Microglia Promote Learning-Dependent Synapse Forma Neurotrophic Factor

Cell 155, 1596-1609 DOI: 10.1016/j.cell.2013.11.030

Citation Report

#	Article	lF	CITATIONS
1	Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell, 2013, 155, 1596-1609.	13.5	2,013
2	Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia. International Journal of Molecular Sciences, 2014, 15, 15512-15529.	1.8	60
3	Spatiotemporal dynamics of dendritic spines in the living brain. Frontiers in Neuroanatomy, 2014, 8, 28.	0.9	80
4	Microglial diversity by responses and responders. Frontiers in Cellular Neuroscience, 2014, 8, 101.	1.8	109
5	Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Frontiers in Cellular Neuroscience, 2014, 8, 129.	1.8	240
6	Activation of microglia bolsters synapse formation. Frontiers in Cellular Neuroscience, 2014, 8, 153.	1.8	18
7	Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Frontiers in Cellular Neuroscience, 2014, 8, 154.	1.8	118
8	Can we talk about microglia without neurons? A discussion of microglial cell autonomous properties in culture. Frontiers in Cellular Neuroscience, 2014, 8, 202.	1.8	23
9	Microglial intracellular Ca2+ signaling as a target of antipsychotic actions for the treatment of schizophrenia. Frontiers in Cellular Neuroscience, 2014, 8, 370.	1.8	23
10	The role of microglia in mediating the effect of the environment in brain plasticity and behavior. Frontiers in Cellular Neuroscience, 2014, 8, 390.	1.8	31
11	Microglia Propertiesâ~†. , 2014, , .		0
12	Microglia Identification Methodsâ~†. , 2014, , .		0
13	Activation of Neuronal NMDA Receptors Triggers Transient ATP-Mediated Microglial Process Outgrowth. Journal of Neuroscience, 2014, 34, 10511-10527.	1.7	229
14	Inconsistencies and Controversies Surrounding the Amyloid Hypothesis of Alzheimer's Disease. Acta Neuropathologica Communications, 2014, 2, 135.	2.4	246
15	Role of Microglia Adenosine A2AReceptors in Retinal and Brain Neurodegenerative Diseases. Mediators of Inflammation, 2014, 2014, 1-13.	1.4	66
16	Estrogen Physiology from an Evolutionary Perspective. , 2014, , .		0
17	Are ââ,¬Å"Restingââ,¬Â•Microglia More ââ,¬Å"M2ââ,¬Â?. Frontiers in Immunology, 2014, 5, 594.	2.2	68
18	The Role of the NADPH Oxidase NOX2 in Prion Pathogenesis. PLoS Pathogens, 2014, 10, e1004531.	2.1	57

#	Article	IF	CITATIONS
19	Integrated Neurobiology of Bipolar Disorder. Frontiers in Psychiatry, 2014, 5, 98.	1.3	160
20	Epigenomics of macrophages. Immunological Reviews, 2014, 262, 96-112.	2.8	56
21	The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Frontiers in Synaptic Neuroscience, 2014, 6, 5.	1.3	134
22	Neuroimmune Mechanisms of Alcohol and Drug Addiction. International Review of Neurobiology, 2014, 118, 1-12.	0.9	130
23	Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 2014, 15, 300-312.	4.9	1,069
24	Microglia fuel the learning brain. Trends in Immunology, 2014, 35, 139-140.	2.9	5
25	Emergent Properties of Microglia. Brain Pathology, 2014, 24, 665-670.	2.1	19
26	Accelerated microglial pathology is associated with <scp>A</scp> β plaques in mouse models of <scp>A</scp> lzheimer's disease. Aging Cell, 2014, 13, 584-595.	3.0	113
27	Visuospatial learning and memory in the Cebus apella and microglial morphology in the molecular layer of the dentate gyrus and CA1 lacunosum molecular layer. Journal of Chemical Neuroanatomy, 2014, 61-62, 176-188.	1.0	21
28	Alterations in Immune Cells and Mediators in the Brain: It's Not Always Neuroinflammation!. Brain Pathology, 2014, 24, 623-630.	2.1	90
29	Inflammation and Immune System Activation After Traumatic Brain Injury. Current Neurology and Neuroscience Reports, 2014, 14, 484.	2.0	36
30	Modulating mighty microglia. Nature Chemical Biology, 2014, 10, 988-989.	3.9	25
31	Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain, Behavior, and Immunity, 2014, 41, 239-250.	2.0	68
32	Microglia Modulate Wiring of the Embryonic Forebrain. Cell Reports, 2014, 8, 1271-1279.	2.9	526
33	Glia in the pathogenesis of neurodegenerative diseases. Biochemical Society Transactions, 2014, 42, 1291-1301.	1.6	130
34	A synaptic role for microglia. Nature Reviews Neuroscience, 2014, 15, 69-69.	4.9	15
35	GI Motility: Microbiota and Macrophages Join Forces. Cell, 2014, 158, 239-240.	13.5	13
36	Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility. Cell, 2014, 158, 300-313.	13.5	498

#	Article	IF	CITATIONS
37	Keratan sulfate expression is associated with activation of a subpopulation of microglia/macrophages in Wallerian degeneration. Neuroscience Letters, 2014, 579, 80-85.	1.0	9
38	Origin and Functions of Tissue Macrophages. Immunity, 2014, 41, 21-35.	6.6	1,191
39	Microglia and inflammation: conspiracy, controversy or control?. Cellular and Molecular Life Sciences, 2014, 71, 3969-3985.	2.4	91
40	Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 2014, 14, 463-477.	10.6	1,053
41	Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice. Journal of Neuroinflammation, 2014, 11, 143.	3.1	32
42	Ontogeny and Functions of Central Nervous System Macrophages. Journal of Immunology, 2014, 193, 2615-2621.	0.4	113
43	Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathologica, 2014, 128, 333-345.	3.9	64
44	Microglia: unique and common features with other tissue macrophages. Acta Neuropathologica, 2014, 128, 319-331.	3.9	111
45	Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. Neuron, 2014, 82, 380-397.	3.8	1,350
46	Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell, 2014, 158, 15-24.	13.5	441
47	Microglia in Health and Disease. , 2014, , .		19
48	Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits. Physiological Reviews, 2014, 94, 1077-1098.	13.1	701
49	Role of Akt and Mammalian Target of Rapamycin in Functional Outcome after Concussive Brain Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1531-1539.	2.4	36
50	Hidden Progenitors Replace Microglia in the Adult Brain. Neuron, 2014, 82, 253-255.	3.8	13
51	Structural Plasticity within the Barrel Cortex during Initial Phases of Whisker-Dependent Learning. Journal of Neuroscience, 2014, 34, 6078-6083.	1.7	51
52	BDNF: No gain without pain?. Neuroscience, 2014, 283, 107-123.	1.1	98
53	Novel roles of microglia. Clinical and Experimental Neuroimmunology, 2014, 5, 35-40.	0.5	2
54	Distinct roles of microglia and monocytes in central nervous system inflammation and degeneration. Clinical and Experimental Neuroimmunology, 2014, 5, 41-48.	0.5	4

ARTICLE IF CITATIONS # Regulation of microglial survival and proliferation in health and diseases. Seminars in Immunology, 2.7 37 55 2015, 27, 410-415. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology, 2015, 27, 2.7 397-409. 57 Effects of Microglia on Neurogenesis. Glia, 2015, 63, 1394-1405. 2.5 144 Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. 340 EMBO Molecular Medicine, 2015, 7, 1179-1197. Minocycline does Not Affect Long-Term Potentiation in the Anterior Cingulate Cortex of Normal 61 1.0 11 Adult Mice. Molecular Pain, 2015, 11, s12990-015-0025. <scp>TGF</scp>Î²1 inhibits <scp>IFN</scp>Î³â€mediated microglia activation and protects <scp>mDA</scp> neurons from <scp>IFN</scp>Î³â€driven neurotoxicity. Journal of Neurochemistry, 2015, 134, 125-134. 2.1 Microglia processes associate with diffusely injured axons following mild traumatic brain injury in 63 3.1 90 the micro pig. Journal of Neuroinflammation, 2015, 12, 186. Hypoxia Inducible Factor- \hat{l} in Astrocytes and/or Myeloid Cells Is Not Required for the Development of 64 Autoimmune Demyelinating Disease. ÉNeuro, 2015, 2, ENEURO.0050-14.2015. Protein Malnutrition and Brain Development. Brain Disorders & Therapy, 2015, 04, . 0.1 23 66 The p53 Transcriptional Network Influences Microglia Behavior and Neuroinflammation. Critical 1.0 Reviews in Immunology, 2015, 35, 401-415. Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Frontiers in 68 1.7 81 Aging Neuroscience, 2015, 7, 130. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as 1.8 248 Drivers of Neurodegeneration. Frontiers in Cellular Neuroscience, 2015, 9, 28. The Role of Stefin B in Neuro-inflammation. Frontiers in Cellular Neuroscience, 2015, 9, 458. 70 1.8 21 Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Frontiers in 1.4 Neuroscience, 2015, 9, 248. Innate Immune Response in Brain, NF-Kappa B Signaling and Cystatins. Frontiers in Molecular 72 1.4 94 Neuroscience, 2015, 8, 73. Commentary: The Effects of Psychological Stress on Microglial Cells in the Brain. CNS and Neurological Disorders - Drug Targets, 2015, 14, 304-308. Identification of a Novel Dehydroergosterol Enhancing Microglial Anti-Inflammatory Activity in a 74 1.1 19 Dairy Product Fermented with Penicillium candidum. PLoS ONE, 2015, 10, e0116598. Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathogens, 2.1 2015, 11, e1005210.

#	Article		IF	CITATIONS
76	Fractalkine Signaling and Microglia Functions in the Developing Brain. Neural Plasticity	, 2015, 2015, 1-8.	1.0	93
77	Astrocyte and Microglial Control of Glutamatergic Signalling: A Primer on Understandir Disruptive Role of Chronic Stress. Journal of Neuroendocrinology, 2015, 27, 498-506.	ng the	1.2	36
78	Variable expression of microglial DAP12 and TREM2 genes in Nasu-Hakola disease. Neu 16, 265-276.	rogenetics, 2015,	0.7	26
79	Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases m expression of a proneurogenic phenotype in aged mice. Journal of Neuroinflammation,	icroglia 2015, 12, 138.	3.1	86
80	Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promot of Spiral Ganglion Neurons after Selective Hair Cell Lesion. Journal of Neuroscience, 20 15050-15061.	es the Survival 15, 35,	1.7	124
81	Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of mic BDNF and synaptic plasticity. Neuropharmacology, 2015, 96, 11-18.	croglia, IL-1β,	2.0	213
82	Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia t Neuroscience, 2015, 289, 289-299.	ype 1.	1.1	88
83	Hypothalamic Inflammation in the Control of Metabolic Function. Annual Review of Phy 77, 131-160.	vsiology, 2015,	5.6	151
84	Modulation of Microglial Process Convergence Toward Neuronal Dendrites by Extracell Calcium. Journal of Neuroscience, 2015, 35, 2417-2422.	ular	1.7	113
85	Microglia in neuronal plasticity: Influence of stress. Neuropharmacology, 2015, 96, 19-	28.	2.0	122
86	The Evolving Biology of Microglia in Alzheimer's Disease. Neurotherapeutics, 2015, 12,	81-93.	2.1	63
87	Axon Initial Segment–Associated Microglia. Journal of Neuroscience, 2015, 35, 2283	-2292.	1.7	107
88	Glial Cell Regulation of Rhythmic Behavior. Methods in Enzymology, 2015, 552, 45-73.		0.4	48
89	Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for n sclerosis. Brain Research, 2015, 1621, 205-213.	nultiple	1.1	30
90	Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Repo 213-220.	rts, 2015, 16,	2.0	182
91	Microglia: Multitasking Specialists of the Brain. Developmental Cell, 2015, 32, 469-477		3.1	164
92	Variable neuroendocrine–immune dysfunction in individuals with unfavorable outcor traumatic brain injury. Brain, Behavior, and Immunity, 2015, 45, 15-27.	ne after severe	2.0	53
93	Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Frontiers in Im 2015, 6, 249.	munology,	2.2	236

ARTICLE IF CITATIONS # Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and 2.4 61 94 pathology?. Cellular and Molecular Life Sciences, 2015, 72, 2823-2851. Repetitive acute intermittent hypoxia does not promote generalized inflammatory gene expression in the rat CNS. Respiratory Physiology and Neurobiology, 2015, 218, 1-10. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third 96 1.1 140 postnatal week. Journal of Neuroimmunology, 2015, 278, 280-288. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathologica, 2015, 3.9 130, 215-231. Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central 98 506 6.6 Nervous System. Immunity, 2015, 43, 92-106. Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathologica, 2015, 130, 1-19. 154 100 A pharmacological basis of herbal medicines for epilepsy. Epilepsy and Behavior, 2015, 52, 308-318. 0.9 114 Microglia Participate in Neurogenic Regulation of Hypertension. Hypertension, 2015, 66, 309-316. 1.3 116 Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harbor 102 2.3 264 Perspectives in Biology, 2015, 7, a020545. Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the 1.7 Hippocampus. Journal of Neuroscience, 2015, 35, 9977-9989. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature 104 1.041 7.1 Neuroscience, 2015, 18, 1081-1083. Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015, 138, 1138-1159. 316 Microglia in action: how aging and injury can change the brain \tilde{A} \hat{a} , \hat{a} , \hat{c} s guardians. Frontiers in Cellular 106 1.8 74 Neuroscience, 2015, 9, 54. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. 5.8 104 Nature Communications, 2015, 6, 6623 Early-life stress increases the motility of microglia in adulthood. Journal of Physiological Sciences, 108 0.9 45 2015, 65, 187-194. Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015, 16, 109 1,677 358-372. Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory 110 2.8 79 Impairment. Neuropsychopharmacology, 2015, 40, 2774-2787. Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405. 4,129

#	Article	IF	CITATIONS
112	Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity?. Annals of the New York Academy of Sciences, 2015, 1351, 1-10.	1.8	34
113	Neuroinflammatory Signals in Alzheimer Disease and APP/PS1 Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 319-344.	0.9	105
114	Hypothalamic innate immune reaction in obesity. Nature Reviews Endocrinology, 2015, 11, 339-351.	4.3	133
115	Inflammation and Neuroprotection in Traumatic Brain Injury. JAMA Neurology, 2015, 72, 355.	4.5	625
116	Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurology, The, 2015, 14, 406-419.	4.9	455
117	Macrophages: Development and Tissue Specialization. Annual Review of Immunology, 2015, 33, 643-675.	9.5	687
118	Serotonin Modulates Developmental Microglia via 5-HT _{2B} Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections. ACS Chemical Neuroscience, 2015, 6, 1219-1230.	1.7	87
119	Identification of a chronic nonâ€neurodegenerative microglia activation state in a mouse model of peroxisomal βâ€oxidation deficiency. Glia, 2015, 63, 1606-1620.	2.5	45
120	7-Ketocholesterol Increases Retinal Microglial Migration, Activation and Angiogenicity: A Potential Pathogenic Mechanism Underlying Age-related Macular Degeneration. Scientific Reports, 2015, 5, 9144.	1.6	81
121	Microglial Malfunction: The Third Rail in the Development of Alzheimer's Disease. Trends in Neurosciences, 2015, 38, 621-636.	4.2	134
122	The Role of Cell Plasticity in Tissue Repair: Adaptive Cellular Reprogramming. Developmental Cell, 2015, 34, 613-620.	3.1	106
123	Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems. Trends in Immunology, 2015, 36, 625-636.	2.9	153
124	MicroRNA-Let-7a regulates the function of microglia in inflammation. Molecular and Cellular Neurosciences, 2015, 68, 167-176.	1.0	77
125	Priming the Inflammatory Pump of the CNS after Traumatic Brain Injury. Trends in Neurosciences, 2015, 38, 609-620.	4.2	175
126	Do glia drive synaptic and cognitive impairment in disease?. Nature Neuroscience, 2015, 18, 1539-1545.	7.1	344
127	Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends in Immunology, 2015, 36, 614-624.	2.9	136
128	Depression as a Microglial Disease. Trends in Neurosciences, 2015, 38, 637-658.	4.2	642
129	Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in Neurosciences, 2015, 38, 659-668.	4.2	60

		CITATION REP	ORT	
#	Article		IF	CITATIONS
130	Computational modeling of cytokine signaling in microglia. Molecular BioSystems, 2015, 11, 33	32-3346.	2.9	20
131	Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends in Immunology, 20 605-613.	15, 36,	2.9	537
133	Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2 896-909.	015, 12,	2.1	170
134	Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS. Co Reports, 2015, 12, 1377-1384.	2 	2.9	92
135	Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors the Reduced Secretion of FGF2. Neuron, 2015, 88, 941-956.	ough	3.8	158
136	A combined cumulative threshold spectra and digital reconstruction analysis reveal structural alterations of microglia within the prefrontal cortex following low-dose LPS administration. Neuroscience, 2015, 310, 629-640.		1.1	30
137	Microglia function during brain development: New insights from animal models. Brain Research, 1617, 7-17.	2015,	1.1	179
138	Retinal microglia: Just bystander or target for therapy?. Progress in Retinal and Eye Research, 20 30-57.	15, 45,	7.3	433
139	Cellular Therapy for Stroke and CNS Injuries. , 2015, , .			0
140	Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience, 2015, 284, 920-933.		1.1	27
141	Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — A central the serotonin transporter?. , 2015, 147, 1-11.	ole for		126
142	Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cogr Impairment in Sepsis. Molecular Neurobiology, 2015, 52, 653-663.	itive	1.9	121
143	Genetic targeting of microglia. Glia, 2015, 63, 1-22.		2.5	116
144	Interactions of innate and adaptive immunity in brain development and function. Brain Research 1617, 18-27.	, 2015,	1.1	169
145	Is Chronic Systemic Inflammation a Determinant Factor in Developing Parkinson's Disease?.	, 2016, , .		0
146	Microglia and neurons in the hippocampus of migratory sandpipers. Brazilian Journal of Medical Biological Research, 2016, 49, e5005.	and	0.7	20
147	Differentiated Expression Patterns and Phagocytic Activities of Type 1 and 2 Microglia. , 2016, 5	7, 2814.		8
148	Platelet-Derived Growth Factor Preserves Retinal Synapses in a Rat Model of Ocular Hypertensio 2016, 57, 842.	n.,		10

ARTICLE IF CITATIONS # Optogenetic Glia Manipulation: Possibilities and Future Prospects. Experimental Neurobiology, 2016, 149 0.7 23 25, 197-204. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. Journal of Clinical Investigation, 2016, 126, 1983-1997. 146 Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers. Psychiatry 151 0.7 136 Investigation, 2016, 13, 18. Double Roles of Macrophages in Human Neuroimmune Diseases and Their Animal Models. Mediators of Inflammation, 2016, 2016, 1-13. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases. Neural 153 1.0 25 Plasticity, 2016, 2016, 1-7. CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. BioMed Research International, 37 2016, 2016, 1-9. Neuron–Microglia Interactions in Mental Health Disorders: "For Better, and For Worseâ€. Frontiers in 155 2.2 132 Immunology, 2016, 7, 544. Depression as a Glial-Based Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 2015, 9, 521. 1.8 156 134 Astrocytes and Microglia and Their Potential Link with Autism Spectrum Disorders. Frontiers in 157 1.8 129 Cellular Neuroscience, 2016, 10, 21. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. 1.8 24 Frontiers in Cellular Neuroscience, 2016, 10, 68. Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric 159 1.8 45 Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 144. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell 1.8 Loss in the Olfactory Bulb. Frontiers in Cellular Neuroscience, 2016, 10, 178. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation. Frontiers in Cellular 161 1.8 80 Neuroscience, 2016, 10, 188. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action 1.8 Potential Generation. Frontiers in Cellular Neuroscience, 2016, 10, 209. A Non-inflammatory Role for Microglia in Autism Spectrum Disorders. Frontiers in Neurology, 2016, 7, 163 43 1.1 9. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Frontiers in Human 164 411 Neuroscience, 2016, 10, 566. Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect. Frontiers 165 1.0 62 in Integrative Neuroscience, 2015, 9, 73. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathologica, 2016, 132, 361-375.

#	Article	IF	CITATIONS
167	Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury. Cell Reports, 2016, 16, 605-614.	2.9	187
168	Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience, 2016, 338, 160-182.	1.1	299
169	Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. Journal of Neuroinflammation, 2016, 13, 116.	3.1	42
170	Microglia replenished OHSC: A culture system to study <i>in vivo</i> like adult microglia. Clia, 2016, 64, 1285-1297.	2.5	35
171	PDE4B as a microglia target to reduce neuroinflammation. Glia, 2016, 64, 1698-1709.	2.5	58
172	Targeting microglia for the treatment of Alzheimer's Disease. Glia, 2016, 64, 1710-1732.	2.5	144
173	Sex differences in pain. Pain, 2016, 157, S2-S6.	2.0	158
174	Overview of Innovative Mouse Models for Imaging Neuroinflammation. Current Protocols in Mouse Biology, 2016, 6, 131-147.	1.2	1
175	Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Scientific Reports, 2016, 6, 20636.	1.6	165
176	TAM receptors regulate multiple features of microglial physiology. Nature, 2016, 532, 240-244.	13.7	441
177	Effects of Curcumin on Neuroinflammation in Animal Models and in Patients with Alzheimer Disease. , 2016, , 259-296.		5
178	EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse. Experimental Gerontology, 2016, 81, 92-100.	1.2	52
179	A neuroprotective role for microglia in prion diseases. Journal of Experimental Medicine, 2016, 213, 1047-1059.	4.2	127
180	Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. Journal of Neuroscience, 2016, 36, 2827-2842.	1.7	179
181	Genetic manipulation of microglia during brain development and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 299-309.	1.8	49
182	Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends in Neurosciences, 2016, 39, 378-393.	4.2	259
183	Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell, 2016, 165, 921-935.	13.5	558
184	FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices. Journal of Neuroscience, 2016, 36, 4785-4801.	1.7	52

#	Article	IF	CITATIONS
185	Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. Journal of Experimental Medicine, 2016, 213, 929-949.	4.2	126
186	Antidepressant therapies inhibit inflammation and microglial M1-polarization. , 2016, 163, 82-93.		167
187	The force awakens: insights into the origin and formation of microglia. Current Opinion in Neurobiology, 2016, 39, 30-37.	2.0	45
188	Mechanisms of cellular plasticity in cerebral perivascular region. Progress in Brain Research, 2016, 225, 183-200.	0.9	9
189	Early life overfeeding impairs spatial memory performance by reducing microglial sensitivity to learning. Journal of Neuroinflammation, 2016, 13, 112.	3.1	44
190	Soluble phospho-tau from Alzheimer's disease hippocampus drives microglial degeneration. Acta Neuropathologica, 2016, 132, 897-916.	3.9	124
191	Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. Journal of Molecular Neuroscience, 2016, 60, 390-404.	1.1	12
192	Microglia energy metabolism in metabolic disorder. Molecular and Cellular Endocrinology, 2016, 438, 27-35.	1.6	53
193	α7-Nicotinic Acetylcholine Receptors and β-Amyloid Peptides in Alzheimer's Disease. Neuromethods, 2016, , 171-205.	0.2	2
194	Compound C induces the ramification of murine microglia in an AMPK-independent and small rhogtpase-dependent manner. Neuroscience, 2016, 331, 24-39.	1.1	11
195	<scp>VTA</scp> dopamine neuron plasticity – the unusual suspects. European Journal of Neuroscience, 2016, 44, 2975-2983.	1.2	15
196	Microglia Function in the Normal Brain. Advances in Experimental Medicine and Biology, 2016, 949, 67-92.	0.8	36
197	Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury. Journal of Neuroscience, 2016, 36, 9962-9975.	1.7	79
198	Puzzling out presynaptic differentiation. Journal of Neurochemistry, 2016, 139, 921-942.	2.1	15
199	RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353, 603-608.	6.0	448
200	Dark microglia: A new phenotype predominantly associated with pathological states. Glia, 2016, 64, 826-839.	2.5	325
201	A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responses <i>in vitro</i> . Glia, 2016, 64, 1912-1924.	2.5	23
202	Microglia communication: Parallels between aging and Alzheimer's disease. Clinical and Experimental Neuroimmunology, 2016, 7, 114-125.	0.5	60

#	Article	IF	CITATIONS
203	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	2.1	106
204	Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain. Cell Reports, 2016, 16, 897-906.	2.9	111
205	The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. Journal of Neurochemistry, 2016, 136, 457-474.	2.1	331
206	Modern Microglia: Novel Targets in Psychiatric Neuroscience. Biological Psychiatry, 2016, 80, e47-e49.	0.7	13
207	The human-specific <i>CASP4</i> gene product contributes to Alzheimer-related synaptic and behavioural deficits. Human Molecular Genetics, 2016, 25, 4315-4327.	1.4	21
208	General Physiology and Pathophysiology of Microglia During Neuroinflammation. , 2016, , 17-42.		3
209	Microglia in health and pain: impact of noxious early life events. Experimental Physiology, 2016, 101, 1003-1021.	0.9	32
210	How neuroinflammation contributes to neurodegeneration. Science, 2016, 353, 777-783.	6.0	1,408
211	Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 2016, 17, 2445-2459.	2.9	450
212	Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer's disease. Reviews in the Neurosciences, 2016, 27, 793-811.	1.4	26
213	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81
214	Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nature Immunology, 2016, 17, 1282-1290.	7.0	76
215	A polarizing question: do M1 and M2 microglia exist?. Nature Neuroscience, 2016, 19, 987-991.	7.1	1,177
216	Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nature Communications, 2016, 7, 12029.	5.8	245
217	Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nature Communications, 2016, 7, 10905.	5.8	393
218	Sall1 is a transcriptional regulator defining microglia identity and function. Nature Immunology, 2016, 17, 1397-1406.	7.0	430
219	Infiltrating cells from host brain restore the microglial population in grafted cortical tissue. Scientific Reports, 2016, 6, 33080.	1.6	5
220	A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Scientific Reports, 2016, 6, 32461.	1.6	95

