .	4.4	9
7326	A review on theoretical studies of structural and optoelectronic properties of <scp>FA</scp> â€based perovskite materials with a focus on <scp>FAPbI₃</scp> . International Journal of Energy Research, 2022, 46, 13117-13151.	2.2	12
7327	Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS Nano, 2022, 16, 7116-7143.	7.3	32
7328	Excellent Stability of Perovskite Solar Cells Encapsulated With Paraffin/Ethylene-Vinyl Acetate/Paraffin Composite Layer. Frontiers in Materials, 2022, 9, .	1.2	5
7329	Terahertz Kerr effect in a methylammonium lead bromide perovskite crystal. Physical Review B, 2022, 105, .	1.1	4
7330	Enhanced Efficiency of Semitransparent Perovskite Solar Cells via Double-Sided Sandwich Evaporation Technique for Four Terminal Perovskite-Silicon Tandem Application. Nanomaterials, 2022, 12, 1569.	1.9	6
7331	Crucial Contribution of Polarity for the Bulk Photovoltaic Effect in a Series of Noncentrosymmetric Two-Dimensional Organic–Inorganic Hybrid Perovskites. Chemistry of Materials, 2022, 34, 4428-4436.	3.2	15
7332	An Ab Initio Study of Clusters as Building Blocks for Crystals: From Prussian Blue Analogs to Hybrid Perovskites. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	1
7333	CuGaO ₂ Nanosheets and CuCrO ₂ Nanoparticles Mixed with Spiro-OMeTAD as the Hole-Transport Layer in Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 7312-7320.	2.4	6
7334	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
7335	Unravel the Chargeâ€Carrier Dynamics in Simple Dimethyl Oxalateâ€Treated Perovskite Solar Cells with Efficiency Exceeding 22%. Energy and Environmental Materials, 2023, 6, .	7.3	7
7336	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
7337	Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells. APL Materials, 2022, 10, .	2.2	8

#	Article	IF	CITATIONS
7338	Stability ascent in perovskite solar cells employing star poly(3-hexylthiophene)/quantum dot nanostructures. Organic Electronics, 2022, 108, 106547.	1.4	1
7339	Reversible Degradation in Hole Transport Layerâ€Free Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
7340	Understanding the Effect of Lead Iodide Excess on the Performance of Methylammonium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1912-1919.	8.8	14
7341	Recent progress of lead-free halide double perovskites for green energy and other applications. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	10
7342	Exciton–Phonon Coupling of Chiral One-Dimensional Lead-Free Hybrid Metal Halides at Room Temperature. Journal of Physical Chemistry Letters, 2022, 13, 4073-4081.	2.1	10
7343	A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Scientific Reports, 2022, 12, 7411.	1.6	13
7344	Carbon Electrode Endows Highâ€Efficiency Perovskite Photovoltaics Affordable, Fully Printable, and Durable. Solar Rrl, 2022, 6, .	3.1	18
7345	Multicolor Biexciton Lasers Based on 2D Perovskite Single Crystalline Flakes. Advanced Optical Materials, 2022, 10, .	3.6	7
7346	Engineering the Morphology and Component via Multistep Deposition of CsPbBr ₃ Films toward High Detectivity and Stable Selfâ€Powered Photodetectors. Advanced Materials Interfaces, 2022, 9, .	1.9	7
7347	High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites. ACS Central Science, 2022, 8, 571-580.	5.3	6
7348	Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide. Scientific Reports, 2022, 12, 7794.	1.6	9
7349	Nanoscale Encapsulation of Hybrid Perovskites Using Hybrid Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2022, 13, 4082-4089.	2.1	5
7350	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100890.	2.8	9
7351	Systematic Study of Perovskite Layers if Doped with Strong Oxidants. Solar Rrl, 0, , 2200159.	3.1	1
7352	First-principles study on the electronic structures and optical properties of Cs2XInCl6 (X= Ag, Na). Solid State Communications, 2022, 352, 114812.	0.9	5
7353	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
7354	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9,	5.5	33
7355	Active phase stabilization and photovoltaic performance improvement in mixed-cation formamidinium cesium lead iodide via dimensional engineering with 5-ammonium valeric acid bromide. Sustainable Materials and Technologies, 2022, 32, e00438.	1.7	2

ARTICLE IF CITATIONS Alkyl ammonium salt with different chain length for high-efficiency and good-stability 2D/3D hybrid 7356 8 1.4 perovskite solar cells. Organic Electronics, 2022, 106, 106542. Mixed halide head perovskites thin films: Stability and growth investigation. Optik, 2022, 261, 169222. 1.4 Charge-selective-contact-dependent halide phase segregation in CsPbIBr2 perovskite solar cells and its 7358 3.14 correlation to device degradation. Applied Surface Science, 2022, 595, 153544. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, 24 challenges, and future perspectives. Energy Reports, 2022, 8, 5820-5851. A positive correlation between local photocurrent and grain size in a perovskite solar cell. Journal 7360 7.1 3 of Energy Chemistry, 2022, 72, 8-13. Halide anions engineered ionic liquids passivation layer for highly stable inverted perovskite solar cells. Journal of Colloid and Interface Science, 2022, 622, 469-480. 5.0 Terahertz Detection with Optically Gated Halide Perovskites. ACS Photonics, 2022, 9, 1663-1670. 7362 3.2 2 Ambient Airâ€Processed Wideâ€Bandgap Perovskite Solar Cells with Wellâ€Controlled Film Morphology for 3.1 7363 Fourâ€Terminal Tandem Application. Solar Rrl, 2022, 6, . Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to 7364 25 7.8 Device Applications. Advanced Functional Materials, 2022, 32, . Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2T MXene. 6.6 Chemical Engineering Journal, 2022, 446, 136963. Quaternary ammonium halide-containing cellulose derivatives for defect passivation in 7366 7 2.5 MAPbI₃-based perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3349-3362. A D–̀–A Organic Dye as a Passivator to Effectively Regulate the Performance of Perovskite Solar 7367 1.8 Cells. Energy Technology, 2022, 10, . Simultaneous Optimization of Charge Transport Properties in a Triple-Cation Perovskite Layer and 7368 1.6 2 Triple-Cation Perovskite/Spiro-OMeTAD Interface by Dual Passivation. ACS Omega, 2022, 7, 17907-17920. Understanding of the Band Gap Transition in Cs₃Sb₂Cl_{9–<i>x</i>}Br_{<i>x</i>}: Anion Site Preference-Induced Structural Distortion. ACS Applied Energy Materials, 2022, 5, 6952-6961. 7369 2.5 14 A Bionic Interface to Suppress the Coffeeâ€Ring Effect for Reliable and Flexible Perovskite Modules with 7370 11.1 54 a Nearâ€90% Yield Rate. Advanced Materials, 2022, 34, e2201840. Holistic Determination of Optoelectronic Properties using High-Throughput Spectroscopy of 7371 Surface-Guided CsPbBr3 Nanowires. ACS Nano, 2022, , . Interfacial electronic properties of metal/CsSnBr3 heterojunctions. Nanotechnology, 2022, , . 7372 1.31 A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Frontiers in 7373 1.8 Chemistry, 2022, 10, 802890.

#	Article	IF	CITATIONS
7375	Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cells. Frontiers in Photonics, 2022, 3, .	1.1	2
7376	Charge Carrier Dynamics in Co-evaporated MAPbI ₃ with a Gradient in Composition. ACS Applied Energy Materials, 2022, 5, 7049-7055.	2.5	2
7377	Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5, 6499-6515.	2.5	10
7378	Evidence of Hot Charge Carrier Transfer in Hybrid CsPbBr ₃ /Functionalized Graphene. ChemNanoMat, 2022, 8, .	1.5	11
7379	Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi. SDU Journal of Science, 2022, 17, 44-54.	0.1	0
7380	Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.	4.2	5
7381	Ruddlesden–Popper 2D Chiral Perovskiteâ€Based Solar Cells. Small Structures, 2022, 3, .	6.9	4
7382	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	5.5	28
7383	Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. Journal of Power Sources, 2022, 539, 231621.	4.0	9
7384	Core-twisted tetrachloroperylenediimide additives improve the crystallinity of perovskites to provide efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 243, 111779.	3.0	3
7385	Long term stability assessment of perovskite solar cell via recycling of metal contacts under ambient conditions. Materials Letters, 2022, 322, 132490.	1.3	4
7386	Hydrogen Bonding Drives the Self-Assembling of Carbazole-Based Hole-Transport Material for Enhanced Efficiency and Stability of Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7387	Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy and Environmental Science, 2022, 15, 3152-3170.	15.6	26
7388	In Situ Growth of Bifunctional Modification Material for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. New Journal of Chemistry, 0, , .	1.4	0
7389	The degradation and recovery behavior of mixed-cation perovskite solar cells in moisture and a gas mixture environment. Journal of Materials Chemistry A, 2022, 10, 13519-13526.	5.2	10
7391	Review of defect engineering in perovskites for photovoltaic application. Materials Advances, 2022, 3, 5234-5247.	2.6	28
7392	Airâ€Degradation Mechanisms in Mixed Leadâ€Tin Halide Perovskites for Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	15
7393	Controlling Intrinsic Quantum Confinement in Formamidinium Lead Triiodide Perovskite through Cs Substitution. ACS Nano, 2022, 16, 9640-9650.	7.3	8

#	Article	IF	CITATIONS
7394	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
7396	Lanthanide-doped Mn2+-based perovskite-like single crystals: Switching on highly thermal-stable near-infrared emission and LED device. Journal of Colloid and Interface Science, 2022, 624, 725-733.	5.0	28
7397	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	1.0	5
7398	Impact of Halide Anions in CsX (X = I, Br, Cl) on the Microstructure and Photovoltaic Performance of FAPbI ₃ â€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
7399	Modeling Radiation Damage in Materials Relevant for Exploration and Settlement on the Moon. , 0, , .		0
7400	The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent. International Materials Reviews, 2023, 68, 301-322.	9.4	3
7401	Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1280-1285.	2.4	2
7402	Improving device performance of MAPbI ₃ photovoltaic cells by manipulating the crystal orientation of tetragonal perovskites. Nanotechnology, 2022, 33, 415405.	1.3	7
7403	Ultrafast transient infrared spectroscopy for probing trapping states in hybrid perovskite films. Communications Chemistry, 2022, 5, .	2.0	14
7404	Enhancement of the electron transportation in the perovskite solar cells via optimizing the photoelectric properties of electron transport layer with nitrogen-doped graphene quantum dots. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	2
7405	Long-range transport and ultrafast interfacial charge transfer in perovskite/monolayer semiconductor heterostructure for enhanced light absorption and photocarrier lifetime. Journal of Chemical Physics, 2022, 156, .	1.2	10
7406	Review for Rare-Earth-Modified Perovskite Materials and Optoelectronic Applications. Nanomaterials, 2022, 12, 1773.	1.9	15
7408	Interface Modification with Holistically Designed Push–Pull D–ï€â€"A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6783-6796.	2.5	11
7409	Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6823-6832.	2.5	6
7410	DFT and TDDFT studies of structural, electronic and optical properties of the inorganic solar perovskites XPbBr ₃ (X = Li or Na). Phase Transitions, 2022, 95, 501-514.	0.6	17
7411	Collaborative Strategy of Multifunctional Groups in Trifluoroacetamide Achieving Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	17
7412	Classical Force-Field Parameters for CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 9898-9908.	1.5	8
7413	Electron-phonon interactions in halide perovskites. NPG Asia Materials, 2022, 14, .	3.8	46

#	Article	IF	CITATIONS
7414	Blading of Conformal Electronâ€Transport Layers in p–i–n Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	19
7415	A-site cation effect on optical phonon modes and thermal stability in lead-based perovskite bromide single crystals using Raman spectroscopy. Journal of the Korean Physical Society, 2022, 81, 230-240.	0.3	7
7416	Morphology modulated brookite TiO2 and BaSnO3 as alternative electron transport materials for enhanced performance of carbon perovskite solar cells. Chemical Engineering Journal, 2022, 446, 137378.	6.6	20
7417	lonic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chemical Engineering Journal, 2022, 446, 137351.	6.6	5
7418	Perovskite Solar Cells Challenging the Top of Photovoltaics. Denki Kagaku, 2022, 90, 88-93.	0.0	0
7419	Recent Progress in AC-Driven Organic and Perovskite Electroluminescent Devices. ACS Photonics, 2022, 9, 1852-1874.	3.2	9
7420	Stressing Halide Perovskites with Light and Electric Fields. ACS Energy Letters, 2022, 7, 2211-2218.	8.8	16
7421	Fabrication and properties of compact (CH3NH3)3Bi2I9 perovskite solar cell by the hot immersion method. Optical Materials: X, 2022, 15, 100158.	0.3	1
7422	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	8.2	16
7423	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
7424	Passivation of perovskite surfaces using 2-hydroxyacetophenone to fabricate solar cells with over 20.7% efficiency under air environment. Applied Surface Science, 2022, 598, 153842.	3.1	7
7425	Enhanced Device Performance of Cs2agbibrÂ6 Double Perovskite Photodetector by Sno2/Zno Double Electron Transport Layer. SSRN Electronic Journal, 0, , .	0.4	Ο
7426	Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. Nanoscale, 2022, 14, 9248-9277.	2.8	28
7428	Temperature-dependence of the band gap in the all-inorganic perovskite CsPbI ₃ from room to high temperatures. Physical Chemistry Chemical Physics, 2022, 24, 16003-16010.	1.3	17
7429	Probing Longitudinal Carrier Transport in Perovskite Thin Films via Modified Transient Reflection Spectroscopy. Chemical Science, 0, , .	3.7	2
7430	Counter electrodes for perovskite solar cells: materials, interfaces and device stability. Journal of Materials Chemistry C, 2022, 10, 10775-10798.	2.7	10
7431	High-performance Ruddlesden–Popper two-dimensional perovskite solar cells <i>via</i> solution processed inorganic charge transport layers. Physical Chemistry Chemical Physics, 2022, 24, 15912-15919.	1.3	6
7432	Band Alignment of Cs2bx6 Double Halide Perovskites and Tio2 Using Electron Affinity Rule. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
7433	Controlling the device functionality by solvent engineering, solar cell <i>versus</i> light emitting diode. Journal of Materials Chemistry C, 2022, 10, 10037-10046.	2.7	2
7435	High performance resistive memory device based on highly stable layered CsPb2Br5 perovskite polymer nanocomposite. Journal of Alloys and Compounds, 2022, 921, 166014.	2.8	5
7436	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
7437	Benzimidazole Based Holeâ€Transporting Materials for Highâ€performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	19
7438	Improving the Electrical Properties and Hole Extraction Efficiency of Inverted Perovskite Solar Cells with AuCl ₃ Interfacial Modification Layer. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	4
7439	Potassium oleate as an effective interface modifier for defect passivation in planar perovskite solar cells. Functional Materials Letters, 0, , .	0.7	1
7441	Exciton Diffusion and Annihilation in Nanophotonic Purcell Landscapes. Advanced Optical Materials, 2022, 10, .	3.6	1
7442	Triphenylamine-based organic small-molecule interlayer materials for inverted perovskite solar cells. Organic Electronics, 2022, 108, 106595.	1.4	4
7443	Defects Passivation Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	13
7444	Ytterbium-Doped Cesium Lead Chloride Perovskite as an X-ray Scintillator with High Light Yield. ACS Omega, 2022, 7, 20968-20974.	1.6	17
7445	Transient Suppression of Carrier Mobility Due to Hot Optical Phonons in Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 5488-5494.	2.1	3
7446	Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. Journal of Physical Chemistry Letters, 2022, 13, 5946-5952.	2.1	18
7447	A Hybrid Functional Study on Perovskite-Based Compounds CsPb _{1â^î1±} Zn _{1±} I _{3â^î2} X _{Î2} (X = Cl or Br). Journal of Physical Chemistry Letters, 2022, 13, 5900-5909.	2.1	8
7449	Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells. Materials, 2022, 15, 4300.	1.3	7
7450	Configuration of Methylammonium Lead Iodide Perovskite Solar Cell and its Effect on the Device's Performance: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	10
7451	Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency. , 2022, 18, 395-409.		3
7452	Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A ₂ BX ₆ for Optoelectronic Applications. Energy & Fuels, 2022, 36, 7065-7074.	2.5	18
7453	Key Factors Affecting the Stability of CsPbI ₃ Perovskite Quantum Dot Solar Cells: A Comprehensive Review. Advanced Materials, 2023, 35, .	11.1	19

