Transcranial Ultrasound (TUS) Effects on Mental States

Brain Stimulation 6, 409-415 DOI: 10.1016/j.brs.2012.05.002

Citation Report

#	Article	IF	CITATIONS
1	Pulsed Ultrasound Differentially Stimulates Somatosensory Circuits in Humans as Indicated by EEG and fMRI. PLoS ONE, 2012, 7, e51177.	2.5	84
2	A New Methodology of Viewing Extra-Axial Fluid and Cortical Abnormalities in Children with Autism via Transcranial Ultrasonography. Frontiers in Human Neuroscience, 2014, 7, 934.	2.0	14
3	Robust sequential working memory recall in heterogeneous cognitive networks. Frontiers in Systems Neuroscience, 2014, 8, 220.	2.5	16
4	Consciousness in the universe. Physics of Life Reviews, 2014, 11, 39-78.	2.8	463
5	Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature Neuroscience, 2014, 17, 322-329.	14.8	708
6	Low-Intensity Focused Ultrasound Pulsation Device Used During Magnetic Resonance Imaging: Evaluation of Magnetic Resonance Imaging-Related Heating at 3 Tesla/128 MHz. Neuromodulation, 2014, 17, 236-241.	0.8	8
7	An Overview of Biofield Devices. Global Advances in Health and Medicine, 2015, 4, gahmj.2015.022	1.6	20
8	Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model. Chinese Physics B, 2015, 24, 124302.	1.4	2
9	Ipsi- and Contralateral Motor Response Using Ultrasound-induced Neurostimulation in Deeply Anesthetized Mice. Physics Procedia, 2015, 70, 1212-1215.	1.2	3
10	Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood–brain barrier opening and brain-tumor drug delivery. Acta Biomaterialia, 2015, 15, 89-101.	8.3	67
11	Effect of ultrasounds on neurons and microglia: Cell viability and automatic analysis of cell morphology. Biomedical Signal Processing and Control, 2015, 22, 44-53.	5.7	5
12	Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex. Scientific Reports, 2015, 5, 8743.	3.3	298
13	Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment. Journal of Ultrasound in Medicine, 2015, 34, 1-41.	1.7	48
14	A Review of Low-Intensity Transcranial Focused Ultrasound for Clinical Applications. Current Behavioral Neuroscience Reports, 2015, 2, 60-66.	1.3	49
15	Understanding Schizophrenia as a Disorder of Consciousness: Biological Correlates and Translational Implications from Quantum Theory Perspectives. Clinical Psychopharmacology and Neuroscience, 2015, 13, 36-47.	2.0	15
16	Review Paper: A Review on Brain Stimulation Using Low Intensity Focused Ultrasound. Basic and Clinical Neuroscience, 2016, 7, 187-94.	0.6	78
17	Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity. EPJ Applied Physics, 2016, 73, 21201.	0.7	3
18	Development of a Wearable Robotic Positioning System for Noninvasive Transcranial Focused Ultrasound Stimulation. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2284-2293.	5.8	14

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	Ultrasonic neuromodulation. Journal of Neural Engineering, 2016, 13, 031003.	3.5	175
20	Brain Neuromodulation Techniques. Neuroscientist, 2016, 22, 406-421.	3.5	98
21	Does Exposure to Diagnostic Ultrasound Modulate Human Nerve Responses to Magnetic Stimulation?. Ultrasound in Medicine and Biology, 2016, 42, 2950-2956.	1.5	4
22	Electrophysiological Source Imaging of Brain Networks Perturbed by Low-Intensity Transcranial Focused Ultrasound. IEEE Transactions on Biomedical Engineering, 2016, 63, 1787-1794.	4.2	58
23	A review of low-intensity focused ultrasound for neuromodulation. Biomedical Engineering Letters, 2017, 7, 135-142.	4.1	98
24	Microtubule associated protein 2 in bipolar depression: Impact of pregnenolone. Journal of Affective Disorders, 2017, 218, 49-52.	4.1	12
25	Photobiomodulation and Other Light Stimulation Procedures. , 2017, , 97-129.		7
26	Unmyelinated Peripheral Nerves Can Be Stimulated inÂVitro Using Pulsed Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 2269-2283.	1.5	50
27	Toward a Cognitive Neural Prosthesis Using Focused Ultrasound. Frontiers in Neuroscience, 2017, 11, 607.	2.8	23
28	The Ruggiero-Klinghardt (RK) Protocol for the Diagnosis and Treatment of Chronic Conditions with Particular Focus on Lyme Disease. American Journal of Immunology, 2017, 13, 114-126.	0.1	2
29	Neuromodulation with transcranial focused ultrasound. Neurosurgical Focus, 2018, 44, E14.	2.3	119
30	Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses <i>in vivo</i> . Journal of Neural Engineering, 2018, 15, 035004.	3.5	18
31	Non-invasive peripheral nerve stimulation via focused ultrasound <i>in vivo</i> . Physics in Medicine and Biology, 2018, 63, 035011.	3.0	100
32	A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology. JAMA Neurology, 2018, 75, 246.	9.0	176
33	Capacitive Micromachined Ultrasonic Transducer (CMUT) ring array for transcranial ultrasound neuromodulation. , 2018, 2018, 2675-2678.		6
34	On the neuromodulatory pathways of the inÂvivo brain by means of transcranial focused ultrasound. Current Opinion in Biomedical Engineering, 2018, 8, 61-69.	3.4	45
35	Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation. Frontiers in Neurology, 2018, 9, 1007.	2.4	65
36	Noninvasive Focused Ultrasound for Neuromodulation. Psychiatric Clinics of North America, 2018, 41, 505-514.	1.3	43