#	Article	IF	CITATIONS
221	Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nature Communications, 2016, 7, 11499.	5.8	452
222	Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Scientific Reports, 2016, 6, 20926.	1.6	68
223	Deleting an Nr4a1 Super-Enhancer Subdomain Ablates Ly6C low Monocytes while Preserving Macrophage Gene Function. Immunity, 2016, 45, 975-987.	6.6	127
224	Microglia contact induces synapse formation in developing somatosensory cortex. Nature Communications, 2016, 7, 12540.	5.8	495
225	Dynamics of spinal microglia repopulation following an acute depletion. Scientific Reports, 2016, 6, 22839.	1.6	40
226	Do Microglia Default on Network Maintenance in Alzheimer's Disease?. Journal of Alzheimer's Disease, 2016, 51, 657-669.	1.2	17
227	Dural stimulation in rats causes brain-derived neurotrophic factor–dependent priming to subthreshold stimuli including a migraine trigger. Pain, 2016, 157, 2722-2730.	2.0	45
228	The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence. Human Brain Mapping, 2016, 37, 2431-2445.	1.9	29
229	Integrating neuroimmune systems in the neurobiology of depression. Nature Reviews Neuroscience, 2016, 17, 497-511.	4.9	488
230	TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Cell Reports, 2016, 15, 2608-2615.	2.9	52
231	Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neuroscience and Biobehavioral Reviews, 2016, 68, 547-562.	2.9	114
232	Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain, Behavior, and Immunity, 2016, 57, 79-93.	2.0	139
233	Long-term effects of adolescent exposure to bisphenol A on neuron and glia number in the rat prefrontal cortex: Differences between the sexes and cell type. NeuroToxicology, 2016, 53, 186-192.	1.4	31
234	Exploring the role of inflammation in the malignant transformation of low-grade gliomas. Journal of Neuroimmunology, 2016, 297, 132-140.	1.1	58
235	Cellular Organization of Neuroimmune Interactions in the Gastrointestinal Tract. Trends in Immunology, 2016, 37, 487-501.	2.9	63
236	mTORC1 pathway disruption ameliorates brain inflammation following stroke <i>via</i> a shift in microglia phenotype from M1 type to M2 type. FASEB Journal, 2016, 30, 3388-3399.	0.2	119
237	Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science, 2016, 353, aaf3646.	6.0	191
238	Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine. Molecular Neurobiology, 2016, 53, 611-620.	1.9	51

# 239	ARTICLE Microgliosis in the Injured Brain. Neuroscientist, 2016, 22, 165-170.	IF 2.6	Citations 36
240	Neuro-immune Interactions Drive Tissue Programming in Intestinal Macrophages. Cell, 2016, 164, 378-391.	13.5	474
241	Role of GABAB receptors in learning and memory and neurological disorders. Neuroscience and Biobehavioral Reviews, 2016, 63, 1-28.	2.9	112
242	Cortical gray matter loss in schizophrenia: Could microglia be the culprit?. Medical Hypotheses, 2016, 88, 18-21.	0.8	14
243	Tissue biology perspective on macrophages. Nature Immunology, 2016, 17, 9-17.	7.0	498
244	The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nature Immunology, 2016, 17, 18-25.	7.0	315
245	Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168.	7.0	275
246	Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity, 2016, 44, 505-515.	6.6	309
247	Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chemical Neuroscience, 2016, 7, 442-453.	1.7	50
248	Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64, 197-213.	2.5	112
249	Microglia: Architects of the Developing Nervous System. Trends in Cell Biology, 2016, 26, 587-597.	3.6	264
250	Inflammation in central nervous system diseases. Clinical and Experimental Neuroimmunology, 2016, 7, 18-27.	0.5	1
251	A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood. Brain Structure and Function, 2016, 221, 4691-4703.	1.2	100
252	Ontogeny of Tumor-Associated Macrophages and Its Implication in Cancer Regulation. Trends in Cancer, 2016, 2, 20-34.	3.8	126
253	Microglia: A Unique Versatile Cell in the Central Nervous System. ACS Chemical Neuroscience, 2016, 7, 428-434.	1.7	39
254	Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 2016, 233, 1637-1650.	1.5	476
255	New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1738-46.	3.3	1,400
256	Therapeutic Potentials of Curcumin for Alzheimer Disease. , 2016, , .		13

#	Article	IF	CITATIONS
257	Stable biomarker for plastic microglia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3130-3132.	3.3	22
258	Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiological Reviews, 2016, 96, 647-693.	13.1	96
259	Microglia, physiology and behavior: A brief commentary. Brain, Behavior, and Immunity, 2016, 55, 1-5.	2.0	14
260	Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia. Brain Research, 2016, 1634, 57-67.	1.1	53
261	Therapeutic depletion of monocyte-derived cells protects from long-term axonal loss in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2016, 290, 36-46.	1.1	33
262	Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathologica, 2016, 131, 347-363.	3.9	217
263	Modulators of microglia: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 427-437.	2.4	23
264	New insights on the role of microglia in synaptic pruning in health and disease. Current Opinion in Neurobiology, 2016, 36, 128-134.	2.0	431
265	Microglial dysfunction connects depression and Alzheimer's disease. Brain, Behavior, and Immunity, 2016, 55, 151-165.	2.0	100
266	Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain, Behavior, and Immunity, 2016, 55, 126-137.	2.0	190
267	Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation. Current Opinion in Pharmacology, 2016, 26, 96-101.	1.7	67
268	Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain, Behavior, and Immunity, 2016, 51, 230-239.	2.0	230
269	BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology, 2016, 100, 76-89.	2.0	47
270	Fine-tuning of type I IFN-signaling in microglia — implications for homeostasis, CNS autoimmunity and interferonopathies. Current Opinion in Neurobiology, 2016, 36, 38-42.	2.0	39
271	Glial Contributions to Neural Function and Disease. Molecular and Cellular Proteomics, 2016, 15, 355-361.	2.5	41
272	Dynamic microglial modulation of spatial learning and social behavior. Brain, Behavior, and Immunity, 2016, 55, 6-16.	2.0	106
273	Microglia in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020560.	2.3	211
274	Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum. Psychoneuroendocrinology, 2016, 63, 191-197.	1.3	30

#	Article	IF	CITATIONS
275	Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain, Behavior, and Immunity, 2016, 55, 114-125.	2.0	192
276	Microglia in the Physiology and Pathology of Brain. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 781-794.	0.4	3
277	Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. Journal of Physiology, 2017, 595, 1929-1945.	1.3	396
278	Microglia–Neuron Communication in Epilepsy. Glia, 2017, 65, 5-18.	2.5	204
279	Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 40-48.	2.5	101
280	Central Nervous System: (Immunological) Ivory Tower or Not?. Neuropsychopharmacology, 2017, 42, 28-35.	2.8	30
281	Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity, 2017, 61, 1-11.	2.0	266
282	Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Cell Reports, 2017, 18, 198-212.	2.9	125
283	Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic–ischemic brain injury. Experimental Neurology, 2017, 290, 74-84.	2.0	36
284	Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine, 2017, 23, 355-360.	15.2	130
285	Αâ€synuclein induces microglial cell migration through stimulating HIFâ€1α accumulation. Journal of Neuroscience Research, 2017, 95, 1809-1817.	1.3	19
286	Microglia in CNS development: Shaping the brain for the future. Progress in Neurobiology, 2017, 149-150, 1-20.	2.8	203
287	A selective CB2R agonist (JWH133) restores neuronal circuit after Germinal Matrix Hemorrhage in the preterm via CX3CR1+ microglia. Neuropharmacology, 2017, 119, 157-169.	2.0	17
288	Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 27-39.	2.5	42
289	Microglia-derived neuregulin expression in psychiatric disorders. Brain, Behavior, and Immunity, 2017, 61, 375-385.	2.0	28
290	Microglial Biology and Physiology. , 2017, , 167-199.		0
291	Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging. Brain Structure and Function, 2017, 222, 2759-2771.	1.2	31
292	Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. Journal of Neuroinflammation, 2017, 14, 48.	3.1	264

#	Article	IF	CITATIONS
293	Neurobiology of local and intercellular BDNF signaling. Pflugers Archiv European Journal of Physiology, 2017, 469, 593-610.	1.3	226
294	Molecules in pain and sex: a developing story. Molecular Brain, 2017, 10, 9.	1.3	81
295	Exploring the role of microglia in cortical spreading depression in neurological disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1182-1191.	2.4	62
296	Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. Journal of Neuroscience, 2017, 37, 3294-3310.	1.7	56
297	Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience and Biobehavioral Reviews, 2017, 77, 148-164.	2.9	101
298	Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual Review of Immunology, 2017, 35, 441-468.	9.5	1,450
299	Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice. Neuroscience, 2017, 351, 15-23.	1.1	6
300	Tissue adaptation: Implications for gut immunity and tolerance. Journal of Experimental Medicine, 2017, 214, 1211-1226.	4.2	51
301	TREM2, Microglia, and Neurodegenerative Diseases. Trends in Molecular Medicine, 2017, 23, 512-533.	3.5	327
302	Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation. Nature Immunology, 2017, 18, 642-653.	7.0	131
303	The Nuclear Receptor Nr4a1 Acts as a Microglia Rheostat and Serves as a Therapeutic Target in Autoimmune-Driven Central Nervous System Inflammation. Journal of Immunology, 2017, 198, 3878-3885.	0.4	34
304	A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nature Neuroscience, 2017, 20, 793-803.	7.1	446
306	CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nature Medicine, 2017, 23, 714-722.	15.2	101
307	Should We Stop Saying â€~Glia' and â€~Neuroinflammation'?. Trends in Molecular Medicine, 2017, 23, 48	36 చ ి\$0.	77
308	Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nature Immunology, 2017, 18, 633-641.	7.0	53
309	Microglial NFκB-TNFα hyperactivation induces obsessive–compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5029-5034.	3.3	96
310	Mechanisms of Hippocampal Aging and the Potential for Rejuvenation. Annual Review of Neuroscience, 2017, 40, 251-272.	5.0	91
311	Amelioration of amyloid-β-induced deficits by DcR3 in an Alzheimer's disease model. Molecular Neurodegeneration, 2017, 12, 30.	4.4	18

		CITATION R	EPORT	
#	Article		IF	CITATIONS
312	Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results and Problems in Cell Differentiation, 20		0.2	32
313	Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. I of Ophthalmology, 2017, 12, 69-81.	Expert Review	0.3	45
314	DAMed in (Trem) 2 Steps. Cell, 2017, 169, 1172-1174.		13.5	7
315	TRPC Channels and Brain Inflammation. Advances in Experimental Medicine and Biology, 111-121.	2017, 976,	0.8	7
316	Myeloid Cells in the Central Nervous System. Immunity, 2017, 46, 943-956.		6.6	259
317	A cell-type-specific jolt for motor disorders. Nature Neuroscience, 2017, 20, 763-765.		7.1	0
318	Microglial confetti party. Nature Neuroscience, 2017, 20, 762-763.		7.1	4
319	An environment-dependent transcriptional network specifies human microglia identity. S 356, .	cience, 2017,	6.0	911
320	Microglia Are Irrelevant for Neuronal Degeneration and Axon Regeneration after Acute In Journal of Neuroscience, 2017, 37, 6113-6124.	jury.	1.7	155
321	Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/ Science Translational Medicine, 2017, 9, .	PS1 mice.	5.8	401
322	Astrocyteâ€mediated synapse remodeling in the pathological brain. Clia, 2017, 65, 1719	-1727.	2.5	70
323	Placental and cord blood brain derived neurotrophic factor levels are decreased in nondia macrosomia. Archives of Gynecology and Obstetrics, 2017, 296, 205-213.	betic	0.8	13
324	Monitoring in vivo function of cortical microglia. Cell Calcium, 2017, 64, 109-117.		1.1	27
325	The Endocannabinoid System in Local and Systemic Inflammation. Colloquium Series on Systems Physiology From Molecule To Function, 2017, 9, i-192.	Integrated	0.3	2
326	Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat pref cortex. Life Sciences, 2017, 180, 75-82.	rontal	2.0	6
327	New insights into mononuclear phagocyte biology from the visual system. Nature Review Immunology, 2017, 17, 322-332.	/S	10.6	60
328	Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle through TNF. Nature Communications, 2017, 8, 14091.	ergeneration	5.8	166
329	Differential neuronal and glial expression of nuclear factor I proteins in the cerebral corte mice. Journal of Comparative Neurology, 2017, 525, 2465-2483.	x of adult	0.9	35

#	Article	IF	CITATIONS
330	Specific suppression of microgliosis cannot circumvent the severe neuropathology in peroxisomal β-oxidation-deficient mice. Molecular and Cellular Neurosciences, 2017, 80, 123-133.	1.0	7
331	An astroglial basis of major depressive disorder? An overview. Glia, 2017, 65, 1227-1250.	2.5	156
332	Inflammasomes as therapeutic targets for <scp>A</scp> lzheimer's disease. Brain Pathology, 2017, 27, 223-234.	2.1	110
333	TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. Journal of Neuroscience, 2017, 37, 871-881.	1.7	268
334	Microglia: origins, homeostasis, and roles in myelin repair. Current Opinion in Neurobiology, 2017, 47, 113-120.	2.0	60
335	IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Human Molecular Genetics, 2017, 26, 4267-4277.	1.4	21
336	Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcoholism: Clinical and Experimental Research, 2017, 41, 2066-2081.	1.4	47
337	Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1. Journal of Neuroscience, 2017, 37, 10541-10553.	1.7	45
338	Mef2C restrains microglial inflammatory response and is lost in brain ageing inÂan IFN-I-dependent manner. Nature Communications, 2017, 8, 717.	5.8	157
339	The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Research Reviews, 2017, 40, 84-94.	5.0	167
340	The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia, 2017, 65, 1744-1761.	2.5	59
341	Siglecâ€H is a microgliaâ€specific marker that discriminates microglia from CNSâ€associated macrophages and CNSâ€infiltrating monocytes. Glia, 2017, 65, 1927-1943.	2.5	123
342	Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neuroscience and Biobehavioral Reviews, 2017, 83, 474-488.	2.9	40
343	Combination of AÎ ² Suppression and Innate Immune Activation in the Brain Significantly Attenuates Amyloid Plaque Deposition. American Journal of Pathology, 2017, 187, 2886-2894.	1.9	7
344	Gamma Interferon Mediates Experimental Cerebral Malaria by Signaling within Both the Hematopoietic and Nonhematopoietic Compartments. Infection and Immunity, 2017, 85, .	1.0	23
345	Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23, 1018-1027.	15.2	1,208
346	Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus. Neuroscience, 2017, 363, 11-25.	1.1	53
347	Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron, 2017, 95, 1246-1265.	3.8	518

#	Article	IF	CITATIONS
348	Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nature Reviews Neuroscience, 2017, 18, 658-670.	4.9	226
349	HDAC3 inhibition ameliorates spinal cord injury by immunomodulation. Scientific Reports, 2017, 7, 8641.	1.6	49
350	Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and InÂVivo Motility. Developmental Cell, 2017, 42, 498-513.e6.	3.1	92
351	Monocyte infiltration and proliferation reestablish myeloid cell homeostasis in the mouse retina following retinal pigment epithelial cell injury. Scientific Reports, 2017, 7, 8433.	1.6	84
352	Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord. Journal of Cell Biology, 2017, 216, 2979-2989.	2.3	52
353	Spineless Behavior of CX3CR1+ Monocytes in Response to Infection. Immunity, 2017, 47, 12-14.	6.6	5
354	The Lifespan and Turnover of Microglia in the Human Brain. Cell Reports, 2017, 20, 779-784.	2.9	340
355	Spinal mechanisms of neuropathic pain: Is there a P2X4-BDNF controversy?. Neurobiology of Pain (Cambridge, Mass), 2017, 1, 1-5.	1.0	20
356	Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiology of Disease, 2017, 106, 291-300.	2.1	84
357	BDNF at the synapse: why location matters. Molecular Psychiatry, 2017, 22, 1370-1375.	4.1	157
358	Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8865-8870.	3.3	61
359	Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine and Growth Factor Reviews, 2017, 37, 67-79.	3.2	39
360	Complement System in Neural Synapse Elimination in Development and Disease. Advances in Immunology, 2017, 135, 53-79.	1.1	193
361	Structural Plasticity Induced by Adult Neurogenesis. , 2017, , 27-48.		2
362	Age-related changes in microglial physiology: the role for healthy brain ageing and neurodegenerative disorders. E-Neuroforum, 2017, 23, A182-A191.	0.2	13
363	Neurodegenerative diseases: The immunological perspective. Journal of Neuroimmunology, 2017, 313, 109-115.	1.1	76
364	A microglia-cytokine axis to modulate synaptic connectivity and function. Current Opinion in Neurobiology, 2017, 47, 138-145.	2.0	79
365	On place and time: microglia in embryonic and perinatal brain development. Current Opinion in Neurobiology, 2017, 47, 121-130.	2.0	94

#	Article	IF	CITATIONS
366	Environment matters: microglia function and dysfunction in a changing world. Current Opinion in Neurobiology, 2017, 47, 146-155.	2.0	99
367	An immortalized microglial cell line (Mocha) derived from rat cochlea. Molecular and Cellular Neurosciences, 2017, 85, 202-210.	1.0	5
368	Microgliaâ€ŧargeted stem cell therapies for Alzheimer disease: A preclinical data review. Journal of Neuroscience Research, 2017, 95, 2420-2429.	1.3	24
369	Brain Transforming Growth Factor-Î ² Resists Hypertension Via Regulating Microglial Activation. Stroke, 2017, 48, 2557-2564.	1.0	28
370	Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility. Cell Metabolism, 2017, 26, 185-197.e3.	7.2	321
371	Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron, 2017, 95, 341-356.e6.	3.8	325
372	Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathologica, 2017, 134, 441-458.	3.9	375
373	Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. Journal of Neuroinflammation, 2017, 14, 86.	3.1	111
374	Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. Journal of Neuroinflammation, 2017, 14, 107.	3.1	49
375	Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 47.	4.4	88
376	An updated assessment of microglia depletion: current concepts and future directions. Molecular Brain, 2017, 10, 25.	1.3	118
377	Synaptoimmunology - roles in health and disease. Molecular Brain, 2017, 10, 26.	1.3	36
378	Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	19
379	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	3.8	171
380	Patrolling monocytes sense peripheral infection and induce cytokine-mediated neuronal dysfunction. Nature Medicine, 2017, 23, 659-661.	15.2	4
381	Understanding epigenetic architecture of suicide neurobiology: A critical perspective. Neuroscience and Biobehavioral Reviews, 2017, 72, 10-27.	2.9	51
382	Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Molecular Neurobiology, 2017, 54, 7567-7584.	1.9	198
383	(Putative) sex differences in neuroimmune modulation of memory. Journal of Neuroscience Research, 2017, 95, 472-486.	1.3	26

#	Article	IF	CITATIONS
384	Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signalling, 2017, 13, 153-170.	1.1	71
385	<scp>l</scp> â€DOPAâ€induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role?. European Journal of Neuroscience, 2017, 45, 73-91.	1.2	56
386	Tissueâ€resident macrophages — how to humanize our knowledge. Immunology and Cell Biology, 2017, 95, 173-177.	1.0	15
387	The interplay between neurons and glia in synapse development and plasticity. Current Opinion in Neurobiology, 2017, 42, 1-8.	2.0	138
388	Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150, 7-15.	2.0	130
389	Microglial production of TNF-alpha is a key element of sustained fear memory. Brain, Behavior, and Immunity, 2017, 59, 313-321.	2.0	44
390	Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 49-57.	2.5	30
391	Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behavioural Brain Research, 2017, 316, 279-293.	1.2	96
392	Microglia Priming with Aging and Stress. Neuropsychopharmacology, 2017, 42, 318-333.	2.8	284
393	Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Molecular Psychiatry, 2017, 22, 1035-1043.	4.1	69
394	Role of microglia in fungal infections of the central nervous system. Virulence, 2017, 8, 705-718.	1.8	37
395	Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia. Neurotoxicology and Teratology, 2017, 60, 75-81.	1.2	16
396	Biology of Microglia in the Developing Brain. Journal of Neuropathology and Experimental Neurology, 2017, 76, 736-753.	0.9	95
397	Changes in neocortical and hippocampal microglial cells during hibernation. Brain Structure and Function, 2017, 223, 1881-1895.	1.2	8
398	Revisiting medial preoptic area plasticity induced in male mice by sexual experience. Scientific Reports, 2017, 7, 17846.	1.6	21
400	Microglia and Brain Plasticity in Acute Psychosis and Schizophrenia Illness Course: A Meta-Review. Frontiers in Psychiatry, 2017, 8, 238.	1.3	114
401	Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders. Pharmaceuticals, 2017, 10, 95.	1.7	26
402	The roles of microglia macrophages in tumor progression of brain cancer and metastatic disease. Frontiers in Bioscience - Landmark, 2017, 22, 1805-1829.	3.0	119

	CITATION	Report	
#	Article	IF	CITATIONS
403	Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling. Cancers, 2017, 9, 68.	1.7	64
404	The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. ELife, 2017, 6, .	2.8	81
405	Involvement of the Bradykinin B1 Receptor in Microglial Activation: In Vitro and In Vivo Studies. Frontiers in Endocrinology, 2017, 8, 82.	1.5	28
406	The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Frontiers in Immunology, 2017, 8, 1489.	2.2	173
407	Aging Microglia—Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2017, 9, 194.	1.7	188
408	The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Frontiers in Aging Neuroscience, 2017, 9, 214.	1.7	348
409	Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies. Frontiers in Aging Neuroscience, 2017, 9, 234.	1.7	22
410	Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Frontiers in Cellular Neuroscience, 2017, 11, 24.	1.8	328
411	Adiponectin Regulates the Polarization and Function of Microglia via PPAR-Î ³ Signaling Under Amyloid Î ² Toxicity. Frontiers in Cellular Neuroscience, 2017, 11, 64.	1.8	46
412	Microglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 69.	1.8	40
413	Status Epilepticus Triggers Time-Dependent Alterations in Microglia Abundance and Morphological Phenotypes in the Hippocampus. Frontiers in Neurology, 2017, 8, 700.	1.1	68
414	Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Frontiers in Neuroscience, 2017, 11, 680.	1.4	108
415	Roles of Glial Cells in Sculpting Inhibitory Synapses and Neural Circuits. Frontiers in Molecular Neuroscience, 2017, 10, 381.	1.4	34
416	Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Frontiers in Synaptic Neuroscience, 2017, 9, 9.	1.3	150
417	What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Frontiers in Synaptic Neuroscience, 2017, 9, 11.	1.3	16
418	Modulating Neuroinflammation to Treat Neuropsychiatric Disorders. BioMed Research International, 2017, 2017, 1-21.	0.9	51
419	The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer. Journal of Immunology Research, 2017, 2017, 1-12.	0.9	140
420	Microglia-Synapse Pathways: Promising Therapeutic Strategy for Alzheimer's Disease. BioMed Research International, 2017, 2017, 1-11.	0.9	22

#	Article	IF	Citations
#	Splitting the "Unsplittable― Dissecting Resident and Infiltrating Macrophages in Experimental	IF	CHATIONS
421	Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 2072.	1.8	23
422	Alterations in the properties of neonatal thalamocortical synapses with time in in vitro slices. PLoS ONE, 2017, 12, e0171897.	1.1	3
423	Contribution of Neuroinflammation in the Pathogenesis of Alzheimer's Disease. , 2017, , 201-245.		0
424	Interleukin-1β signaling in fenestrated capillaries is sufficient to trigger sickness responses in mice. Journal of Neuroinflammation, 2017, 14, 219.	3.1	24
425	A Comparative Analysis of the Molecular Mechanisms Contributing to Implicit and Explicit Memory Storage in Aplysia and in the Hippocampus â~†. , 2017, , 5-31.		4
426	A maternal high-fat diet during pregnancy and lactation, in addition to a postnatal high-fat diet, leads to metabolic syndrome with spatial learning and memory deficits: beneficial effects of resveratrol. Oncotarget, 2017, 8, 111998-112013.	0.8	26
427	Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation. Oncotarget, 2017, 8, 28544-28557.	0.8	15
428	Microglia in Alzheimer's disease. Journal of Clinical Investigation, 2017, 127, 3240-3249.	3.9	622
429	Microglia in prion diseases. Journal of Clinical Investigation, 2017, 127, 3230-3239.	3.9	89
430	The Protective Effects of <i>Gardenia jasminoides</i> (Fructus Gardenia) on Amyloid-β-Induced Mouse Cognitive Impairment and Neurotoxicity. The American Journal of Chinese Medicine, 2018, 46, 389-405.	1.5	36
431	Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nature Neuroscience, 2018, 21, 530-540.	7.1	384
432	Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Current Opinion in Neurology, 2018, 31, 334-344.	1.8	51
433	Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models. Neuron, 2018, 97, 1032-1048.e5.	3.8	246
434	<scp>NGF</scp> steers microglia toward a neuroprotective phenotype. Glia, 2018, 66, 1395-1416.	2.5	72
435	Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy. Cell Reports, 2018, 22, 2080-2093.	2.9	140
436	Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discovery, 2018, 4, 9.	3.1	73
437	Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. Journal of Neuroscience, 2018, 38, 3060-3080.	1.7	143
438	Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. Journal of Alzheimer's Disease, 2018, 62, 523-547.	1.2	75