#	Article	IF	CITATIONS
7456	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
7458	Emerging Intelligent Manufacturing of Metal Halide Perovskites. Advanced Materials Technologies, 2023, 8, .	3.0	3
7459	Universal Bifacial Stamping Approach Enabling Reverseâ€Graded Ruddlesdenâ€Popper 2D Perovskite Solar Cells. Small, 2022, 18, .	5.2	6
7460	Visualizing the Surface Photocurrent Distribution in Perovskite Photovoltaics. Small, 2022, 18, .	5.2	12
7461	Lowâ€Temperature, Scalable, Reactive Deposition of Tin Oxide for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
7462	Picolylamine Isomers Trigger Multidimension Coupling Strategy toward Efficient and Stable Inorganic Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	2
7463	Impact of HTM on lead-free perovskite solar cell with high efficiency. Optical and Quantum Electronics, 2022, 54, .	1.5	4
7464	GIWAXS Analysis on Preferred Orientation in Metal Halide Perovskite Films Via Alkylamines. Electronic Materials Letters, 2022, 18, 456-464.	1.0	3
7465	Investigation of transport properties of perovskite single crystals by pulse and DC bias transient current technique. Chinese Physics B, O, , .	0.7	0
7466	2D Material and Perovskite Heterostructure for Optoelectronic Applications. Nanomaterials, 2022, 12, 2100.	1.9	13
7467	Dimensionalityâ€Dependent Resistive Switching in 0D and 2D Cs ₃ Sb ₂ I ₉ : Energyâ€Efficient Synaptic Functions with the Layeredâ€Phase. Advanced Electronic Materials, 2022, 8, .	2.6	6
7468	Highly efficient A-site cation exchange in perovskite quantum dot for solar cells. Journal of Chemical Physics, 2022, 157, .	1.2	6
7469	Thermal Stability of K-Doped Organometal Halide Perovskite for Photovoltaic Materials. ACS Applied Energy Materials, 2022, 5, 10409-10414.	2.5	1
7470	Synthesis and evaluation of composite TiO2@ZnO quantum dots on hybrid nanostructure perovskite solar cell. Scientific Reports, 2022, 12, .	1.6	18
7471	Origin of the Photocatalytic Activity of Crystalline Phase Structures. ACS Applied Energy Materials, 2022, 5, 8923-8929.	2.5	2
7472	Photon echo from free excitons in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: halide perovskite single crystal. Physical Review B, 2022, 105, .</mml: </mml:msub></mml:mrow></mml:math 	mn ⊅.3 <td>៣!:៣៣> <!--៣៣</td--></td>	៣ !:៣ ៣> ៣៣</td
7473	Construction of Efficient and Stable FAPbI ₃ Perovskite Solar Cells through Bifunctional Ionic Liquidâ€Assisted Crystallization and Defect Passivation. Solar Rrl, 2022, 6, .	3.1	12
7474	Bandgap Funneling in Bismuthâ€Based Hybrid Perovskite Photocatalyst with Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Small Methods, 2022, 6, .	4.6	12

#	Article	IF	CITATIONS
7475	The effect of chloride atoms to induce organohalide perovskite intermediate crystal phase: a simulation rationale. Applied Physics Express, 2022, 15, 075504.	1.1	2
7476	Modulating the Carrier Relaxation Dynamics in Heterovalently (Bi ³⁺) Doped CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 5431-5440.	2.1	18
7477	Structural, Electronic, and Optical Properties of Ga-Based Lead-Free Mixed-Halide Perovskites Cs3Gal6-xBrx (0 â‰ष्र â‰ष्ठ) for Solar Cell Applications: A DFT Study. Physica B: Condensed Matter, 2022, 640, 414085.	1.3	1
7478	Hydrogen-iodide bonding between glycine and perovskite greatly improve moisture stability for binary PSCs. Organic Electronics, 2022, 108, 106573.	1.4	4
7479	Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102433.	1.7	20
7480	Supramolecular bridging strategy enables high performance and stable organic–inorganic halide perovskite solar cells. Chemical Engineering Journal, 2022, 446, 137431.	6.6	10
7481	Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal, 2022, 448, 137676.	6.6	29
7482	Band offset measurement at the MAPbBr3/Al2O3 heterointerface by X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2022, 920, 165911.	2.8	1
7483	Nonlinear photonics device based on double perovskite oxide Ba2LaTaO6 for ultrafast laser generation. Optics and Laser Technology, 2022, 155, 108334.	2.2	9
7484	A Realistic Model of Temperature Dependent Carrier Diffusion Constant in Mapbi3 Films. SSRN Electronic Journal, 0, , .	0.4	0
7485	Physical mechanism of perovskite solar cell based on double electron transport layer. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 208802.	0.2	1
7486	Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core Based Hole Transport Materials for Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0
7487	Enhanced Device Performance of Cs2agbibrÂ6 Double Perovskite Photodetector by Sno2/Zno Double Electron Transport Layer. SSRN Electronic Journal, 0, , .	0.4	0
7488	Fabrication and amplified spontaneous emission behavior of FAPbBr ₃ perovskite quantum dots in solid polymer rods. Materials Science-Poland, 2022, 40, 84-100.	0.4	1
7489	Schottky analysis of formamidinium lead halide perovskite nanocrystals' devices with enhanced stability. Applied Nanoscience (Switzerland), 2022, 12, 2671-2681.	1.6	1
7490	Laminated Monolithic Perovskite/Silicon Tandem Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	14
7491	Design and numerical simulation of highly efficient mixedâ€organic cation mixedâ€netal cation perovskite solar cells. International Journal of Energy Research, 2022, 46, 15654-15664.	2.2	5
7492	Narrowband Near-Infrared Photodetectors Based on Perovskite Waveguide Devices. Journal of Physical Chemistry Letters, 2022, 13, 6057-6063.	2.1	7

#	Article	IF	CITATIONS
7493	Enhanced Thermal Stability of Lowâ€Temperature Processed Carbonâ€Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method. Energy Technology, 2022, 10, .	1.8	3
7494	Hole Trapping in Halide Perovskites Induces Phase Segregation. Accounts of Materials Research, 2022, 3, 761-771.	5.9	38
7495	Ink Engineering in Bladeâ€Coating Largeâ€Area Perovskite Solar Cells. Advanced Energy Materials, 2022, 12,	10.2	39
7496	Organic Holeâ€Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	107
7497	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	8.1	13
7498	Low-Temperature Discrimination of Defect States by Exciton Dynamics in Thin-Film MAPbBr ₃ Perovskite. Journal of Physical Chemistry Letters, 2022, 13, 6093-6100.	2.1	1
7499	Dopant compensation in p-type doped MAPb _{1â^'} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	1.5	0
7500	Photoinduced large polaron transport and dynamics in organic–inorganic hybrid lead halide perovskite with terahertz probes. Light: Science and Applications, 2022, 11, .	7.7	27
7501	Monolithic bilayered In ₂ O ₃ as an efficient interfacial material for highâ€performance perovskite solar cells. , 2022, 1, 526-536.		17
7502	Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 18522-18532.	1.1	2
7503	Recent Progress of Carbonâ€Based Inorganic Perovskite Solar Cells: From Efficiency to Stability. Advanced Energy Materials, 2023, 13, .	10.2	32
7504	Leveraging Hierarchical Chirality in Perovskite(â€Inspired) Halides for Transformative Device Applications. Advanced Energy Materials, 2023, 13, .	10.2	9
7505	Synergistic Crystallization and Passivation by a Single Molecular Additive for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	37
7506	16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik, 2022, 267, 169608.	1.4	6
7507	Triangular Microâ€Grating via Femtosecond Laser Direct Writing toward Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	14
7508	Revealing Charge Transfer Dynamics in Methylammonium Lead Bromide Perovskites via Transient Photoluminescence Characterization. ACS Applied Energy Materials, 0, , .	2.5	0
7509	Singleâ€Crystalline Perovskite p–n Junction Nanowire Arrays for Ultrasensitive Photodetection. Advanced Materials, 2022, 34, .	11.1	26
7510	Patterning Technologies for Metal Halide Perovskites: A Review. Advanced Materials Technologies, 2023, 8, .	3.0	17

#	Article	IF	CITATIONS
7511	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
7512	Advances in Perovskites for Photovoltaic Applications in Space. ACS Energy Letters, 2022, 7, 2490-2514.	8.8	27
7513	Impact of anisotropy in spin-orbit coupling on the magneto-optical properties of bulk lead halide perovskites. Physical Review B, 2022, 106, .	1.1	4
7514	Facile and Stable Fluorene Based Organic Hole Transporting Materials for Efficient Perovskite Solar Cells. Macromolecular Research, 2022, 30, 745-750.	1.0	7
7515	Aerosol-Prepared Microcrystals as Amplifiers to Learn about the Facet and Point Defect-Dependent Lability and Stabilization of Hybrid Perovskite Semiconductors against Humidity and Light. Crystal Growth and Design, 0, , .	1.4	1
7516	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 31911-31919.	4.0	6
7517	Ruddlesden–Popper Perovskites with Narrow Phase Distribution for Air‣table Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
7518	Acetamidinium-Methylammonium-Based Layered Hybrid Halide Perovskite [CH3C(NH2)2][CH3NH3]PbI4: Synthesis, Structure, and Optical Properties. Russian Journal of Inorganic Chemistry, 2022, 67, 997-1003.	0.3	5
7519	Ionic Liquid Gating in Perovskite Solar Cells with Fullerene/Carbon Nanotube Collectors. Energy Technology, 2022, 10, .	1.8	3
7520	Analysis of ultrafast carrier dynamics and steady-state reflectivity on lattice expansion in metal halide perovskite during continuous illumination. Journal of Applied Physics, 2022, 132, .	1.1	3
7521	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, 0, 1, 98.	2.0	0
7522	Perovskite and Polymeric Solar Cells: A Comparison of Advances and Key Challenges. Energy Technology, 2022, 10, .	1.8	1
7523	Design of a CH3NH3PbI3/CsPbI3-based bilayer solar cell using device simulation. Heliyon, 2022, 8, e09941.	1.4	11
7524	Numerical Simulation and Optimization of Highly Stable and Efficient Lead-Free Perovskite FA1â^xCsxSnI3-Based Solar Cells Using SCAPS. Materials, 2022, 15, 4761.	1.3	20
7525	Probing the defects states in MAPbI3 perovskite thin films through photoluminescence and photoluminescence excitation spectroscopy studies. Optik, 2022, 266, 169586.	1.4	2
7526	Recent progress of rare earth conversion material in perovskite solar cells: A mini review. Inorganic Chemistry Communication, 2022, 143, 109731.	1.8	7
7527	Hydrogen bonding drives the self-assembling of carbazole-based hole-transport material for enhanced efficiency and stability of perovskite solar cells. Nano Energy, 2022, 101, 107604.	8.2	16
7528	Blade-coated inverted perovskite solar cells in an ambient environment. Solar Energy Materials and Solar Cells, 2022, 246, 111894.	3.0	10

#	Article	IF	CITATIONS
7529	Tuning bandgap and energy stability of Organic-Inorganic halide perovskites through surface engineering. Computational Materials Science, 2022, 213, 111649.	1.4	1
7530	Influence of spin–orbit coupling and biaxial strain on the inorganic lead iodide perovskites, APbI3 (A =) Tj ETQq1	1.9.7843	314 rgBT /0
7531	Extreme-Ultraviolet Excited Scintillation of Methylammonium Lead Bromide Perovskites. Journal of Physical Chemistry C, 2022, 126, 12554-12562.	1.5	2
7532	Filterless ultra-narrow-band perovskite photodetectors with high external quantum efficiency based on the charge collection narrowing mechanism enabled by electron blocking/hole transport layer. Semiconductor Science and Technology, 0, , .	1.0	1
7533	All-Back-Contact Perovskite Solar Cells Using Cracked Film Lithography. ACS Applied Energy Materials, 2022, 5, 9273-9279.	2.5	5
7534	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	4.0	34
7535	Optimized photoelectric characteristics of MAPbCl ₃ and MAPbBr ₃ composite perovskite single crystal heterojunction photodetector. Journal of Physics Condensed Matter, 2022, 34, 405703.	0.7	1
7536	Organic–Inorganic Hybrid Compound [H ₂ -1,5-Diazabicyclo[3.3.0]octane]ZnBr ₄ with Reverse Symmetry Breaking Shows a Switchable Dielectric Anomaly and Robust Second Harmonic Generation Effect. Inorganic Chemistry, 2022, 61, 11859-11865.	1.9	7
7537	Novel 3D Printing Encapsulation Strategies for Perovskite Photodetectors. Advanced Materials Technologies, 2022, 7, .	3.0	4
7538	Spray-coating of Agl incorporated metal halide perovskites for high-performance X-ray detection. Chemical Engineering Journal, 2022, 450, 138229.	6.6	5
7539	Correlating light-induced deep defects and phase segregation in mixed-halide perovskites. Journal of Materials Chemistry A, 2022, 10, 18928-18938.	5.2	5
7540	Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Frontiers of Materials Science, 2022, 16, .	1.1	3
7541	Charge Transfer in Photoexcited Cesium–Lead Halide Perovskite Nanocrystals: Review of Materials and Applications. ACS Applied Nano Materials, 2022, 5, 10097-10117.	2.4	25
7542	Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83%. ACS Nano, 2022, 16, 11902-11911.	7.3	30
7543	Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nature Communications, 2022, 13, .	5.8	21
7544	Defect-Polaron and Enormous Light-Induced Fermi-Level Shift at Halide Perovskite Surface. Journal of Physical Chemistry Letters, 2022, 13, 6711-6720.	2.1	8
7545	Sub-millimetre light detection and ranging using perovskites. Nature Electronics, 2022, 5, 511-518.	13.1	28
7546	Ferroelasticity Mediated Energy Conversion in Strained Perovskite Films. Advanced Electronic Materials, 2022, 8, .	2.6	6