#	Article	IF	CITATIONS
37	Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging. Frontiers in Neuroscience, 2018, 12, 269.	2.8	20
38	Modulation of Brain Function and Behavior by Focused Ultrasound. Current Behavioral Neuroscience Reports, 2018, 5, 153-164.	1.3	27
39	Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain Stimulation, 2018, 11, 1209-1217.	1.6	193
40	Antidepressant-Like Effect of Low-Intensity Transcranial Ultrasound Stimulation. IEEE Transactions on Biomedical Engineering, 2019, 66, 411-420.	4.2	68
41	Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomaterialia, 2019, 97, 116-140.	8.3	50
42	Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Frontiers in Neurology, 2019, 10, 549.	2.4	100
43	Ultrasonic Neuromodulation via Astrocytic TRPA1. Current Biology, 2019, 29, 3386-3401.e8.	3.9	139
44	Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound in Medicine and Biology, 2019, 45, 1509-1536.	1.5	297
45	Brain Modulatory Effects by Low-Intensity Transcranial Ultrasound Stimulation (TUS): A Systematic Review on Both Animal and Human Studies. Frontiers in Neuroscience, 2019, 13, 696.	2.8	26
46	Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Physical Review E, 2019, 99, 032406.	2.1	46
47	Putative novel neuromodulatory treatments for affective disorders – What might emerge?. Personalized Medicine in Psychiatry, 2019, 17-18, 46-50.	0.1	1
48	A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Transactions on Biomedical Engineering, 2019, 66, 2704-2718.	4.2	159
49	Transcranial Direct Current Stimulation for Affective Symptoms and Functioning in Chronic Low Back Pain: A Pilot Double-Blinded, Randomized, Placebo-Controlled Trial. Pain Medicine, 2019, 20, 1166-1177.	1.9	25
50	Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Frontiers in Physiology, 2020, 11, 787.	2.8	27
51	Magnetic resonance-guided focused ultrasound for movement disorders: clinical and neuroimaging advances. Current Opinion in Neurology, 2020, 33, 488-497.	3.6	8
52	Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Transactions on Biomedical Engineering, 2021, 68, 1923-1931.	4.2	28
53	Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of TTX. Scientific Reports, 2020, 10, 15347.	3.3	33
54	Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectronic Medicine, 2020, 6, 23.	2.3	41

#	Article	IF	CITATIONS
55	Wearable Transcranial Ultrasound System for Remote Stimulation of Freely Moving Animal. IEEE Transactions on Biomedical Engineering, 2021, 68, 2195-2202.	4.2	12
56	Transcranial Ultrasound Innovations Ready for Broad Clinical Application. Advanced Science, 2020, 7, 2002026.	11.2	30
57	Remote, brain region–specific control of choice behavior with ultrasonic waves. Science Advances, 2020, 6, eaaz4193.	10.3	73
58	New Developments in Non-invasive Brain Stimulation in Chronic Pain. Current Physical Medicine and Rehabilitation Reports, 2020, 8, 280-292.	0.8	9
59	Incisionless MR-guided focused ultrasound: technical considerations and current therapeutic approaches in psychiatric disorders. Expert Review of Neurotherapeutics, 2020, 20, 687-696.	2.8	9
60	Neuromodulation Management of Chronic Neuropathic Pain in the Central Nervous System. Advanced Functional Materials, 2020, 30, 1908999.	14.9	33
61	Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neuroscience and Biobehavioral Reviews, 2020, 115, 238-250.	6.1	10
62	Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimulation, 2020, 13, 804-814.	1.6	54
63	Repeated Application of Transcranial Diagnostic Ultrasound Towards the Visual Cortex Induced Illusory Visual Percepts in Healthy Participants. Frontiers in Human Neuroscience, 2020, 14, 66.	2.0	12
64	Neuroprotective Effect of Low-Intensity Transcranial Ultrasound Stimulation in Moderate Traumatic Brain Injury Rats. Frontiers in Neuroscience, 2020, 14, 172.	2.8	9
65	Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Frontiers in Human Neuroscience, 2020, 14, 52.	2.0	114
66	New neuromodulation techniques for treatment resistant depression. International Journal of Psychiatry in Clinical Practice, 2020, 24, 106-115.	2.4	11
67	A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Scientific Reports, 2020, 10, 5573.	3.3	54
68	Future Research in Pain. , 2021, , 255-267.		0
69	Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO Integration, 2021, 2, .	1.3	4
70	Evaluation of an MRI receive head coil for use in transcranial MR guided focused ultrasound for functional neurosurgery. International Journal of Hyperthermia, 2021, 38, 22-29.	2.5	7
71	Mechanisms and Applications of Neuromodulation Using Surface Acoustic Waves—A Mini-Review. Frontiers in Neuroscience, 2021, 15, 629056.	2.8	13
72	Focused ultrasound neuromodulation. International Review of Neurobiology, 2021, 159, 221-240.	2.0	8