#	ARTICLE	IF	Citations
439	Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation. NeuroMolecular Medicine, 2018, 20, 161-173.	1.8	47
440	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-Î ² signaling. Nature Immunology, 2018, 19, 1-7.	7.0	62
441	The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. Journal of Neuroscience, 2018, 38, 4708-4723.	1.7	34
442	Postnatal maturation of microglia is associated with alternative activation and activated TGFÎ ² signaling. Glia, 2018, 66, 1695-1708.	2.5	28
443	A Novel In Vitro Live-imaging Assay of Astrocyte-mediated Phagocytosis Using pH Indicator-conjugated Synaptosomes. Journal of Visualized Experiments, 2018, , .	0.2	12
444	Activity-dependent functions of non-electrical glial cells. Journal of Biochemistry, 2018, 163, 457-464.	0.9	7
445	Macrophages and lipid metabolism. Cellular Immunology, 2018, 330, 27-42.	1.4	289
446	13 reasons why the brain is susceptible to oxidative stress. Redox Biology, 2018, 15, 490-503.	3.9	738
447	Inflammation as a Possible Link Between Dyslipidemia and Alzheimer's Disease. Neuroscience, 2018, 376, 127-141.	1.1	25
448	Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Research Reviews, 2018, 43, 26-45.	5.0	79
449	Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death and Disease, 2018, 9, 120.	2.7	79
450	Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359, 1269-1273.	6.0	422
451	The GluN2A Subunit Regulates Neuronal NMDA receptor-Induced Microglia-Neuron Physical Interactions. Scientific Reports, 2018, 8, 828.	1.6	39
452	Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy. EBioMedicine, 2018, 28, 162-167.	2.7	23
453	Sensory neuronal P2RX4 receptors controls BDNF signaling in inflammatory pain. Scientific Reports, 2018, 8, 964.	1.6	51
454	EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocrine Connections, 2018, 7, 305-324.	0.8	41
455	Long-term Administration of Salicylate-induced Changes in BDNF Expression and CREB Phosphorylation in the Auditory Cortex of Rats. Otology and Neurotology, 2018, 39, e173-e180.	0.7	10
456	Novel concepts in sleep regulation. Acta Physiologica, 2018, 222, e13017.	1.8	13

ARTICLE IF CITATIONS # Microglial modulation of neuronal activity in the healthy brain. Developmental Neurobiology, 2018, 457 1.5 80 78, 593-603. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid Î²-treated Rats. 1.1 Neuroscience, 2018, 372, 58-73. 459 Immune regulation by monocytes. Seminars in Immunology, 2018, 35, 12-18. 2.7 85 Cerebellar microglia are dynamically unique and survey Purkinje neurons <i>in vivo</i>. 460 Developmental Neurobiology, 2018, 78, 627-644. Synaptic Plasticity in the Nucleus Accumbens: Lessons Learned from Experience. ACS Chemical 461 1.7 34 Neuroscience, 2018, 9, 2114-2126. Microglia: Driving critical periods and sexual differentiation of the brain. Developmental Neurobiology, 2018, 78, 580-592. 1.5 Microglial interactions with the neurovascular system in physiology and pathology. Developmental 463 1.5 81 Neurobiology, 2018, 78, 604-617. Muscularis macrophages: Key players in intestinal homeostasis and disease. Cellular Immunology, 2018, 464 1.4 330, 142-150. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying 465 3.9 196 inflammation-induced synaptic alterations. Acta Neuropathologica, 2018, 135, 529-550. Strainâ€specific differential expression of astrocytes and microglia in the mouse hippocampus. Brain 1.0 and Behavior, 2018, 8, e00961. New concepts in macrophage ontogeny in the adult neural retina. Cellular Immunology, 2018, 330, 467 1.4 13 79-85. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape. Cell Reports, 468 2018, 23, 959-966. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell 469 2.3 124 Reports, 2018, 10, 1294-1307. The role of ADHD associated genes in neurodevelopment. Developmental Biology, 2018, 438, 69-83. 65 Environmental Mechanisms of Neurodevelopmental Toxicity. Current Environmental Health Reports, 471 3.2 64 2018, 5, 145-157. DREADDed microglia in pain: Implications for spinal inflammatory signaling in male rats. Experimental 2.0 79 Neurology, 2018, 304, 125-131. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature 474 5.8 586 Communications, 2018, 9, 1228. Upregulation of Microglial ZEB1 Ameliorates Brain Damage after Acute Ischemic Stroke. Cell Reports, 2018, 22, 3574-3586.

#	Article	IF	CITATIONS
476	Complement: The Emerging Architect of the Developing Brain. Trends in Neurosciences, 2018, 41, 373-384.	4.2	73
477	Microglia-Mediated Synapse Loss in Alzheimer's Disease. Journal of Neuroscience, 2018, 38, 2911-2919.	1.7	228
478	Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Science Advances, 2018, 4, eaap8492.	4.7	81
479	Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. Journal of Alzheimer's Disease, 2018, 64, S405-S426.	1.2	66
480	Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity, 2018, 48, 514-529.e6.	6.6	144
481	Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Molecular Neurobiology, 2018, 55, 3408-3425.	1.9	12
482	Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK–STAT Pathway. Molecular Neurobiology, 2018, 55, 1676-1691.	1.9	63
483	A story of birth and death: Insights into the formation and dynamics of the microglial population. Brain, Behavior, and Immunity, 2018, 69, 9-17.	2.0	34
484	Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity, 2018, 69, 18-27.	2.0	89
485	Association Between Neurotrophic Factor Expression and Pain-Related Behavior Induced by Nucleus Pulposus Applied to Rat Nerve Root. Spine, 2018, 43, E7-E15.	1.0	8
486	Persistent Increase in Microglial RAGE Contributes to Chronic Stress–Induced Priming of Depressive-like Behavior. Biological Psychiatry, 2018, 83, 50-60.	0.7	135
487	Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of Neural Transmission, 2018, 125, 809-826.	1.4	84
488	Microglia-Mediated Neuroprotection, TREM2 , and Alzheimer's Disease: Evidence From OpticalÂlmaging. Biological Psychiatry, 2018, 83, 377-387.	0.7	84
489	Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia, 2018, 66, 1244-1262.	2.5	177
490	Impact of Xâ€irradiation on microglia. Glia, 2018, 66, 15-33.	2.5	16
491	Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates Al ² accumulation through suppression of neuronal l ³ -secretase activity and promotion of microglial amyloid-l ² phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2018, 62, 197-209.	1.5	44
492	Two Classes of Secreted Synaptic Organizers in the Central Nervous System. Annual Review of Physiology, 2018, 80, 243-262.	5.6	93
493	Cellular diversity of the somatosensory cortical map plasticity. Neuroscience and Biobehavioral Reviews, 2018, 84, 100-115.	2.9	24

#	Article	IF	CITATIONS
494	Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacological Reviews, 2018, 70, 12-38.	7.1	285
495	A comprehensive review of genetic and epigenetic mechanisms that regulate <i>BDNF</i> expression and function with relevance to major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 143-167.	1.1	100
496	Sexual dimorphism of microglia and synapses during mouse postnatal development. Developmental Neurobiology, 2018, 78, 618-626.	1.5	83
497	Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Research Reviews, 2018, 42, 28-39.	5.0	52
498	Microglia: Key players in neurodevelopment and neuronal plasticity. International Journal of Biochemistry and Cell Biology, 2018, 94, 56-60.	1.2	104
499	Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiology of Disease, 2018, 110, 102-121.	2.1	50
500	Innate Immunity and Neurodegeneration. Annual Review of Medicine, 2018, 69, 437-449.	5.0	221
501	Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicology Letters, 2018, 283, 21-31.	0.4	59
502	3 .Neuropathologie und molekulare Mechanismen. , 2018, , 35-122.		1
503	The Tollâ€Like Receptor 3 Agonist Poly(I:C) Induces Rapid and Lasting Changes in Gene Expression Related to Glutamatergic Function and Increases Ethanol Selfâ€Administration in Rats. Alcoholism: Clinical and Experimental Research, 2019, 43, 48-60.	1.4	33
504	Developmental roles of microglia: A window into mechanisms of disease. Developmental Dynamics, 2019, 248, 98-117.	0.8	28
505	Microglia: Immune Regulators of Neurodevelopment. Frontiers in Immunology, 2018, 9, 2576.	2.2	118
506	Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nature Communications, 2018, 9, 4845.	5.8	148
507	Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11359-E11368.	3.3	50
508	Impact of Aging in Microglia-Mediated D-Serine Balance in the CNS. Mediators of Inflammation, 2018, 2018, 1-11.	1.4	18
509	RNAseq analysis of hippocampal microglia after kainic acid-induced seizures. Molecular Brain, 2018, 11, 34.	1.3	36
510	The Role of Glial Cells and Synapse Loss in Mouse Models of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 473.	1.8	24
511	Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal Regions of TgCRND8 Mice. Frontiers in Aging Neuroscience, 2018, 10, 372.	1.7	33

#	Article	IF	CITATIONS
512	Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. NeuroImmunoModulation, 2018, 25, 246-270.	0.9	46
513	The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Frontiers in Immunology, 2018, 9, 2325.	2.2	89
514	Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 276.	3.1	353
515	TREM2 — a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 2018, 14, 667-675.	4.9	396
516	Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus. Journal of Immunology, 2018, 201, 2683-2699.	0.4	114
517	Silencing of TGFÎ ² signalling in microglia results in impaired homeostasis. Nature Communications, 2018, 9, 4011.	5.8	125
518	Caspases orchestrate microglia instrumental functions. Progress in Neurobiology, 2018, 171, 50-71.	2.8	27
519	Converging pathways in neurodegeneration, from genetics to mechanisms. Nature Neuroscience, 2018, 21, 1300-1309.	7.1	325
520	The Importance of Inter-Species Variation in Traumatic Brain Injury-Induced Alterations of Microglial-Axonal Interactions. Frontiers in Neurology, 2018, 9, 778.	1.1	22
521	Microdose Lithium NPO3 Diminishes Pre-Plaque Oxidative Damage and Neuroinflammation in a Rat Model of Alzheimer's-like Amyloidosis. Current Alzheimer Research, 2018, 15, 1220-1230.	0.7	18
522	Acute microglia ablation induces neurodegeneration in the somatosensory system. Nature Communications, 2018, 9, 4578.	5.8	55
523	A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. Journal of Neuroinflammation, 2018, 15, 285.	3.1	39
524	BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo. Frontiers in Molecular Neuroscience, 2018, 11, 325.	1.4	12
525	Effects of Quercetin Intervention on Cognition Function in APP/PS1 Mice was Affected by Vitamin D Status. Molecular Nutrition and Food Research, 2018, 62, e1800621.	1.5	41
526	Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB Journal, 2018, 32, 5766-5777.	0.2	30
527	New Roles for an Ancient Factor. Trends in Neurosciences, 2018, 41, 765-767.	4.2	3
528	Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. Journal of Neuroscience, 2018, 38, 9019-9033.	1.7	47
529	Bidirectional Microglia–Neuron Communication in Health and Disease. Frontiers in Cellular Neuroscience, 2018, 12, 323.	1.8	329

#	Article	IF	CITATIONS
530	Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Molecular Medicine, 2018, 10, .	3.3	102
531	Microglial signatures and their role in health and disease. Nature Reviews Neuroscience, 2018, 19, 622-635.	4.9	599
532	CCL17 exerts a neuroimmune modulatory function and is expressed in hippocampal neurons. Glia, 2018, 66, 2246-2261.	2.5	33
533	Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment. Oncotarget, 2018, 9, 24950-24969.	0.8	17
534	Diet Modifies Colonic Microbiota and CD4+ T-Cell Repertoire to Induce Flares of Colitis in Mice With Myeloid-Cell Expression of Interleukin 23. Gastroenterology, 2018, 155, 1177-1191.e16.	0.6	32
535	Exploring glia to better understand Alzheimer's disease. Animal Cells and Systems, 2018, 22, 213-218.	0.8	33
536	Macrophages and Cardiovascular Health. Physiological Reviews, 2018, 98, 2523-2569.	13.1	79
537	Microglia Enhance Synapse Activity to Promote Local Network Synchronization. ENeuro, 2018, 5, ENEURO.0088-18.2018.	0.9	134
538	Quantifying Microglial Phagocytosis of Apoptotic Cells in the Brain in Health and Disease. Current Protocols in Immunology, 2018, 122, e49.	3.6	16
539	Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress, 2018, 9, 9-21.	1.9	255
540	Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Scientific Reports, 2018, 8, 7857.	1.6	59
541	Microglia Under the Spotlight: Activity and Complement-Dependent Engulfment of Synapses. Trends in Neurosciences, 2018, 41, 332-334.	4.2	18
542	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5.8	152
543	Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. European Journal of Neuroscience, 2018, 47, 1414-1428.	1.2	67
544	Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. Journal of Neuroscience, 2018, 38, 5949-5968.	1.7	56
545	Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiology of Disease, 2018, 117, 28-41.	2.1	37
546	Microglia in the Retina: Roles in Development, Maturity, and Disease. Annual Review of Vision Science, 2018, 4, 45-77.	2.3	221
547	Much, if not all, of the cortical damage in MS can be attributed to the microglial cell – No. Multiple Sclerosis Journal, 2018, 24, 897-899.	1.4	О

#	Article	IF	CITATIONS
548	Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery?. SLAS Discovery, 2018, 23, 991-1017.	1.4	17
549	P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Molecular Medicine, 2018, 10, .	3.3	141
550	Inhibition of NF-κB signaling in IKKβF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of Spinocerebellar ataxia type 1. PLoS ONE, 2018, 13, e0200013.	1.1	19
551	Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease–related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiology of Aging, 2018, 70, 203-216.	1.5	55
552	(Micro)Glia as Effectors of Cortical Volume Loss in Schizophrenia. Schizophrenia Bulletin, 2018, 44, 948-957.	2.3	21
553	Critical Role for the Microbiota in CX3CR1+ Intestinal Mononuclear Phagocyte Regulation of Intestinal TÂCell Responses. Immunity, 2018, 49, 151-163.e5.	6.6	148
554	Beta-hydroxybutyrate Promotes the Expression of BDNF in Hippocampal Neurons under Adequate Glucose Supply. Neuroscience, 2018, 386, 315-325.	1.1	51
555	Bone-Marrow-Derived Microglia-Like Cells Ameliorate Brain Amyloid Pathology and Cognitive Impairment in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 563-585.	1.2	32
556	Amyotrophic lateral sclerosis: The complement and inflammatory hypothesis. Molecular Immunology, 2018, 102, 14-25.	1.0	34
557	Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats. Journal of Neurophysiology, 2018, 120, 1307-1317.	0.9	67
558	In Vivo Near-Infrared Two-Photon Imaging of Amyloid Plaques in Deep Brain of Alzheimer's Disease Mouse Model. ACS Chemical Neuroscience, 2018, 9, 3128-3136.	1.7	50
559	Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. Journal of Experimental Medicine, 2018, 215, 2235-2245.	4.2	167
560	The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia, 2018, 59, 1796-1806.	2.6	29
561	Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 2018, 21, 1049-1060.	7.1	318
562	Protective Role of L-3-n-Butylphthalide in Cognitive Function and Dysthymic Disorders in Mouse With Chronic Epilepsy. Frontiers in Pharmacology, 2018, 9, 734.	1.6	16
563	Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain, Behavior, and Immunity, 2018, 73, 682-697.	2.0	72
564	TREM2-Dependent Effects on Microglia in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 202.	1.7	60
565	Selective role of Na ⁺ /H ⁺ exchanger in <i>Cx3cr1⁺</i> microglial activation, white matter demyelination, and postâ€stroke function recovery. Glia, 2018, 66, 2279-2298.	2.5	43

#	Article	IF	CITATIONS
566	The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 29-37.	1.2	51
567	Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathologica Communications, 2018, 6, 66.	2.4	35
568	Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Frontiers in Immunology, 2018, 9, 697.	2.2	164
569	Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Frontiers in Immunology, 2018, 9, 698.	2.2	359
570	A Brief History of Microglial Ultrastructure: Distinctive Features, Phenotypes, and Functions Discovered Over the Past 60 Years by Electron Microscopy. Frontiers in Immunology, 2018, 9, 803.	2.2	64
571	Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation. Frontiers in Cellular Neuroscience, 2018, 12, 43.	1.8	22
572	Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421.	1.4	151
573	Within the Brain: The Renin Angiotensin System. International Journal of Molecular Sciences, 2018, 19, 876.	1.8	235
574	Myelin. Methods in Molecular Biology, 2018, , .	0.4	1
575	Microglia after Seizures and in Epilepsy. Cells, 2018, 7, 26.	1.8	103
576	Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. International Journal of Molecular Sciences, 2018, 19, 1247.	1.8	23
577	Organotypic Slice Cultures to Study Oligodendrocyte Proliferation, Fate, and Myelination. Methods in Molecular Biology, 2018, 1791, 145-156.	0.4	7
578	Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology, 2018, 408, 62-69.	2.0	13
579	The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron, 2018, 99, 464-479.e7.	3.8	202
580	Intraganglionic macrophages: a new population of cells in the enteric ganglia. Journal of Anatomy, 2018, 233, 401-410.	0.9	22
581	Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nature Communications, 2018, 9, 2830.	5.8	58
582	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	6.6	436
584	Cre Driver Mice Targeting Macrophages. Methods in Molecular Biology, 2018, 1784, 263-275.	0.4	97

#	Article	IF	CITATIONS
585	The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Scientific Reports, 2018, 8, 7297.	1.6	22
586	Microglial immune checkpoint mechanisms. Nature Neuroscience, 2018, 21, 779-786.	7.1	119
587	Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Scientific Reports, 2018, 8, 7348.	1.6	44
588	Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Frontiers in Molecular Neuroscience, 2018, 11, 256.	1.4	13
589	In Vivo Imaging of Microglia With Multiphoton Microscopy. Frontiers in Aging Neuroscience, 2018, 10, 218.	1.7	29
590	Studying tissue macrophages in vitro: are iPSC-derived cells the answer?. Nature Reviews Immunology, 2018, 18, 716-725.	10.6	92
592	Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opinion on Therapeutic Targets, 2018, 22, 765-781.	1.5	47
593	Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Science Advances, 2018, 4, eaas9846.	4.7	73
594	Microglia and the Brain: Complementary Partners in Development and Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 523-544.	4.0	214
595	Microglial Implication in Parkinson's Disease: Loss of Beneficial Physiological Roles or Gain of Inflammatory Functions?. Frontiers in Cellular Neuroscience, 2018, 12, 282.	1.8	114
596	Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Frontiers in Cellular Neuroscience, 2018, 12, 236.	1.8	61
597	Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 206.	1.8	186
598	Visualizing BDNF Transcript Usage During Sound-Induced Memory Linked Plasticity. Frontiers in Molecular Neuroscience, 2018, 11, 260.	1.4	17
599	Human-specific features of spatial gene expression and regulation in eight brain regions. Genome Research, 2018, 28, 1097-1110.	2.4	66
600	Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?. Expert Opinion on Therapeutic Targets, 2018, 22, 587-598.	1.5	27
601	Salt-Inducible Kinase 1 (SIK1) is Induced by Alcohol and Suppresses Microglia Inflammation via NF-κB Signaling. Cellular Physiology and Biochemistry, 2018, 47, 1411-1421.	1.1	16
602	Molecular Aspects of Ischemic Injury. , 2018, , 41-87.		1
603	Effects of Dietary Components on Microglia Inactivation in Alzheimer's Disease. , 2018, , 117-137.		0

#	Article	IF	CITATIONS
604	Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6264-E6273.	3.3	104
605	A Novel Synthetic Derivative of Phloroglucinol Inhibits Neuroinflammatory Responses Through Attenuating Kalirin Signaling Pathway in Murine BV2 Microglial Cells. Molecular Neurobiology, 2019, 56, 2870-2880.	1.9	3
606	New Insights into Microglia–Neuron Interactions: A Neuron's Perspective. Neuroscience, 2019, 405, 103-117.	1.1	77
607	LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Molecular Neurobiology, 2019, 56, 963-975.	1.9	17
608	Generation of a triple-fluorescent mouse strain allows a dynamic and spatial visualization of different liver phagocytes in vivo. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20170317.	0.3	1
609	Role of a VGF/BDNF/TrkB Autoregulatory Feedback Loop in Rapid-Acting Antidepressant Efficacy. Journal of Molecular Neuroscience, 2019, 68, 504-509.	1.1	37
610	Microglia in Neurodegenerative Disorders. Methods in Molecular Biology, 2019, 2034, 57-67.	0.4	39
611	Novel Microglia Depletion Systems: A Genetic Approach Utilizing Conditional Diphtheria Toxin Receptor Expression and a Pharmacological Model Based on the Blocking of Macrophage Colony-Stimulating Factor 1 Receptor. Methods in Molecular Biology, 2019, 2034, 217-230.	0.4	5
612	Microglia. Methods in Molecular Biology, 2019, , .	0.4	1
613	Physiology of Microglia. Methods in Molecular Biology, 2019, 2034, 27-40.	0.4	71
614	Physiological Implications of Microglia–Synapse Interactions. Methods in Molecular Biology, 2019, 2034, 69-80.	0.4	9
615	Long-term environmental enrichment affects microglial morphology in middle age mice. Aging, 2019, 11, 2388-2402.	1.4	35
616	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	4.2	138
617	Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nature Communications, 2019, 10, 3215.	5.8	191
618	Neuron-Glia Signaling in Synapse Elimination. Annual Review of Neuroscience, 2019, 42, 107-127.	5.0	224
619	The retinal environment induces microglia-like properties in recruited myeloid cells. Journal of Neuroinflammation, 2019, 16, 151.	3.1	11
620	LncRNA RMST activates TAK1â€mediated NFâ€ÎºB signaling and promotes activation of microglial cells via competitively binding with hnRNPK. IUBMB Life, 2019, 71, 1785-1793.	1.5	25
621	Phα1β Spider Toxin Reverses Glial Structural Plasticity Upon Peripheral Inflammation. Frontiers in Cellular Neuroscience, 2019, 13, 306.	1.8	15

#	Article	IF	CITATIONS
622	The pro-remyelination properties of microglia in the central nervous system. Nature Reviews Neurology, 2019, 15, 447-458.	4.9	230
623	Fundamentals of Brain–Barrier Anatomy and Global Functions. , 2019, , 3-20.		2
624	Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain, Behavior, and Immunity, 2019, 81, 470-483.	2.0	36
625	Intersection of pathological tau and microglia at the synapse. Acta Neuropathologica Communications, 2019, 7, 109.	2.4	119
626	Large-scale death of retinal astrocytes during normal development is non-apoptotic and implemented by microglia. PLoS Biology, 2019, 17, e3000492.	2.6	55
627	Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. Progress in Molecular Biology and Translational Science, 2019, 167, 179-221.	0.9	30
628	Maternal viral infection causes global alterations in porcine fetal microglia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20190-20200.	3.3	23
629	A Microglia Sublineage Protects from Sex-Linked Anxiety Symptoms and Obsessive Compulsion. Cell Reports, 2019, 29, 791-799.e3.	2.9	24
630	Cien Años de MicroglÃa: Milestones in a Century of Microglial Research. Trends in Neurosciences, 2019, 42, 778-792.	4.2	131
631	Microglia as Dynamic Cellular Mediators of Brain Function. Trends in Molecular Medicine, 2019, 25, 967-979.	3.5	107
632	Microglial P2Y12 Receptor Regulates Seizure-Induced Neurogenesis and Immature Neuronal Projections. Journal of Neuroscience, 2019, 39, 9453-9464.	1.7	67
633	CSF1R Ligands IL-34 and CSF1 Are Differentially Required for Microglia Development and Maintenance in White and Gray Matter Brain Regions. Frontiers in Immunology, 2019, 10, 2199.	2.2	98
634	Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Molecular Brain, 2019, 12, 71.	1.3	88
635	Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 147-181.	0.9	21
636	The Role of Neuronal Factors in the Epigenetic Reprogramming of Microglia in the Normal and Diseased Central Nervous System. Frontiers in Cellular Neuroscience, 2019, 13, 453.	1.8	23
637	What Do Microglia Really Do in Healthy Adult Brain?. Cells, 2019, 8, 1293.	1.8	91
638	Long-Term Microgliosis Driven by Acute Systemic Inflammation. Journal of Immunology, 2019, 203, 2979-2989.	0.4	28
639	Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nature Neuroscience, 2019, 22, 1771-1781.	7.1	237

ARTICLE IF CITATIONS Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in 640 7.1 211 the mouse visual cortex. Nature Neuroscience, 2019, 22, 1782-1792. The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. 641 0.4 Molecular Biology, 2019, 53, 696-703. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic 642 19 1.4 Stroke. Frontiers in Neuroscience, 2019, 13, 758. Calcium Imaging of Microglial Network Activity in Stroke. Methods in Molecular Biology, 2019, 2034, 643 267-279. Corticosterone-mediated microglia activation affects dendritic spine plasticity and motor learning 644 2.0 14 functions in minimal hepatic encephalopathy. Brain, Behavior, and Immunity, 2019, 82, 178-187. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels 1.1 in patients with schizophrenia. Schizophrenia Research, 2019, 212, 92-98. The Role of a Host-Induced Arginase of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> in Promoting 647 1.1 8 Virulence on Rice. Phytopathology, 2019, 109, 1869-1877. CNS myeloid cell heterogeneity at the single-cell level. Neuroforum, 2019, 25, 195-204. 0.2 648 The formative role of microglia in stress-induced synaptic deficits and associated behavioral 649 1.0 31 consequences. Neuroscience Letters, 2019, 711, 134369. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Reports, 2019, 28, 2923-2938.e8. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Experimental Neurology, 2019, 321, 651 2.0 18 113015. The Endocannabinoid System as a Window Into Microglial Biology and Its Relationship to Autism. 1.8 Frontiers in Cellular Neuroscience, 2019, 13, 424. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nature Reviews 653 4.9 100 Neurology, 2019, 15, 704-717. A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder. Neuroscience and 654 24 Biobehavioral Reviews, 2019, 107, 360-369. 655 Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , . 0.8 18 Modulation of Neural Activity for Myelination in the Central Nervous System. Frontiers in 1.4 Neuroscience, 2019, 13, 952. <p>Benefit effect of REM-sleep deprivation on memory impairment induced by intensive exercise in 657 male wistar rats: with respect to hippocampal BDNF and TrkB</p>. Nature and Science of Sleep, 1.4 27 2019, Volume 11, 179-188. Is Alzheimer's disease an inflammasomopathy?. Ageing Research Reviews, 2019, 56, 100966.