#	Article	IF	CITATIONS
7547	Doping Mechanism of Perovskite Films with PbCl ₂ Prepared by Magnetron Sputtering for Enhanced Efficiency of Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 40062-40071.	4.0	6
7548	Printable Lowâ€Temperature Carbon for Highly Efficient and Stable Mesoscopic Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	2
7549	Panchromatic oxasmaragdyrin as dual functional <scp>holeâ€ŧransporting</scp> material in a <scp> llâ€inorganic CsPbIBr ₂ </scp> perovskite solar cells. Journal of the Chinese Chemical Society, 0, , .	0.8	0
7550	Ultravioletâ€Assisted Perovskite Crystallization for Highâ€Performance Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
7551	Photo Stabilization of pâ€iâ€n Perovskite Solar Cells with Bathocuproine: MXene. Small, 2022, 18, .	5.2	8
7552	Optimizing Black Phosphorus/Halide Perovskite Compositions by Scanning Photoelectrochemical Microscopy. Journal of the Electrochemical Society, 2022, 169, 096510.	1.3	1
7553	The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications. Materials, 2022, 15, 5299.	1.3	16
7554	Wide Bandgap Perovskite Photovoltaic Cells for Stray Light Recycling in a System Emitting Broadband Polarized Light. Advanced Energy Materials, 2022, 12, .	10.2	2
7555	Lanthanide-Doped MAPbI ₃ Single Crystals: Fabrication, Optical and Electrical Properties, and Multi-mode Photodetection. Chemistry of Materials, 2022, 34, 7412-7423.	3.2	11
7556	Reversible Phase Transition for Durable Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Materials, 2022, 34, .	11.1	7
7557	Spontaneous Hybrid Cross‣inked Network Induced by Multifunctional Copolymer toward Mechanically Resilient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	28
7558	3D Meniscusâ€Guided Evaporative Assembly for Rapid Templateâ€Free Synthesis of Highly Crystalline Perovskite Nanowire Arrays. Advanced Functional Materials, 2022, 32, .	7.8	5
7559	Impact of Holeâ€Transport Layer and Interface Passivation on Halide Segregation in Mixedâ€Halide Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	11
7560	Spaceâ€Resolved Photoresponse in Quasiâ€Twoâ€Dimensional Ruddlesden–Popper Perovskites. Advanced Optical Materials, 2022, 10, .	3.6	4
7561	Perovskite or Not Perovskite? A Deep‣earning Approach to Automatically Identify New Hybrid Perovskites from Xâ€ray Diffraction Patterns. Advanced Materials, 2022, 34, .	11.1	18
7562	Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Leadâ€Free Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	22
7563	Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics. Small Methods, 2022, 6, .	4.6	9
7564	Chemical Strain Engineering of MAPbI ₃ Perovskite Films. Advanced Energy Materials, 2022, 12, .	10.2	12

#	Article	IF	Citations
7565	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
7566	Metal Halide Perovskite Nanowires: Synthesis, Integration, Properties, and Applications in Optoelectronics. Advanced Energy Materials, 2023, 13, .	10.2	18
7567	Releasable Water Chargeâ€Trapping and Waterâ€Resistant Photodetection using 1D Perovskitoid Hydrate Single Crystal. Advanced Materials, 2022, 34, .	11.1	8
7568	Nonlinear Two-Photon Absorption in the Near-Infrared Band for Lead Bromide Perovskite Films Using an F-Scan Nonlinear Spectrometer. ACS Omega, 2022, 7, 29100-29105.	1.6	1
7569	Application of Ionic Liquids and Derived Materials to High-Efficiency and Stable Perovskite Solar Cells. , 2022, 4, 1684-1715.		18
7570	Renormalization of excitonic properties by polar phonons. Journal of Chemical Physics, 2022, 157, .	1.2	7
7571	Dâ€Aâ€Ï€â€Aâ€Ð Type Based Benzoâ€dithiophene as Core moiety a New Class Hole Transporting Materials for Efficient Perovskite Solar Cells. ChemPhotoChem, 0, , .	1.5	1
7572	Halide Remixing under Device Operation Imparts Stability on Mixedâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	8
7573	Maximizing Merits of Undesirable δâ€FAPbI ₃ by Constructing yellow/black Heterophase Bilayer for Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	11
7574	Ion Compensation of Buried Interface Enables Highly Efficient and Stable Inverted MAâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	17
7575	Efficient Perovskite Solar Cells with a CuI-Modified Polymer Hole-Transport Layer. ACS Applied Energy Materials, 2022, 5, 11034-11041.	2.5	5
7576	Selection of a Suitable Solvent Additive for 2-Methoxyethanol-Based Antisolvent-Free Perovskite Film Fabrication. ACS Applied Materials & Interfaces, 2022, 14, 39132-39140.	4.0	8
7577	Ligand Coverage and Exciton Delocalization Control Chiral Imprinting in Perovskite Nanoplatelets. Journal of Physical Chemistry C, 2022, 126, 15986-15995.	1.5	7
7578	Back-contact perovskite solar cell fabrication via microsphere lithography. Nano Energy, 2022, 102, 107695.	8.2	1
7579	Charge Transfer Dynamics of Two-Dimensional Ruddlesden Popper Perovskite in the Presence of Short-Chain Aromatic Thiol Ligands. Journal of Physical Chemistry C, 2022, 126, 14590-14597.	1.5	6
7580	Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Leadâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
7581	Missed ferroelectricity in methylammonium lead iodide. Npj Computational Materials, 2022, 8, .	3.5	3
7582	Effect of out-gassing from polymeric encapsulant materials on the lifetime of perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 246, 111887.	3.0	3

# 7583	ARTICLE Liquid crystal semiconductor C6TBTAPH2 for hole transport materials in pervoskite solar cells: Fabrication, characterization, and simulation. Optical Materials, 2022, 132, 112820.	lF 1.7	CITATIONS
7584	Highly efficient hole transport derivatives based on fluoranthene core for application in perovskite solar cells. Chemical Physics Letters, 2022, 805, 139938.	1.2	2
7585	Mixed perovskite (MAPbI3-xClx) solar cells using light-emitting conjugated polymer DMP end-capped MDMO-PPV as a hole transport material. Journal of King Saud University - Science, 2022, 34, 102262.	1.6	2
7586	Lewis base manipulated crystallization for efficient tin halide perovskite solar cells. Applied Surface Science, 2022, 602, 154393.	3.1	18
7587	The fundamental physical properties of Cs2PtI6 and (CH3NH3)2PtI6. Physica B: Condensed Matter, 2022, 644, 414235.	1.3	1
7588	Enhancement of UV-light harvesting in perovskite solar cells by internal down-conversion with Eu-complex hole transport layer. Energy Reports, 2022, 8, 214-222.	2.5	1
7589	Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enables efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	2.8	10
7590	High photoresponsivity in CH3NH3PbI3-XClx perovskite vertical field effect photo transistors. Results in Optics, 2022, 9, 100277.	0.9	0
7591	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	1.1	1
7593	Review of nanomaterials impact on improving the performance of dye-sensitized and perovskite solar cells. Optical and Quantum Electronics, 2022, 54, .	1.5	6
7594	Thickness optimization and the effect of different hole transport materials on methylammonium tin iodide (CH3NH3SnI3)-based perovskite solar cell. Emergent Materials, 2023, 6, 175-183.	3.2	7
7595	Induction of Chiral Hybrid Metal Halides from Achiral Building Blocks. Journal of the American Chemical Society, 2022, 144, 16471-16479.	6.6	29
7596	Robust estimation of charge carrier diffusivity using transient photoluminescence microscopy. Journal of Chemical Physics, 2022, 157, .	1.2	3
7597	Highly efficient quasi-cubic structured perovskite for harvesting energy from artificial indoor LED light source. Solar Energy, 2022, 245, 332-339.	2.9	4
7598	The effect of spacer cations on optoelectronic properties of two-dimensional perovskite based on first-principles calculations. Surfaces and Interfaces, 2022, 34, 102343.	1.5	3
7599	Band alignment of Cs2BX6 double halide perovskites and TiO2 using electron affinity rule. Results in Physics, 2022, 42, 106015.	2.0	5
7600	Enhanced device performance of Cs2AgBiBr6 double perovskite photodetector by SnO2/ZnO double electron transport layer. Journal of Alloys and Compounds, 2022, 929, 167329.	2.8	14
7601	Enhance the photoconversion efficiency of carbon-based perovskite solar cells through the synergetic effect of upconversion nanoparticles Li doped NaYbF4:Ho3+ and 2D g-C3N4. Materials Today Communications, 2022, 33, 104513.	0.9	4

#	Article	IF	Citations
7602	A realistic model of temperature dependent carrier diffusion constant in MAPbI3 films. Applied Surface Science, 2022, 606, 154908.	3.1	3
7603	Grain size enlargement and controlled crystal growth by formamidinium chloride additive-added γ-CsPbl2Br thin films for stable inorganic perovskite solar cells. Materials Today Chemistry, 2022, 26, 101118.	1.7	7
7604	All-in-one additive enables defect passivated, crystallization modulated and moisture resisted perovskite films toward efficient solar cells. Chemical Engineering Journal, 2023, 452, 139345.	6.6	27
7605	Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138962.	6.6	14
7606	Graphene induced structure and doping level tuning of evaporated CsPbBr3 on different substrates. Chemical Engineering Journal, 2023, 452, 139243.	6.6	1
7607	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	2.7	17
7608	A high performance Au/CH ₃ NH ₃ PbI ₃ /Cu planar-type self-powered photodetector. Journal of Materials Chemistry C, 2022, 10, 12602-12609.	2.7	4
7609	Unveiling the Dimensional Effects of Sno2 Electron Conductor on the Interfacial Properties of Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7610	Solution-processed next generation thin film solar cells for indoor light applications. Energy Advances, 2022, 1, 761-792.	1.4	15
7611	Biexciton dynamics in halide perovskite nanocrystals. Physical Chemistry Chemical Physics, 2022, 24, 22405-22425.	1.3	12
7612	Impact of localized surface plasmon resonance on efficiency of zinc oxide nanowire-based organic–inorganic perovskite solar cells fabricated under ambient conditions. RSC Advances, 2022, 12, 25163-25171.	1.7	7
7613	Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm, 2022, 24, 7229-7249.	1.3	2
7614	Strain effects on halide perovskite solar cells. Chemical Society Reviews, 2022, 51, 7509-7530.	18.7	89
7615	The synergistic effect of defect passivation and energy level adjustment for low-temperature carbon-based CsPbl ₂ Br perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15573-15581.	2.7	13
7616	Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
7617	Two-dimensional SnS ₂ nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 12392-12401.	2.7	14
7618	Passivation of Positively Charged Cationic Defects in Perovskite with Nitrogen-Donor Crown Ether Enabling Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7619	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	15.6	16

#	Article	IF	CITATIONS
7620	Chiral 2D organic–inorganic hybrid perovskites based on <scp>l</scp> -histidine. Dalton Transactions, 2022, 51, 16536-16544.	1.6	2
7621	Triple-cation perovskite/silicon tandem solar cell. Ukrainian Journal of Physical Optics, 2022, 23, 193-200.	9.7	1
7622	Copper-incorporation for polytypism and bandgap engineering of MAPbBr ₃ perovskite thin films with enhanced near-Infrared photocurrent-response. Materials Chemistry Frontiers, 2022, 6, 2690-2702.	3.2	4
7623	Photodetector properties of [perovskite - porous silicon] heterojunction. AIP Conference Proceedings, 2022, , .	0.3	Ο
7624	Using chiral ammonium cations to modulate the structure of 1D hybrid lead bromide perovskites for linearly polarized broadband light emission at room temperature. Journal of Materials Chemistry C, 2022, 10, 12436-12443.	2.7	6
7625	Fabrication of efficient and stable perovskite solar cells in open air through adopting a dye interlayer. Sustainable Energy and Fuels, 2022, 6, 4275-4284.	2.5	2
7626	Semiconducting eutectic materials for photocatalysis and photoelectrochemistry applications: A perspective. Physical Chemistry Chemical Physics, 0, , .	1.3	3
7627	Organic-Inorganic Hybrid Quasi-2d Perovskites Incorporated with Fluorinated Additive for Efficient and Stable Four-Terminal Tandem Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
7628	Inkjet printing for scalable and patterned fabrication of halide perovskite-based optoelectronic devices. Journal of Materials Chemistry C, 2022, 10, 14379-14398.	2.7	7
7629	Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy and Environmental Science, 2022, 15, 4700-4709.	15.6	86
7630	First principles predictionAofAstructural,AmechanicalAandAoptoelectronicApropertiesAofAlead-freeAdoubleAperovskites A2SeX6A(A=Rb,AK;AX=Cl,ABr,AI). SSRN Electronic Journal, 0, , .	0.4	1
7631	Highly effective biosorption capacity of Cladosporium sp. strain F1 to lead phosphate mineral and perovskite solar cell PbI2. Journal of Hazardous Materials, 2023, 442, 130106.	6.5	1
7632	Mitigating <i>V</i> _{oc} Loss in Tin Perovskite Solar Cells via Simultaneous Suppression of Bulk and Interface Nonradiative Recombination. ACS Applied Materials & Interfaces, 2022, 14, 41086-41094.	4.0	11
7633	Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials, 2022, 12, 3003.	1.9	6
7634	Laserâ€induced Modifiable Dualâ€wavelength Emissions from Lead Halide Perovskite Alloy Microcrystal. Advanced Materials Interfaces, 2022, 9, 2200680.	1.9	0
7635	Infrared Emission from Photoexcited MAPbBr ₃ Perovskite Film. , 2022, , .		0
7636	Effect of Bimetallic and Halogen Ions on Performance in Inorganic Double Perovskites. , 2022, 2, 68-77.		0
7637	Thermal Transport Properties of Phonons in Halide Perovskites. Advanced Materials, 2023, 35, .	11.1	3