#	Article	IF	CITATIONS
73	Ultrasound-sensitive nanodroplets achieve targeted neuromodulation. Journal of Controlled Release, 2021, 332, 30-39.	9.9	29
74	Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Medical and Biological Engineering and Computing, 2021, 59, 1099-1110.	2.8	8
75	Transcranial Focused Ultrasound Enhances Sensory Discrimination Capability through Somatosensory Cortical Excitation. Ultrasound in Medicine and Biology, 2021, 47, 1356-1366.	1.5	23
76	Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimulation, 2021, 14, 598-606.	1.6	17
77	Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nature Communications, 2021, 12, 2519.	12.8	102
78	Implication of auditory confounding in interpreting somatosensory and motor responses in low-intensity focused transcranial ultrasound stimulation. Journal of Neurophysiology, 2021, 125, 2356-2360.	1.8	5
80	Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology, 2022, 47, 361-372.	5.4	11
81	Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Frontiers in Human Neuroscience, 2021, 15, 749162.	2.0	28
82	Neuroprotective effects of low-intensity transcranial ultrasound stimulation combined with Baicalin intervention on traumatic brain injury in animals. Brain Research Bulletin, 2021, 175, 246-253.	3.0	2
83	Improving image quality in transcranial magnetic resonance guided focused ultrasound using a conductive screen. Magnetic Resonance Imaging, 2021, 83, 41-49.	1.8	4
84	Evaluating the Therapeutic Effect of Lowâ€Intensity Transcranial Ultrasound on Traumatic Brain Injury With Diffusion Kurtosis Imaging. Journal of Magnetic Resonance Imaging, 2020, 52, 520-531.	3.4	7
85	A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among depressed participants. Neurology Psychiatry and Brain Research, 2020, 37, 60-66.	2.0	30
86	Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. Journal of Neural Engineering, 2020, 17, 056033.	3.5	2
91	Therapeutic Applications of Ultrasound in Neurological Diseases. Journal of Neurosonology and Neuroimaging, 2019, 11, 62-72.	0.1	8
92	Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. ELife, 2020, 9, .	6.0	64
93	Modulation in Action Potentials of Rat Hippocampal Neurons Measured on Multi-Channel Electrodes During Ultrasound Stimulation. Journal of Biomedical Engineering Research, 2013, 34, 177-181.	0.1	1
94	Post-stroke Motor Rehabilitation. Translational Medicine Research, 2017, , 517-535.	0.0	1
97	On the impact of quantum biology and relativistic time dilation in autism. AIMS Molecular Science, 2018, 5, 90-95.	0.5	1

#	Article	IF	CITATIONS
98	Safety culture. , 2018, , 304-339.		0
99	Immune System and Mind-Body Medicine – An Overview. , 2019, , 1-19.		2
102	Immune System and Mind-Body Medicine: An Overview. , 2020, , 97-115.		0
103	Transcranial ultrasound stimulation of the human motor cortex. IScience, 2021, 24, 103429.	4.1	35
106	Long term study of motivational and cognitive effects of low-intensity focused ultrasound neuromodulation in the dorsal striatum of nonhuman primates. Brain Stimulation, 2022, 15, 360-372.	1.6	26
107	The future perspectives of psychiatric neurosurgery. Progress in Brain Research, 2022, 270, 211-228.	1.4	0
108	Human Ultrasound Neuromodulation: State of the Art. Brain Sciences, 2022, 12, 208.	2.3	4
109	Non-invasive transcranial ultrasound stimulation for neuromodulation. Clinical Neurophysiology, 2022, 135, 51-73.	1.5	87
110	The Updated Role of Transcranial Ultrasound Neuromodulation in Ischemic Stroke: From Clinical and Basic Research. Frontiers in Cellular Neuroscience, 2022, 16, 839023.	3.7	5
111	Low Intensity Focused Ultrasound for Non-invasive and Reversible Deep Brain Neuromodulation—A Paradigm Shift in Psychiatric Research. Frontiers in Psychiatry, 2022, 13, 825802.	2.6	18
113	Transcranial Ultrasound Stimulation of the Anterior Cingulate Cortex Reduces Neuropathic Pain in Mice. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	1.2	9
121	Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Frontiers in Human Neuroscience, 2022, 16, 872639.	2.0	23
122	Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sciences, 2022, 12, 611.	2.3	3
123	Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Frontiers in Neurology, 2022, 13, .	2.4	15
124	Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimulation, 2022, 15, 737-746.	1.6	36
125	Focused Ultrasound for Chronic Pain. Neurosurgery Clinics of North America, 2022, , .	1.7	1
126	How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications. Life, 2022, 12, 814.	2.4	4
127	High-frequency ultrasound exposure improves depressive-like behavior in an olfactory bulbectomized rat model of depression. NeuroReport, 2022, 33, 445-449.	1.2	0