#	Article	IF	Citations
659	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	13.5	772
660	The Role of Kupffer Cells as Mediators of Adipose Tissue Lipolysis. Journal of Immunology, 2019, 203, 2689-2700.	0.4	7
661	Ion Channels and Receptors as Determinants of Microglial Function. Trends in Neurosciences, 2019, 42, 278-292.	4.2	69
662	Expression of Tmem119/Sall1 and Ccr2/CD69 in FACS-Sorted Microglia- and Monocyte/Macrophage-Enriched Cell Populations After Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2018, 12, 520.	1.8	57
663	Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target?. International Journal of Molecular Sciences, 2019, 20, 558.	1.8	99
664	Endothelium-Derived Semaphorin 3G Regulates Hippocampal Synaptic Structure and Plasticity via Neuropilin-2/PlexinA4. Neuron, 2019, 101, 920-937.e13.	3.8	76
665	Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 2019, 10, 518.	5.8	372
666	Two-photon Imaging of Microglial Processes' Attraction Toward ATP or Serotonin in Acute Brain Slices. Journal of Visualized Experiments, 2019, , .	0.2	14
667	Neuroinflammation and cognition across psychiatric conditions. CNS Spectrums, 2019, 24, 4-15.	0.7	86
668	Loss of Par1b/MARK2 primes microglia during brain development and enhances their sensitivity to injury. Journal of Neuroinflammation, 2019, 16, 11.	3.1	15
669	Microglia: Lifelong modulator of neural circuits. Neuropathology, 2019, 39, 173-180.	0.7	34
670	Microglial Depletion Causes Regionâ€6pecific Changes to Developmental Neuronal Cell Death in the Mouse Brain. Developmental Neurobiology, 2019, 79, 769-779.	1.5	10
671	Neonatal Intermittent Hypoxia Induces Lasting Sex-Specific Augmentation of Rat Microglial Cytokine Expression. Frontiers in Immunology, 2019, 10, 1479.	2.2	14
672	Microglia along sex lines: From brain colonization, maturation and function, to implication in neurodevelopmental disorders. Seminars in Cell and Developmental Biology, 2019, 94, 152-163.	2.3	51
673	Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiology of Disease, 2019, 130, 104517.	2.1	57
674	T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nature Neuroscience, 2019, 22, 1276-1288.	7.1	146
675	Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nature Neuroscience, 2019, 22, 1089-1098.	7.1	246
676	Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Reports, 2019, 27, 3844-3859.e6.	2.9	143

#	Article	IF	CITATIONS
677	Harnessing Microglia and Macrophages for the Treatment of Clioblastoma. Frontiers in Pharmacology, 2019, 10, 506.	1.6	55
678	Microglia in the Primary Somatosensory Barrel Cortex Mediate Trigeminal Neuropathic Pain. Neuroscience, 2019, 414, 299-310.	1.1	11
679	The immune system and psychiatric disease: a basic science perspective. Clinical and Experimental Immunology, 2019, 197, 294-307.	1.1	86
680	Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-βB signaling pathway. Journal of Neuroinflammation, 2019, 16, 110.	3.1	78
681	Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Seminars in Cell and Developmental Biology, 2019, 94, 138-151.	2.3	124
682	Augmented β2-adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. Journal of Neuroinflammation, 2019, 16, 112.	3.1	30
683	Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neuroscience Letters, 2019, 707, 134310.	1.0	89
684	Cellular Specificity of NF-κB Function in the Nervous System. Frontiers in Immunology, 2019, 10, 1043.	2.2	201
685	Microglia Mediate Synaptic Material Clearance at the Early Stage of Rats With Retinitis Pigmentosa. Frontiers in Immunology, 2019, 10, 912.	2.2	19
686	Dual Functions of Microglia in Ischemic Stroke. Neuroscience Bulletin, 2019, 35, 921-933.	1.5	302
687	In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex. Frontiers in Neuroscience, 2019, 13, 421.	1.4	39
688	Neuregulin-1 Fosters Supportive Interactions between Microglia and Neural Stem/Progenitor Cells. Stem Cells International, 2019, 2019, 1-20.	1.2	9
689	Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment. Neuron, 2019, 103, 250-265.e8.	3.8	177
690	Supporting microglial niches for therapeutic benefit in psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109648.	2.5	5
691	Microglial activation after ischaemic stroke. Stroke and Vascular Neurology, 2019, 4, 71-74.	1.5	82
692	Neurochemical Aspects of Alzheimer's Type of Dementia. , 2019, , 73-112.		1
693	Neurochemical Aspects of Frontotemporal Dementia. , 2019, , 183-214.		0
694	αâ€synuclein oligomers enhance astrocyteâ€induced synapse formation through TGFâ€Î²1 signaling in a Parkinson's disease model. Journal of Neurochemistry, 2019, 150, 138-157.	2.1	27

#	Article	IF	CITATIONS
695	Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia, 2019, 67, 2125-2141.	2.5	71
696	Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Frontiers in Physiology, 2019, 10, 486.	1.3	169
697	Microglia responses to interleukinâ€6 and type I interferons in neuroinflammatory disease. Glia, 2019, 67, 1821-1841.	2.5	63
698	CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	7.0	162
699	Essential contributions of enhancer genomic regulatory elements to microglial cell identity and functions. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1449.	6.6	1
700	Inflammatory domains modulate autism spectrum disorder susceptibility during maternal nutritional programming. Neurochemistry International, 2019, 126, 109-117.	1.9	19
701	Regeneration associated transcriptional signature of retinal microglia and macrophages. Scientific Reports, 2019, 9, 4768.	1.6	82
702	Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nature Communications, 2019, 10, 1076.	5.8	231
703	A modular analysis of microglia gene expression, insights into the aged phenotype. BMC Genomics, 2019, 20, 164.	1.2	24
704	The long and short term effects of motherhood on the brain. Frontiers in Neuroendocrinology, 2019, 53, 100740.	2.5	80
705	Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nature Communications, 2019, 10, 1365.	5.8	217
706	Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. Journal of Experimental Medicine, 2019, 216, 786-806.	4.2	100
707	Rewiring of Memory Circuits: Connecting Adult Newborn Neurons With the Help of Microglia. Frontiers in Cell and Developmental Biology, 2019, 7, 24.	1.8	52
708	Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity, 2019, 50, 723-737.e7.	6.6	235
709	The role of microglia in viral encephalitis: a review. Journal of Neuroinflammation, 2019, 16, 76.	3.1	119
710	Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia, 2019, 67, 1434-1448.	2.5	66
711	Microglia immunometabolism: From metabolic disorders to single cell metabolism. Seminars in Cell and Developmental Biology, 2019, 94, 129-137.	2.3	29
712	Green Tea Extracts Attenuate Brain Dysfunction in High-Fat-Diet-Fed SAMP8 Mice. Nutrients, 2019, 11, 821.	1.7	13

#	ARTICLE Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain,	IF	CITATIONS
713	Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Frontiers in Physiology, 2019, 10, 179.	1.3	61
714	Understanding the link between insulin resistance and Alzheimer's disease: Insights from animal models. Experimental Neurology, 2019, 316, 1-11.	2.0	28
715	Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Frontiers in Pharmacology, 2019, 10, 286.	1.6	98
716	Microglia: Brain cells on the move. Progress in Neurobiology, 2019, 178, 101612.	2.8	75
717	Immune system and new avenues in Parkinson's disease research and treatment. Reviews in the Neurosciences, 2019, 30, 709-727.	1.4	19
718	Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biology, 2019, 17, e3000134.	2.6	115
719	Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Current Topics in Behavioral Neurosciences, 2019, 44, 9-34.	0.8	26
720	The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. Brain Pathology, 2019, 29, 726-740.	2.1	63
721	Neuroprotection of Fasting Mimicking Diet on MPTP-Induced Parkinson's Disease Mice via Gut Microbiota and Metabolites. Neurotherapeutics, 2019, 16, 741-760.	2.1	121
722	Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Frontiers in Cellular Neuroscience, 2019, 13, 63.	1.8	99
723	Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiology of Aging, 2019, 78, 1-17.	1.5	63
724	Glial Control of Synapse Number in Healthy and Diseased Brain. Frontiers in Cellular Neuroscience, 2019, 13, 42.	1.8	67
725	Neuroinflammation and fractalkine signaling in Alzheimer's disease. Journal of Neuroinflammation, 2019, 16, 30.	3.1	93
726	Effect of the HDAC Inhibitor, Sodium Butyrate, on Neurogenesis in a Rat Model of Neonatal Hypoxia–Ischemia: Potential Mechanism of Action. Molecular Neurobiology, 2019, 56, 6341-6370.	1.9	61
727	Myeloid Cells in Multiple Sclerosis. , 2019, , .		1
728	Synaptic Elimination in Neurological Disorders. Current Neuropharmacology, 2019, 17, 1071-1095.	1.4	63
729	The neuroimmunological synapse: from synaptic homeostasis to brain disease. Neuroforum, 2019, 25, 163-171.	0.2	6
730	Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature Communications, 2019, 10, 5816.	5.8	492

#	Article	IF	CITATIONS
731	BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. , 2019, 10, 611.		71
732	Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Frontiers in Cellular Neuroscience, 2019, 13, 491.	1.8	5
733	Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Current Neuropharmacology, 2019, 18, 14-33.	1.4	36
734	Cranial irradiation mediated spine loss is sex-specific and complement receptor-3 dependent in male mice. Scientific Reports, 2019, 9, 18899.	1.6	47
735	Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 337.	1.7	63
736	Tissue-resident macrophages: from zebrafish to mouse. Blood Science, 2019, 1, 57-60.	0.4	4
737	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	13.5	292
738	Microglia in the developing retina. Neural Development, 2019, 14, 12.	1.1	75
739	Small cells with big implications: Microglia and sex differences in brain development, plasticity and behavioral health. Progress in Neurobiology, 2019, 176, 103-119.	2.8	43
740	Carbon monoxide poisoning–induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia–induced brain damage. Brain Research, 2019, 1710, 22-32.	1.1	17
741	State-associated changes in longitudinal [18F]-PBR111 TSPO PET imaging of psychosis patients: Evidence for the accelerated ageing hypothesis?. Brain, Behavior, and Immunity, 2019, 77, 46-54.	2.0	35
742	Microglial-driven changes in synaptic plasticity: A possible role in major depressive disorder. Psychoneuroendocrinology, 2019, 102, 236-247.	1.3	51
743	Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain, Behavior, and Immunity, 2019, 77, 77-91.	2.0	44
744	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
745	Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nature Neuroscience, 2019, 22, 78-90.	7.1	288
746	CD11a expression distinguishes infiltrating myeloid cells from plaqueâ€associated microglia in Alzheimer's disease. Clia, 2019, 67, 844-856.	2.5	32
747	Neuroimmune signaling in alcohol use disorder. Pharmacology Biochemistry and Behavior, 2019, 177, 34-60.	1.3	145
748	Spatial impact of microglial distribution on dynamics of dendritic spines. European Journal of Neuroscience, 2019, 49, 1400-1417.	1.2	4

	Сіта	tion Report	
#	Article	IF	CITATIONS
749	Sexual differentiation of microglia. Frontiers in Neuroendocrinology, 2019, 52, 156-164.	2.5	97
750	Microglia shape presynaptic properties at developing glutamatergic synapses. Glia, 2019, 67, 53-67.	2.5	72
751	Neuroprotective Effects on the Morphology of Somatic Motoneurons Following the Death of Neighboring Motoneurons: A Role for Microglia?. Developmental Neurobiology, 2019, 79, 131-154.	1.5	2
752	Removal of microglial-specific MyD88 signaling alters dentate gyrus doublecortin and enhances opioid addiction-like behaviors. Brain, Behavior, and Immunity, 2019, 76, 104-115.	2.0	31
753	Unique role for dentate gyrus microglia in neuroblast survival and in VEGFâ€induced activation. Glia, 2019, 67, 594-618.	2.5	55
754	Regionâ€specific control of microglia by adenosine A _{2A} receptors: uncoupling anxiety and associated cognitive deficits in female rats. Clia, 2019, 67, 182-192.	2.5	29
755	Microglia: Picky Brain Eaters. Developmental Cell, 2019, 48, 3-4.	3.1	4
756	Loss of IBA1-Expression in brains from individuals with obesity and hepatic dysfunction. Brain Research, 2019, 1710, 220-229.	1.1	16
757	Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Molecular Neurobiology, 2019, 56, 5520-5538.	1.9	27
758	A decade of diverse microglial-neuronal physical interactions in the brain (2008–2018). Neuroscience Letters, 2019, 698, 33-38.	1.0	8
759	MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nature Metabolism, 2019, 1, 276-290.	5.1	89
760	Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Molecular Neurodegeneration, 2019, 14, 2.	4.4	155
761	Microglia Express Mu Opioid Receptor: Insights From Transcriptomics and Fluorescent Reporter Mice. Frontiers in Psychiatry, 2018, 9, 726.	1.3	54
762	Hormesis of methylmercury-human serum albumin conjugate on N9 microglia via ERK/MAPKs and STAT3 signaling pathways. Toxicology and Applied Pharmacology, 2019, 362, 59-66.	1.3	13
763	The Influence of Microglial Elimination and Repopulation on Stress Sensitization Induced byÂRepeated Social Defeat. Biological Psychiatry, 2019, 85, 667-678.	0.7	72
764	High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiology of Aging, 2019, 74, 121-134.	1.5	52
765	Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia, 2019, 67, 217-231.	2.5	79
766	Retinal Degeneration. Methods in Molecular Biology, 2019, , .	0.4	5

#	Article	IF	CITATIONS
767	Phenotypic and functional differences between senescent and aged murine microglia. Neurobiology of Aging, 2019, 74, 56-69.	1.5	44
768	Fate Mapping In Vivo to Distinguish Bona Fide Microglia Versus Recruited Monocyte-Derived Macrophages in Retinal Disease. Methods in Molecular Biology, 2019, 1834, 153-164.	0.4	7
769	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	7.0	537
770	A Photoresponsive Hyaluronan Hydrogel Nanocomposite for Dynamic Macrophage Immunomodulation. Advanced Healthcare Materials, 2019, 8, e1801234.	3.9	55
771	Microglia Regulate Neuroglia Remodeling in Various Ocular and Retinal Injuries. Journal of Immunology, 2019, 202, 539-549.	0.4	36
772	Astrocytes and microglia: Models and tools. Journal of Experimental Medicine, 2019, 216, 71-83.	4.2	103
773	ER Stress, CREB, and Memory: A Tangled Emerging Link in Disease. Neuroscientist, 2019, 25, 420-433.	2.6	28
774	CNS-Wide over Expression of Fractalkine Improves Cognitive Functioning in a Tauopathy Model. Journal of NeuroImmune Pharmacology, 2019, 14, 312-325.	2.1	25
775	Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition. Protein and Cell, 2019, 10, 87-103.	4.8	41
776	Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiology of Learning and Memory, 2019, 165, 106962.	1.0	9
777	Dual functions of microglia in the formation and refinement of neural circuits during development. International Journal of Developmental Neuroscience, 2019, 77, 18-25.	0.7	19
778	Directed glial differentiation and transdifferentiation for neural tissue regeneration. Experimental Neurology, 2019, 319, 112813.	2.0	22
779	Region-Specific Phenotypes of Microglia: The Role of Local Regulatory Cues. Neuroscientist, 2019, 25, 314-333.	2.6	40
780	Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. Journal of Neuroscience Research, 2019, 97, 1363-1377.	1.3	27
781	The Evolving Dialogue of Microglia and Neurons in Alzheimer's Disease: Microglia as Necessary Transducers of Pathology. Neuroscience, 2019, 405, 24-34.	1.1	60
782	Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience, 2019, 405, 148-157.	1.1	268
783	Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View. Neuroscience, 2019, 405, 3-13.	1.1	17
784	Evolutionary concept of inflammatory response and stroke. Journal of Neuroscience Research, 2020, 98, 98-104.	1.3	12

#	Article	IF	CITATIONS
785	Microglial phagocytosis in aging and Alzheimer's disease. Journal of Neuroscience Research, 2020, 98, 284-298.	1.3	79
786	Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy, 2020, 16, 289-312.	4.3	49
787	Roles of glial ion transporters in brain diseases. Glia, 2020, 68, 472-494.	2.5	43
788	Depletion of Microglia Attenuates Dendritic Spine Loss and Neuronal Apoptosis in the Acute Stage of Moderate Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2020, 37, 43-54.	1.7	34
789	Epigenetic regulation of microglial phosphatidylinositol 3â€kinase pathway involved in longâ€ŧerm potentiation and synaptic plasticity in rats. Glia, 2020, 68, 656-669.	2.5	46
790	Long-lasting neurobehavioral alterations in burn-injured mice resembling post-traumatic stress disorder in humans. Experimental Neurology, 2020, 323, 113084.	2.0	8
791	Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia, 2020, 68, 1100-1113.	2.5	46
792	Microglial expression of GATâ€1 in the cerebral cortex. Glia, 2020, 68, 646-655.	2.5	14
793	Microglial NLRP3 inflammasome activation in multiple sclerosis. Advances in Protein Chemistry and Structural Biology, 2020, 119, 247-308.	1.0	48
794	Brain Parenchymal and Extraparenchymal Macrophages in Development, Homeostasis, and Disease. Journal of Immunology, 2020, 204, 294-305.	0.4	40
795	Adrenergic Signaling in Muscularis Macrophages Limits Infection-Induced Neuronal Loss. Cell, 2020, 180, 64-78.e16.	13.5	187
796	Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food and Function, 2020, 11, 378-391.	2.1	59
797	Lowering luteinizing hormone (LH) reverses spatial memory deficits associated with neurotoxin infusion into the hippocampus of ovx rats. Hormones and Behavior, 2020, 119, 104631.	1.0	3
798	Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell, 2020, 180, 79-91.e16.	13.5	243
799	Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia, 2020, 68, 1085-1099.	2.5	69
800	Nitric oxide signaling inhibits microglia proliferation by activation of protein kinase-G. Nitric Oxide - Biology and Chemistry, 2020, 94, 125-134.	1.2	11
801	RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 720-738.	2.4	33
802	Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. Journal of Neuroscience, 2020, 40, 1453-1482.	1.7	204

#	Article	IF	CITATIONS
803	The influence of environment and origin on brain resident macrophages and implications for therapy. Nature Neuroscience, 2020, 23, 157-166.	7.1	74
804	Involvement of CX3CL1/CX3CR1 in depression and cognitive impairment induced by chronic unpredictable stress and relevant underlying mechanism. Behavioural Brain Research, 2020, 381, 112371.	1.2	21
805	Identifying the variables that drive tamoxifenâ€independent CreERT2 recombination: Implications for microglial fate mapping and gene deletions. European Journal of Immunology, 2020, 50, 459-463.	1.6	43
806	Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain, Behavior, and Immunity, 2020, 84, 80-89.	2.0	23
807	Mib2 Deficiency Inhibits Microglial Activation and Alleviates Ischemia-Induced Brain Injury. , 2020, 11, 523.		25
808	NLRP3-dependent microglial training impaired the clearance of amyloid-beta and aggravated the cognitive decline in Alzheimer's disease. Cell Death and Disease, 2020, 11, 849.	2.7	38
809	The microbiota–microglia axis in central nervous system disorders. Brain Pathology, 2020, 30, 1159-1177.	2.1	52
810	The use and limitations of singleâ€eell mass cytometry for studying human microglia function. Brain Pathology, 2020, 30, 1178-1191.	2.1	18
811	Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Science Immunology, 2020, 5, .	5.6	89
812	Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells, 2020, 9, 2132.	1.8	43
813	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	2.9	146
814	Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO Journal, 2020, 39, e104464.	3.5	105
815	Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2020, 21, 6824.	1.8	12
816	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	1.1	19
817	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	13.7	520
818	Does Delayed Microglial Ablation Alter Outcomes after Traumatic Brain Injury?. Journal of Neuroscience, 2020, 40, 8211-8213.	1.7	2
819	What has single ell RNA sequencing revealed about microglial neuroimmunology?. Immunity, Inflammation and Disease, 2020, 8, 825-839.	1.3	18
820	Detection of Synaptic Proteins in Microglia by Flow Cytometry. Frontiers in Molecular Neuroscience, 2020, 13, 149.	1.4	20

#	Article	IF	CITATIONS
821	Myelin plasticity: sculpting circuits in learning and memory. Nature Reviews Neuroscience, 2020, 21, 682-694.	4.9	162
822	Imaging the Neuroimmune Dynamics Across Space and Time. Frontiers in Neuroscience, 2020, 14, 903.	1.4	17
823	Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochemistry International, 2020, 141, 104878.	1.9	17
824	Neuroimmunological effects of early life experiences. Brain and Neuroscience Advances, 2020, 4, 239821282095370.	1.8	11
825	Bexarotene promotes microglia/macrophages - Specific brain - Derived Neurotrophic factor expression and axon sprouting after traumatic brain injury. Experimental Neurology, 2020, 334, 113462.	2.0	16
826	The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception. Journal of Neuroimmunology, 2020, 349, 577406.	1.1	66
827	Autophagy Pathways in CNS Myeloid Cell Immune Functions. Trends in Neurosciences, 2020, 43, 1024-1033.	4.2	8
828	Migration-induced cell shattering due to DOCK8 deficiency causes a type 2–biased helper T cell response. Nature Immunology, 2020, 21, 1528-1539.	7.0	21
829	Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25800-25809.	3.3	238
830	Decreased motor impulsivity following chronic lithium treatment in male rats is associated with reduced levels of pro-inflammatory cytokines in the orbitofrontal cortex. Brain, Behavior, and Immunity, 2020, 89, 339-349.	2.0	14
831	Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice. Cell Death and Disease, 2020, 11, 528.	2.7	75
832	Microglial regulation of satiety and cognition. Journal of Neuroendocrinology, 2020, 32, e12838.	1.2	18
833	A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature. Journal of Neuroscience, 2020, 40, 6503-6521.	1.7	82
834	Microglia and Their Promising Role in Ischemic Brain Injuries: An Update. Frontiers in Cellular Neuroscience, 2020, 14, 211.	1.8	22
835	Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 175-192.	1.3	15
836	Crosstalk Between Astrocytes and Microglia: An Overview. Frontiers in Immunology, 2020, 11, 1416.	2.2	224
837	Neurotrophin and synaptogenesis. , 2020, , 167-192.		4
838	Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses, 2020, 12, 1297.	1.5	28