#	Article	IF	CITATIONS
7638	Compositional engineering for lead halide perovskite solar cells. Journal of Semiconductors, 2022, 43, 080202.	2.0	8
7639	Graphene Based Hybrid Nanocomposites for Solar Cells. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 61-77.	0.1	1
7640	Graphene-based Nanocomposites for Electro-optic Devices. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 190-204.	0.1	0
7641	Design of Organic–Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications. Journal of the American Chemical Society, 2022, 144, 16656-16666.	6.6	13
7642	Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. Advanced Materials, 2023, 35, .	11.1	11
7643	Antisolvent Treatment on Wet Solutionâ€Processed CuSCN Hole Transport Layer Enables Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	6
7644	Machineâ€Learning Modeling for Ultraâ€Stable Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	23
7645	Molecular Engineering of Enamineâ€Based Holeâ€Transporting Materials for Highâ€Performing Perovskite Solar Cells: Influence of the Central Heteroatom. Solar Rrl, 2022, 6, .	3.1	5
7646	Strategy of Enhancing Builtâ€in Field to Promote the Application of Câ€TiO ₂ /SnO ₂ Bilayer Electron Transport Layer in Highâ€Efficiency Perovskite Solar Cells (24.3%). Small, 2022, 18, .	5.2	16
7647	Status and challenges of multi-junction solar cell technology. Frontiers in Energy Research, 0, 10, .	1.2	10
7648	Optical Simulations in Perovskite Devices: A Critical Analysis. ACS Photonics, 2022, 9, 3196-3214.	3.2	3
7649	Efficient and Stable Perovskite Solar Cells with a High Open ircuit Voltage Over 1.2ÂV Achieved by a Dualâ€Side Passivation Layer. Advanced Materials, 2022, 34, .	11.1	20
7650	Efficiency Potential and Voltage Loss of Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10
7651	Progress and Perspective on Inorganic CsPbI ₂ Br Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	39
7652	Sequential Passivation for Leadâ€Free Tin Perovskite Solar Cells with High Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
7654	<scp> CsPbl ₃ </scp> lead and <scp> CsSnl ₃ leadâ€free </scp> perovskite materials for solar cell device. International Journal of Energy Research, 0, , .	2.2	5
7655	Comparative Study on the Role of Different Precursor Salts on Structural, Morphological, and Optoelectronic Characteristics of CH3NH3PbCl3 Perovskite Semiconductor: An Experimental Study. Journal of Electronic Materials, 2022, 51, 7105-7112.	1.0	1
7656	Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core-Based Hole Transport Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 44450-44459.	4.0	5

#	Article	IF	CITATIONS
7657	Intelligent Optoelectronic Devices for Nextâ€Generation Artificial Machine Vision. Advanced Electronic Materials, 2022, 8, .	2.6	6
7658	Green-Solvent-Processable Low-Cost Fluorinated Hole Contacts with Optimized Buried Interface for Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 43547-43557.	4.0	14
7659	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	1.1	4
7660	Photo-induced macro/mesoscopic scale ion displacement in mixed-halide perovskites: ring structures and ionic plasma oscillations. Light: Science and Applications, 2022, 11, .	7.7	11
7661	Deciphering modes of long-range energy transfer in perovskite crystals using confocal excitation and wide-field fluorescence spectral imaging. Methods and Applications in Fluorescence, 2022, 10, 044013.	1.1	0
7662	Bottomâ€Up Templated and Oriented Crystallization for Inverted Triple ation Perovskite Solar Cells with Stabilized Nickelâ€Oxide Interface. Small, 2022, 18, .	5.2	20
7663	A Polyanionic Strategy to Modify the Perovskite Grain Boundary for a Larger Switching Ratio in Flexible Woven Resistive Random-Access Memories. ACS Applied Materials & Interfaces, 2022, 14, 44652-44664.	4.0	7
7664	Inverse Opal Photonic Nanostructures for Enhanced Light Harvesting in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 13583-13593.	2.4	5
7665	Fluorination of Carbazole-Based Polymeric Hole-Transporting Material Improves Device Performance of Perovskite Solar Cells with Fill Factor up to 82%. ACS Applied Energy Materials, 2022, 5, 12049-12058.	2.5	5
7666	BT-MA _{0.6} FA _{0.4} PbI _{3–<i>x</i>} Cl _{<i>x</i>} Unsymmetrical Perovskite for Solar Cells with Superior Stability and PCE over 23%. ACS Applied Energy Materials, 2022, 5, 11058-11066.	2.5	5
7667	Perovskite Cs ₃ Bi ₂ I ₉ Hexagonal Prisms with Ordered Geometry for Enhanced Photocatalytic Hydrogen Evolution. ACS Energy Letters, 2022, 7, 3370-3377.	8.8	16
7668	Quasiâ€2D Ruddlesden–Popper Perovskites with Low Trapâ€States for High Performance Flexible Selfâ€Powered Ultraviolet Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	7
7669	Perovskites for Photoabsorbers and Solar Cells and Comparison with 3D MAPbI3. Solar, 2022, 2, 385-400.	0.9	5
7670	Optimization of the Power Conversion Efficiency of CsPblxBr3â^'x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer. Applied Sciences (Switzerland), 2022, 12, 8987.	1.3	4
7671	Sequential Passivation for Leadâ€Free Tin Perovskite Solar Cells with High Efficiency. Angewandte Chemie, 2022, 134, .	1.6	14
7672	Persistent Ion Accumulation at Interfaces Improves the Performance of Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3302-3310.	8.8	11
7673	Predictive analysis of multiple future scientific impacts by embedding a heterogeneous network. PLoS ONE, 2022, 17, e0274253.	1.1	0
7674	Highâ€Performance Flexible Allâ€Perovskite Tandem Solar Cells with Reduced <i>V</i> _{OC} â€Deficit in Wideâ€Bandgap Subcell. Advanced Energy Materials, 2022, 12, .	10.2	19

#	Article	IF	CITATIONS
7675	Two 3D Rubidium Halide Organic–Inorganic Hybrid Perovskite Ferroelectrics Templated by Quasi‧pherical Organic Amine 1,4â€Điazabicyclo[3.2.2]nonane. Chemistry - A European Journal, 2022, 28, .	1.7	7
7676	Exciton–Phonon and Trion–Phonon Couplings Revealed by Photoluminescence Spectroscopy of Single CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2022, 22, 7674-7681.	4.5	21
7677	Mesoporous indium tin oxide perovskite solar cells in bifacial configuration. JPhys Energy, 2022, 4, 045008.	2.3	3
7678	The Variations of Photoluminscence Decay Times Under The Influence of A Trapping State. , 2022, , .		1
7679	Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS ₂ . Chinese Physics B, 2023, 32, 017901.	0.7	2
7680	Sb2Se3 as an HTL for Mo/Sb2Se3/Cs2TiF6/TiO2 solar structure: performance evaluation with SCAPS-1D. Heliyon, 2022, 8, e10925.	1.4	2
7681	Revealing photovoltaic behavior in 2D hybrid perovskite ferroelectric single-crystalline microwire arrays for self-powered photodetectors. Materials Today Physics, 2022, 28, 100867.	2.9	5
7682	Ecotoxicity and Sustainability of Emerging Pbâ€Based Photovoltaics. Solar Rrl, 2022, 6, .	3.1	6
7683	Scalable Twoâ€Step Production of Highâ€Efficiency Perovskite Solar Cells and Modules. Solar Rrl, 2023, 7,	3.1	14
7684	Nanomechanical signatures of degradation-free influence of water on halide perovskite mechanics. Communications Materials, 2022, 3, .	2.9	7
7685	Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Materials Futures, 2022, 1, 045101.	3.1	20
7686	Bias-free solar hydrogen production at 19.8 mA cmâ^'2 using perovskite photocathode and lignocellulosic biomass. Nature Communications, 2022, 13, .	5.8	33
7687	Recent Progress in Large-Area Perovskite Photovoltaic Modules. Transactions of Tianjin University, 2022, 28, 323-340.	3.3	10
7688	Structural, optical and dielectric properties of low temperature assisted grown crystals of CH3NH3Pb1-xCdxBr3. Materials Chemistry and Physics, 2022, 292, 126852.	2.0	2
7689	Application of ionic liquids for charge transport improvement in perovskite solar cells. Materials Today: Proceedings, 2022, , .	0.9	0
7690	Tuning Halide Composition Allows Low Dark Current Perovskite Photodetectors With High Specific Detectivity. Advanced Optical Materials, 2022, 10, .	3.6	9
7691	Impact of loss mechanisms on performances of perovskite solar cells. Physica B: Condensed Matter, 2022, 647, 414363.	1.3	6
7692	Inter-band and mid-gap luminescence in CH3NH3PbBr3 single crystal. Journal of Luminescence, 2022, 252, 119382.	1.5	Ο

#	Article	IF	CITATIONS
7693	Organic-inorganic hybrid electron transport layer of PVP-doped SnO2 for high-efficiency stable perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 248, 112032.	3.0	6
7694	Fluorinated spacers: an effective strategy to tailor the optoelectronic properties and stability of metal-halide perovskites for photovoltaic applications. Journal of Materials Chemistry C, 2022, 10, 16949-16982.	2.7	3
7695	Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact <i>via</i> a nanostructured tin oxide layer. Materials Horizons, 2023, 10, 122-135.	6.4	18
7696	Steady and transient optical properties of CsPbBr ₃ /Pb ₃ (PO ₄) ₂ perovskite quantum dots for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 16679-16686.	2.7	4
7697	High performance perovskite solar cells synthesized by dissolving FAPbI ₃ single crystal. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 018801.	0.2	1
7698	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
7699	Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustainable Energy and Fuels, 2022, 6, 5316-5323.	2.5	7
7700	Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 217801.	0.2	1
7701	Thermodynamic and dynamic stability in a new potential Cs ₂ AgAsCl ₆ perovskite: insight from DFT study. Physical Chemistry Chemical Physics, 2022, 24, 26609-26621.	1.3	4
7702	Performance limitations imposed by the TCO heterojunction in high efficiency perovskite solar cells. Energy and Environmental Science, 2022, 15, 5202-5216.	15.6	7
7703	Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 018101.	0.2	0
7704	Strain-driven tunability of the optical, electronic, and mechanical properties of lead-free inorganic CsGeCl ₃ perovskites. Physica Scripta, 2022, 97, 125817.	1.2	5
7705	Degradation Analysis of Triple-Cation Perovskite Solar Cells by Electrochemical Impedance Spectroscopy. ACS Applied Energy Materials, 2022, 5, 12545-12552.	2.5	4
7706	2D-Antimonene-assisted hetero-epitaxial growth of perovskite films for efficient solar cells. Materials Today, 2022, 61, 54-64.	8.3	7
7707	Probing charge carrier dynamics in metal halide perovskite solar cells. EcoMat, 2023, 5, .	6.8	8
7708	Advances in Flexible Organic Photodetectors: Materials and Applications. Nanomaterials, 2022, 12, 3775.	1.9	9
7709	Unveiling Ultrafast Carrier Extraction in Highly Efficient 2D/3D Bilayer Perovskite Solar Cells. ACS Photonics, 2022, 9, 3584-3591.	3.2	5
7710	Dual Metalâ€Assisted Defect Engineering towards Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	16

#	Article	IF	CITATIONS
7711	Ultra-Efficient Optical Gain and Lasing in MDACl ₂ -Doped Perovskite Thin Films. Chemistry of Materials, 2022, 34, 9786-9794.	3.2	0
7712	Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. ELight, 2022, 2, .	11.9	26
7713	Dynamics of Internal Electric Field Screening in Hybrid Perovskite Solar Cells Probed Using Electroabsorption. Physical Review Applied, 2022, 18, .	1.5	5
7714	Enhanced Charge Carrier Separation in WO ₃ /BiVO ₄ Photoanodes Achieved via Light Absorption in the BiVO ₄ Layer. ACS Applied Energy Materials, 2022, 5, 13142-13148.	2.5	6
7715	Compositional Engineering in α-CsPbI ₃ toward the Efficiency and Stability Enhancement of All Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 12099-12108.	2.5	10
7716	Photocationic Initiator Induced Synergy for Highâ€Performance Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3
7717	Air-processed hole-conductor–free and printable infrared light responded carbon-based perovskite solar cells using up-conversion NaYF4:Yb3+, Er3+ nanoparticles. Ceramics International, 2023, 49, 6974-6983.	2.3	1
7718	Computational Study of CH3NH3PbI3â^'xClX Perovskite Solar Cell with Record Efficiency of 33.19%. Lecture Notes in Electrical Engineering, 2023, , 267-278.	0.3	0
7719	Carbazole-based donor materials with enhanced photovoltaic parameters for organic solar cells and hole-transport materials for efficient perovskite solar cells. Journal of Molecular Modeling, 2022, 28, .	0.8	4
7720	Cation Engineering by Threeâ€Đimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	3
7721	Low-Temperature Processed Brookite Interfacial Modification for Perovskite Solar Cells with Improved Performance. Nanomaterials, 2022, 12, 3653.	1.9	1
7722	Exciton Photoluminescence of Strongly Quantum-Confined Formamidinium Lead Bromide (FAPbBr ₃) Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 18366-18373.	1.5	2
7723	Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication. International Journal of Molecular Sciences, 2022, 23, 11792.	1.8	12
7724	Spherical hydroxyapatite nanoparticle scaffolds for reduced lead release from damaged perovskite solar cells. Communications Materials, 2022, 3, .	2.9	3
7725	Laser Terahertz Emission Microscope for Imaging Grain Heterogeneity: A Case Study of CH3NH3PbI3 Perovskite Semiconductors. Crystals, 2022, 12, 1462.	1.0	1
7726	Side substitution on benzothiadiazole-based hole transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells. Current Applied Physics, 2022, , .	1.1	0
7727	Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuthâ€Based Halide Perovskites. Advanced Materials, 2023, 35, .	11.1	7
7728	Epitaxial Perovskite Single-Crystalline Heterojunctions for Filter-Free Ultra-Narrowband Detection with Tunable Spectral Responses. ACS Applied Materials & amp; Interfaces, 2022, 14, 50331-50342.	4.0	4

