Engineering protein thermostability using a generic act screen inside the cell

Nature Communications 4, 2901 DOI: 10.1038/ncomms3901

Citation Report

#	Article	IF	CITATIONS
1	The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine–glyoxylate aminotransferase. Biochemical Journal, 2014, 462, 453-463.	1.7	30
2	The cellular thermal shift assay for evaluating drug target interactions in cells. Nature Protocols, 2014, 9, 2100-2122.	5.5	900
3	Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins. Biomacromolecules, 2014, 15, 3278-3289.	2.6	49
4	Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 2014, 346, 1255784.	6.0	812
5	Optimizing antibody expression by using the naturally occurring framework diversity in a live bacterial antibody display system. Scientific Reports, 2015, 5, 17488.	1.6	23
6	Implementing bacterial acid resistance into cellâ€free protein synthesis for bufferâ€free expression and screening of enzymes. Biotechnology and Bioengineering, 2015, 112, 2630-2635.	1.7	11
7	Engineering Protocells: Prospects for Self-Assembly and Nanoscale Production-Lines. Life, 2015, 5, 1019-1053.	1.1	29
8	Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?. Membranes, 2015, 5, 352-368.	1.4	16
9	Improving and repurposing biocatalysts via directed evolution. Current Opinion in Chemical Biology, 2015, 25, 55-64.	2.8	219
10	A generic high-throughput assay to detect aquaporin functional mutants: Potential application to discovery of aquaporin inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1869-1876.	1.1	19
11	Rapid Bioinformatic Identification of Thermostabilizing Mutations. Biophysical Journal, 2015, 109, 1420-1428.	0.2	26
12	Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols, 2015, 10, 1567-1593.	5.5	481
13	Expression strategies for structural studies of eukaryotic membrane proteins. Current Opinion in Structural Biology, 2016, 38, 137-144.	2.6	43
14	Early Perspective. Journal of Biomolecular Screening, 2016, 21, 1019-1033.	2.6	24
15	Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Proteome Science, 2016, 15, 13.	0.7	101
16	The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annual Review of Pharmacology and Toxicology, 2016, 56, 141-161.	4.2	213
17	Structural features determining thermal adaptation of esterases. Protein Engineering, Design and Selection, 2016, 29, 65-76.	1.0	46
18	Regulation of Ras Paralog Thermostability by Networks of Buried Ionizable Groups. Biochemistry, 2016, 55, 534-542.	1.2	10

#	Article	IF	CITATIONS
20	Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes. FEBS Journal, 2017, 284, 1700-1711.	2.2	9
22	Rapid Thermostabilization of <i>Bacillus thuringiensis</i> Serovar Konkukian 97–27 Dehydroshikimate Dehydratase through a Structure-Based Enzyme Design and Whole Cell Activity Assay. ACS Synthetic Biology, 2017, 6, 120-129.	1.9	14
23	Directed evolution to improve protein folding in vivo. Current Opinion in Structural Biology, 2018, 48, 117-123.	2.6	32
24	Structural and Dynamics Comparison of Thermostability in Ancient, Modern, and Consensus Elongation Factor Tus. Structure, 2018, 26, 118-129.e3.	1.6	21
25	Exceptional point engineered glass slide for microscopic thermal mapping. Nature Communications, 2018, 9, 1764.	5.8	37
26	Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Applied Microbiology and Biotechnology, 2018, 102, 10425-10437.	1.7	23
27	Production of Biofuels from Biomass by Fungi. Fungal Biology, 2018, , 21-45.	0.3	1
28	In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria. Biotechnology for Biofuels, 2018, 11, 8.	6.2	33
29	An inÂvitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synthetic and Systems Biotechnology, 2018, 3, 186-195.	1.8	42
30	A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Scientific Reports, 2018, 8, 9472.	1.6	65
31	CETSA beyond Soluble Targets: a Broad Application to Multipass Transmembrane Proteins. ACS Chemical Biology, 2019, 14, 1913-1920.	1.6	55
32	Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods in Molecular Biology, 2019, 2025, 299-320.	0.4	0
33	Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. Journal of Biotechnology, 2019, 293, 8-16.	1.9	20
34	Determining the Protein Stability of Alzheimer's Disease Protein, Amyloid Precursor Protein. Protein Journal, 2019, 38, 419-424.	0.7	5
35	Selection and screening strategies in directed evolution to improve protein stability. Bioresources and Bioprocessing, 2019, 6, .	2.0	23
36	Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Communications Biology, 2019, 2, 429.	2.0	34
37	Evolutionary approaches in protein engineering towards biomaterial construction. RSC Advances, 2019, 9, 34720-34734.	1.7	6
38	The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnology Advances, 2019, 37, 530-537.	6.0	117