#	Article	IF	CITATIONS
839	Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2â^' production. Nature Neuroscience, 2020, 23, 1555-1566.	7.1	154
840	Microglia Play an Essential Role in Synapse Development and Neuron Maturation in Tissue-Engineered Neural Tissues. Frontiers in Neuroscience, 2020, 14, 586452.	1.4	6
841	The role of non-neuronal cells in hypogonadotropic hypogonadism. Molecular and Cellular Endocrinology, 2020, 518, 110996.	1.6	17
842	Microglial derived extracellular vesicles activate autophagy and mediate multiâ€ŧarget signaling to maintain cellular homeostasis. Journal of Extracellular Vesicles, 2020, 10, e12022.	5.5	28
843	Microglial replacement therapy: a potential therapeutic strategy for incurable CSF1R-related leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 217.	2.4	33
844	Pharmacological Targeting of CSF1R Inhibits Microglial Proliferation and Aggravates the Progression of Cerebral Ischemic Pathology. Frontiers in Cellular Neuroscience, 2020, 14, 267.	1.8	21
845	Combinational Pretreatment of Colony-Stimulating Factor 1 Receptor Inhibitor and Triptolide Upregulates BDNF-Akt and Autophagic Pathways to Improve Cerebral Ischemia. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	5
846	Interactions between Tumor Cells, Neurons, and Microglia in the Glioma Microenvironment. International Journal of Molecular Sciences, 2020, 21, 8476.	1.8	52
847	Ketamine/xylazine and barbiturates modulate microglial morphology and motility differently in a mouse model. PLoS ONE, 2020, 15, e0236594.	1.1	15
848	Dorsolateral Striatal proBDNF Improves Reversal Learning by Enhancing Coordination of Neural Activity in Rats. Molecular Neurobiology, 2020, 57, 4642-4656.	1.9	17
849	To Kill a Microglia: A Case for CSF1R Inhibitors. Trends in Immunology, 2020, 41, 771-784.	2.9	120
850	Microglia: sculptors of neuropathic pain?. Royal Society Open Science, 2020, 7, 200260.	1.1	18
851	Chronic Voluntary Binge Ethanol Consumption Causes Sexâ€Specific Differences in Microglial Signaling Pathways and Withdrawalâ€associated Behaviors in Mice. Alcoholism: Clinical and Experimental Research, 2020, 44, 1791-1806.	1.4	22
852	Efficient Strategies for Microglia Replacement in the Central Nervous System. Cell Reports, 2020, 32, 108041.	2.9	68
853	Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Reports, 2020, 31, 107796.	2.9	59
854	Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9, 1717.	1.8	174
855	Investigating Microglia in Health and Disease: Challenges and Opportunities. Trends in Immunology, 2020, 41, 785-793.	2.9	35
856	HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics, 2020, 10, 9644-9662.	4.6	138

#	Article	IF	CITATIONS
857	The Role of TGFÎ ² Signaling in Microglia Maturation and Activation. Trends in Immunology, 2020, 41, 836-848.	2.9	60
858	Understanding microglial diversity and implications for neuronal function in health and disease. Developmental Neurobiology, 2021, 81, 507-523.	1.5	29
859	Longâ€ŧerm environmental enrichment reduces microglia morphological diversity of the molecular layer of dentate gyrus. European Journal of Neuroscience, 2020, 52, 4081-4099.	1.2	13
860	Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacological Research, 2020, 153, 104677.	3.1	27
861	Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron, 2020, 108, 111-127.e6.	3.8	37
862	Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Frontiers in Physiology, 2020, 11, 948.	1.3	40
863	Tools and Approaches for Studying Microglia In vivo. Frontiers in Immunology, 2020, 11, 583647.	2.2	37
864	Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 577912.	1.8	71
865	Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. International Journal of Molecular Sciences, 2020, 21, 7777.	1.8	345
866	CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25.	13.5	79
867	Sex Differences in the Development of the Rodent Corticolimbic System. Frontiers in Neuroscience, 2020, 14, 583477.	1.4	42
868	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. Journal of Neuroscience, 2020, 40, 8587-8600.	1.7	13
869	Neonatal Proinflammatory Stress and the Maturation of Intercellular Communication in the Hippocampus. Neuroscience and Behavioral Physiology, 2020, 50, 730-742.	0.2	1
870	Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. Journal of Neuroinflammation, 2020, 17, 278.	3.1	14
871	Daily alcohol intake triggers aberrant synaptic pruning leading to synapse loss and anxiety-like behavior. Science Signaling, 2020, 13, .	1.6	39
872	Dynamic Responses of Microglia in Animal Models of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 269.	1.8	29
873	Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron, 2020, 108, 451-468.e9.	3.8	106
874	Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Frontiers in Molecular Neuroscience, 2020, 13, 151.	1.4	11

#	Article	IF	CITATIONS
875	Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	1.9	34
876	The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 274.	1.8	114
877	The effects of microglia―and astrocyteâ€derived factors on neurogenesis in health and disease. European Journal of Neuroscience, 2021, 54, 5880-5901.	1.2	84
878	Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacological Reports, 2020, 72, 1218-1226.	1.5	62
879	Disease Stage-Associated Alterations in Learning and Memory through the Electroacupuncture Modulation of the Cortical Microglial M1/M2 Polarization in Mice with Alzheimer's Disease. Neural Plasticity, 2020, 2020, 1-14.	1.0	17
880	Characterization of transgenic mouse lines for selectively targeting satellite glial cells and macrophages in dorsal root ganglia. PLoS ONE, 2020, 15, e0229475.	1.1	10
881	A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO Journal, 2020, 39, e104136.	3.5	103
882	Memory-Like Responses of Brain Microglia Are Controlled by Developmental State and Pathogen Dose. Frontiers in Immunology, 2020, 11, 546415.	2.2	22
883	Microglial Phagocytosis—Rational but Challenging Therapeutic Target in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 5960.	1.8	18
884	Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. International Journal of Molecular Sciences, 2020, 21, 9514.	1.8	6
885	Maternal immune activation induces sustained changes in fetal microglia motility. Scientific Reports, 2020, 10, 21378.	1.6	70
886	A maternal Western diet during gestation and lactation modifies offspring's microglial cell density and morphology in the hippocampus and prefrontal cortex in Yucatan minipigs. Neuroscience Letters, 2020, 739, 135395.	1.0	6
887	Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Frontiers in Immunology, 2020, 11, 600822.	2.2	10
888	Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Frontiers in Cellular Neuroscience, 2020, 14, 592607.	1.8	47
889	The involvement of neuroimmune cells in adipose innervation. Molecular Medicine, 2020, 26, 126.	1.9	27
890	Repressor Element 1 Silencing Transcription Factor (REST) Governs Microglia-Like BV2 Cell Migration via Progranulin (PGRN). Neural Plasticity, 2020, 2020, 1-9.	1.0	6
891	Challenges of BDNF-based therapies: From common to rare diseases. Pharmacological Research, 2020, 162, 105281.	3.1	29
892	The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Communications, 2020, 2, fcaa176.	1.5	14

#	Article	IF	CITATIONS
893	Multi-omic comparison of Alzheimer's variants in human ESC–derived microglia reveals convergence at <i>APOE</i> . Journal of Experimental Medicine, 2020, 217, .	4.2	41
894	The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. Progress in Brain Research, 2020, 252, 131-168.	0.9	21
895	The role of microglia in the second and third postnatal weeks of life in rat hippocampal development and memory. Brain, Behavior, and Immunity, 2020, 88, 675-687.	2.0	12
896	Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain, Behavior, and Immunity, 2020, 88, 791-801.	2.0	32
897	Microglia Control Escalation of Drinking in Alcohol-Dependent Mice: Genomic and Synaptic Drivers. Biological Psychiatry, 2020, 88, 910-921.	0.7	68
898	Decoding Neurotransmitter Switching: The Road Forward. Journal of Neuroscience, 2020, 40, 4078-4089.	1.7	16
899	Distinct fate, dynamics and niches of renal macrophages of bone marrow or embryonic origins. Nature Communications, 2020, 11, 2280.	5.8	62
900	Defining the Mechanism of Subarachnoid Hemorrhage–Induced Pyrexia. Neurotherapeutics, 2020, 17, 1160-1169.	2.1	6
901	The Pelvic Girdle Pain deadlock: 2. Topics that, so far, have remained out of focus. Musculoskeletal Science and Practice, 2020, 48, 102166.	0.6	8
902	Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS Journal, 2020, 287, 4822-4837.	2.2	22
903	Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. Journal of Neuroinflammation, 2020, 17, 172.	3.1	42
904	PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies. Nature Communications, 2020, 11, 2360.	5.8	56
905	Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington's Disease. Movement Disorders, 2020, 35, 1113-1127.	2.2	27
906	Effects of Maternal Resveratrol on Maternal High-Fat Diet/Obesity with or without Postnatal High-Fat Diet. International Journal of Molecular Sciences, 2020, 21, 3428.	1.8	19
907	Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain, Behavior, and Immunity, 2020, 88, 748-762.	2.0	58
908	CNTF-STAT3-IL-6 Axis Mediates Neuroinflammatory Cascade across Schwann Cell-Neuron-Microglia. Cell Reports, 2020, 31, 107657.	2.9	77
909	CD86-based analysis enables observation of bona fide hematopoietic responses. Blood, 2020, 136, 1144-1154.	0.6	23
910	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	4.9	92

#	Article	IF	CITATIONS
911	Spinal microglia-neuron interactions in chronic pain. Journal of Leukocyte Biology, 2020, 108, 1575-1592.	1.5	24
912	Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem Cells Translational Medicine, 2020, 9, 1068-1084.	1.6	130
913	T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Science Immunology, 2020, 5, .	5.6	87
914	BDNF signaling during the lifetime of dendritic spines. Cell and Tissue Research, 2020, 382, 185-199.	1.5	72
915	Microglia. , 2020, , 995-1020.		3
916	miR-142-3p Regulates BDNF Expression in Activated Rodent Microglia Through Its Target CAMK2A. Frontiers in Cellular Neuroscience, 2020, 14, 132.	1.8	18
917	Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochemistry International, 2020, 136, 104715.	1.9	24
918	Microglia clear neuron-released $\hat{l}\pm$ -synuclein via selective autophagy and prevent neurodegeneration. Nature Communications, 2020, 11, 1386.	5.8	279
919	How microbiota shape microglial phenotypes and epigenetics. Glia, 2020, 68, 1655-1672.	2.5	44
920	Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Frontiers in Cellular Neuroscience, 2020, 14, 42.	1.8	23
921	CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S98-S116.	2.4	57
922	Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Molecular Psychiatry, 2021, 26, 2577-2589.	4.1	25
923	Tracing bone marrow-derived microglia in brain metastatic tumors. Methods in Enzymology, 2020, 635, 95-110.	0.4	4
924	Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochemistry International, 2020, 136, 104714.	1.9	53
925	Disruption of intracellular signaling. , 2020, , 81-96.		1
926	Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology, 2020, 45, 1086-1096.	2.8	39
927	Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nature Communications, 2020, 11, 1559.	5.8	139
928	Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Science Immunology, 2020, 5, .	5.6	155

#	Article	IF	CITATIONS
929	Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Frontiers in Immunology, 2020, 11, 430.	2.2	77
930	Pannexinâ€1 in the CNS: Emerging concepts in health and disease. Journal of Neurochemistry, 2020, 154, 468-485.	2.1	41
931	Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell, 2020, 180, 833-846.e16.	13.5	292
932	Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity. Journal of Neuroscience Research, 2020, 98, 1968-1986.	1.3	30
933	Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain. Frontiers in Pharmacology, 2020, 11, 925.	1.6	38
934	Chronic copper exposure directs microglia towards degenerative expression signatures in wild-type and J20 mouse model of Alzheimer's disease. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126578.	1.5	13
935	Reduced Fractalkine Levels Lead to Striatal Synaptic Plasticity Deficits in Huntington's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 163.	1.8	32
936	Improvements to Healthspan Through Environmental Enrichment and Lifestyle Interventions: Where Are We Now?. Frontiers in Neuroscience, 2020, 14, 605.	1.4	34
937	Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell, 2020, 182, 388-403.e15.	13.5	337
938	Redox signalling and regulation of the blood-brain barrier. International Journal of Biochemistry and Cell Biology, 2020, 125, 105794.	1.2	16
939	Neuronal gamma oscillations and activityâ€dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. Journal of Neuroscience Research, 2020, 98, 1953-1967.	1.3	8
940	Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. Science Advances, 2020, 6, eaba0154.	4.7	34
941	The contribution of glial cells to Huntington's disease pathogenesis. Neurobiology of Disease, 2020, 143, 104963.	2.1	56
942	Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer's disease. Journal of Neuroimmunology, 2020, 341, 577185.	1.1	58
943	Glial cells in Parkinson´s disease: protective or deleterious?. Cellular and Molecular Life Sciences, 2020, 77, 5171-5188.	2.4	22
944	DNA Methylation of the t-PA Gene Differs Between Various Immune Cell Subtypes Isolated From Depressed Patients Receiving Electroconvulsive Therapy. Frontiers in Psychiatry, 2020, 11, 571.	1.3	7
945	Glial remodeling enhances short-term memory performance in Wistar rats. Journal of Neuroinflammation, 2020, 17, 52.	3.1	33
946	Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1+ stem cells from young donors. Journal of Neuroinflammation, 2020, 17, 51.	3.1	11

#	Article	IF	CITATIONS
947	Microglial NMDA receptors drive proâ€inflammatory responses via PARPâ€1/TRMP2 signaling. Clia, 2020, 68, 1421-1434.	2.5	49
948	Generation of a selfâ€eleaved inducible Cre recombinase for efficient temporal genetic manipulation. EMBO Journal, 2020, 39, e102675.	3.5	22
949	Microglia Research in the 100th Year Since Its Discovery. Neuroscience Bulletin, 2020, 36, 303-306.	1.5	13
950	Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 1539.	1.8	64
951	Acute ethanol exposure rapidly alters cerebellar and cortical microglial physiology. European Journal of Neuroscience, 2021, 54, 5834-5843.	1.2	11
952	Potential microgliaâ€based interventions for stroke. CNS Neuroscience and Therapeutics, 2020, 26, 288-296.	1.9	38
953	Muscle Injury Induces Postoperative Cognitive Dysfunction. Scientific Reports, 2020, 10, 2768.	1.6	9
954	Transforming Growth Factor Beta-Activated Kinase 1–Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke, 2020, 51, 975-985.	1.0	55
955	Consequences of early life overfeeding for microglia – Perspectives from rodent models. Brain, Behavior, and Immunity, 2020, 88, 256-261.	2.0	3
956	Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nature Neuroscience, 2020, 23, 337-350.	7.1	146
957	MANF delivery improves retinal homeostasis and cell replacement therapies in ageing mice. Experimental Gerontology, 2020, 134, 110893.	1.2	12
958	Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nature Neuroscience, 2020, 23, 351-362.	7.1	123
959	Absence of microglia or presence of peripherallyâ€derived macrophages does not affect tau pathology in young or old hTau mice. Glia, 2020, 68, 1466-1478.	2.5	10
960	Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nature Communications, 2020, 11, 264.	5.8	286
961	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130
962	Serotonin and 5-HT2B receptors in microglia control of behavior. Handbook of Behavioral Neuroscience, 2020, 31, 589-599.	0.7	4
963	Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules, 2020, 25, 453.	1.7	30
964	Epigenomic and transcriptional determinants of microglial cell identity. Glia, 2020, 68, 1643-1654.	2.5	6

#	Article	IF	CITATIONS
965	Optogenetic Modulation of TrkB Signaling in the Mouse Brain. Journal of Molecular Biology, 2020, 432, 815-827.	2.0	11
966	"Olfactory Three-Needle―Enhances Spatial Learning and Memory Ability in SAMP8 Mice. Behavioural Neurology, 2020, 2020, 1-11.	1.1	11
967	Microglia alter the threshold of spreading depolarization and related potassium uptake in the mouse brain. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S67-S80.	2.4	29
968	Microglia and Parkinson's disease: footprints to pathology. Journal of Neural Transmission, 2020, 127, 149-158.	1.4	37
969	Chronic Systemic Inflammation Exacerbates Neurotoxicity in a Parkinson's Disease Model. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	22
970	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	3.9	80
971	Inhibition of doubleâ€strand DNAâ€sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Molecular Medicine, 2020, 12, e11002.	3.3	151
972	Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted mice. Journal of Neuroinflammation, 2020, 17, 111.	3.1	37
973	MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome–like Behaviors in Mice. Biological Psychiatry, 2020, 88, 488-499.	0.7	33
974	Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nature Communications, 2020, 11, 1631.	5.8	35
975	STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5430-5441.	3.3	37
976	Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Frontiers in Molecular Neuroscience, 2020, 13, 58.	1.4	23
977	The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Frontiers in Pharmacology, 2020, 11, 394.	1.6	62
978	Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. Journal of Neuroinflammation, 2020, 17, 131.	3.1	27
979	Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Progress in Neurobiology, 2020, 190, 101805.	2.8	35
980	Microglial Corpse Clearance: Lessons From Macrophages. Frontiers in Immunology, 2020, 11, 506.	2.2	63
981	Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends in Neurosciences, 2020, 43, 433-449.	4.2	74
982	Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nature Communications, 2020, 11, 1797.	5.8	100

#	Article	IF	CITATIONS
983	Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterology and Motility, 2020, 32, e13843.	1.6	53
984	Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. Journal of Neuroscience, 2020, 40, 4622-4643.	1.7	60
985	Microglia depletion and alcohol: Transcriptome and behavioral profiles. Addiction Biology, 2021, 26, e12889.	1.4	24
986	Microglia modulate gliotransmission through the regulation of VAMP2 proteins in astrocytes. Clia, 2021, 69, 61-72.	2.5	10
987	Modulation of Neural Networks byÂInterleukin-1. Brain Plasticity, 2021, 7, 17-32.	1.9	13
988	Microglia in Alzheimer's Disease: The Role of Stem Cell-Microglia Interaction in Brain Homeostasis. Neurochemical Research, 2021, 46, 141-148.	1.6	23
989	Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Progress in Retinal and Eye Research, 2021, 82, 100906.	7.3	133
990	Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain, Behavior, and Immunity, 2021, 91, 89-104.	2.0	13
991	Intrinsic <scp>DNA</scp> damage repair deficiency results in progressive microglia loss and replacement. Clia, 2021, 69, 729-745.	2.5	15
992	Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron, 2021, 109, 222-240.	3.8	113
993	Synaptic elimination by microglia and disturbed higher brain functions. Neurochemistry International, 2021, 142, 104901.	1.9	29
994	Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Multiple Sclerosis and Related Disorders, 2021, 47, 102622.	0.9	5
995	Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain, Behavior, and Immunity, 2021, 92, 78-89.	2.0	73
996	Involvement of microglia in disturbed fear memory regulation: Possible microglial contribution to the pathophysiology of posttraumatic stress disorder. Neurochemistry International, 2021, 142, 104921.	1.9	23
997	How Stress Shapes Neuroimmune Function: Implications for the Neurobiology of Psychiatric Disorders. Biological Psychiatry, 2021, 90, 74-84.	0.7	26
998	Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. Journal of Neurogastroenterology and Motility, 2021, 27, 19-34.	0.8	111
999	Glia as sculptors of synaptic plasticity. Neuroscience Research, 2021, 167, 17-29.	1.0	85
1000	Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nature Neuroscience, 2021, 24, 19-23.	7.1	86

#	Article	IF	CITATIONS
1001	Microglia depletion and cognitive functions after brain injury: From trauma to galactic cosmic ray. Neuroscience Letters, 2021, 741, 135462.	1.0	7
1002	Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochemistry International, 2021, 143, 104944.	1.9	35
1003	Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. International Journal of Radiation Biology, 2021, 97, 156-169.	1.0	14
1004	The serotonin <scp>2B</scp> receptor is required in neonatal microglia to limit neuroinflammation and sickness behavior in adulthood. Glia, 2021, 69, 638-654.	2.5	20
1005	Neuronal brainâ€derived neurotrophic factor manipulates microglial dynamics. Clia, 2021, 69, 890-904.	2.5	15
1006	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	2.3	36
1007	Chronic fatigue syndrome and fibromyalgia-like symptoms are an integral component of the phenome of schizophrenia: neuro-immune and opioid system correlates. Metabolic Brain Disease, 2021, 36, 169-183.	1.4	17
1008	Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS Journal, 2021, 288, 2836-2855.	2.2	60
1009	Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Molecular Psychiatry, 2021, 26, 629-644.	4.1	32
1010	Mechanisms and significance of microglia–axon interactions in physiological and pathophysiological conditions. Cellular and Molecular Life Sciences, 2021, 78, 3907-3919.	2.4	7
1011	Transcriptional profiling of microglia in the injured brain reveals distinct molecular features underlying neurodegeneration. Clia, 2021, 69, 1292-1306.	2.5	10
1013	Sensory neuron–associated macrophages as novel modulators of neuropathic pain. Pain Reports, 2021, 6, e873.	1.4	32
1014	A Destruction Model of the Vascular and Lymphatic Systems in the Emergence of Psychiatric Symptoms. Biology, 2021, 10, 34.	1.3	6
1015	Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 1093.	1.8	40
1016	Microglia in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 270.	1.6	59
1017	Immune Regulation of Adult Neurogenic Niches in Health and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 571071.	1.8	13
1018	Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. Journal of Clinical Investigation, 2021, 131, .	3.9	61
1019	Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress, 2021, 5, 247054702110292.	1.7	38

# 1021	ARTICLE Recent developments and new potentials for neuroregeneration. , 2021, , 277-289.	IF	CITATIONS
1022	PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics, 2021, 11, 2080-2097.	4.6	13
1023	Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Reports, 2021, 6, e883.	1.4	27
1024	Neuroprotective function of microglia in the developing brain. Neuronal Signaling, 2021, 5, NS20200024.	1.7	17
1025	Microglial Cell Dysregulation in the Aged Brain and Neurodegeneration. , 2021, , 1-13.		0
1026	Carbonic anhydrase activation profile of indole-based derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1783-1797.	2.5	3
1027	Distinct roles of GT1b and CSF-1 in microglia activation in nerve injury-induced neuropathic pain. Molecular Pain, 2021, 17, 174480692110209.	1.0	8
1028	Genome-Wide Screen and Validation of Microglia Pro-Inflammatory Mediators in Stroke. , 2021, 12, 786.		17
1029	Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. Journal of Neuroinflammation, 2021, 18, 7.	3.1	56
1030	Pra-C exerts analgesic effect through inhibiting microglial activation in anterior cingulate cortex in complete Freund's adjuvant-induced mouse model. Molecular Pain, 2021, 17, 174480692199093.	1.0	10
1031	A paradigm shift: emerging roles of microglia, a non-neuronal cell, in learning and memory. Neural Regeneration Research, 2021, 16, 1992.	1.6	1
1032	Neuroinflammation and aging. , 2021, , 139-151.		0
1033	Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species. Journal of Neuroscience, 2021, 41, 823-833.	1.7	27
1034	P2X4 receptor participates in autophagy regulation in Parkinson's disease. Neural Regeneration Research, 2021, 16, 2505.	1.6	15
1035	Modulating Microglial Cells for Promoting Brain Recovery and Repair. Frontiers in Cellular Neuroscience, 2020, 14, 627987.	1.8	5
1036	Sex differences in microglia as a risk factor for Alzheimer's disease. , 2021, , 79-104.		1
1037	Optimization of a solar cascaded phase change slab-plate heat exchanger thermal storage system. Journal of Energy Storage, 2021, 34, 102005.	3.9	13
1038	Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer's Disease and Potential Active Drug Treatments. Neurochemical Research, 2021, 46, 711-731.	1.6	16

#	Article	IF	CITATIONS
1039	Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Frontiers in Cell and Developmental Biology, 2021, 9, 648313.	1.8	27
1040	Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Science Advances, 2021, 7, .	4.7	35
1042	Activated microglia drive demyelination via <scp>CSF1R</scp> signaling. Glia, 2021, 69, 1583-1604.	2.5	74
1043	Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Frontiers in Immunology, 2021, 12, 640937.	2.2	10
1044	Auditory Brainstem Deficits from Early Treatment with a CSF1R Inhibitor Largely Recover with Microglial Repopulation. ENeuro, 2021, 8, ENEURO.0318-20.2021.	0.9	7
1045	Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia, 2021, 69, 1494-1514.	2.5	19
1046	Loss of P2Y12 Has Behavioral Effects in the Adult Mouse. International Journal of Molecular Sciences, 2021, 22, 1868.	1.8	21
1047	Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia. Frontiers in Immunology, 2020, 11, 617860.	2.2	32
1048	Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity, 2021, 54, 225-234.e6.	6.6	91
1049	Concepts of Neuroinflammation and Their Relationship With Impaired Mitochondrial Functions in Bipolar Disorder. Frontiers in Behavioral Neuroscience, 2021, 15, 609487.	1.0	16
1050	ATG5 in microglia does not contribute vitally to autoimmune neuroinflammation in mice. Autophagy, 2021, 17, 3566-3576.	4.3	11
1051	Peroxisome Proliferator-Activated Receptor-δDeficiency in Microglia Results in Exacerbated Axonal Injury and Tissue Loss in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 570425.	2.2	10
1053	The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Communications, 2021, 3, fcab009.	1.5	7
1054	Microglia control small vessel calcification via TREM2. Science Advances, 2021, 7, .	4.7	22
1055	Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 624538.	2.2	48
1057	An early endothelial cell–specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight, 2021, 6, .	2.3	17
1059	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	1.2	55
1060	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	2.3	23