#	Article	IF	CITATIONS
7729	Inkjetâ€Printing Controlled Phase Evolution Boosts the Efficiency of Hole Transport Material Free and Carbonâ€Based CsPbBr ₃ Perovskite Solar Cells Exceeding 9%. Energy and Environmental Materials, 0, , .	7.3	2
7730	Molecular Electronic Study of Spiro-[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> ′]dithiophene-4,9′-fluorene] Derivatives: Route to Decent Hole-Transporting Materials. Journal of Physical Chemistry C, 2022, 126, 18238-18250.	1.5	0
7731	Fast and Highly Sensitive Photodetectors Based on Pbâ€Free Snâ€Based Perovskite with Additive Engineering. Advanced Optical Materials, 2023, 11, .	3.6	13
7733	Study on the interface defects of eco-friendly perovskite solar cells. Solar Energy, 2022, 247, 96-108.	2.9	17
7734	Mixology of MA _{1–<i>x</i>} EA _{<i>x</i>} PbI ₃ Hybrid Perovskites: Phase Transitions, Cation Dynamics, and Photoluminescence. Chemistry of Materials, 2022, 34, 10104-10112.	3.2	9
7735	Oriented Crystal Growth during Perovskite Surface Reconstruction. ACS Applied Materials & Interfaces, 2022, 14, 51149-51156.	4.0	2
7736	Enhancing performance and stability of carbon-based perovskite solar cells by surface modification using 2-(trifluoromethylthio)aniline. Materials Today Communications, 2022, 33, 104653.	0.9	1
7737	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
7738	Disentangled structural and vibrational characteristics of methylammonium halide perovskite MAPbBr3-Cl with x = 0 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mo>â^1/4</mml:mo></mml:mrow></mml:math> 3 studied by X-Ray diffraction and Raman scattering. Current Applied Physics, 2022, 44, 150-157.	1.1	2
7739	Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy, 2022, 104, 107918.	8.2	26
7740	Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with NiO NCs modification. Electrochimica Acta, 2022, 435, 141392.	2.6	4
7741	xmlns:mml="http://www.w3.org/1998/Math/Math/MathML" altimg="si62.svg" display="inline" id="d1e591"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow </mml:msub> GaPbX <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si63.svg" display="inline"</mml:math 	0.9	7
7742	Novel Li rich perovskites Li4NBI3 (BÂ=ÂGe, Sn, or Pb) with high mobility based on super alkali cation Li4N. Computational Materials Science, 2023, 216, 111857.	1.4	0
7743	Two birds with one stone: Simultaneous realization of constructed 3D/2D heterojunction and p-doping of hole transport layer for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 453, 139721.	6.6	12
7744	Constructing of superhydrophobic and intact crystal terminal: Interface sealing strategy for stable perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2023, 453, 139808.	6.6	4
7745	A DFT study on the stability and optoelectronic properties of Pb/Sn/Ge-based MA ₂ B(SCN) ₂ I ₂ perovskites. New Journal of Chemistry, 0, , .	1.4	0
7746	Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells. RSC Advances, 2022, 12, 32925-32948.	1.7	11
7747	Defect formation and healing at grain boundaries in lead-halide perovskites. Journal of Materials Chemistry A, 2022, 10, 24854-24865.	5.2	12

		CITATION REPORT		
#	Article		IF	CITATIONS
7748	Recharging upconversion: revealing rubrene's replacement. Nanoscale, 2022, 14, 1725	4-17261.	2.8	5
7749	Optoelectronic functionality and photovoltaic performance of Sr-doped tetragonal CH3 first-principles study. Physica B: Condensed Matter, 2023, 649, 414453.	BNH3PbI3: A	1.3	1
7750	New potential materials in advancement of photovoltaic and optoelectronic application halide perovskite nanorods. Renewable and Sustainable Energy Reviews, 2023, 171, 11		8.2	6
7751	Exploring the structural, electronic, optical, and thermoelectric properties of potassium double perovskites K2AgXI6 (XÂ=ÂSb, Bi) compounds: A DFT study. Materials Science a Solid-State Materials for Advanced Technology, 2023, 287, 116122.	-based and Engineering B:	1.7	7
7752	Dynamics of photo-excited carriers in CsPbBr _{3Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Eng 557-563.}	gt; perovskite. Ineering, 2019, 36,	0.1	0
7753	Simulation of inverted pyramid perovskite solar cells. Shenzhen Daxue Xuebao (Ligong Shenzhen University Science and Engineering, 2022, 39, 369-376.	Ban)/Journal of	0.1	0
7754	Designs for improving plasmonic nanowire microcavity quality factor. , 2022, , .			0
7755	Semitransparent Perovskite Solar Cells for Photovoltaic Application. Solar Rrl, 2023, 7,		3.1	2
7756	Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells v Enhanced Stability. Nano Letters, 2022, 22, 9586-9595.	vith	4.5	12
7757	Roles that Organic Ammoniums Play on the Surface of the Perovskite Film: A Review. C European Journal, 2023, 29, .	nemistry - A	1.7	7
7758	Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite. N Communications, 2022, 13, .	ature	5.8	10
7759	Dualâ€Phase Stabilized Perovskite Nanowires for Reduced Defects and Longer Carrier L Functional Materials, 2023, 33, .	ifetime. Advanced	7.8	3
7760	Molecular engineering of contact interfaces for high-performance perovskite solar cells Reviews Materials, 2023, 8, 89-108.	. Nature	23.3	125
7761	Fast electron and slow hole spin relaxation in CsPbI ₃ nanocrystals. Applied Letters, 2022, 121, 201106.	l Physics	1.5	1
7762	Early thermal aging detection in tin based perovskite solar cell. Heliyon, 2022, 8, e1145	5.	1.4	0
7763	High-quality all-inorganic CsPbI2Br thin films derived from phase-pure intermediate for wide-bandgap perovskite solar cells. Journal of Solid State Chemistry, 2023, 317, 1237	efficient 28.	1.4	6
7764	Photoelectric properties of cubic mixed-cation lead halide perovskites (Cs MA1-PbI3) fro First-Principles. Materials Today Communications, 2022, , 104898.	om	0.9	0
7765	Structural and Photophysical Properties of Guanidinium–Iodideâ€∓reated Perovskite Rrl, 2023, 7, .	Solar Cells. Solar	3.1	7

#	Article	IF	CITATIONS
7766	Disentangling Xâ€Ray and Sunlight Irradiation Effects Under a Controllable Atmosphere in Metal Halide Perovskites. Solar Rrl, 2023, 7, .	3.1	3
7767	Computerized Prediction of Perovskite Performance Using Deep Learning. Electronics (Switzerland), 2022, 11, 3759.	1.8	0
7768	Broadly Applicable Synthesis of Heteroarylated Dithieno[3,2-b:2′,3′-d]pyrroles for Advanced Organic Materials – Part 2: Hole-Transporting Materials for Perovskite Solar Cells. Organic Materials, 2023, 5, 48-58.	1.0	3
7769	The Investigation of the Influence of a Cu2O Buffer Layer on Hole Transport Layers in MAPbI3-Based Perovskite Solar Cells. Materials, 2022, 15, 8142.	1.3	9
7770	Role of light trapping structures on the performance of perovskite solar cells. Physica B: Condensed Matter, 2022, , 414513.	1.3	1
7771	Molecularly Functionalized SnO ₂ Films by Carboxylic Acids for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 52838-52848.	4.0	6
7772	Lead-Free Perovskite Nanoflake/Monoradicular CdSe Nanobelt Hybrid Nanostructures for Ultrasensitive Broadband Photodetectors. ACS Applied Nano Materials, 2022, 5, 16923-16932.	2.4	2
7773	High performance flexible photodetector based on 0D-2D perovskite heterostructure. , 2023, 2, 100032.		0
7774	Defect engineering of metal halide perovskite optoelectronic devices. Progress in Quantum Electronics, 2022, 86, 100438.	3.5	4
7775	Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews, 2022, 3, .	2.6	10
7776	Highly efficient and stable hole-transport-layer-free inverted perovskite solar cells achieved 22% efficiency through p-type molecular synergistic doping. Nano Energy, 2022, 104, 107988.	8.2	19
7777	Study of Photoconductive Properties of Hybrid Organic-Inorganic Perovskite Semiconductors by Space Charge Grating Technique. , 2022, , .		0
7778	Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nature Materials, 2022, 21, 1388-1395.	13.3	17
7779	Recent Advancements in Tin Halide Perovskite-Based Solar Cells and Thermoelectric Devices. Nanomaterials, 2022, 12, 4055.	1.9	5
7780	Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion. Nanoscale, 2023, 15, 998-1013.	2.8	8
7781	Interfacial engineering of halide perovskites and two-dimensional materials. Chemical Society Reviews, 2023, 52, 212-247.	18.7	13
7782	Enhancing charge extraction in inverted perovskite solar cells contacts <i>via</i> ultrathin graphene:fullerene composite interlayers. Journal of Materials Chemistry A, 2023, 11, 12866-12875.	5.2	7
7783	FAPbBr ₃ perovskite nanocrystals decorated on a graphitic carbon nitride (g-C ₃ N ₄) sheet for interfacial hole transfer. New Journal of Chemistry, 2023, 47, 2045-2051.	1.4	2

ARTICLE IF CITATIONS # First-principles study of structural, electronic, elastic and optical properties of alkali lead iodides 7784 9.7 1 MPbl3 (M = Li, Na, K). Ukrainian Journal of Physical Optics, 2023, 24, 1-21. Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications. Journal of 1.1 Renewable Materials, 2023, 11, 1533-1554. Energy Level Modulation of TiO₂ Using Amino Trimethylene Phosphonic Acid for Efficient Perovskite Solar Cells with Average <i>V</i>_{OC} of 1.19 V. Sustainable Energy and Fuels, 0, , 7786 2.50 Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting 2.7 diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025. High-performance flexible and self-powered perovskite photodetector enabled by interfacial strain 7788 2.7 2 engineering. Journal of Materials Chemistry C, 2023, 11, 600-608. Efficient and stable formamidinium–caesium perovskite solar cells and modules from lead acetate-based precursors. Energy and Environmental Science, 2023, 16, 138-147. 15.6 The progress and efficiency of CsPbl₂Br perovskite solar cells. Journal of Materials 7790 2.7 9 Chemistry C, 2023, 11, 426-455. Investigation of the optoelectronics properties and stability of Formamidinium lead mixed halides perovskite. Optical Materials, 2023, 135, 113334. 1.7 10 Efficient and stable MAPbI3 perovskite solar cells via green anti-solvent diethyl carbonate. Organic 7792 1.4 6 Electronics, 2023, 113, 106709. Magnetic interactions based on proton orbital motion in CH3NH3PbI3 and CH3NH3PbBr3. Scripta 2.6 Materialia, 2023, 226, 115229. Lead-free Dion†"Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of 7794 1.9 8 Solids, 2023, 174, 111157. Study on light absorption of CH3NH3PbI3 perovskite solar cells enhanced by gold nanobipyramids. 7795 2.2 Optićs and Laser Technology, 2023, 159, 108924. Simple Molecules as Hole Transport Materials Enabled by Solvothermal Technology: Towards Solution-Processable Carbon Electrode Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2022, , 7796 1.5 0 1-10. Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews, 2022, 51, 10016-10063. 7797 18.7 Self-assembled CsPbBr₃ quantum dots with wavelength-tunable photoluminescence for 7798 2.8 1 efficient active jamming. Nanoscale, 2022, 14, 17900-17907. Deep-level transient spectroscopy of the charged defects in p-i-n perovskite solar cells induced by 7799 light-soaking. Optical Materials: X, 2022, 16, 100218. Identification of Asymmetric Interfacial Recombination in Perovskite Solar Cells through Impedance 7800 2.51 Spectroscopy. ACS Applied Energy Materials, 2022, 5, 14760-14768. Transient Response Mismatch: A Limiting Factor of Perovskite Photodetectors. Advanced Optical Materials, 0, , 2202381.

#	Article	IF	CITATIONS
7802	Study of ambipolar properties of organic-inorganic CH ₃ NH ₃ PbI ₃ perovskite for vertical field effect transistor. Engineering Research Express, 2022, 4, 045040.	0.8	1
7803	Antisolvent Additive Engineering for Boosting Performance and Stability of Graded Heterojunction Perovskite Solar Cells Using Amide-Functionalized Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2022, 14, 54623-54634.	4.0	12
7804	Lightâ€Mediated Multi‣evel Flexible Copper Iodide Resistive Random Access Memory for Formingâ€Free, Ultra‣ow Power Data Storage Application. Advanced Functional Materials, 2023, 33, .	7.8	6
7805	Multifunctional indaceno[1,2-b:5,6-b′]dithiophene chloride molecule for stable high-efficiency perovskite solar cells. Science China Chemistry, 2023, 66, 185-194.	4.2	4
7806	Subâ€second Lifetime of Photocarriers in Hybrid Lead Halide Perovskite. Advanced Electronic Materials, 2023, 9, .	2.6	0
7807	Dual-function perovskite light-emitting/sensing devices for optical interactive display. Light: Science and Applications, 2022, 11, .	7.7	18
7808	Reduced Surface Hydroxyl and Released Interfacial Strain by Inserting CsF Anchor Interlayer for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	7
7809	Defect Passivation by Natural Piperine Molecule Enabling for Stable Perovskite Solar Cells with Efficiencies over 23%. ACS Sustainable Chemistry and Engineering, 2022, 10, 16359-16367.	3.2	3
7810	High-Performance and Stable Perovskite Solar Cells Using Carbon Quantum Dots and Upconversion Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 14441.	1.8	4
7811	Reduction of extrinsic defects in ZnSe:perovskite composites based solar devices. Journal of Nanoparticle Research, 2022, 24, .	0.8	2
7812	Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator. Angewandte Chemie, 2023, 135, .	1.6	5
7813	Impermeable Atomic Layer Deposition for Sputtering Buffer Layer in Efficient Semiâ€Transparent and Tandem Solar Cells via Activating Unreactive Substrate. Advanced Materials, 2023, 35, .	11.1	10
7814	Perovskite Films Doped with Polyoxometalate and Ionic Liquid Assisted Crystallization for Efficient Photodetectors. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	2
7815	Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer. Coatings, 2022, 12, 1981.	1.2	8
7816	Defect Passivation by Pyridine-Carbazole Molecules for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 15819-15827.	2.5	6
7817	Antisolvent Choice Determines the Domain Distribution of Quasiâ€2D Perovskite for Blueâ€Emitting Perovskitesâ€Based Light Emitting Devices. Advanced Optical Materials, 2023, 11, .	3.6	5
7818	Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
7819	Defect Passivation with Multifunctional Fluoro-Group-Containing Organic Additives for Highly Efficient and Stable Perovskite Solar Cells. Energy & Fuels, 2023, 37, 667-674.	2.5	4

#	Article	IF	CITATIONS
7820	Fabrication of Highâ€Performance Devices on Waterâ€Soluble Lead Halide Perovskites Using Waterâ€Based Photolithography. Advanced Materials Interfaces, 0, , 2201749.	1.9	1
7821	Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis. ACS Applied Materials & Interfaces, 2022, 14, 55753-55761.	4.0	13
7822	Improving Stability and Performance of Cesium Mixed Lead Halides for Photovoltaic Applications. Jom, 0, , .	0.9	0
7823	Suppressing dark current for high-detectivity perovskite photodetectors via defect passivation. Organic Electronics, 2023, 114, 106726.	1.4	6
7824	Fullereneâ€Liquidâ€Crystalâ€Induced Micrometerâ€Scale Chargeâ€Carrier Diffusion in Organic Bulk Heterojunction. Advanced Materials, 2023, 35, .	11.1	12
7825	Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide. Nanomaterials, 2022, 12, 4454.	1.9	2
7826	Combinatorial Vacuumâ€Deposition of Wide Bandgap Perovskite Films and Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	4
7827	Halide Perovskite Single Crystals and Nanocrystal Films as Electron Donorâ€Acceptor Heterojunctions. Angewandte Chemie, 0, , .	1.6	0
7828	Caution! Static Supercell Calculations of Defect Migration in Higher Symmetry <i>ABX</i> ₃ Perovskite Halides May Be Unreliable: A Case Study of Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2022, 13, 11363-11368.	2.1	1
7829	Halide Perovskite Single Crystals and Nanocrystal Films as Electron Donorâ€Acceptor Heterojunctions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
7830	Extrinsic photoresponse of Ag doped MAPbBr3 perovskite crystals. Applied Surface Science, 2023, 614, 156230.	3.1	4
7831	Observation of abnormal photoluminescence upon structural phase competence and transition-induced disorder of stable î±-FAPbI ₃ . Optical Materials Express, 2023, 13, 263.	1.6	2
7832	Engineering Water Stable Perovskite and Plasmonicâ€Perovskite Nanocomposites: A Step toward Unleashing the True Potential of Perovskite Catalysis. Advanced Materials Interfaces, 2023, 10, .	1.9	5
7833	Engineering Stable Leadâ€Free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. Advanced Materials, 2023, 35, .	11.1	13
7834	High-Performance Self-Powered Photodetector Based on the Lateral Photovoltaic Effect of All-Inorganic Perovskite CsPbBr ₃ Heterojunctions. ACS Applied Materials & Interfaces, 2023, 15, 1505-1512.	4.0	8
7835	Recent Progress and Challenges of Bismuthâ€Based Halide Perovskites for Emerging Optoelectronic Applications. Advanced Optical Materials, 2023, 11, .	3.6	19
7836	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
7837	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25