#	Article	IF	CITATIONS
128	Neuromodulation Using Transcranial Focused Ultrasound on the Bilateral Medial Prefrontal Cortex. Journal of Clinical Medicine, 2022, 11, 3809.	2.4	9
129	Transcranial ultrasound neuromodulation induces neuronal correlation change in the rat somatosensory cortex. Journal of Neural Engineering, 0, , .	3.5	1
131	Modulation effect of non-invasive transcranial ultrasound stimulation in an ADHD rat model. Journal of Neural Engineering, 2023, 20, 016003.	3.5	2
132	Morphological and Functional Effects of Ultrasound on Blood–Brain Barrier Transitory Opening: An In Vitro Study on Rat Brain Endothelial Cells. Cells, 2023, 12, 192.	4.1	0
133	A Review of Chronic Pain and Device Interventions: Benefits and Future Directions. Pain and Therapy, 2023, 12, 341-354.	3.2	1
134	Transcranial Ultrasound Stimulation. , 2023, , 2135-2173.		0
135	Transcranial focused ultrasound modulates the emergence of learned helplessness via midline theta modification. Journal of Affective Disorders, 2023, 329, 273-284.	4.1	4
136	Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Research Bulletin, 2023, 196, 68-75.	3.0	6
137	Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. Journal of Neural Engineering, 2023, 20, 016043.	3.5	3
138	Acoustofluidics – changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab on A Chip, 2023, 23, 1300-1338.	6.0	8
139	Transcranial low-intensity ultrasound stimulation for treating central nervous system disorders: A promising therapeutic application. Frontiers in Neurology, 0, 14, .	2.4	5
140	Ultrasound Neuromodulation as a New Brain Therapy. Advanced Science, 2023, 10, .	11.2	6
141	Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation?. IEEE Open Journal of Engineering in Medicine and Biology, 2023, 4, 300-318.	2.3	2
142	Dépression résistante aux traitements. , 2023, , 85-121.		0
143	Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia, 2023, 187, 108589.	1.6	2
144	Excitatoryâ€inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neuroscience and Therapeutics, 2023, 29, 3829-3841.	3.9	1
146	Application of transcranial brain stimulation in dementia. Tzu Chi Medical Journal, 2023, 35, 300-305.	1.1	1
147	Transcranial pulse stimulation in Alzheimer's disease. CNS Neuroscience and Therapeutics, 2024, 30, .	3.9	0

#	Article	IF	CITATIONS
148	Inhibition of midfrontal theta with transcranial ultrasound explains greater approach versus withdrawal behavior in humans. Brain Stimulation, 2023, 16, 1278-1288.	1.6	1
149	Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimulation, 2023, 16, 1362-1370.	1.6	0
150	Durable effects of deep brain ultrasonic neuromodulation on major depression: a case report. Journal of Medical Case Reports, 2023, 17, .	0.8	4
151	Transcranial Ultrasonic Neurostimulation. , 2023, , 177-185.		0
153	The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neuroscience and Biobehavioral Reviews, 2024, 156, 105501.	6.1	1
155	Brain stimulation poised to move from last resort to frontline treatment. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
156	Neuromodulation techniques $\hat{a} \in$ From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics, 2024, 21, e00330.	4.4	0
158	Clinical Potential of Transcranial Focused Ultrasound for Neurorehabilitation in Pediatric Cancer Survivors. Brain Sciences, 2024, 14, 218.	2.3	0
159	A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound. Biomedical Engineering Letters, 2024, 14, 407-438.	4.1	0
160	Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Advanced Drug Delivery Reviews, 2024, 208, 115275.	13.7	0
161	Advances in using ultrasound to regulate the nervous system. Neurological Sciences, 0, , .	1.9	0
162	Transcranial focused ultrasound of the amygdala modulates fear network activation and connectivity. Brain Stimulation, 2024, 17, 312-320.	1.6	0