CITATION REPORT

	CITATION	CITATION REPORT	
# 39	ARTICLE Improving the enzyme property of ornithine transcarbamylase from Lactobacillus brevis through site-directed mutation. LWT - Food Science and Technology, 2020, 133, 109953.	IF 2.5	CITATIONS
40	A rapid solubility assay of protein domain misfolding for pathogenicity assessment of rare DNA sequence variants. Genetics in Medicine, 2020, 22, 1642-1652.	1.1	8
41	Enzyme engineering strategies to confer thermostability. , 2020, , 67-89.		2
42	Review of NEDDylation inhibition activity detection methods. Bioorganic and Medicinal Chemistry, 2021, 29, 115875.	1.4	5
43	Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discovery, 2021, 26, 474-483.	1.4	22
44	Exoskeleton for Biofunctionality Protection of Enzymes and Proteins for Intracellular Delivery. Advanced NanoBiomed Research, 2021, 1, 2000010.	1.7	3
45	A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synthetic Biology, 2021, 10, 466-477.	1.9	9
46	Identification of Celecoxib-Targeted Proteins Using Label-Free Thermal Proteome Profiling on Rat Hippocampus. Molecular Pharmacology, 2021, 99, 308-318.	1.0	9
47	Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Molecular Biology and Evolution, 2021, 38, 2854-2868.	3.5	11
49	A New Drug Discovery Approach Based on Thermal Proteome Profiling to Develop More Effective Drugs. Middle East Journal of Rehabilitation and Health Studies, 2021, 8, .	0.1	0
50	Combination of the mutations for improving activity of TEV protease in inclusion bodies. Bioprocess and Biosystems Engineering, 2021, 44, 2129-2139.	1.7	1
51	Transcriptome and growth efficiency comparisons of recombinant thermophiles that produce thermolabile and thermostable proteins: implications for burden-based selection of thermostable proteins. Extremophiles, 2021, 25, 403-412.	0.9	2
52	Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability. Journal of Microbiology and Biotechnology, 2021, 31, 1732-1740.	0.9	5
53	Directed Evolution Methods for Enzyme Engineering. Molecules, 2021, 26, 5599.	1.7	17
54	Structure-function relationship of extremozymes. , 2022, , 9-30.		2
55	Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. , 2020, 216, 107690.		25
56	Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds. Biochemistry, 2018, 57, 4135-4147.	1.2	74
57	Reprogramming cells with synthetic proteins. Asian Journal of Andrology, 2015, 17, 394.	0.8	7

CITATION REPORT

#	Article	IF	CITATIONS
59	Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Nature Communications, 2021, 12, 5959.	5.8	13
60	Thermostable designed ankyrin repeat proteins (DARPins) as building blocks for innovative drugs. Journal of Biological Chemistry, 2022, 298, 101403.	1.6	17
61	Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods in Molecular Biology, 2022, 2406, 35-64.	0.4	3
62	Thermogenetics: Applications come of age. Biotechnology Advances, 2022, 55, 107907.	6.0	2
63	Accelerating therapeutic protein design. Advances in Protein Chemistry and Structural Biology, 2022, 130, 85-118.	1.0	2
64	Machine learningâ€based phenotypic screening for postmitotic growth inducers uncover vitamin D3 metabolites as small molecule ribosome agonists. Cell Proliferation, 2022, 55, e13214.	2.4	2
65	Structural and biophysical studies of new <scp>L</scp> -asparaginase variants: lessons from random mutagenesis of the prototypic <i>Escherichia coli</i> Ntn-amidohydrolase. Acta Crystallographica Section D: Structural Biology, 2022, 78, 911-926.	1.1	3
66	Engineering an autonomous VH domain to modulate intracellular pathways and to interrogate the eIF4F complex. Nature Communications, 2022, 13, .	5.8	6
67	A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. International Journal of Molecular Sciences, 2022, 23, 10116.	1.8	18
68	Chemical Biology Approaches Confirm MCT4 as the Therapeutic Target of a Cellular Optimized Hit. ACS Chemical Biology, 2023, 18, 296-303.	1.6	2
69	A Permissive Amide <i>N</i> -Methyltransferase for Dithiolopyrrolones. ACS Catalysis, 2023, 13, 1899-1905.	5.5	3
70	"Stapling―scFv for multispecific biotherapeutics of superior properties. MAbs, 2023, 15, .	2.6	4
73	The Role and Application of Microbial Enzymes in Microplastics' Bioremediation: Available and Future Perspectives. ACS Symposium Series, 0, , 33-56.	0.5	0