#	Article	IF	CITATIONS
1061	The role of macrophage scavenger receptor 1 (Msr1) in prion pathogenesis. Journal of Molecular Medicine, 2021, 99, 877-887.	1.7	4
1062	PPARÎ ³ is essential for the development of bone marrow erythroblastic island macrophages and splenic red pulp macrophages. Journal of Experimental Medicine, 2021, 218, .	4.2	23
1063	Snapshot of microglial physiological functions. Neurochemistry International, 2021, 144, 104960.	1.9	12
1064	Assessing Microglial Dynamics by Live Imaging. Frontiers in Immunology, 2021, 12, 617564.	2.2	13
1065	Voluntary exercise ameliorates synaptic pruning deficits in sleep-deprived adolescent mice. Brain, Behavior, and Immunity, 2021, 93, 96-110.	2.0	15
1066	The role of innate immunity and inflammation in Parkinson´s disease. Scandinavian Journal of Immunology, 2021, 93, e13022.	1.3	23
1067	Microglial trogocytosis and the complement system regulate axonal pruning in vivo. ELife, 2021, 10, .	2.8	59
1068	Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Medicine, 2021, 13, 47.	3.6	87
1069	Brainstem local microglia induce whisker map plasticity in the thalamus after peripheral nerve injury. Cell Reports, 2021, 34, 108823.	2.9	12
1070	Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biology, 2021, 19, e3001154.	2.6	39
1071	De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. International Journal of Molecular Sciences, 2021, 22, 3115.	1.8	15
1072	IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Science Advances, 2021, 7, .	4.7	123
1073	Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. Journal of Neuroinflammation, 2021, 18, 81.	3.1	48
1075	Microglia regulate synaptic development and plasticity. Developmental Neurobiology, 2021, 81, 568-590.	1.5	81
1076	Ground state depletion microscopy as a tool for studying microglia–synapse interactions. Journal of Neuroscience Research, 2021, 99, 1515-1532.	1.3	6
1077	Sex differences in dopamine innervation and microglia are altered by synthetic progestin in neonatal medial prefrontal cortex. Journal of Neuroendocrinology, 2021, 33, e12962.	1.2	9
1079	Selective Ablation of BDNF from Microglia Reveals Novel Roles in Self-Renewal and Hippocampal Neurogenesis. Journal of Neuroscience, 2021, 41, 4172-4186.	1.7	29
1080	A distinct microglial subset at the <scp>tumor–stroma</scp> interface of glioma. Glia, 2021, 69, 1767-1781.	2.5	18

#	Article	IF	CITATIONS
1081	<scp>ProBDNF</scp> induces sustained elevation of intracellular Ca ²⁺ possibly mediated by <scp>TRPM7</scp> channels in rodent microglial cells. Clia, 2021, 69, 1694-1708.	2.5	7
1082	Microglia Development and Maturation and Its Implications for Induction of Microglia-Like Cells from Human iPSCs. International Journal of Molecular Sciences, 2021, 22, 3088.	1.8	15
1083	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	2.9	41
1084	Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of earlyâ€life stress and consequences for adult fear response. Journal of Neuroendocrinology, 2021, 33, e12969.	1.2	5
1085	<i>CX3CR1</i> mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. Journal of Comparative Neurology, 2021, 529, 3076-3097.	0.9	7
1086	Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nature Communications, 2021, 12, 2265.	5.8	59
1087	A Comparative Biology of Microglia Across Species. Frontiers in Cell and Developmental Biology, 2021, 9, 652748.	1.8	11
1088	The Contribution of Microglia to the Development and Maturation of the Visual System. Frontiers in Cellular Neuroscience, 2021, 15, 659843.	1.8	15
1089	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	2.2	16
1090	Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutritional Neuroscience, 2022, 25, 1836-1844.	1.5	16
1091	Moderating Effects of BDNF Genetic Variants and Smoking on Cognition in PTSD Veterans. Biomolecules, 2021, 11, 641.	1.8	6
1092	Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovascular Research, 2022, 118, 798-813.	1.8	18
1093	Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon, 2021, 7, e06854.	1.4	6
1094	Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells, 2021, 10, 957.	1.8	24
1095	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	9.5	228
1097	Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. Journal of Biosciences, 2021, 46, 1.	0.5	14
1098	Inhibition of TGFβ-activated kinase 1 promotes inflammation-resolving microglial/macrophage responses and recovery after stroke in ovariectomized female mice. Neurobiology of Disease, 2021, 151, 105257.	2.1	14
1099	Progress and Promise of Nur77-based Therapeutics for Central Nervous System Disorders. Current Neuropharmacology, 2021, 19, 486-497.	1.4	6

#	Article	IF	CITATIONS
1100	The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. Journal of Pain, 2021, 22, 1146-1179.	0.7	5
1101	Temporal Contribution of Myeloid-Lineage TLR4 to the Transition to Chronic Pain: A Focus on Sex Differences. Journal of Neuroscience, 2021, 41, 4349-4365.	1.7	26
1102	Glial Cells Promote Myelin Formation and Elimination. Frontiers in Cell and Developmental Biology, 2021, 9, 661486.	1.8	20
1103	Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 665739.	1.8	21
1104	Microglia as therapeutic targets after neurological injury: strategy for cell therapy. Expert Opinion on Therapeutic Targets, 2021, 25, 365-380.	1.5	22
1105	The Role of Microglia in Perioperative Neuroinflammation and Neurocognitive Disorders. Frontiers in Aging Neuroscience, 2021, 13, 671499.	1.7	33
1106	Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity. Molecular Psychiatry, 2021, 26, 6336-6349.	4.1	41
1107	Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behavioural Brain Research, 2021, 405, 113207.	1.2	24
1108	Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiology of Stress, 2021, 14, 100302.	1.9	22
1109	Monocyte Transcriptional Profiling Highlights a Shift in Immune Signatures Over the Course of Illness in Schizophrenia. Frontiers in Psychiatry, 2021, 12, 649494.	1.3	4
1110	An emerging role for microglia in stressâ€effects on memory. European Journal of Neuroscience, 2022, 55, 2491-2518.	1.2	23
1111	Thymic development of gut-microbiota-specific T cells. Nature, 2021, 594, 413-417.	13.7	108
1112	The Pathogenesis of Parkinson's Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes?. Frontiers in Neurology, 2021, 12, 666737.	1.1	74
1113	The Microbiota–Gut–Brain Axis and Alzheimer Disease. From Dysbiosis to Neurodegeneration: Focus on the Central Nervous System Glial Cells. Journal of Clinical Medicine, 2021, 10, 2358.	1.0	23
1114	An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. European Journal of Neuroscience, 2021, 53, 3525-3547.	1.2	16
1115	Microbiota and Microglia Interactions in ASD. Frontiers in Immunology, 2021, 12, 676255.	2.2	31
1116	How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 124, 193-215.	2.9	33
1117	Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiology of Stress, 2021, 14, 100312.	1.9	52

#	Article	IF	CITATIONS
1118	Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS Journal, 2022, 289, 1801-1822.	2.2	6
1119	Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochemistry International, 2021, 145, 104987.	1.9	44
1120	Early-Derived Murine Macrophages Temporarily Renounce Tissue Identity during Acute Systemic Inflammation. Journal of Immunology, 2021, 207, 569-576.	0.4	4
1121	Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1C93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, 2021, 18, 139.	3.1	16
1122	Possible involvement of progranulin in the protective effect of elastase inhibitor on cerebral ischemic injuries of neuronal and glial cells. Molecular and Cellular Neurosciences, 2021, 113, 103625.	1.0	1
1123	The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells, 2021, 10, 1584.	1.8	31
1124	Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	72
1125	Roles and Transcriptional Responses of Inhibitory Neurons in Learning and Memory. Frontiers in Molecular Neuroscience, 2021, 14, 689952.	1.4	11
1126	Fibroblasts and macrophages: Collaborators in tissue homeostasis. Immunological Reviews, 2021, 302, 86-103.	2.8	29
1127	Protocol for microglia replacement by peripheral blood (Mr PB). STAR Protocols, 2021, 2, 100613.	0.5	11
1128	The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cellular and Molecular Neurobiology, 2022, 42, 2147-2156.	1.7	8
1129	Regulation of microglia population dynamics throughout development, health, and disease. Glia, 2021, 69, 2771-2797.	2.5	29
1130	Neuroimmune cleanup crews in brain injury. Trends in Immunology, 2021, 42, 480-494.	2.9	27
1131	Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 670298.	1.8	40
1133	Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Current Neuropharmacology, 2021, 19, 908-924.	1.4	29
1134	Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Frontiers in Immunology, 2021, 12, 683026.	2.2	12
1135	Classification of Microglial Morphological Phenotypes Using Machine Learning. Frontiers in Cellular Neuroscience, 2021, 15, 701673.	1.8	75
1136	Morphofunctional programming of microglia requires distinct roles of type <scp>II</scp> myosins. Glia, 2021, 69, 2717-2738.	2.5	5

# 1137	ARTICLE Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Reports, 2021, 36, 109313.	IF 2.9	Citations
1138	Cerebral Organoids—Challenges to Establish a Brain Prototype. Cells, 2021, 10, 1790.	1.8	12
1140	Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nature Communications, 2021, 12, 4646.	5.8	47
1141	Histamine, Neuroinflammation and Neurodevelopment: A Review. Frontiers in Neuroscience, 2021, 15, 680214.	1.4	32
1142	Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function. Frontiers in Immunology, 2021, 12, 703527.	2.2	48
1143	Molecular Basis of Late-Life Depression. International Journal of Molecular Sciences, 2021, 22, 7421.	1.8	24
1144	Little cells of the little brain: microglia in cerebellar development and function. Trends in Neurosciences, 2021, 44, 564-578.	4.2	23
1146	Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. International Journal of Molecular Sciences, 2021, 22, 8220.	1.8	2
1147	Characterization of microglial transcriptomes in the brain and spinal cord of mice in early and late experimental autoimmune encephalomyelitis using a RiboTag strategy. Scientific Reports, 2021, 11, 14319.	1.6	7
1148	BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury. PLoS Biology, 2021, 19, e3001337.	2.6	43
1149	Comparing Tumor Cell Invasion and Myeloid Cell Composition in Compatible Primary and Relapsing Glioblastoma. Cancers, 2021, 13, 3636.	1.7	7
1150	Microglia: Ally and Enemy in Deep Space. Neuroscience and Biobehavioral Reviews, 2021, 126, 509-514.	2.9	12
1151	The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neuroscience and Biobehavioral Reviews, 2021, 127, 307-331.	2.9	17
1152	Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2021, 15, 718324.	1.8	22
1154	New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Frontiers in Cellular Neuroscience, 2021, 15, 727899.	1.8	32
1155	Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cellular and Molecular Immunology, 2021, 18, 2472-2488.	4.8	61
1156	Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron, 2021, 109, 2573-2589.e9.	3.8	149
1158	Generation of an Iba1-EGFP Transgenic Rat for the Study of Microglia in an Outbred Rodent Strain. ENeuro, 2021, 8, ENEURO.0026-21.2021.	0.9	6

#	Article	IF	CITATIONS
1159	HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells, 2021, 10, 2158.	1.8	18
1160	Inhibition of CSF1R, a receptor involved in microglia viability, alters behavioral and molecular changes induced by cocaine. Scientific Reports, 2021, 11, 15989.	1.6	14
1161	Advances in microglia cellular models: focus on extracellular vesicle production. Biochemical Society Transactions, 2021, 49, 1791-1802.	1.6	3
1162	Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Science Advances, 2021, 7, .	4.7	49
1163	Failure of Diphtheria Toxin Model to Induce Parkinson-Like Behavior in Mice. International Journal of Molecular Sciences, 2021, 22, 9496.	1.8	6
1164	Neuron-astrocyte networking: astrocytes orchestrate and respond to changes in neuronal network activity across brain states and behaviors. Journal of Neurophysiology, 2021, 126, 627-636.	0.9	5
1165	Disrupted Timing of MET Signaling Derails the Developmental Maturation of Cortical Circuits and Leads to Altered Behavior in Mice. Cerebral Cortex, 2022, 32, 1769-1786.	1.6	5
1166	Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. Science Advances, 2021, 7, eabh0609.	4.7	19
1167	Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Frontiers in Neural Circuits, 2021, 15, 735625.	1.4	35
1168	Microglia, synaptic dynamics and forgetting. Brain Research Bulletin, 2021, 174, 173-183.	1.4	7
1169	Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 746631.	1.8	20
1171	Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 2021, 28, 2153-2166.e6.	5.2	98
1172	Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity, 2021, 54, 2057-2071.e6.	6.6	55
1173	Myeloid cells in retinal and brain degeneration. FEBS Journal, 2021, , .	2.2	12
1174	Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Manner. Cannabis and Cannabinoid Research, 2021, , .	1.5	18
1175	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	6.6	76
1177	Postnatal immune activation causes social deficits in a mouse model of tuberous sclerosis: Role of microglia and clinical implications. Science Advances, 2021, 7, eabf2073.	4.7	12
1178	The behavior and functions of embryonic microglia. Anatomical Science International, 2022, 97, 1-14.	0.5	15

		CITATION REPORT		
#	Article		IF	CITATIONS
1179	Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells, 20	21, 10, 2381.	1.8	24
1180	Immune modulations and immunotherapies for Alzheimer's disease: a comprehens the Neurosciences, 2022, 33, 365-381.	ive review. Reviews in	1.4	5
1181	Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photorece degenerative environment. Molecular Therapy - Methods and Clinical Development, 20		1.8	2
1183	Primed for addiction: A critical review of the role of microglia in the neurodevelopment consequences of adolescent alcohol drinking. Alcoholism: Clinical and Experimental Re 45, 1908-1926.	al search, 2021,	1.4	16
1184	Plasticity of microglia. Biological Reviews, 2022, 97, 217-250.		4.7	44
1185	Research Progress About Glioma Stem Cells in the Immune Microenvironment of Gliom Pharmacology, 2021, 12, 750857.	a. Frontiers in	1.6	8
1186	Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Fut Neurochemical Research, 2022, 47, 218-233.	ure.	1.6	3
1187	Long-term diet-induced obesity does not lead to learning and memory impairment in ac ONE, 2021, 16, e0257921.	lult mice. PLoS	1.1	14
1188	Donor bone marrow–derived macrophage MHC II drives neuroinflammation and alter during chronic GVHD in mice. Blood, 2022, 139, 1389-1408.	ed behavior	0.6	14
1189	Uncovering microglial pathways driving sex-specific neurobiological effects in stress an Brain, Behavior, & Immunity - Health, 2021, 16, 100320.	d depression.	1.3	10
1190	Potential associations between immune signaling genes, deactivated microglia, and oli and cortical gray matter loss in patients with long-term remitted Cushing's disease Psychoneuroendocrinology, 2021, 132, 105334.	godendrocytes	1.3	6
1191	Microglial functional alteration and increased diversity in the challenged brain: Insights targets for intervention. Brain, Behavior, & Immunity - Health, 2021, 16, 100301.	into novel	1.3	15
1192	Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 expression and morphological phenotype in the hippocampus and dentate gyrus, result inflexibility during late adolescence. Brain, Behavior, and Immunity, 2021, 97, 440-454.	ting in cognitive	2.0	10
1193	c-MAF–dependent perivascular macrophages regulate diet-induced metabolic syndro Immunology, 2021, 6, eabg7506.	me. Science	5.6	27
1194	Novel microglia-mediated mechanisms underlying synaptic loss and cognitive impairme traumatic brain injury. Brain, Behavior, and Immunity, 2021, 98, 122-135.	nt after	2.0	29
1195	Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immur Pharmacological Research, 2021, 173, 105909.	e regulation.	3.1	16
1196	Stress induces microglia-associated synaptic circuit alterations in the dorsomedial preficortex. Neurobiology of Stress, 2021, 15, 100342.	rontal	1.9	17
1197	Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. Jo Functional Foods, 2021, 86, 104683.	urnal of	1.6	11

ARTICLE IF CITATIONS # Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic 1198 2.9 20 phenotype. Neuroscience and Biobehavioral Reviews, 2021, 131, 135-163. The emerging tale of microglia in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 1199 131, 1-29 Molecular aspects of neuroinflammation: Contribution of eicosanoids, cytokines, and chemokines., 1200 0 2022, , 1-22. Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain, Behavior, and İmmunity, 2022, 99, 53-69. Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT 1203 1.0 5 intracellular signaling in vitro. Molecular Biology Reports, 2021, 48, 563-584. Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends in Molecular Medicine, 2021, 27, 47-59. 1204 3.5 Microglia Orchestrate Neuronal Activity in Brain Organoids. SSRN Electronic Journal, 0, , . 1205 0.4 2 Don't know what you got till it's gone: microglial depletion and neurodegeneration. Neural 1206 1.6 10 Regeneration Research, 2021, 16, 1921. 1207 Glial Mechanisms of Inflammation During Seizures. Agents and Actions Supplements, 2021, , 45-70. 0.2 1 Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous 2.5 28 system: Understanding pathogenesis and chances for treatment. Glia, 2017, 65, 1407-1422. How microglia sense and regulate neuronal activity. Glia, 2021, 69, 1637-1653. 1209 2.5 90 Multifaceted Involvement of Microglia in Gray Matter Pathology in Multiple Sclerosis. Stem Cells, 1.4 2021, 39, 993-1007. Microglial Physiology., 2014, , 47-79. 1211 1 Maternal Obesity in Pregnancy: Consequences for Brain Function in the Offspring. Neuromethods, 0.2 2016, , 203-219 In Vivo Visualization of Microglia Using Tomato Lectin. Methods in Molecular Biology, 2019, 2034, 1213 0.4 13 165-175. Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in Molecular Biology, 2019, 1214 0.4 2034, 41-55. Microglial Dysfunction in Brain Aging and Neurodegeneration., 2018, , 1-15. 1215 2 Physiology of Microglia. Advances in Experimental Medicine and Biology, 2019, 1175, 129-148.

#	Article	IF	Citations
1217	Cortical Involvement in Multiple Sclerosis. , 2017, , 243-273.		1
1218	Insulin activates microglia and increases COX-2/IL-1β expression in young but not in aged hippocampus. Brain Research, 2020, 1741, 146884.	1.1	21
1219	Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice. STAR Protocols, 2020, 1, 100211.	0.5	9
1221	Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology?. Clinical Science, 2020, 134, 547-570.	1.8	31
1222	Exercise alters LPS-induced glial activation in the mouse brain. Neuronal Signaling, 2020, 4, NS20200003.	1.7	12
1223	Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy, 2020, 16, 2193-2205.	4.3	134
1224	Qki is an essential regulator of microglial phagocytosis in demyelination. Journal of Experimental Medicine, 2021, 218, .	4.2	13
1251	Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science, 2020, 370, 66-69.	6.0	220
1253	Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight, 2020, 5, .	2.3	20
1254	Retinal microglia are critical for subretinal neovascular formation. JCI Insight, 2020, 5, .	2.3	15
1255	Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. Journal of Clinical Investigation, 2020, 130, 1961-1976.	3.9	56
1256	Microglia in steady state. Journal of Clinical Investigation, 2017, 127, 3201-3209.	3.9	212
1257	Microglia ablation alleviates myelin-associated catatonic signs in mice. Journal of Clinical Investigation, 2017, 128, 734-745.	3.9	88
1258	Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist, 2021, 27, 10-29.	2.6	37
1259	Shedding Light on the Dark Side of the Microglia. ASN Neuro, 2020, 12, 175909142092533.	1.5	39
1260	Reduced Amygdala Microglial Expression of Brain-Derived Neurotrophic Factor and Tyrosine Kinase Receptor B (TrkB) in a Rat Model of Poststroke Depression. Medical Science Monitor, 2020, 26, e926323.	0.5	7
1261	Recent advances in understanding context-dependent mechanisms controlling neurotrophin signaling and function. F1000Research, 2019, 8, 1658.	0.8	25
1262	Large-scale femtosecond holography for near simultaneous optogenetic neural modulation. Optics Express, 2019, 27, 32228.	1.7	11

#	Article	IF	CITATIONS
1263	Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation. PLoS ONE, 2015, 10, e0122912.	1.1	180
1264	Retinal phagocytes in age-related macular degeneration. Macrophage, 2015, 2, .	1.0	10
1265	Aging and an Immune Challenge Interact to Produce Prolonged, but Not Permanent, Reductions in Hippocampal L-LTP and mBDNF in a Rodent Model with Features of Delirium. ENeuro, 2018, 5, ENEURO.0009-18.2018.	0.9	15
1266	Electroconvulsive Shock Enhances Responsive Motility and Purinergic Currents in Microglia in the Mouse Hippocampus. ENeuro, 2019, 6, ENEURO.0056-19.2019.	0.9	8
1267	Cell-Autonomous Regulation of Dendritic Spine Density by PirB. ENeuro, 2016, 3, ENEURO.0089-16.2016.	0.9	26
1268	Targeting Microglia Using Cx3cr1-Cre Lines: Revisiting the Specificity. ENeuro, 2019, 6, ENEURO.0114-19.2019.	0.9	57
1269	Transcranial Direct Current Stimulation (tDCS) Induces Adrenergic Receptor-Dependent Microglial Morphological Changes in Mice. ENeuro, 2019, 6, ENEURO.0204-19.2019.	0.9	39
1270	Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats. ENeuro, 2016, 3, ENEURO.0297-16.2016.	0.9	59
1271	Phosphoinositide-3-Kinase Î ³ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. ENeuro, 2020, 7, ENEURO.0311-20.2020.	0.9	10
1272	Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia. ENeuro, 2019, 6, ENEURO.0448-18.2019.	0.9	153
1273	Microglia Elimination Increases Neural Circuit Connectivity and Activity in Adult Mouse Cortex. Journal of Neuroscience, 2021, 41, 1274-1287.	1.7	76
1274	TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. Journal of Neuroscience, 2017, 37, 871-881.	1.7	36
1275	CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging, 2020, 12, 2101-2122.	1.4	22
1276	Innate immune activation in Alzheimer's disease. Annals of Translational Medicine, 2018, 6, 177-177.	0.7	64
1277	Neuron-Microglia Interactions in Motor Neuron Degeneration. The Inflammatory Hypothesis in Amyotrophic Lateral Sclerosis Revisited. Current Medicinal Chemistry, 2016, 23, 4753-4772.	1.2	20
1278	From Healthy Aging to Frailty: In Search of the Underlying Mechanisms. Current Medicinal Chemistry, 2019, 26, 3685-3701.	1.2	55
1279	Astrocytes: From the Physiology to the Disease. Current Alzheimer Research, 2019, 16, 675-698.	0.7	20
1280	The Ambiguous Role of Microglia in Aβ Toxicity: Chances for Therapeutic Intervention. Current Neuropharmacology, 2020, 18, 446-455.	1.4	16

#	Article	IF	CITATIONS
1281	MAPK: A Key Player in the Development and Progression of Stroke. CNS and Neurological Disorders - Drug Targets, 2020, 19, 248-256.	0.8	26
1282	Effects of α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator on BDNF, NKCC1 and KCC2 Expression in the Hippocampus following Lipopolysaccharide-induced Allodynia and Hyperalgesia in a Mouse Model of Inflammatory Pain. CNS and Neurological Disorders - Drug Targets, 2020, 19, 366-377.	0.8	7
1283	Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocrine Regulations, 2020, 54, 109-118.	0.5	19
1284	<i>Cx3cr1-</i> deficient microglia exhibit a premature aging transcriptome. Life Science Alliance, 2019, 2, e201900453.	1.3	64
1285	Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer. Life Science Alliance, 2020, 3, e202000694.	1.3	20
1286	More Than Mortar: Glia as Architects of Nervous System Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 611269.	1.8	33
1287	Prenatal Exposure to Valproic Acid Affects Microglia and Synaptic Ultrastructure in a Brain-Region-Specific Manner in Young-Adult Male Rats: Relevance to Autism Spectrum Disorders. International Journal of Molecular Sciences, 2020, 21, 3576.	1.8	35
1288	Distinction of Microglia and Macrophages in Glioblastoma: Close Relatives, Different Tasks?. International Journal of Molecular Sciences, 2021, 22, 194.	1.8	32
1289	The Role of Immune Cells in the Brain during Physiological and Pathological Conditions. Psychiatric Annals, 2015, 45, 232-239.	0.1	1
1290	Headmasters: Microglial regulation of learning and memory in health and disease. AIMS Molecular Science, 2018, 5, 63-89.	0.3	5
1291	Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Annals of Translational Medicine, 2015, 3, 136.	0.7	593
1292	Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons. Neural Regeneration Research, 2016, 11, 114.	1.6	1
1293	The final frontier: Transient microglia reduction after cosmic radiation exposure mitigates cognitive impairments and modulates phagocytic activity. Brain Circulation, 2018, 4, 109.	0.7	12
1294	Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. ELife, 2019, 8, .	2.8	75
1295	Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. ELife, 2019, 8, .	2.8	55
1296	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. ELife, 2019, 8, .	2.8	41
1297	Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. ELife, 2020, 9, .	2.8	35
1298	A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. ELife, 2020, 9, .	2.8	54