#	Article	IF	CITATIONS
7838	Effect of Organic Chloride Additives on the Photovoltaic Performance of MAâ€Free Cs _{0.1} FA _{0.9} PbI ₃ Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	0
7839	Reduced <i>E</i> _{loss} of Planar-Structured Carbon Counter Electrode-Based CsPbI ₃ Solar Cells with Tetrabutylammonium Halide-Modified SnO ₂ . ACS Applied Energy Materials, 0, , .	2.5	0
7840	Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. Small, 2023, 19, .	5.2	18
7841	Clâ€Anion Engineering for Halide Perovskite Solar Cells and Modules with Enhanced Photostability. Solar Rrl, 2023, 7, .	3.1	4
7842	Excitation Intensity- and Size-Dependent Halide Photosegregation in CsPb(I _{0.5} Br _{0.5}) ₃ Perovskite Nanocrystals. ACS Nano, 2022, 16, 21636-21644.	7.3	8
7843	Highly Sensitive Tinâ€Lead Perovskite Photodetectors with Over 450 Days Stability Enabled by Synergistic Engineering for Pulse Oximetry System. Advanced Materials, 2023, 35, .	11.1	22
7844	UV–Vis photodetector based on ionic liquid-modified perovskite–ZnO composite. Journal of Applied Physics, 2022, 132, .	1.1	3
7845	Situation and Perspectives on Tin-Based Perovskite Solar Cells. Sustainability, 2022, 14, 16603.	1.6	0
7846	Optimal Parameter Identification of Perovskite Solar Cells Using Modified Bald Eagle Search Optimization Algorithm. Energies, 2023, 16, 471.	1.6	4
7847	Insight into the Structural, Mechanical and Optoelectronic Properties of Ternary Cubic Barium-Based BaMCl3 (M = Ag, Cu) Chloroperovskites Compounds. Crystals, 2023, 13, 140.	1.0	8
7848	Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Wuli Xuebao/Acta Physica Sinica, 2022, 72, 018101.	0.2	0
7849	Rational Selection of the Lewis Base Molecules Targeted for Lead-Based Defects of Perovskite Solar Cells: The Synergetic Co-passivation of Carbonyl and Carboxyl Groups. Journal of Physical Chemistry Letters, 2023, 14, 653-662.	2.1	7
7850	Solvent-mediated crystallization of (TMS) ₂ BiBr ₅ ·DMSO: a new 0D hybrid halide perovskite. Dalton Transactions, 2023, 52, 1777-1784.	1.6	3
7851	Structural and optical investigation of novel Sr1-xNa2xZrO3 perovskite nanoparticles. Physica B: Condensed Matter, 2023, 653, 414655.	1.3	2
7852	Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. Advanced Theory and Simulations, 2023, 6, .	1.3	6
7853	Enhanced Photovoltaic Performance of Inverted Perovskite Solar Cells through Surface Modification of a NiOx-Based Hole-Transporting Layer with Quaternary Ammonium Halide–Containing Cellulose Derivatives. Polymers, 2023, 15, 437.	2.0	4
7854	Correlation between hysteresis dynamics and inductance in hybrid perovskite solar cells: studying the dependency on ETL/perovskite interfaces. Nanoscale, 2023, 15, 2152-2161.	2.8	4
7855	Gradient Bandgap‶unable Perovskite Microwire Arrays toward Flexible Colorâ€Cognitive Devices. Advanced Functional Materials, 2023, 33, .	7.8	12

#	Article	IF	CITATIONS
7856	Size-dependent chiro-optical properties of CsPbBr ₃ nanoparticles. Nanoscale, 2023, 15, 2143-2151.	2.8	7
7857	Surface Modification of NiO _{<i>x</i>} Layer with Versatile Coupling Agent Enables Enhanced Performance and Stability of Inverted Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	5
7858	High-performance α-FAPbI3 perovskite solar cells with an optimized interface energy band alignment by a Zn(O,S) electron transport layer. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	6
7859	Effects of Potassium Doping on the Active Layer of Inverse-structured Perovskite Solar Cells. IEICE Transactions on Electronics, 2023, , .	0.3	0
7860	Healing aged metal halide perovskite toward robust optoelectronic devices: Mechanisms, strategies, and perspectives. Nano Energy, 2023, 108, 108219.	8.2	4
7861	Singular Timeâ€Dependent Photoconductivity Response of MAPbl ₃ Samples Deposited by Vacuum Processing on Different Substrates. Energy Technology, 0, , 2200814.	1.8	0
7862	The influence of a trap state on the photoluminescence decay times under single pulse excitation. Optical and Quantum Electronics, 2023, 55, .	1.5	2
7863	定åŧ控å^¶ä»‹å"Pbl2æ"~æž¶å^¶å‡æ•^率达22.7%的钙钛矿å¤é~³èf½ç"µæ±. Science China Materials, 20	02 3, 566, 13	318-1322.
7864	Diethanolamine Modified Perovskite-Substrate Interface for Realizing Efficient ESL-Free PSCs. Nanomaterials, 2023, 13, 250.	1.9	0
7865	Simultaneous Characterization of Optical, Electronic, and Thermal Properties of Perovskite Single Crystals Using a Photoacoustic Technique. ACS Photonics, 2023, 10, 265-273.	3.2	4
7866	Amorphous Fâ€doped TiO _x Caulked SnO ₂ Electron Transport Layer for Flexible Perovskite Solar Cells with Efficiency Exceeding 22.5%. Advanced Functional Materials, 2023, 33, .	7.8	17
7867	Phthalocyanines, porphyrins and other porphyrinoids as components of perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 7885-7919.	2.7	11
7868	A DFT Study of Alkaline Earth Metal-Doped FAPbI3 (111) and (100) Surfaces. Molecules, 2023, 28, 372.	1.7	0
7869	Multimodal photodetectors with vacuum deposited perovskite bilayers. Journal of Materials Chemistry C, 2023, 11, 1258-1264.	2.7	2
7870	Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals. Nano Research, 2023, 16, 5572-5591.	5.8	7
7871	Strategic Compositional Engineering in Quasi-2D Ruddlesden–Popper Perovskites to Decipher Deep Blue Emission. Journal of Physical Chemistry Letters, 2023, 14, 395-402.	2.1	0
7872	Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. ELight, 2023, 3, .	11.9	74
7873	Electronic effect of substituents on the charge-transfer dynamics at the CsPbBr ₃ perovskite–small molecule interface. Physical Chemistry Chemical Physics, 0, , .	1.3	2

#	Article	IF	CITATIONS
7874	Improvement of a Two-step Method for Highly Efficient Perovskite Solar Cells via Modification of a Metal Halide Template and Dipping Conditions. Chemistry Letters, 2023, 52, 84-88.	0.7	0
7875	Stability of perovskite solar cells: issues and prospects. RSC Advances, 2023, 13, 1787-1810.	1.7	65
7876	Enhanced optical and electronic properties of chlorobenzene-assisted perovskite CH3NH3PbI3â^'xClx film incorporated in p-i-n solar cells. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
7877	Reexamining the Postâ€Treatment Effects on Perovskite Solar Cells: Passivation and Chloride Redistribution. Small Methods, 2023, 7, .	4.6	6
7878	Synthesis, structure, and photoelectric properties of a novel zero-dimensional organic-inorganic hybrid perovskite (C6H9N2)2MnI4. Optical Materials, 2023, 136, 113360.	1.7	2
7879	4-Carboxyphenyl isothiocyanate as a Lewis base additive for efficient and stable perovskite solar cells. Synthetic Metals, 2023, 293, 117276.	2.1	1
7880	First-Principles Calculations to Investigate Effect of X+ÂCations Variation on Structural, Mechanical, Electronic and Optical Properties of the XCdCl3 Chloroperovskites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116228.	1.7	4
7881	Band gap engineering and optoelectronic properties of all-inorganic Ruddlesden-Popper halide perovskites Cs2B(X1-uYu)4 (B = Pb, Sn; X/Y = Cl, Br, I). Materials Science in Semiconductor Processing, 2023, 157, 107308.	1.9	6
7882	3D nanographene precursor suppress interfacial recombination in PEDOT: PSS based perovskite solar cells. Nano Energy, 2023, 107, 108136.	8.2	5
7883	Performance analysis and optimization of perovskite solar cell using SCAPS-1D and genetic algorithm. Materials Today Communications, 2023, 34, 105420.	0.9	2
7884	Dual functional lead tetraacetate oxidant in Spiro-OMeTAD toward efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2023, 939, 168809.	2.8	2
7885	Importance of precursor complexation for green solventâ€processed perovskite crystals. Bulletin of the Korean Chemical Society, 2023, 44, 304-309.	1.0	0
7886	Accelerated formation of iodine vacancies in <scp> CH ₃ NH ₃ PbI ₃ 3 3 3 3 3 </scp>	6.8	2
7887	Self-Trapped Excitons Mediated Energy Transfer to Sm ³⁺ in Cs ₂ AgIn _(1–<i>x</i>) Sm _{<i>x</i>} Cl ₆ :Bi Double Perovskite Nanocrystals. Journal of Physical Chemistry C, 2023, 127, 468-475.	1.5	6
7888	Free-Standing Carbon Nanotube Thin Film for Multifunctional Halide-Perovskite Optoelectronics. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, S127-S130.	0.1	0
7889	Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nature Nanotechnology, 2023, 18, 357-364.	15.6	15
7890	Dimensional Tuning in Leadâ€Free Tin Halide Perovskite for Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	21
7891	Tuning Surface Oxidation States of Nickel Oxide for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 1332-1339.	2.5	3

ARTICLE IF CITATIONS Recycling of halide perovskites., 2023, , 385-446. 0 7892 3D Printing of Arbitrary Perovskite Nanowire Heterostructures. Advanced Functional Materials, 2023, 33,. 7894 Nano-inks for photovoltaics., 2023, , 413-426. 0 Atomic layer deposition of SnO₂ using hydrogen peroxide improves the efficiency and 2.8 stability of perovskite solar cells. Nanoscale, 2023, 15, 5044-5052. Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect 7896 2.8 8 transistors. Nanoscale, 2023, 15, 4219-4235. Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites. Science China: Physics, Mechanics and Astronomy, 2023, 66, . Energy level matched by an external electric field in nontoxic halide perovskite 7898 1.0 0 CH₃NH₃SnI₃. Modern Physics Letters B, O, , . Additiveâ€Enhanced Crystallization of Inorganic Perovskite Single Crystals for Highâ€Sensitivity Xâ€Ray 7899 5.2 Detection. Small, 2023, 19, . 7900 Challenges and Progress in Leadâ€Free Halide Double Perovskite Solar Cells. Solar Rrl, 2023, 7, . 3.1 36 lodide/triiodide redox shuttle-based additives for high-performance perovskite solar cells by 7901 2.8 simultaneously passivating the cation and anion defects. Nanoscale, 2023, 15, 4344-4352. A novel parameter identification strategy based on COOT optimizer applied to a three-diode model of 7902 3.2 0 triple cation perovskite solar cells. Neural Computing and Applications, 0, , . Numerical simulation to optimize the efficiency of HTM-free perovskite solar cells by ETM engineering. 7903 Solar Energy, 2023, 250, 108-118. Toward Efficient Twoâ€Photon Circularly Polarized Light Detection through Cooperative Strategies in 7904 5.6 18 Chiral Quasiâ€2D Perovskites. Advanced Science, 2023, 10, . An Ultrasensitive Sandwiched Heterostructure Planar Photodetector with Gradient Quasiâ€2D 7905 2.6 Perovskite. Advanced Electronic Materials, 2023, 9, . Enhancing Photodetectivity of Si/Perovskite Heterojunction-Based Broad Spectral Photodiodes by Introducing C₆₀ Hole Blocking Layer. IEEE Transactions on Electron Devices, 2023, 70, 7906 0 1.6 1143-1148. Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. 7907 Advanced Devices & Instrumentation, 2023, 4, . Spectral Splitting as a Route to Promote Total Efficiency of Hybrid Photovoltaic Thermal with a 7908 3.11 Halide Perovskite Cell. Solar Rrl, 0, , 2201072. Surfaceâ€Energyâ€Regulated Growth of αâ€Phase Cs _{0.03} FA _{0.97} Pbl ₃ for 7909 Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials, 0, , 2208522.