	Сітатіо	on Report	
#	Article	IF	CITATIONS
1299	A new genetic strategy for targeting microglia in development and disease. ELife, 2020, 9, .	2.8	99
1300	Microglial calcium signaling is attuned to neuronal activity in awake mice. ELife, 2020, 9, .	2.8	115
1301	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	2.8	49
1302	Light-induced engagement of microglia to focally remodel synapses in the adult brain. ELife, 2020, 9, .	2.8	23
1303	REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. ELife, 2020, 9, .	2.8	42
1304	The development and physiological and pathophysiological functions of resident macrophages and glial cells. Advances in Immunology, 2021, 151, 1-47.	1.1	2
1305	Deciphering glial scar after spinal cord injury. Burns and Trauma, 2021, 9, tkab035.	2.3	23
1306	Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. Journal of Neuroinflammation, 2021, 18, 229.	3.1	19
1307	Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Frontiers in Cellular Neuroscience, 2021, 15, 722028.	1.8	17
1308	Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. , 2022, 233, 108017.		8
1309	Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain Communications, 2021, 3, fcab237.	1.5	9
1311	Electroacupuncture promotes the survival and synaptic plasticity of hippocampal neurons and improvement of sleep deprivationâ€induced spatial memory impairment. CNS Neuroscience and Therapeutics, 2021, 27, 1472-1482.	1.9	21
1312	A novel neuroinflammation-responsive hydrogel based on mimicking naked mole rat brain microenvironment retards neurovascular dysfunction and cognitive decline in Alzheimer's disease. Chemical Engineering Journal, 2021, , 133090.	6.6	2
1313	Macrophages Are Dispensable for Postnatal Pruning of the Cochlear Ribbon Synapses. Frontiers in Cellular Neuroscience, 2021, 15, 736120.	1.8	3
1314	Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. Journal of Neuroinflammation, 2021, 18, 235.	3.1	3
1315	Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells, 2021, 10, 2866.	1.8	6
1316	Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Molecular Psychiatry, 2022, 27, 1120-1135.	4.1	27
1317	Activation of and in. Neuromethods, 2022, , 11-38.	0.2	0

~			-	
	ΓΑΤΙ	ON	Rep	ORT
\sim				

#	Article	IF	CITATIONS
1318	Emerging Roles of Microglia in Neuro-vascular Unit: Implications of Microglia-Neurons Interactions. Frontiers in Cellular Neuroscience, 2021, 15, 706025.	1.8	5
1319	Macrophages as Emerging Key Players in Mitochondrial Transfers. Frontiers in Cell and Developmental Biology, 2021, 9, 747377.	1.8	17
1320	Microglia control glutamatergic synapses in the adult mouse hippocampus. Glia, 2022, 70, 173-195.	2.5	46
1321	Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cellular and Molecular Neurobiology, 2022, 42, 2629-2642.	1.7	18
1322	Distinct roles of astroglia and neurons in synaptic plasticity and memory. Molecular Psychiatry, 2022, 27, 873-885.	4.1	24
1323	Lessons from In Vivo Imaging. , 2014, , 81-114.		0
1324	Brain Derived Neurotrophic Growth Factor and Cognitive Function in Children with Iron Deficiency Anemia. British Journal of Medicine and Medical Research, 2014, 4, 3561-3570.	0.2	0
1326	Developing and Mature Synapses. , 2014, , 223-248.		5
1327	Adult Neurogenesis, Learning and Memory. , 2014, , 249-271.		1
1329	Role of Adenosine A2A Receptors in the Control of Neuroinflammation—Relevance for Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 81-99.	0.4	0
1330	The contents of neurospecific enolase and neurotrofic growth factor in the cord blood of healthy full-term newborns elective planned caesarean section surgery and spontaneous delivery. Journal of Obstetrics and Women's Diseases, 2015, 64, 38-42.	0.0	2
1332	The Role of M1/M2 Transition of the Brain Macrophages in Alzheimer's Disease. IOSR Journal of Pharmacy and Biological Sciences, 2016, 11, 72-78.	0.1	1
1334	MILD TRAUMATIC BRAIN INJURY: GENERAL CHARACTERISTICS, NEURODEGENERATIVE CONSEQUENSES AND MODELING. Fiziologicheskii Zhurnal, 2017, 63, 80-89.	0.2	2
1338	Discrepancy in Microglia and Peripheral Monocytic Cells - A scope in the Pathophysiology of Psychiatric maladies. Journal of Neuroscience and Neurological Disorders, 0, , 028-032.	0.1	0
1344	Immunologie de la sclérose en plaques. , 2019, , 151-198.		0
1345	Deficit of Long-Term Potentiation Induction, but Not Maintenance, in the Juvenile Hippocampus after Neonatal Proinflammatory Stress. Developmental Neuroscience, 2019, 41, 318-326.	1.0	1
1346	Microglial Dysfunction in Brain Aging and Neurodegeneration. , 2019, , 2337-2351.		0
1347	Multi-actions of Microglia. Contemporary Clinical Neuroscience, 2019, , 303-328.	0.3	0

#	Article	IF	Citations
1350	KCNMB3 in spinal microglia contributes to the generation and maintenance of neuropathic pain in mice. International Journal of Molecular Medicine, 2019, 44, 1585-1593.	1.8	2
1358	The role of environmental toxins and inflammation in Parkinson's disease pathophysiology: a historical perspective and research-based evidence. , 2020, , 39-55.		0
1365	Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11677.	1.8	54
1366	The Role of APOE and NF-κB in Alzheimer's Disease. Immuno, 2021, 1, 391-399.	0.6	4
1367	Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Frontiers in Cellular Neuroscience, 2021, 15, 765217.	1.8	17
1369	Gut–brain–bone marrow axis in hypertension. Current Opinion in Nephrology and Hypertension, 2021, 30, 159-165.	1.0	9
1371	Environmental enrichment as a preventative and therapeutic approach to Alzheimer's disease. , 2020, , 681-693.		2
1376	Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Frontiers in Molecular Neuroscience, 2021, 14, 749737.	1.4	23
1378	The semantics of microglia activation: neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation, 2021, 18, 258.	3.1	198
1379	Molecular Markers of Hemorrhagic Stroke. Obshchaya Reanimatologiya, 2020, 16, 34-45.	0.2	3
1382	Promising molecular targets for pharmacological therapy of neurodegenerative pathologies. Acta Naturae, 2020, 12, 60-80.	1.7	3
1386	Immunopharmacology of Alzheimer's disease. , 2022, , 277-298.		0
1387	Silent Synapses in Cocaine-Associated Memory and Beyond. Journal of Neuroscience, 2021, 41, 9275-9285.	1.7	7
1389	Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Molecular Neurobiology, 2022, 59, 872-889.	1.9	8
1390	Effect of Heat Stress on Hippocampal Neurogenesis: Insights into the Cellular and Molecular Basis of Neuroinflammation-Induced Deficits. Cellular and Molecular Neurobiology, 2023, 43, 1-13.	1.7	5
1393	Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
1394	Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Current Neuropharmacology, 2022, 20, 2050-2065.	1.4	9
1395	Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Frontiers in Behavioral Neuroscience, 2021, 15, 786234.	1.0	12

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1396	Dysfunction of cerebellar microglia in <scp>Ataxiaâ€ŧelangiectasia</scp> . Glia, 2022, 7	'0, 536-557.	2.5	12
1397	Type I Interferon Signaling Drives Microglial Dysfunction and Senescence in Human iPS Down Syndrome and Alzheimer's Disease. SSRN Electronic Journal, 0, , .	C Models of	0.4	0
1398	Research Progress of Microglia Related Role in Alzheimer's Disease. Advances in Cli 2021, 11, 6079-6085.	nical Medicine,	0.0	1
1399	Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease Pharmacological Reviews, 2022, 74, 1-17.	2.	7.1	23
1400	Anti-inflammatory role of GM1 and other gangliosides on microglia. Journal of Neuroinf 2022, 19, 9.	lammation,	3.1	32
1401	Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke l remodeling and cognitive function recovery in mice. Communications Biology, 2022, 5	brain , 35.	2.0	33
1402	Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood gastrointestinal disease and disorders. Neuroscience and Biobehavioral Reviews, 2022,	disorders in 133, 104497.	2.9	25
1403	Phytoestrogen genistein modulates neuron–microglia signaling in a mouse model of defeat stress. Neuropharmacology, 2022, 206, 108941.	chronic social	2.0	6
1404	Learning Difficulties and Oxidative Stress in Autism Spectrum Disorder: A Review of the Nutritional Interventions. Neurochemical Journal, 2021, 15, 422-434.	? Role of	0.2	0
1405	Neural biomarkers of suicidal behavior: from cognition and circuits to cells (and back).	, 2022, , 19-38.		0
1406	Detection and Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons a Microglia-Like Cells. Frontiers in Molecular Neuroscience, 2021, 14, 793769.	nd	1.4	6
1407	Controlled Activation of TRPV1 Channels on Microglia to Boost Their Autophagy for Cle Alphaâ \in Synuclein and Enhance Therapy of Parkinson's Disease. Advanced Materials, 20	earance of 22, 34, e2108435.	11.1	52
1408	Synapses, Microglia, and Lipids in Alzheimer's Disease. Frontiers in Neuroscience, 2	021, 15, 778822.	1.4	10
1409	Attack of the Clones: Microglia in Health and Disease. Frontiers in Cellular Neuroscienc 831747.	e, 2022, 16,	1.8	4
1410	Commentary: How Do Microglia Regulate Neural Circuit Connectivity and Activity in th Neuroscience Insights, 2022, 17, 263310552110711.	e Adult Brain?.	0.9	1
1411	Helminth resistance is mediated by differential activation of recruited monocyte-derive macrophages and arginine depletion. Cell Reports, 2022, 38, 110215.	d alveolar	2.9	30
1412	An overlooked subset of Cx3cr1wt/wt microglia in the Cx3cr1CreER-Eyfp/wt mouse has advantage over Cx3cr1CreER-Eyfp/wt microglia following microglial depletion. Journal o Neuroinflammation, 2022, 19, 20.	a repopulation of	3.1	12
1413	Diphtheria toxin induced but not CSF1R inhibitor mediated microglia ablation model le of CSF/ventricular spaces in vivo that is independent of cytokine upregulation. Journal Neuroinflammation, 2022, 19, 3.		3.1	13

ARTICLE IF CITATIONS # Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Frontiers in Neural 1414 1.4 11 Circuits, 2021, 15, 785603. Cx3Cr1-Cre induction leads to microglial activation and IFN-1 signaling caused by DNA damage in early 1415 44 postnatal brain. Cell Reports, 2022, 38, 110252. Acid-Sensing Ion Channels in Glial Cells. Membranes, 2022, 12, 119. 1.4 7 1416 Macrophages facilitate peripheral nerve regeneration by organizing regeneration tracks through 1417 Plexin-B2. Genes and Development, 2022, 36, 133-148. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Frontiers in Immunology, 2021, 1418 2.2 79 12, 796867. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nature Communications, 2022, 13, 430. 1419 5.8 Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech, 2022, 12, 55. 1420 1.1 97 The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia, 2022, 70, 1215-1250. 1421 2.5 49 Selective isolation of mouse glial nuclei optimized for reliable downstream omics analyses. Journal of Neuroscience Methods, 2022, 369, 109480. 1422 1.3 4 Connexin 43: insights into candidate pathological mechanisms of depression and its implications in 1423 2.8 antidepressant therapy. Acta Pharmacologica Sinica, 2022, 43, 2448-2461. Central nervous system macrophages in progressive multiple sclerosis: relationship to 1424 3.151 neurodegeneration and therapeutics. Journal of Neuroinflammation, 2022, 19, 45. Microglia and Microglia-Like Cells: Similar but Different. Frontiers in Cellular Neuroscience, 2022, 16, 1.8 816439. Microglia in Alzheimer's Disease: An Unprecedented Opportunity as Prospective Drug Target. 1426 1.9 17 Molecular Neurobiology, 2022, 59, 2678-2693. Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal 1427 1.1 cortex. Current Research in Neurobiology, 2022, 3, 100028. NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage 1429 49 3.8 reprogramming. Neuron, 2021, 109, 4094-4108.e5. Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells, 2022, 11, 124. 1430 1.8 50 Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. International 1431 1.8 46 Journal of Molecular Sciences, 2021, 22, 13315. 1432 Defining Microglial States and Nomenclature: A Roadmap to 2030. SSRN Electronic Journal, 0, , . 0.4

#	Article	IF	CITATIONS
1433	Fetal psychism: neurodynamic and psychoanalytic bases. Journal of Human Growth and Development, 2022, 32, 10-20.	0.2	1
1434	Targeting Microglia to Treat Degenerative Eye Diseases. Frontiers in Immunology, 2022, 13, 843558.	2.2	24
1435	Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Reviews in the Neurosciences, 2022, 33, 555-582.	1.4	4
1436	Inhibition of glial Dâ€serine release rescues synaptic damage after brain injury. Glia, 2022, 70, 1133-1152.	2.5	13
1437	Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Frontiers in Molecular Neuroscience, 2022, 15, 839366.	1.4	3
1439	Ipriflavone as a nonâ€steroidal glucocorticoid receptor antagonist ameliorates diabetic cognitive impairment in mice. Aging Cell, 2022, 21, e13572.	3.0	9
1440	Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends in Neurosciences, 2022, 45, 401-414.	4.2	43
1442	Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annual Review of Neuroscience, 2022, 45, 177-198.	5.0	2
1443	Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2022, 14, 815347.	1.7	212
1444	A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia, 2022, 70, 1554-1580.	2.5	18
1446	Stress vulnerability shapes disruption of motor cortical neuroplasticity. Translational Psychiatry, 2022, 12, 91.	2.4	11
1447	Neurotoxic and cardiotoxic effects of <i>N</i> -methyl-1-(naphthalen-2-yl)propan-2-amine (methamnetamine) and 1-phenyl-2-pyrrolidinylpentane (prolintane). Drug and Chemical Toxicology, 2022, , 1-11.	1.2	0
1449	Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. Science Advances, 2022, 8, eabi6672.	4.7	40
1450	Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity, 2022, 55, 405-422.e11.	6.6	37
1451	Microglia regulate chandelier cell axo-axonic synaptogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114476119.	3.3	26
1452	Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Science Advances, 2022, 8, eabj0112.	4.7	15
1454	Modafinil Reduces Neuronal Pyroptosis and Cognitive Decline After Sleep Deprivation. Frontiers in Neuroscience, 2022, 16, 816752.	1.4	9
1455	A spinal microglia population involved in remitting and relapsing neuropathic pain. Science, 2022, 376, 86-90.	6.0	98

#	Article	IF	CITATIONS
1456	Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron, 2022, 110, 1116-1138.	3.8	18
1457	Microglia-independent peripheral neuropathic pain in male and female mice. Pain, 2022, 163, e1129-e1144.	2.0	15
1458	Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia, 2022, 70, 1359-1379.	2.5	29
1459	Pharmacological Depletion of Microglia Leads to a Dose-Dependent Reduction in Inflammation and Senescence in the Aged Murine Brain. Neuroscience, 2022, 488, 1-9.	1.1	14
1460	The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. Journal of Oncology, 2022, 2022, 1-19.	0.6	4
1461	The role of intracellular calciumâ€storeâ€mediated calcium signals in <i>in vivo</i> sensor and effector functions of microglia. Journal of Physiology, 2023, 601, 4203-4215.	1.3	8
1462	Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain, Behavior, and Immunity, 2022, 102, 279-291.	2.0	8
1463	Stress induced microglial activation contributes to depression. Pharmacological Research, 2022, 179, 106145.	3.1	36
1464	Inhibition of NLRP3 inflammasome-mediated neuroinflammation alleviates electroconvulsive shock-induced memory impairment via regulation of hippocampal synaptic plasticity in depressive rats. Behavioural Brain Research, 2022, 428, 113879.	1.2	4
1465	Chronic exposure of alcohol triggers microglia-mediated synaptic elimination inducing cognitive impairment. Experimental Neurology, 2022, 353, 114061.	2.0	14
1467	Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Frontiers in Cellular Neuroscience, 2021, 15, 770453.	1.8	3
1469	Current Methods for the Isolation and Cultivation of Microglia (Review). Sovremennye Tehnologii V Medicine, 2021, 13, 89.	0.4	0
1470	Microbiota-dependent increase in δ-valerobetaine alters neuronal function and is responsible for age-related cognitive decline. Nature Aging, 2021, 1, 1127-1136.	5.3	20
1471	The Colony Stimulating Factor-1 Receptor (CSF-1R)-Mediated Regulation of Microglia/Macrophages as a Target for Neurological Disorders (Glioma, Stroke). Frontiers in Immunology, 2021, 12, 787307.	2.2	21
1472	Nanocomposites Facilitate the Removal of ${\rm A}\hat{\rm I}^2$ Fibrils for Neuroprotection. Chemical Research in Chinese Universities, 0, , 1.	1.3	1
1473	The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Current Neuropharmacology, 2023, 21, 164-182.	1.4	3
1474	Perinatal Penicillin Exposure Affects Cortical Development and Sensory Processing. Frontiers in Molecular Neuroscience, 2021, 14, 704219.	1.4	4
1475	White matter microglia heterogeneity in the CNS. Acta Neuropathologica, 2022, 143, 125-141.	3.9	48

P

TATION

	CHATION	NEFORT	
#	Article	IF	CITATIONS
1476	The origin and repopulation of microglia. Developmental Neurobiology, 2022, 82, 112-124.	1.5	16
1477	Cytokine Signalling at the Microglial Penta-Partite Synapse. International Journal of Molecular Sciences, 2021, 22, 13186.	1.8	13
1479	Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Current Topics in Behavioral Neurosciences, 2022, , 165-206.	0.8	10
1480	Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues. International Journal of Molecular Sciences, 2022, 23, 4381.	1.8	7
1481	Microglial NF- \hat{I}^{0} B drives tau spreading and toxicity in a mouse model of tauopathy. Nature Communications, 2022, 13, 1969.	5.8	103
1482	Advances in Visualizing Microglial Cells in Human Central Nervous System Tissue. Biomolecules, 2022, 12, 603.	1.8	6
1483	Wnt Signaling in the Adult Hippocampal Neurogenic Niche. Stem Cells, 2022, 40, 630-640.	1.4	10
1484	Distinct phases of adult microglia proliferation: a Myc-mediated early phase and a Tnfaip3-mediated late phase. Cell Discovery, 2022, 8, 34.	3.1	11
1485	Microglia and Neurodevelopmental Disorders. Annual Review of Neuroscience, 2022, 45, 425-445.	5.0	43
1486	Partial Ablation of Astrocytes Exacerbates Cerebral Infiltration of Monocytes and Neuronal Loss After Brain Stab Injury in Mice. Cellular and Molecular Neurobiology, 2022, , 1.	1.7	2
1487	Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques. Immunity, 2022, 55, 879-894.e6.	6.6	64
1488	Role of lipocalin-2 in surgery-induced cognitive decline in mice: a signal from neuron to microglia. Journal of Neuroinflammation, 2022, 19, 92.	3.1	11
1545	Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia, 2022, 70, 1402-1425.	2.5	4
1546	Synaptic loss in a mouse model of euthyroid Hashimoto's thyroiditis: possible involvement of the microglia. BMC Neuroscience, 2022, 23, 25.	0.8	0
1547	The roles of microglia in neural remodeling during retinal degeneration. Histology and Histopathology, 2021, , 18384.	0.5	2
1548	The role of inflammatory system genes in individual differences in nonverbal intelligence. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 26, 179-187.	0.4	1
1550	Bone Marrow-derived Mesenchymal Stem Cells Promote Microglia/Macrophage M2 Polarization and Enhance Neurogenesis in the Acute and Chronic Stages after Ischemic Stroke. Clinical Complementary Medicine and Pharmacology, 2022, , 100040.	0.9	0
1551	Microglia in brain development and regeneration. Development (Cambridge), 2022, 149, .	1.2	22

#	Article	IF	CITATIONS
1552	Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods. Frontiers in Neural Circuits, 2022, 16, .	1.4	13
1553	Nicotinic Acetylcholine Receptors and Microglia as Therapeutic and Imaging Targets in Alzheimer's Disease. Molecules, 2022, 27, 2780.	1.7	10
1555	Vagus Nerve Stimulation as a Potential Therapy in Early Alzheimer's Disease: A Review. Frontiers in Human Neuroscience, 2022, 16, 866434.	1.0	25
1556	BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Molecular Neurodegeneration, 2022, 17, 33.	4.4	26
1557	Genetic deletion of the glucocorticoid receptor in Cx3cr1+ myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Experimental Neurology, 2022, 355, 114114.	2.0	4
1558	Neuroplasticity related to chronic pain and its modulation by microglia. Inflammation and Regeneration, 2022, 42, 15.	1.5	26
1559	Metformin Improves the Prognosis of Adult Mice with Sepsis-Associated Encephalopathy Better than That of Aged Mice. Journal of Immunology Research, 2022, 2022, 1-14.	0.9	4
1560	Major Caveats Discovered in the Genetic Cell Ablation Model Used to Study Microglia Functions. Translational Stroke Research, 2023, 14, 121-122.	2.3	1
1561	Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Science Advances, 2022, 8, eabm2545.	4.7	14
1562	Role of adipose tissue macrophages in obesity-related disorders. Journal of Experimental Medicine, 2022, 219, .	4.2	31
1563	The Regulatory Role of MicroRNAs on Phagocytes: A Potential Therapeutic Target for Chronic Diseases. Frontiers in Immunology, 2022, 13, .	2.2	1
1564	Immune–vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood–brain barrier. Neurophotonics, 2022, 9, 031914.	1.7	12
1565	Effect of exercise from a very early stage after intracerebral hemorrhage on microglial and macrophage reactivity states in rats. NeuroReport, 2022, 33, 304-311.	0.6	2
1566	Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	10
1568	Zolpidem Profoundly Augments Spared Tonic GABAAR Signaling in Dentate Granule Cells Ipsilateral to Controlled Cortical Impact Brain Injury in Mice. Frontiers in Systems Neuroscience, 2022, 16, .	1.2	1
1569	Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro, 2022, 14, 175909142211045.	1.5	19
1570	Exposure to Cadmium Alters the Population of Glial Cell Types and Disrupts the Regulatory Mechanisms of the HPG Axis in Prepubertal Female Rats. Neurotoxicity Research, 2022, 40, 1029-1042.	1.3	3
1571	Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Frontiers in Immunology, 2022, 13, .	2.2	7

#	Article	IF	CITATIONS
1572	Deletion of <scp>Tgfl²</scp> signal in activated microglia prolongs hypoxiaâ€induced retinal neovascularization enhancing <scp>lgf1</scp> expression and retinal leukostasis. Glia, 2022, 70, 1762-1776.	2.5	8
1574	A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells, 2022, 11, 1835.	1.8	3
1575	Microglia in Alzheimer's Disease: A Favorable Cellular Target to Ameliorate Alzheimer's Pathogenesis. Mediators of Inflammation, 2022, 2022, 1-17.	1.4	3
1578	Emerging Roles of Microglia Depletion in the Treatment of Spinal Cord Injury. Cells, 2022, 11, 1871.	1.8	12
1579	Long-term role of neonatal microglia and monocytes in ovarian health. Journal of Endocrinology, 2022, 254, 103-119.	1.2	1
1580	Adipose tissueâ€derived stem cells as a potential candidate in treatment of Alzheimer's disease: A systematic review on preclinical studies. Pharmacology Research and Perspectives, 2022, 10, .	1.1	1
1581	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	1.8	10
1582	Tongue immune compartment analysis reveals spatial macrophage heterogeneity. ELife, 0, 11, .	2.8	6
1583	Microglial Depletion Has No Impact on Disease Progression in a Mouse Model of Machado–Joseph Disease. Cells, 2022, 11, 2022.	1.8	3
1584	Contextual Fear Learning and Extinction in the Primary Visual Cortex of Mice. Neuroscience Bulletin, 2023, 39, 29-40.	1.5	1
1585	Development of a novel purification protocol to isolate and identify brain microglia. Experimental Biology and Medicine, 2022, 247, 1433-1446.	1.1	2
1586	Multimodal imaging of the dynamic brain tumor microenvironment during glioblastoma progression and in response to treatment. IScience, 2022, 25, 104570.	1.9	12
1587	Microglia and border-associated macrophages in the central nervous system. , 2022, , 181-212.		1
1588	Microglia Regulate Blood–Brain Barrier Integrity via MiRâ€126aâ€5p/MMP9 Axis during Inflammatory Demyelination. Advanced Science, 2022, 9, .	5.6	14
1589	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	1.8	76
1590	The Role of Microglia in the (Mal)adaptive Response to Traumatic Experience in an Animal Model of PTSD. International Journal of Molecular Sciences, 2022, 23, 7185.	1.8	8
1591	Targeting Microglia in Alzheimer's Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules, 2022, 27, 4124.	1.7	13
1592	Modeling infectious diseases of the central nervous system with human brain organoids. Translational Research, 2022, 250, 18-35.	2.2	2