	CHAILO	IN REPORT	
#	Article	IF	CITATIONS
7910	Doping Strategies for Promising Organic–Inorganic Halide Perovskites. Small, 2023, 19, .	5.2	8
7911	Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Research, 2023, 16, 6849-6858.	5.8	10
7912	Solvent Evaporation Induced Large-Scale Synthesis of Cs ₄ PbBr ₆ and CsPbBr ₃ Microcrystals: Optical Properties and Backlight Application for LEDs. ACS Omega, 2023, 8, 4616-4626.	1.6	8
7913	Porous Organic Cage Induced Spontaneous Restructuring of Buried Interface Toward Highâ€Performance Perovskite Photovoltaic. Advanced Functional Materials, 2023, 33, .	7.8	18
7914	Fundamentals and classification of halide perovskites. , 2023, , 19-55.		0
7915	Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society, 2023, 82, 229-235.	0.3	0
7916	Harnessing Strong Band-Filling in Mixed Pb-Sn Perovskites Boosts the Performance of Concentrator-Type Photovoltaics. ACS Energy Letters, 2023, 8, 1122-1130.	8.8	2
7917	A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Physical Chemistry Chemical Physics, 2023, 25, 7574-7588.	1.3	6
7918	Perovskite solar cells. , 2023, , 129-156.		0
7919	Polymer-based nano-inks for solar cells. , 2023, , 359-388.		0
7920	Lead-free halide perovskites. , 2023, , 187-237.		0
7921	Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of Materials Chemistry A, 2023, 11, 3822-3848.	5.2	3
7922	Nanomaterial-Based Synaptic Optoelectronic Devices for In-Sensor Preprocessing of Image Data. ACS Omega, 2023, 8, 5209-5224.	1.6	8
7923	Slot-die coating fabrication of perovskite solar cells toward commercialization. Journal of Alloys and Compounds, 2023, 942, 169104.	2.8	7
7924	Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation. Journal of Alloys and Compounds, 2023, 942, 169084.	2.8	7
7925	Insight on perovskite solar cells based on double electron transport layer. , 2022, , .		Ο
7926	Broadband yellow and white emission from large octahedral tilting in (110)-oriented layered perovskites: imidazolium-methylhydrazinium lead halides. Journal of Materials Chemistry C, 2023, 11, 4907-4915.	2.7	5
7927	Crystal structures for flexible photovoltaic application. , 2023, , 493-525.		Ο

#	Article	IF	CITATIONS
7928	Prospects and future perspectives of electronic materials for solar energy applications. , 2023, , 281-296.		0
7929	CsPbBr ₃ perovskite quantum dots grown within Fe-doped zeolite X with improved stability for sensitive NH ₃ detection. Nanoscale, 2023, 15, 5705-5711.	2.8	3
7930	Metal halide perovskite nanomaterials for solar energy. , 2023, , 149-168.		0
7931	Improved photovoltaic performance of Pb-free AgBi ₂ I ₇ based photovoltaics. Nanoscale Advances, 2023, 5, 1624-1630.	2.2	3
7932	Mitigating Surface Deficiencies of Perovskite Single Crystals Enables Efficient Solar Cells with Enhanced Moisture and Reverseâ€Bias Stability. Advanced Functional Materials, 2023, 33, .	7.8	20
7933	Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Optical and Quantum Electronics, 2023, 55, .	1.5	5
7934	Bifunctional modified biopolymer for highly efficient and stable perovskite solar cells and modules. Chemical Engineering Journal, 2023, 460, 141699.	6.6	9
7935	Development and Implementation of a Two-Level Inquiry- and Project-Based Modular Approach to Teaching a Second-Semester Physical Chemistry Laboratory Course. Journal of Chemical Education, 0, ,	1.1	0
7936	Effect of Surface Termination on Carrier Dynamics of Metal Halide Perovskites: Ab Initio Quantum Dynamics Study. Electronic Materials Letters, 0, , .	1.0	0
7937	Simultaneous Photoluminescence and Photothermal Investigation of Individual CH ₃ NH ₃ PbBr ₃ Microcrystals. Journal of Physical Chemistry Letters, 2023, 14, 3506-3511.	2.1	0
7938	Organo-Lead Halide Perovskite Materials CH ₃ NH ₃ PbI ₂ X, X is I, Br, or Cl, in Solar Cell Applications. International Journal of Nanoscience, 2023, 22, .	0.4	2
7939	Understanding electron transport on hybrid perovskite/carbon allotropes for energy conversion and storage applications: A first principles study. Solar Energy, 2023, 255, 180-190.	2.9	0
7940	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
7941	Efficient and stable perovskite solar cells based on blade-coated CH3NH3PbI3 thin films fabricated using "green―solvents under ambient conditions. Organic Electronics, 2023, 116, 106763.	1.4	6
7942	Numerical assessment and optimization of highly efficient lead-free hybrid double perovskite solar cell. Results in Optics, 2023, 11, 100387.	0.9	7
7943	Unveiling the dimensional effects of SnO2 quantum dots and nanoparticles on the interfacial properties of perovskite solar cells. Journal of Power Sources, 2023, 568, 232928.	4.0	4
7944	SnO2 electron transport layer modified by F/N-doped graphdiyne and in situ XRD and in situ XAFS exploration on its effect on perovskite active layer. Nano Today, 2023, 50, 101852.	6.2	5
7945	Modular wearable optoelectronic system using photoactive nanomembranes. Nano Energy, 2023, 111, 108446.	8.2	1

#	Article	IF	CITATIONS
7946	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. Materials Today Chemistry, 2023, 30, 101511.	1.7	1
7947	Crystal structure and electrical conduction of the new organic-inorganic compound (C7H10N)2MnCl4. Journal of Molecular Structure, 2023, 1281, 135080.	1.8	1
7948	Methylammonium lead triiodide perovskite-based solar cells efficiency: Insight from experimental and simulation. Journal of Molecular Graphics and Modelling, 2023, 122, 108458.	1.3	8
7949	Efficiency Approaching 26% in Triple Cation Mixed Halide Perovskite Solar Cells by Numerical Simulation. IEEE Journal of Photovoltaics, 2023, 13, 242-249.	1.5	5
7950	Recent advances of two-dimensional material additives in hybrid perovskite solar cells. Nanotechnology, 2023, 34, 172001.	1.3	5
7951	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
7952	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie, 2023, 135, .	1.6	0
7953	High-performance layer-structured Si/Ga ₂ O ₃ /CH ₃ NH ₃ PbI ₃ heterojunction photodetector based on a Ga ₂ O ₃ buffer interlayer. Applied Optics, 2023, 62, 476	0.9	4
7954	Structural, electronic, optical, and mechanical properties of the all-inorganic lead-free metal halides double perovskites Cs2RbInX6 (XÂ=ÂCl, Br, I): A first-principles based study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116299.	1.7	4
7955	Probing the Genuine Carrier Dynamics of Semiconducting Perovskites under Sunlight. Jacs Au, 2023, 3, 441-448.	3.6	6
7956	Development of high efficiency Ce1–BMgBO2 buffer and perovskite HTL based CIGSSe thin film solar cell using a simulation approach. Physica B: Condensed Matter, 2023, 653, 414691.	1.3	2
7957	Recent Progress in Blue Perovskite LEDs. Korean Journal of Materials Research, 2022, 32, 449-457.	0.1	0
7958	Chemical doping of lead-free metal-halide-perovskite related materials for efficient white-light photoluminescence. Materials Today Physics, 2023, 31, 100992.	2.9	12
7959	Giant electrophotonic response in two-dimensional halide perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>Cs</mml:mi> mathvariant="normal">I </mml:mrow> <mml:mn>9</mml:mn> </mml:msub> by strain engineering. Physical Review Materials, 2023, 7</mml:math 	:mrow> <n< td=""><td>nml:mn>3</td></n<>	nml:mn>3
7960	Biomassâ€Derived Materials for Interface Engineering in Organic/Perovskite Photovoltaic and Lightâ€Emitting Devices. Advanced Materials Technologies, 2023, 8, .	3.0	6
7961	Polarons in perovskite solar cells: effects on photovoltaic performance and stability. JPhys Energy, 2023, 5, 024002.	2.3	6
7962	Study of Optoelectronic Features in Polar and Nonpolar Polymorphs of the Oxynitride Tin-Based Semiconductor InSnO ₂ N. Journal of Physical Chemistry Letters, 2023, 14, 1548-1555.	2.1	2
7963	Bifunctional Cellulose Interlayer Enabled Efficient Perovskite Solar Cells with Simultaneously Enhanced Efficiency and Stability. Advanced Science, 2023, 10, .	5.6	13

#	Article	IF	CITATIONS
7964	Dual-side interfacial passivation of FAPbI3 perovskite film by Naphthylmethylammonium iodide for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 460, 141788.	6.6	17
7965	Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Structures, 2023, 4, .	6.9	32
7966	Scanning Electrochemical Microscope Studies of Charge Transfer Kinetics at the Interface of the Perovskite/Hole Transport Layer. Journal of Nanotechnology, 2023, 2023, 1-12.	1.5	0
7967	Shedding light on electronically doped perovskites. Materials Today Chemistry, 2023, 29, 101380.	1.7	3
7968	Resonant Second Harmonic Generation in Proline Hybrid Lead Halide Perovskites. Advanced Optical Materials, 2023, 11, .	3.6	11
7969	Ultrafast photoinduced carrier dynamics in single crystalline perovskite films. Journal of Materials Chemistry C, 2023, 11, 3736-3742.	2.7	8
7970	Preparation of bismuth-based perovskite Cs3Bi2I6Br3 single crystal for X-ray detector application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
7971	Dual Optimization of Bulk and Interface via the Synergistic Effect of Ligand Anchoring and Hole Transport Dopant Enables 23.28% Efficiency Inverted Perovskite Solar Cells. ACS Nano, 2023, 17, 3776-3785.	7.3	12
7972	Unveiling the Intrinsic Structure and Intragrain Defects of Organic–Inorganic Hybrid Perovskites by Ultralow Dose Transmission Electron Microscopy. Advanced Materials, 2023, 35, .	11.1	1
7973	Organic Passivation of Deep Defects in Cu(In,Ga)Se ₂ Film for Geometry-Simplified Compound Solar Cells. Research, 2023, 6, .	2.8	3
7974	Review of Defect Passivation for NiO _{<i>x</i>} -Based Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 2098-2121.	2.5	10
7975	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
7976	Contact Geometry and Pathway Determined Carriers Transport through Microscale Perovskite Crystals. Advanced Materials Interfaces, 2023, 10, .	1.9	0
7977	Alq3/MgF2 Multilayered Encapsulation Film for Enhanced Stability of Perovskite Solar Cells. , 2022, 1, 225-233.		0
7978	Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light. Nanoscale, 2023, 15, 5598-5622.	2.8	14
7979	Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nature Photonics, 2023, 17, 236-243.	15.6	13
7980	Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE Journal of Photovoltaics, 2023, 13, 404-410.	1.5	7
7981	Flexible and Printed Electronics. , 2023, , 105-125.		1

		15	C
#	ARTICLE	IF	CITATIONS
7982	Study of Eco-Friendly Organic–Inorganic Heterostructure CH3NH3SnI3 Perovskite Solar Cell via SCAPS Simulation. Journal of Electronic Materials, 2023, 52, 4321-4329.	1.0	4
7983	Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment. Nanoscale Advances, 2023, 5, 1492-1526.	2.2	7
7984	Investigation on guanidinium bromide incorporation in methylammonium lead iodide for enhanced efficiency and stability of perovskite solar cells. Solar Energy, 2023, 253, 1-8.	2.9	4
7985	Real-time observation of the buildup of polaron in Î \pm -FAPbI3. Nature Communications, 2023, 14, .	5.8	7
7986	Highly efficient and stable near-infrared photodetectors enabled from passivated tin–lead hybrid perovskites. Nanotechnology, 2023, 34, 215702.	1.3	1
7987	Orientation Engineering via 2D Seeding for Stable 24.83% Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	23
7988	Properties and alcohol sensing applications of quasi-2D (PEA)2(MA)3Sb2Br9 thin films. , 2023, 18, .		1
7989	Microwave-facilitated crystal growth of defect-passivated triple-cation metal halide perovskites toward efficient solar cells. Nanoscale, 2023, 15, 5954-5963.	2.8	1
7990	Narrowband Near-Infrared Photodetectors Based on Dye-Doped Perovskites. ACS Applied Electronic Materials, 2023, 5, 1628-1635.	2.0	1
7991	2D-3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Science China Materials, 2023, 66, 2013-2022.	3.5	4
7992	Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials. Journal of Energy Chemistry, 2023, 82, 66-87.	7.1	7
7993	Ionâ€Bolometric Effect in Grain Boundaries Enabled High Photovoltage Response for NIR to Terahertz Photodetection. Advanced Functional Materials, 2023, 33, .	7.8	4
7994	Perovskite-Sensitized Upconversion under Operando Conditions. Journal of Physical Chemistry C, 2023, 127, 4773-4783.	1.5	5
7995	Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. European Physical Journal Plus, 2023, 138, .	1.2	0
7996	The study of new double perovskites K ₂ AgAsX ₆ (X = Cl, Br) for energy-based applications. Journal of Taibah University for Science, 2023, 17, .	1.1	15
7997	Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials, 2023, 15, .	3.8	14
7998	Recycling Useful Materials of Perovskite Solar Cells toward Sustainable Development. Advanced Sustainable Systems, 2023, 7, .	2.7	4
7999	Electron Transfer Dynamics from CsPbBr ₃ Nanocrystals to Au ₁₄₄ Clusters. ACS Physical Chemistry Au, 2023, 3, 348-357.	1.9	4