#	Article	IF	CITATIONS
1593	Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells, 2022, 11, 2211.	1.8	6
1594	Microglia coordinate cellular interactions during spinal cord repair in mice. Nature Communications, 2022, 13, .	5.8	61
1595	LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Frontiers in Neuroscience, 0, 16, .	1.4	5
1596	Microglial TLR4 is Critical for Neuronal Injury and Cognitive Dysfunction in Subarachnoid Hemorrhage. Neurocritical Care, 2022, 37, 761-769.	1.2	12
1598	Single transcription factor efficiently leads human induced pluripotent stem cells to functional microglia. Inflammation and Regeneration, 2022, 42, .	1.5	10
1599	Motor deficits seen in microglial ablation mice could be due to non-specific damage from high dose diphtheria toxin treatment. Nature Communications, 2022, 13, .	5.8	5
1600	Probing the Skin–Brain Axis: New Vistas Using Mouse Models. International Journal of Molecular Sciences, 2022, 23, 7484.	1.8	5
1601	Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nature Methods, 2022, 19, 976-985.	9.0	56
1602	Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity, 2022, 55, 1466-1482.e9.	6.6	20
1603	<scp>Brain–immune</scp> interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Proliferation, 2022, 55, .	2.4	14
1604	Immune-Triggered Forms of Plasticity Across Brain Regions. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
1605	Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Frontiers in Immunology, 0, 13, .	2.2	28
1606	Microglia in multiple sclerosis: Protectors turn destroyers. Neuron, 2022, 110, 3534-3548.	3.8	37
1607	Microgliosis: a doubleâ€edged sword in the control of food intake. FEBS Journal, 2024, 291, 615-631.	2.2	1
1608	Microglia as Therapeutic Target for Radiation-Induced Brain Injury. International Journal of Molecular Sciences, 2022, 23, 8286.	1.8	14
1609	Decreased Microglia in <i>Pax2</i> Mutant Mice Leads to Impaired Learning and Memory. ACS Chemical Neuroscience, 2022, 13, 2490-2502.	1.7	2
1610	Microgliaâ€dependent remodeling of neuronal circuits. Journal of Neurochemistry, 2022, 163, 74-93.	2.1	25
1611	Brain region- and sex-specific transcriptional profiles of microglia. Frontiers in Psychiatry, 0, 13, .	1.3	17

#	Article	IF	CITATIONS
1612	An Ultra-Low Dose of â^†9-Tetrahydrocannabinol Alleviates Alzheimer's Disease-Related Cognitive Impairments and Modulates TrkB Receptor Expression in a 5XFAD Mouse Model. International Journal of Molecular Sciences, 2022, 23, 9449.	1.8	8
1613	Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data. Cell Reports, 2022, 40, 111151.	2.9	7
1614	Sirtuins promote brain homeostasis, preventing Alzheimer's disease through targeting neuroinflammation. Frontiers in Physiology, 0, 13, .	1.3	8
1615	Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neuroscience Bulletin, 2023, 39, 368-378.	1.5	18
1617	Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. Journal of Neuroinflammation, 2022, 19, .	3.1	14
1618	STAT1 Contributes to Microglial/Macrophage Inflammation and Neurological Dysfunction in a Mouse Model of Traumatic Brain Injury. Journal of Neuroscience, 2022, 42, 7466-7481.	1.7	7
1619	Autism: genetics, environmental stressors, maternal immune activation, and the male bias in autism. , 0, , .		0
1620	Cellular basis of learning and memory in the carotid body. Frontiers in Synaptic Neuroscience, 0, 14, .	1.3	4
1621	The Intranigral Infusion of Human-Alpha Synuclein Oligomers Induces a Cognitive Impairment in Rats Associated with Changes in Neuronal Firing and Neuroinflammation in the Anterior Cingulate Cortex. Cells, 2022, 11, 2628.	1.8	3
1622	Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. Journal of Translational Medicine, 2022, 20, .	1.8	17
1623	Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. International Journal of Molecular Sciences, 2022, 23, 8719.	1.8	13
1624	Synapse-specific roles for microglia in development: New horizons in the prefrontal cortex. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
1625	Profiling Microglia through Single-Cell RNA Sequencing over the Course of Development, Aging, and Disease. Cells, 2022, 11, 2383.	1.8	13
1626	Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
1627	Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity, 2022, 55, 1627-1644.e7.	6.6	33
1628	When the levee of sympathetic outflow breaks. Immunity, 2022, 55, 1334-1336.	6.6	0
1629	Microglia: Rheostats of space radiation effects in the CNS microenvironment. Life Sciences in Space Research, 2022, , .	1.2	0
1630	Changes in rat spatial learning and memory as well as serum exosome proteins after simultaneous exposure to 1.5ÅGHz and 4.3ÅGHz microwaves. Ecotoxicology and Environmental Safety. 2022. 243. 113983.	2.9	3

#	Article	IF	CITATIONS
1631	Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia. Brain Research Bulletin, 2022, 189, 57-68.	1.4	7
1632	Mechanisms of microglia-mediated synapse turnover and synaptogenesis. Progress in Neurobiology, 2022, 218, 102336.	2.8	9
1633	Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathologica Communications, 2022, 10, .	2.4	12
1634	Vascular dementia: A microglia's perspective. Ageing Research Reviews, 2022, 81, 101734.	5.0	21
1635	Roles of Ca2+ activity in injury-induced migration of microglia in zebrafish in vivo. Biochemistry and Biophysics Reports, 2022, 32, 101340.	0.7	0
1636	Planar cell polarity protein Celsr2 maintains structural and functional integrity of adult cortical synapses. Progress in Neurobiology, 2022, 219, 102352.	2.8	4
1637	Implication of microglia in ketamine-induced long-term cognitive impairment in murine pups. Human and Experimental Toxicology, 2022, 41, 096032712211287.	1.1	1
1638	Intensity-Dependent Gamma Electrical Stimulation Regulates Microglial Activation, Reduces Beta-Amyloid Load, and Facilitates Memory in a Mouse Model of Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0
1639	Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson's disease model. International Journal of Neuroscience, 2024, 134, 274-291.	0.8	2
1640	Contribution of hyperglycemia-induced changes in microglia to Alzheimer's disease pathology. Pharmacological Reports, 2022, 74, 832-846.	1.5	1
1641	The Gut–Immune–Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2022, 23, 11111.	1.8	11
1642	Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. Journal of Experimental Medicine, 2022, 219, .	4.2	20
1644	Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells, 2022, 11, 2823.	1.8	13
1645	Microbiota manipulation to increase macrophage IL-10 improves colitis and limits colitis-associated colorectal cancer. Gut Microbes, 2022, 14, .	4.3	14
1647	The neuroimmune system – Where aging and excess alcohol intersect. Alcohol, 2023, 107, 153-167.	0.8	6
1648	Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Clia, 2023, 71, 168-186.	2.5	15
1649	Strategies for Manipulating Microglia to Determine Their Role in the Healthy and Diseased Brain. Neurochemical Research, 2023, 48, 1066-1076.	1.6	7
1650	The microglia-blood vessel interactions in the developing brain. Neuroscience Research, 2023, 187, 58-66.	1.0	9

#	Article	IF	CITATIONS
1651	The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after?. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	13
1652	Microglial control of neuronal development via somatic purinergic junctions. Cell Reports, 2022, 40, 111369.	2.9	13
1653	Injury programs shape glioblastoma. Trends in Neurosciences, 2022, , .	4.2	3
1654	CSF1R-Mediated Myeloid Cell Depletion Prolongs Lifespan But Aggravates Distinct Motor Symptoms in a Model of Multiple System Atrophy. Journal of Neuroscience, 2022, 42, 7673-7688.	1.7	2
1655	Ultrastructural characterization of dark microglia during aging in a mouse model of Alzheimer's disease pathology and in human post-mortem brain samples. Journal of Neuroinflammation, 2022, 19, .	3.1	18
1656	Microglial repopulation alleviates age-related decline of stable wakefulness in mice. Frontiers in Aging Neuroscience, 0, 14, .	1.7	0
1657	Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance. Nature Metabolism, 2022, 4, 1287-1305.	5.1	31
1658	mTOR–neuropeptide Y signaling sensitizes nociceptors to drive neuropathic pain. JCI Insight, 2022, 7, .	2.3	6
1661	Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
1662	Dysregulation of complement system in neuropsychiatric disorders: A mini review. Biomarkers in Neuropsychiatry, 2022, 7, 100056.	0.7	3
1663	Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice. Nature Communications, 2022, 13, .	5.8	28
1664	Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. Journal of Physiological Sciences, 2022, 72, .	0.9	0
1665	Frontiers and future perspectives of neuroimmunology. Fundamental Research, 2022, , .	1.6	0
1666	Endocannabinoid signaling in microglia. Glia, 2023, 71, 71-90.	2.5	9
1668	Sleep decreases neuronal activity control of microglial dynamics in mice. Nature Communications, 2022, 13, .	5.8	12
1669	Endocannabinoid signaling in the central nervous system. Glia, 2023, 71, 5-35.	2.5	8
1670	Terminal field volume of the glossopharyngeal nerve in adult rats reverts to prepruning size following microglia depletion with PLX5622. Developmental Neurobiology, 0, , .	1.5	1
1671	Multispectral fluorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages. Science Translational Medicine, 2022, 14, .	5.8	20

#	Article	IF	CITATIONS
1672	Microglia morphophysiological diversity and its implications for the CNS. Frontiers in Immunology, 0, 13, .	2.2	41
1673	Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. International Journal of Molecular Sciences, 2022, 23, 13008.	1.8	13
1674	Spinal microglia contribute to sustained inflammatory pain via amplifying neuronal activity. Molecular Brain, 2022, 15, .	1.3	4
1675	The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells, 2022, 11, 3421.	1.8	3
1676	An anti-inflammatory transcriptional cascade conserved from flies to humans. Cell Reports, 2022, 41, 111506.	2.9	4
1677	Prostaglandin PGE2 Receptor EP4 Regulates Microglial Phagocytosis and Increases Susceptibility to Diet-Induced Obesity. Diabetes, 2023, 72, 233-244.	0.3	7
1678	Long-term microglia depletion impairs synapse elimination and auditory brainstem function. Scientific Reports, 2022, 12, .	1.6	3
1679	Microglia states and nomenclature: A field at its crossroads. Neuron, 2022, 110, 3458-3483.	3.8	459
1680	Long-term effects of prenatal stress on the development of prefrontal cortex in the adolescent offspring. Journal of Chemical Neuroanatomy, 2022, 125, 102169.	1.0	2
1681	The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochemical Research, 2023, 48, 1129-1166.	1.6	8
1682	The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regeneration Research, 2023, 18, 947.	1.6	6
1683	Human monocyte-derived microglia-like cell models: A review of the benefits, limitations and recommendations. Brain, Behavior, and Immunity, 2023, 107, 98-109.	2.0	7
1684	Learning in the Damaged Brain/Spinal Cord: Neuroplasticity. , 2022, , 3-18.		0
1685	Inhibition of the LRRC8A channel promotes microglia/macrophage phagocytosis and improves outcomes after intracerebral hemorrhagic stroke. IScience, 2022, 25, 105527.	1.9	4
1687	Microglia: Synaptic modulator in autism spectrum disorder. Frontiers in Psychiatry, 0, 13, .	1.3	5
1688	Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. Journal of Neuroinflammation, 2022, 19, .	3.1	22
1689	Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
1690	Microglial cells: Sensors for neuronal activity and microbiota-derived molecules. Frontiers in Immunology, 0, 13, .	2.2	6

#	Article	IF	CITATIONS
1691	What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	8
1692	A period of transient synaptic density unbalancing in the motor cortex after peripheral nerve injury and the involvement of microglial cells. Molecular and Cellular Neurosciences, 2023, 124, 103791.	1.0	1
1693	Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
1694	Microglial TNFÎ \pm orchestrates protein phosphorylation in the cortex during the sleep period and controls homeostatic sleep. EMBO Journal, 2023, 42, .	3.5	11
1695	Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development. Neuron, 2023, 111, 190-201.e8.	3.8	22
1696	Interleukin-33 regulates the functional state of microglia. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
1698	Physical associations of microglia and the vascular blood-brain barrier and their importance in development, health, and disease. Current Opinion in Neurobiology, 2022, 77, 102648.	2.0	9
1699	Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metabolic Brain Disease, 2023, 38, 195-219.	1.4	6
1700	CY-09 Alleviates the Depression-like Behaviors via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation in Lipopolysaccharide-Induced Mice. ACS Chemical Neuroscience, 2022, 13, 3291-3302.	1.7	9
1701	Specific interactions between microglia and oligodendrocytes in white matter in continuous schizophrenia. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 128.	0.1	1
1702	Role of Microglia in Psychostimulant Addiction. Current Neuropharmacology, 2023, 21, 235-259.	1.4	1
1703	Microglia are implicated in the development of paclitaxel chemotherapy-associated cognitive impairment in female mice. Brain, Behavior, and Immunity, 2023, 108, 221-232.	2.0	8
1704	Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, Behavior, and Immunity, 2023, 108, 245-254.	2.0	32
1705	Cochlear resident macrophage mediates development of ribbon synapses via CX3CR1/CX3CL1 axis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	1
1706	Proteins secreted by brain arteriolar smooth muscle cells are instructive for neural development. Molecular Brain, 2022, 15, .	1.3	2
1707	Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells, 2022, 11, 3768.	1.8	4
1708	Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimer's and Dementia, 2023, 19, 1041-1066.	0.4	10
1709	Analysis of microglial BDNF function and expression in the motor cortex. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	6

ARTICLE IF CITATIONS # Spine morphogenesis and synapse formation in tubular sclerosis complex models. Frontiers in 1711 1.4 1 Molecular Neuroscience, 0, 15, . Microglia-containing human brain organoids for the study of brain development and pathology. 1712 4.1 Molecular Psychiatry, 2023, 28, 96-107. Microglial Pten safeguards postnatal integrity of the cortex and sociability. Frontiers in Immunology, 1713 2.2 1 0, 13, . Movers and shakers: Microglial dynamics and modulation of neural networks. Glia, 2023, 71, 1575-1591. 1714 Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of 1716 2.7 13 trigeminal neuralgia in rodents. British Journal of Pharmacology, 2023, 180, 1090-1113. Single-cell microglial transcriptomics during demyelination defines a microglial state required for lytic carcass clearance. Molecular Neurodegeneration, 2022, 17, . 1717 4.4 Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male 1718 3.1 4 mice under homeostatic conditions. Journal of Neuroinflammation, 2022, 19, . Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to 1719 7.1 Treat Alcohol Use Disorder in Adulthood. Pharmacological Reviews, 2023, 75, 380-396. Microglia regulate neuronal and behavioural functions under physiological and pathological 1720 0.9 0 conditions. Journal of Biochemistry, 0, , . Linking the gut microbiome to microglial activation in opioid use disorder. Frontiers in Neuroscience, 1.4 0, 16, . Research Progress on the Role of DAP12 Mediated Microglia Activation in Nervous System. Advances in 1722 0.0 0 Clinical Medicine, 2022, 12, 11992-11999. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and 1.4 neurodegeneration. Frontiers in Molecular Neuroscience, 0, 15, . Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. 1724 1.0 2 Neural Plasticity, 2023, 2023, 1-17. Synapse Dysfunctions in Multiple Sclerosis. International Journal of Molecular Sciences, 2023, 24, 1.8 1639 Knowledge domains and emerging trends of microglia research from 2002 to 2021: A bibliometric 1726 2 1.7 analysis and visualization study. Frontiers in Aging Neuroscience, 0, 14, . The Role of the JAK/STAT Signaling Pathway in the Pathogenesis of Alzheimer's Disease: New Potential 1.8 Treatment Target. International Journal of Molecular Sciences, 2023, 24, 864. Distinct spatiotemporal features of microglia and monocyteâ€derived macrophages in glioma. European 1728 1.6 2 Journal of Immunology, 2023, 53, . Novel Microglia-based Therapeutic Approaches to Neurodegenerative Disorders. Neuroscience 1729 1.5 Bulletin, 2023, 39, 491-502.

# 1730	ARTICLE Astrocytic Neuroimmunological Roles Interacting with Microglial Cells in Neurodegenerative	IF 1.8	CITATIONS
1732	Diseases. International Journal of Molecular Sciences, 2023, 24, 1599. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. International Journal of Molecular Sciences, 2023, 24, 589.	1.8	7
1733	Regulation of neuropathic pain by microglial Orai1 channels. Science Advances, 2023, 9, .	4.7	11
1734	Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacologica Sinica, 2023, 44, 1337-1349.	2.8	7
1735	Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	2
1736	Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	6
1737	Regulation of adult hippocampal neurogenesis by microglia in the healthy and injured brain. Scientia Sinica Vitae, 2023, , .	0.1	1
1738	Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways. Frontiers in Immunology, 0, 14, .	2.2	4
1739	Time-dependent and selective microglia-mediated removal of spinal synapses in neuropathic pain. Cell Reports, 2023, 42, 112010.	2.9	14
1740	Postnatal Development of Neuroimmune Responses. Masterclass in Neuroendocrinology, 2023, , 207-232.	0.1	0
1741	Molecular Regulation Mechanism of Microglial Autophagy in the Pathology of Alzheimer's Disease. , 2023, .		3
1742	TGF-β Activated Kinase 1 (TAK1) Is Activated in Microglia After Experimental Epilepsy and Contributes to Epileptogenesis. Molecular Neurobiology, 2023, 60, 3413-3422.	1.9	3
1743	Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS ONE, 2023, 18, e0282566.	1.1	1
1745	Reduction in GABAB on glia induce Alzheimer's disease related changes. Brain, Behavior, and Immunity, 2023, 110, 260-275.	2.0	1
1746	Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Neurobiology of Disease, 2023, 181, 106114.	2.1	3
1747	Transcriptional and epigenetic regulation of microglia in substance use disorders. Molecular and Cellular Neurosciences, 2023, 125, 103838.	1.0	4
1748	The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology, 2023, 231, 109491.	2.0	12
1749	Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway. Technology and Health Care, 2023, 31, 409-421.	0.5	1

# 1750	ARTICLE Microglial Cell Dysregulation in the Aged Brain and Neurodegeneration. , 2022, , 57-69.	IF	Citations 0
1751	Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain, Behavior, and Immunity, 2023, 109, 127-138.	2.0	6
1752	Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiology of Disease, 2023, 177, 106005.	2.1	3
1753	The effect of CX3CL1/ CX3CR1 signal axis on microglia in central nervous system diseases. Journal of Neurorestoratology, 2023, 11, 100042.	1.1	1
1754	Microglia Maintain Homeostatic Conditions in the Developing Rostral Migratory Stream. ENeuro, 2023, 10, ENEURO.0197-22.2023.	0.9	1
1755	The Role of Microglial Depletion Approaches in Pathological Condition of CNS. Cellular and Molecular Neurobiology, 2023, 43, 2459-2471.	1.7	2
1756	Microglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice. ELife, 0, 12, .	2.8	13
1757	CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to differentiate into microglia. Cell Reports, 2023, 42, 112092.	2.9	10
1758	Mechanisms of myeloid cell entry to the healthy and diseased central nervous system. Nature Immunology, 2023, 24, 393-407.	7.0	10
1759	N-Acetylcysteine Suppresses Microglial Inflammation and Induces Mortality Dose-Dependently via Tumor Necrosis Factor-α Signaling. International Journal of Molecular Sciences, 2023, 24, 3798.	1.8	3
1760	Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays. Cell Reports, 2023, 42, 112104.	2.9	11
1761	Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Research Bulletin, 2023, 195, 157-171.	1.4	4
1763	Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia, 2023, 71, 1383-1401.	2.5	21
1764	Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation. Advanced Science, 2023, 10, .	5.6	12
1765	Dysfunction of <scp>NG2</scp> glial cells affects neuronal plasticity and behavior. Glia, 2023, 71, 1481-1501.	2.5	5
1766	Spautin-1 administration mitigates mild TBI-induced cognitive and memory dysfunction in mice via activation of caspase-3. International Immunopharmacology, 2023, 117, 109906.	1.7	2
1767	Polyphenols: Natural food grade biomolecules for treating neurodegenerative diseases from a multi-target perspective. Frontiers in Nutrition, 0, 10, .	1.6	6
1768	The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. International Journal of Molecular Sciences, 2023, 24, 4739.	1.8	2

#	Article	IF	CITATIONS
1769	Inhibition of Microglial GSK3Î ² Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines, 2023, 11, 806.	1.4	7
1771	The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2023, 24, 5240.	1.8	0
1772	Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Translational Neurodegeneration, 2023, 12, .	3.6	5
1773	NeurofibromatosisÂtype 1-dependent alterations in mouse microglia function are not cell-intrinsic. Acta Neuropathologica Communications, 2023, 11, .	2.4	1
1775	Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules, 2023, 13, 505.	1.8	6
1776	Social isolation produces a sex―and brain regionâ€specific alteration of microglia state. European Journal of Neuroscience, 2023, 57, 1481-1497.	1.2	3
1777	XIth Cajal Conference: New frontiers in neuronâ€glial plasticity in health and disease. European Journal of Neuroscience, 2023, 57, 1447-1465.	1.2	1
1778	Microglial <scp>ILâ€1RA</scp> ameliorates brain injury after ischemic stroke by inhibiting astrocytic <scp>CXCL1</scp> â€mediated neutrophil recruitment and microvessel occlusion. Clia, 2023, 71, 1607-1625.	2.5	8
1780	The innate immune response in tauopathies. European Journal of Immunology, 2023, 53, .	1.6	2
1781	Early Life Stress, Neuroinflammation, and Psychiatric Illness of Adulthood. Advances in Experimental Medicine and Biology, 2023, , 105-134.	0.8	2
1782	Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. Advances in Experimental Medicine and Biology, 2023, , 191-208.	0.8	3
1783	Multifaceted microglia during brain development: Models and tools. Frontiers in Neuroscience, 0, 17, .	1.4	3
1784	Microglia play beneficial roles in multiple experimental seizure models. Glia, 2023, 71, 1699-1714.	2.5	8
1785	Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. International Journal of Molecular Sciences, 2023, 24, 6321.	1.8	2
1786	Dendritic spine dynamics in associative memory: A comprehensive review. FASEB Journal, 2023, 37, .	0.2	2
1787	The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. , 2023, 245, 108403.		1
1788	Diverse Functions of Multiple Bdnf Transcripts Driven by Distinct Bdnf Promoters. Biomolecules, 2023, 13, 655.	1.8	4
1789	The human P2X7 receptor alters microglial morphology and cytokine secretion following immunomodulation. Frontiers in Pharmacology, 0, 14, .	1.6	4

#	Article	IF	CITATIONS
1790	Tumor progression is independent of tumor-associated macrophages in cell lineage–based mouse models of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
1791	Biosafety and mental health:virus induced cognitive decline. Biosafety and Health, 2023, , .	1.2	0
1792	Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 7258.	1.8	7
1793	Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia, 2023, 71, 1960-1984.	2.5	8
1795	Sexually differentiated microglia and <scp>CA1</scp> hippocampal synaptic connectivity. Journal of Neuroendocrinology, 2023, 35, .	1.2	0
1796	PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. Journal of Neuroinflammation, 2023, 20, .	3.1	5
1797	Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Molecular and Cellular Neurosciences, 2023, 125, 103855.	1.0	2
1798	Microglia at the scene of the crime: what their transcriptomics reveal about brain health. Current Opinion in Neurology, 2023, 36, 207-213.	1.8	4
1799	Bumetanide induces post-traumatic microglia–interneuron contact to promote neurogenesis and recovery. Brain, 2023, 146, 4247-4261.	3.7	2
1800	Microglia enable cross-modal plasticity by removing inhibitory synapses. Cell Reports, 2023, 42, 112383.	2.9	8
1830			
	Physiology and diseases of tissue-resident macrophages. Nature, 2023, 618, 698-707.	13.7	40
1833	Neuroimmune interactions: From bench to bedside. , 2023, , 9-35.	13.7	40 0
1833 1850		13.7 4.1	
	Neuroimmune interactions: From bench to bedside. , 2023, , 9-35. Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of		0
1850	Neuroimmune interactions: From bench to bedside. , 2023, , 9-35. Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia. Molecular Psychiatry, 2023, 28, 2857-2871. Immunology and microbiome: Implications for motor systems. Handbook of Clinical Neurology / Edited	4.1	0 2
1850 1866	Neuroimmune interactions: From bench to bedside. , 2023, , 9-35. Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia. Molecular Psychiatry, 2023, 28, 2857-2871. Immunology and microbiome: Implications for motor systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 135-157. Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. Methods in Molecular Biology,	4.1	0 2 0
1850 1866 1870	Neuroimmune interactions: From bench to bedside. , 2023, , 9-35. Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia. Molecular Psychiatry, 2023, 28, 2857-2871. Immunology and microbiome: Implications for motor systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 135-157. Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. Methods in Molecular Biology, 2024, , 481-503.	4.1 1.0 0.4	0 2 0

#	Article	IF	CITATIONS
1934	Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. Advances in Neurobiology, 2023, , 255-310.	1.3	2
1947	Glial Cells in the Mature Central Nervous System. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 1-19.	0.2	0
1948	Microglial Cells Function in the Central Nervous System. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 60-82.	0.2	0
1949	Parkinson's Disease Involving Clial Cell Dysfunction. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 164-188.	0.2	0
1977	Hydroxytyrosol: focus on the antineuroinflammatory action. , 2024, , 1609-1621.		0
1979	Reactive Microglia and Astrocyte Phenotype Transitions: A Framework. , 2023, , 59-65.		0
1981	Glial Cells During the Life Cycle. , 2023, , 29-57.		0
1991	Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathologica, 2024, 147, .	3.9	2