#	Article	IF	CITATIONS
8000	Numerical Analysis of High-Efficiency CH3NH3PbI3 Perovskite Solar Cell with PEDOT:PSS Hole Transport Material Using SCAPS 1D Simulator. Journal of Electronic Materials, 2023, 52, 4338-4350.	1.0	4
8001	Electrostatic Epitaxy of Orientational Perovskites for Microlasers. Advanced Materials, 2023, 35, .	11.1	7
8002	Passivation Engineering Using Ultrahydrophobic Donor–ĩ€â€"Acceptor Organic Dye with Machine Learning Insights for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	4
8003	Polymerization Strategies to Construct a 3D Polymer Passivation Network toward High Performance Perovskite Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	1
8004	Polymerization Strategies to Construct a 3D Polymer Passivation Network toward High Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
8005	Reversible Growth of Halide Perovskites via Lead Oxide Hydroxide Nitrates Anchored Zeolitic Imidazolate Frameworks for Information Encryption and Decryption. ACS Nano, 2023, 17, 4483-4494.	7.3	5
8006	Multifunctional Green Solvent for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2023, 19, 462-470.	1.0	4
8007	Design of SnO ₂ Electron Transport Layer in Perovskite Solar Cells to Achieve 2000 h Stability Under 1 Sun Illumination and 85 °C. Advanced Materials Interfaces, 2023, 10, .	1.9	12
8008	ĐϔĐ¾Đ»ÑƒÑ‡ĐμĐ½Đ͵Đμ Đ͵ Đ͵ÑÑĐ»ĐμĐϿ¾Đ²Đ°Đ½Đ͵Đμ Đ²Đ°Đ®ÑƒÑƒĐ¼Đ½Đ¾-Đ½Đ°Đ¿Ñ‹Đ»ĐμĐ½Đ½	ĺ<ĨoĐ;ĐĻ	ıровр
8009	Synergistic Toughening and Selfâ€Healing Strategy for Highly Efficient and Stable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	21
8010	Inhibited Degradation of Organic–Inorganic Perovskite-Based Quantum Dot Films via Rapid Annealing Temperatures. Crystals, 2023, 13, 452.	1.0	0
8011	Intrinsic Dipole Arrangement to Coordinate Energy Levels for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	20
8012	Intricate Reaction Pathways on CH ₃ NH ₃ PbI ₃ Photocatalysts in Aqueous Solution Unraveled by Single-Particle Spectroscopy. Journal of Physical Chemistry Letters, 2023, 14, 2565-2572.	2.1	0
8013	Efficient and Stable Inverted Perovskite Solar Cells Using Donor–Acceptor–Donor Small Molecules to Tuning NiO _{<i>x</i>} /Perovskite Interfacial Microstructure. Solar Rrl, 2023, 7, .	3.1	1
8014	Bridging the inter-grain charge transport <i>via</i> organic semiconductors for high-performance thickness-insensitive perovskite solar cells. Materials Chemistry Frontiers, 0, , .	3.2	0
8015	<i>De Novo</i> Studies of Working Mechanisms for Self-Driven Narrowband Perovskite Photodetectors. ACS Applied Materials & amp; Interfaces, 0, , .	4.0	0
8016	Rational Regulation of Organic Spacer Cations for Quasiâ€⊋D Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
8017	Quantum-Dot-Doped Lead Halide Perovskites for Ionizing Radiation Detection. , 2023, 1, 715-723.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
8018	Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. , 2023, 2	2, .		8
8019	Timeâ€Resolved Spectroscopy for the Study of Perovskite. Chinese Journal of Electroni 1053-1071.	cs, 2022, 31,	0.7	3
8020	Extreme Radiation Resistance of Selfâ€Powered Highâ€Performance Cs _{0.04} Rb _{0.04} (FA _{0.65} MA _{0.35}) <su Perovskite Photodiodes. Advanced Optical Materials, 2023, 11, .</su 	ıb>0.92Pb(I ₀	.8 5. ∉sub>	Brs:sub>0.14
8021	Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials, 2	2023, 13, 991.	1.9	8
8022	Enabling Perovskite Solar Cell Omnidirectional Light Utilizing Via Trapping Technology. Theory and Simulations, 2023, 6, .	Advanced	1.3	1
8023	Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocry Leading to Nanofaceting. Nano Letters, 2023, 23, 2277-2286.	stals	4.5	3
8024	Fine-tuning chemical passivation over photovoltaic perovskites by varying the symmetr acceptor in D–A molecules. Journal of Materials Chemistry A, 2023, 11, 8299-8307.	y of bidentate	5.2	9
8025	Photoelectrochemically Induced CO ₂ Reduction Using Halide-Tunable Lea Perovskites. ACS Applied Energy Materials, 2023, 6, 3566-3578.	d-Free	2.5	4
8026	In-situ fabricated poly (vinylidene fluoride)-Incorporated perovskite nanocrystals with b Schottky performance and enhanced stability. Optical Materials, 2023, 138, 113685.	etter	1.7	0
8027	WO3:AgInS2 quantum dot electron transport layers in enhanced perovskite solar cells. Materials Research, 2023, 38, 1882-1893.	Journal of	1.2	0
8028	Innovative Approaches to Semi-Transparent Perovskite Solar Cells. Nanomaterials, 202	3, 13, 1084.	1.9	7
8029	Nanostructured Ruddlesden–Popper-Layered Lead Bromide Perovskites with Stable a Wavelength for Photodetection Applications. ACS Applied Nano Materials, 2023, 6, 51		2.4	5
8030	Surface energy and surface stability of cesium tin halide perovskites: a theoretical invest Physical Chemistry Chemical Physics, 2023, 25, 10583-10590.	itigation.	1.3	4
8031	Farâ€Red Interlayer Excitons of Perovskite/Quantumâ€Dot Heterostructures. Advanced	Science, 2023, 10, .	5.6	5
8032	3,5-dichlorobenzylamine lead high-performance and stable 2D/3D perovskite solar cells Materials Science: Materials in Electronics, 2023, 34, .	. Journal of	1.1	1
8033	Toward a Diagnostic Method for Efficient Perovskite Solar Cells Based on Equivalent Ci Parameters. Journal of Physical Chemistry C, 2023, 127, 5663-5675.	rcuit	1.5	2
8034	Crystal Growth Regulation of αâ€FAPbl ₃ Perovskite Films for Highâ€Effici Longâ€Term Stability. Advanced Functional Materials, 2023, 33, .	ency Solar Cells with	7.8	5
8035	Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution m copper iodide as a hole transport layer. Japanese Journal of Applied Physics, 2023, 62, S		0.8	1

#	Article	IF	CITATIONS
8036	Enhanced Carrier Diffusion Enables Efficient Back ontact Perovskite Photovoltaics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
8037	Enhanced Carrier Diffusion Enables Efficient Backâ€Contact Perovskite Photovoltaics. Angewandte Chemie, 0, , .	1.6	0
8038	Characterization of Large-Energy-Bandgap Methylammonium Lead Tribromide (MAPbBr3) Perovskite Solar Cells. Nanomaterials, 2023, 13, 1152.	1.9	2
8039	The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience. Coatings, 2023, 13, 669.	1.2	0
8040	Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chemistry of Materials, 2023, 35, 2683-2712.	3.2	13
8041	Examining a Year-Long Chemical Degradation Process and Reaction Kinetics in Pristine and Defect-Passivated Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 2904-2917.	3.2	3
8042	A Topâ€Down Strategy for Reforming the Characteristics of NiO Hole Transport Layer in Inverted Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
8043	Targeted suppression of hysteresis effect in perovskite solar cells through the inhibition of cation migration. Applied Physics Letters, 2023, 122, 133502.	1.5	3
8044	Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application. Nano-Micro Letters, 2023, 15, .	14.4	41
8045	Re-emerging photo responsiveness enhancement under compression in (NH4)2SeBr6. Applied Physics Letters, 2023, 122, .	1.5	3
8046	Environmentally friendly anti-solvent engineering for high-efficiency tin-based perovskite solar cells. Energy and Environmental Science, 2023, 16, 2177-2186.	15.6	20
8047	Laterally Grown Strain-Engineered Semitransparent Perovskite Solar Cells with 16.01% Efficiency. ACS Applied Materials & Interfaces, 2023, 15, 17994-18005.	4.0	6
8048	Large‣cale, Uniformâ€Patterned CsCu ₂ 1 ₃ Films for Flexible Solarâ€Blind Photodetectors Array with Ultraweak Light Sensing. Small, 2023, 19, .	5.2	8
8049	Fluorinated- and non-fluorinated-diarylamine-Zn(<scp>ii</scp>) and Cu(<scp>ii</scp>) phthalocyanines as symmetrical <i>vs.</i> asymmetrical hole selective materials. Journal of Materials Chemistry C, 2023, 11, 8243-8253.	2.7	3
8050	Role of a corrugated Dion–Jacobson 2D perovskite as an additive in 3D MAPbBr ₃ perovskite-based light emitting diodes. Nanoscale Advances, 2023, 5, 2508-2516.	2.2	1
8051	Molybdenum-based perovskite solar cell with resistance and layer thickness impact on PCE and fill factor. I-manager's Journal on Electrical Engineering, 2022, 16, 22.	0.3	0
8052	Phase Control of Organometal Halide Perovskites for Development of Highly Efficient Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 21974-21981.	4.0	1
8053	Enhancing Efficiency and Stability of Perovskite Solar Cells via Photosensitive Molecule-Assisted Defect Passivation. ACS Applied Energy Materials, 0, , .	2.5	0

#	Article	IF	CITATIONS
8054	Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films. Nanomaterials, 2023, 13, 1245.	1.9	1
8055	In situ growth of perovskite single-crystal thin films with low trap density. Cell Reports Physical Science, 2023, 4, 101363.	2.8	4
8056	Light Soaking Effects in Perovskite Solar Cells: Mechanism, Impacts, and Elimination. ACS Applied Energy Materials, 2023, 6, 10303-10318.	2.5	5
8057	Insights into the replacement of FA by Cs in FAPbI3â [~] 'xClx thin film fabricated in atmospheric conditions: Inspection of solar cell and photocatalytic performances. Journal of Alloys and Compounds, 2023, 953, 169930.	2.8	1
8058	Ferroelectricity in Hybrid Perovskites. Journal of Physical Chemistry Letters, 2023, 14, 3535-3552.	2.1	7
8059	Self-powered perovskite photon-counting detectors. Nature, 2023, 616, 712-718.	13.7	28
8060	Numerical Analysis in DFT and SCAPS-1D on the Influence of Different Charge Transport Layers of CsPbBr ₃ Perovskite Solar Cells. Energy & Fuels, 2023, 37, 6078-6098.	2.5	61
8061	Enhanced performance in perovskites films by defect engineering and charge carrier transportation via pulsed laser doping of 2D MoS2. Sustainable Materials and Technologies, 2023, 36, e00622.	1.7	1
8062	Precursor Engineering of Lead Acetate-Based Precursors for High-Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 18800-18807.	4.0	3
8063	Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer. Nanomaterials, 2023, 13, 1313.	1.9	8
8064	Elucidating the Role of Contact-Induced Gap States and Passivation Molecules at Perovskite/Metal Contacts. ACS Applied Energy Materials, 2023, 6, 4111-4118.	2.5	2
8065	Indirect Bandgap Emission of the Metal Halide Perovskite FAPbI ₃ at Low Temperatures. Journal of Physical Chemistry Letters, 2023, 14, 3805-3810.	2.1	2
8066	Improved Optical Efficiencies of Perovskite Thin Film Solar Cells by Randomly Distributed Ag Nanoparticles. Plasmonics, 0, , .	1.8	0
8067	Ferroelectric order in hybrid organic-inorganic perovskite NH4PbI3 with non-polar molecules and small tolerance factor. Npj Computational Materials, 2023, 9, .	3.5	2
8068	Optically Pumped Polaritons in Perovskite Light-Emitting Diodes. ACS Photonics, 2023, 10, 1349-1355.	3.2	2
8069	Experimental synthesis of double perovskite functional nano-ceramic Eu2NiMnO6: Combining optical characterization and DFT calculations. Journal of Solid State Chemistry, 2023, 323, 124022.	1.4	4
8070	Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer. Scientific Reports, 2023, 13, .	1.6	5
8071	Defect Origin of the Light-Soaking Effects in Hybrid Perovskite Solar Cells. , 2023, , 239-263.		1

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
8072	Ultravioletâ€Visibleâ€Shortâ€Wavelength Infrared Broadband and Fastâ€Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. Small, 2023, 19, .	5.2	8
8073	Investigating the Molecular Orientation and Thermal Stability of Spiroâ€OMeTAD and its Dopants by Near Edge Xâ€Ray Absorption Fine Structure. , 2023, 2, .		1
8075	Strategies for improving the device performance of \$2mathbf{D}\$ perovskite field-effect transistors. , 2023, , .		0
8094	A Lead-Free All-Inorganic CS ₂ SnI ₆ Based Ultra-Thin Perovskite Solar Cell Optimized using SCAPS-1D Simulator. , 2022, , .		0
8103	Direct Observation of Intragrain Defect Elimination in FAPbI ₃ Perovskite Solar Cells by Two-Dimensional PEA ₂ PbI ₄ . ACS Energy Letters, 2023, 8, 2620-2629.	8.8	5
8128	Perovskite-based LEDs and lasers. , 2023, , 519-548.		0
8141	Hole Transport Layer Free Non-toxic Perovskite Solar Cell Using ZnSe Electron Transport Material. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 486-498.	0.2	0
8177	Perovskite-based solar cells. , 2023, , 265-292.		0
8186	Phase-pure two-dimensional layered perovskite thin films. Nature Reviews Materials, 2023, 8, 533-551.	23.3	25
8191	Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices. ACS Omega, 2023, 8, 17337-17349.	1.6	1
8194	Photovoltaic Performance of FAPbI ₃ Perovskite Is Hampered by Intrinsic Quantum Confinement. ACS Energy Letters, 2023, 8, 2543-2551.	8.8	2
8195	A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy and Environmental Science, 2023, 16, 2432-2447.	15.6	12
8211	Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells. ACS Energy Letters, 2023, 8, 2728-2737.	8.8	16
8230	Recent development in metal halide perovskites synthesis to improve their charge-carrier mobility and photocatalytic efficiency. Science China Materials, 2023, 66, 2545-2572.	3.5	4

8238	Phonon-driven transient bandgap renormalization in perovskite single crystals. Materials Horizons, 0, , .	6.4	1
8255	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21
8269	Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7, 632-652.	13.8	36
8270	Organic-inorganic hybrid perovskite material and its application for transistor. Materials Chemistry Frontiers, 0, , .	3.2	0

# 8288	ARTICLE Structure, composition, and stability of metal halide perovskites. , 2023, , 3-47.	IF	CITATIONS
8290	Recent progress and developments of ionic liquids assimilated materials for solar cell. , 2023, , 79-95.		0
8291	Light-emitting field-effect transistors (LET) based on metal halide perovskites. , 2023, , 201-218.		0
8293	Halide perovskite micro and nano lasers. , 2023, , 219-255.		0
8295	Recent advances in electrode interface modifications in perovskite solar cells. Materials Chemistry Frontiers, 0, , .	3.2	0
8309	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.2	7
8327	Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy and Environmental Science, 2023, 16, 4251-4279.	15.6	1
8338	The role of organic spacers in 2D/3D hybrid perovskite solar cells. Materials Chemistry Frontiers, 2023, 8, 82-103.	3.2	2
8353	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16
8366	Optical detection of nitroaromatic compounds using MAPbBr3 at room temperature. Journal of Chemical Sciences, 2023, 135, .	0.7	0
8376	Optical Properties of Metal Oxide-Based Perovskite Structures. Progress in Optical Science and Photonics, 2023, , 71-92.	0.3	0
8380	Self-assembly of perovskite nanoplates in colloidal suspensions. Materials Horizons, 0, , .	6.4	0
8423	<i>In situ</i> dipole formation to achieve high open-circuit voltage in inverted perovskite solar cells <i>via</i> fluorinated pseudohalide engineering. Materials Horizons, 2023, 10, 5763-5774.	6.4	4
8454	Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nature Reviews Materials, 2023, 8, 822-838.	23.3	2
8461	Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Advances, 2023, 13, 33797-33819.	1.7	2
8468	Solution fabrication methods and optimization strategies of CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry C, O, , .	2.7	0
8521	Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy and Environmental Science, 2024, 17, 1781-1818.	15.6	0
8524	Pb-Free metal halide double perovskite, Cs2SbAgX6, X = I or Cl, with TiO2 nano-particles in solar cell applications. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
8525	Interlayer and intermolecular excitons in various donor–acceptor heterostructures: Applications to excitonic devices. Journal of Materials Chemistry C, 0, , .	2.7	0
8569	Analytical Study on the Effect of Perovskite Layer Thickness on Photo-capacitor Device for Retinomorphic Sensor Application. , 2023, , .		0
8590	Consolidation of Temperature Coefficients of Perovskite-Based Absorbers. , 2023, , .		0
8591	Enhancing the Performance of Perovskite Solar Cells Through Antioxidant Incorporation. , 2023, , .		0
8594	Enhancing Perovskite Film Properties Through Solvent Annealing Techniques. , 2023, , .		0
8595	Solvent Vapor Annealing of CH ₃ NH ₃ PbI ₃ Films for Improved Photovoltaic Performance of Perovskite Solar Cells. , 2023, , .		0
8621	Two-dimensional complex metal halides: influence of restricted dimensionality on functional properties. Journal of Materials Chemistry A, 2024, 12, 5055-5079.	5.2	0
8652	Strategies for constructing high-performance tin-based perovskite solar cells. Journal of Materials Chemistry C, 2024, 12, 4184-4207.	2.7	0
8671	Halide Perovskite Materials for Photovoltaics and Lighting. Advances in Chemical and Materials Engineering Book Series, 2024, , 126-146.	0.2	0